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Abstract

different congestion spots.

Vehicular traffic re-routing is the key to provide better traffic mobility. However, taking into account just traffic-related
information to recommend better routes for each vehicle is far from achieving the desired requirements of proper
transportation management. In this way, context-aware and multi-objective re-routing approaches will play an
important role in traffic management. Yet, most procedures are deterministic and cannot support the strict
requirements of traffic management applications, since many vehicles potentially will take the same route,
consequently degrading overall traffic efficiency. So, we propose an efficient algorithm named as Better Safe Than
Sorry (BSTS), based on Pareto-efficiency. Simulation results have shown that our proposal provides a better trade-off
between mobility and safety than state-of-the-art approaches and also avoids the problem of potentially creating
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1 Introduction

Vehicular traffic congestion is an emergent problem in
many cities around the world. Recent studies [11, 27]
have shown that vehicular traffic re-routing is one of the
key solutions to handle this problem, which is about sug-
gesting alternative routes to improve the overall traffic
efficiency. Google Maps, TomTom and Waze are existing
smartphone based Vehicular Navigation Systems (VNS)
that handle with traffic congestion by recommending the
fastest routes for users by using current traffic information
and historical traffic statistics [17].

Considering only traffic-related information for com-
puting better routes to vehicles is far from achieving the
requirements of traffic management solutions [32]. In
this sense, context-awareness will play an essential role in
vehicular traffic re-routing, paving the way for improv-
ing not only vehicular traffic mobility, but also other
metrics that could not be achieved by just minimizing
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traffic-related ones, such as driving experience, energy
consumption of electric vehicles as well as safety of drivers
and passengers [12].

Specifically, the public safety is one of the most concern-
ing issues that needs to be taken into consideration while
computing alternative routes, since in some cases it can
put the life of drivers and passengers at risk. For instance,
a couple that has followed a route recommended by Waze
got shot as they crossed a slum of Rio de Janeiro Brazil [7].
Another case, occurred in Boston, USA, when a vehicle,
guided by a VNS, crossed a gunfight [25].

Intelligent transportation systems (ITSs) have the
potential to enable more efficient, safer and greener
transportation, by integrating advanced sensing, process-
ing and communication technologies [21]. With ITSs a
whole new set of services will take place, ranging from
road safety improvement to traffic efficiency optimiza-
tion. This vehicular experience will ultimately have a pro-
found impact on society and the daily lives of millions
of people around the world, changing the way that we
live, work and play. In this context, by integrating differ-
ent pieces of information available in urban environments,
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ITSs can derive solutions to deal with traffic congestion
while improving the safety of drivers and passengers.

Vehicular ad hoc networks (VANETs) [35] and the
fifth-generation (5G) networks [13] will play an essen-
tial role in supporting ITS applications with vehicular
communications ranging from vehicle-to-vehicle (V2V)
to vehicle-to-everything (V2X) communications [6, 33].
The infrastructure of VANETs allows the vehicles commu-
nicate with each other and with roadside infrastructures,
smart objects, in-road, and roadside sensors, and even
with people to produce useful information to maximize
the potential of ITSs.

The need for context-aware vehicular re-routing is evi-
dent. However including a new metric to the re-routing
strategy naturally increases its complexity. Bi-objective
shortest paths are an instance of the multi-objective
shortest paths problem, which is known to be NP-hard,
since the number of solutions may be exponential in the
nodes number [22]. In this way, several solutions have
been proposed to deal with such problems [22] such as
Single-Source Shortest Path [22], Weighted-Sum [23] and
Resource Constrained Shortest Path (RCSP) [18]. How-
ever, most solutions for dealing with such problem are
deterministic which are not right solutions for traffic man-
agement applications, since many vehicles with the same
origin and destination can take the same route, potentially
degrading the traffic efficiency.

Unfortunately, most of the literature solutions still only
consider traffic-related information to deliver their ser-
vices [2, 11, 15, 26, 36], which naturally can lead to
safety-related issues. On the other hand, navigation sys-
tems focusing only on optimal safety [16, 30] can lead to
stressful routes, since the recommendation algorithm can
include congested roads into the recommended route, but
these roads are more likely to be avoided in drivers’ cri-
teria during their route planning [1]. Moreover, previous
work [8, 9] has shown that using standard multi-objective
optimization solutions are not enough to deal with the
traffic management problem, since they lead to determin-
istic solutions that potentially degrade the overall traffic
efficiency.

In this way, we propose Better Safe Than Sorry (BSTS)
an ITS for vehicular traffic re-routing that considers both
traffic conditions and public safety issues while employing
a non-deterministic multi-objective routing algorithm to
improve the traffic management. BSTS is an extension of
our previous work [8], overcoming the limitation of creat-
ing different congestion spots during the multi-objective
re-routing. In this way, the contributions of this paper are
stated as follows:

Non-deterministic multi-objective re-routing algo-
rithm: BSTS implements a non-deterministic vehicular
traffic re-routing algorithm based on the Pareto-efficiency
(e.g., set of routes to improve both traffic efficiency and
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safety) to distribute the traffic over the set of feasible
routes in polynomial time. This approach reduces the
problem of creating different congestion spots during the
route recommendation, which is a limitation presented in
literature approaches [8, 9, 14, 16, 26].

Analysis of system efficiency and re-routing com-
plexity: The overhead produced by a traffic re-routing
system can degrade its overall performance; also the com-
plexity of re-routing algorithm can introduce an unde-
sired latency under denser scenarios, which can degrade
even more the system efficiency. Thus, we evaluate the
overhead produced by BSTS and the complexity of its
re-routing algorithm in respect to literature solutions
[9, 14, 16] to evaluate its scalability and whether BSTS can
enable a real-time re-routing.

Evaluation of the driver’s preference over the safest
and the fastest route: Different drivers can have differ-
ent preferences related to the fastest and the safest routes.
For instance, careful drivers may prefer a safer route than
a fast one to travel, while drivers with a time limitation
potentially prefer a faster route to reach their destina-
tion in time. Therefore, we analyze the BSTS performance
when drivers choose the fastest and the safest routes.
However, to keep the overall improvement in both metrics
(e.g., traffic efficiency and mobility), during this analy-
sis BSTS filters the Pareto set to have either the k fastest
routes or the k safest routes. Thus, it still can improve
not only the traffic efficiency but also safety using the
non-deterministic multi-objective re-routing algorithm.

The remainder of this paper is organized as fol-
lows. Section 2 describes related work highlighting their
advantages and limitations. Section 3 introduces BSTS.
Section 4 presents the results. Finally, Section 5 concludes
the paper and discusses future work.

2 Related work

In this section, we outline the main related work about
vehicular traffic re-routing considering traffic conditions
and safety issues.

When we perform a vehicular traffic re-routing, we
consider different types of information about the urban
environment, such as road geometry, traffic flow, weather
conditions, human behavior, traffic light, crash risk, and
public safety information [32]. Thanks to VANETs, vehi-
cles can act as mobile sensing nodes that can sense their
driving environment to provide real-time traffic-related
data using either vehicle-to-vehicle (V2V) or vehicle-to-
infrastructure (V2I) communications [19]. On the other
hand, to acquire additional pieces of information about
the urban environment, different approaches can be con-
sidered, including crowd-sourcing based systems, social
media, participatory sensing, Web information, etc [9].

The vehicular traffic re-routing problem is still under
investigation, most literature solutions considering just
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information about traffic conditions to employing re-
routing algorithms which is far from achieving the
requirements of future traffic management systems [32].
Zhang et al. [37] proposed an application named DIFTOS,
that is a distributed infrastructure-less congestion predic-
tion and traffic optimization system for VANETs in an
urban environment. DIFTOS presents a hierarchical fash-
ion design that aims at finding for each vehicle the shortest
path from its source to the destination point. The first
shortest path is computed based on the link travel delay
with the weight constraint, after that the algorithm deter-
mines a set of predicted congested road segments. Fol-
lowing that, a re-routing procedure is applied to each one
of these segments or sub-paths formed by the predicted
congested road segments.

Pan et al.[27] proposed a distributed vehicular re-
routing system (DIVERT) for congestion avoidance.
DIVERT offloads a large part of the rerouting compu-
tation at the vehicles, and thus, the re-routing process
becomes practical in real-time. The vehicles exchange
messages over VANETSs, making the re-routing decisions
collaborative, use a server and Internet communication to
determine an accurate global view of the traffic.

Wang et al. [34] develop a vehicle re-routing system
called Next Road Rerouting (NRR), where a heuristic re-
routing decision considers a cost function that takes into
account the driver’s destination and local traffic condi-
tions. Also, apply periodic re-routing algorithms.

As a result of the rapid urbanization of cities and conse-
quently the increasing number of vehicles, some problems
arise in addition to congestion, such as pollution, traffic
accidents, and unsafe areas. In this sense, several papers
have been combining different types of information to
optimize traffic planning. Peng et al. [29] discuss the main
issues to conduct real-time road safety prediction and
propose a new deep learning framework (DeepRSI) to
solve this problem. In this work, the authors use pub-
lic data from authoritative official organizations in New
York City, that include urban maps, weather data, holi-
day event data, GPS trajectories generated, and accident
event records. Souza et al. [11] introduce ICARUS, a
distributed and pro-active Traffic Management System,
which receives notifications about traffic events (con-
gestion detection, accident notification, and congestion
prediction) then it can calculate new routes, and, later,
notify drivers to follow new paths pro-actively by using
inter-vehicle communications. Doolan and Muntean [15]
proposed an eco-friendly ITS (EcoTrec) which intends to
reduce carbon emissions and to improve traffic efficiency.
In EcoTrec, there is a traffic model built by a central entity
which contains the average fuel consumption of each road.
All vehicles periodically report their position and average
fuel consumption to the central entity using an “endemic
routing” data dissemination protocol to ensure the
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delivery. In this way, all vehicles consult this traffic model
periodically to reroute themselves. EcoTrec uses the Dijk-
stra algorithm to compute optimal routes to each vehicle,
which does not assure traffic efficiency.

Another way to improve traffic conditions is the Vehic-
ular Navigation System (VNS). In most cases, this system
calculates the route once and using the shortest travel
delay path algorithm based on traffic statistics or real-time
road traffic measurement. In this case, the routes that they
provide are individually optimized paths for each vehicle
and the congestion is detected based on vehicles speed in
different road segments [37]. For example, Google Maps,
TomTom and Waze are navigation systems to suggest
faster routes to users, based on overall traffic knowl-
edge [17]. Sometimes, trying to avoid traffic congestion,
these applications can guide passengers to unsafe areas,
where there are cases of shootings, assaults, and even
murder [7, 25].

Criminal data has already been used to determine safe
routes in [16, 30]. Galbrun et al. [16] were the first to
define safe routes with criminal data. They used public
datasets of criminal activity, as well as on city-dwellers
mobility traces to develop a risk model for an urban road
network from Chicago and Philadelphia. So, they intro-
duced SafePaths and modeled it as bi-objective shortest
path problem. They have used a deterministic algorithm
to determine the better route, by computing all possi-
ble routes. Their work presents two limitations: (i) com-
puting all possible routes can be very costly, potentially
degrading the system performance; (ii) in the case of a
driver who is just considering the distance aspect, such
an approach will not provide better traffic management,
because traffic conditions on the roads are not known.
Shah et al. [30] proposed a crowd-sourcing-based system
to suggest the safest routes for the drivers. To do this, they
use data (reported by the people using their smartphones)
about crime-related incidents. However, as its mechanism
is based only on crowd reports, so the information is
not always correct and sufficient to provide traffic effi-
ciency. In earlier work [9] we proposed an Intelligent
Transportation System for improving SAfety and traFfic
Efficiency named as itsSAFE, which: (i) employs accu-
rate knowledge about the traffic conditions and unsafe
levels on roads; (ii) and use these data to suggests peri-
odically alternative routes for all vehicles. The problem
is modeled as an instance of the Resource Constrained
Shortest Path (RCSP) and minimizing two objectives
(traffic congestion and unsafety level). A dynamic pro-
gramming routing algorithm is used to determine the
most efficient route to a vehicle satisfying the safety
requirements.

Table 1 shows a qualitative comparison between BSTS
and the literature solutions. It presents a summary of lit-
erature solutions highlighting the characteristics that we
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Table 1 Summary of literature solutions highlighting their characteristics and limitations

Architecture Re-routing strategy Optimization Re-routing considerations

Referred papers C
N
& § §® k\ib ‘bé\ o
Ny
e @ & 8 & & s & s &
Q S & & O & N 5 O 9
& g SO 3 g & 5¢ IS § %
& & N & S N S S S S &

¢ qQ T Q < & < N S Q &
BSTS v v v v v
itsSAFE [9] v v v v
VNS Systems v v v v
DIFTOS [37] v v v
DeepRSI [29] v v v v v
DIVERT [27] v v v v
EcoTrec [15] v v
NRR [34] v v
ICARUS [11] v v v v
SafePaths [16] v v
Crowdsafe [30] v v
SAFER [10] v v

Bold solutions are used to validate our approach

consider in this work: architecture re-routing, strategy
optimization, re-routing considerations. Additionally, we
stand out the solutions used to validate our approach,
itsSAFE, VNS Systems, EcoTrec, and SafePaths. We can
see in Table 1 that most of the solutions consider just traf-
fic flow to do re-routing and few works consider extra
information, like a traffic accident, pollution, and safety
issues. In particular, only three papers examine the safety
issues data, so it is a relevant aspect to consider to plan-
ning routes.

3 Better safe than sorry

BSTS is designed based on the following major require-
ments. First, the route planning must be offloaded from
the cloud to the vehicles, to minimize computation effort
and communication cost, consequently improving the
system scalability. Second, the system needs to have access
to public safety information of the city to extract knowl-
edge about risk areas. At last, the route planning algorithm
needs to be able to balance the traffic flow over the
roads to avoid creating bottlenecks in the transportation
infrastructure (e.g., traffic congestion) while dealing with
safety issues.

3.1 Urban scenario modeling

Let D = (V,E) be a digraph that represents the road
network, in which the set of vertices V represents the
intersections, while the set of edges E € V x V corre-
sponds to the roads, e.g., an edge uv € E corresponds

to a road connecting intersection u to intersection v, for
u,v € V.Each road uv € E has two attributes, 7,,, > 0 and
rywy > 0 that represent the traffic condition and the safety
risk in road uv, respectively. Also, let N be the set of vehi-
cles in the road network. Each vehicle # € N has a pair of
origin s € V and destination ¢ € V, such that s # ¢, and
is associated to a path P C E connecting s to ¢. The traffic
efficiency of a path is defined by tp = ) T,y and its
risklevel by rp =3 cp Tuv-

uveP

3.2 System design

Figure 1 depicts the system architecture, which is com-
posed of vehicles, safety information providers, edge
servers (e.g., fog nodes) and a remote cloud. Each vehi-
cle equipped with on-board units (OBU) can commu-
nicate with other vehicles, roadside infrastructures (e.g.,
RSUs, 5G base stations), edge servers, and with the
cloud using either 5G or VANET communications to
report traffic-related information and to receive updates
about traffic conditions and safety risks for improving
their mobility and security. On the other hand, edge
servers widely deployed on roadside infrastructures can
provide processing and storage resources on the net-
work edge, consequently, enabling fast responsiveness
[21]. In this sense, each fog node is responsible for
building local pieces of knowledge about traffic condi-
tions over its coverage based on vehicle’s report. Natu-
rally, the remote cloud is responsible for creating global
awareness about traffic conditions and risk areas and
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Fig. 1 System design

Urban environment

also to deal with resource constraints presented by edge
servers. Finally, safety information providers are respon-
sible for feeding the system with criminal reports to
build pieces of knowledge about city-wide illegal activ-
ities. Those providers include (i) police departments
providing the historical data of official crime statis-
tics; and (ii) people providing a more dynamic knowl-
edge and real-time sensing based on crowd-sourcing
approach (e.g., participatory sensing applications and
social media), which is not possible by using just historical
data.

In this way, the system can build pieces of knowledge
about traffic conditions and dangerous areas over the city.
Thus, upon detecting signs of congestion, the system can
send a notification to the vehicles, consequently enabling
them to plan a route for improving their mobility and the
safety of driver and passengers.

3.3 Trafficinformation reporting

The system needs to receive information about every
vehicle in the scenario to create accurate knowledge
about traffic conditions. However, if each vehicle reports
its information periodically, a considerable number of
transmissions will be produced, potentially overloading
the communication channel, and consequently, degrading
overall system performance. In this way, BSTS employs an
efficient mechanism to reduce the number of transmis-
sions and still maintaining accurate knowledge of traffic
conditions. To do so, BSTS uses the approach described
in [10], in which the authors segment the road network
into sub-regions based on the size of vehicles’ commu-
nication range, and define a centroid to each sub-region.
Figure 2 illustrates the road network segmentation and
the traffic information reporting employed by BSTS. In
summary, we can see two different sub-regions with their

respective centroids (e.g., black circle in the center of
the region) and vehicles. After building the traffic knowl-
edge of its sub-region, each vehicle schedules a report
based on the distance to the centroid (represented by the
arrows linking the centroid to the vehicles in the sub-
region). Using this approach, the vehicle closest to the
centroid will have shorter delay than further vehicles.
Thus, it will report the traffic information (represented by
the red vehicle and information reported by it) first than
the other vehicles, meanwhile, if another vehicle hears
that report it will cancel its report to avoid redundant
transmissions.

Each vehicle within a sub-region shares its traffic-
related information with nearby vehicles using beacon
messages. This information is: (i) current position given
by its road uv € E; and (ii) speed speed,,. Therefore, all
vehicles in the same sub-region know the number of vehi-
cles in each road (within its communication range) and
speed of each one; thus each vehicle can build a piece of
knowledge of traffic condition of its sub-region [10].

To reduce the number of transmissions, BSTS imple-
ments a delay-based approach, which each vehicle within
the same sub-region schedules the transmission of its
piece of traffic knowledge based on the distance between
its current position and the centroid of its sub-region. This
mechanism prioritizes vehicles closer to each centroid,
and when the first transmission of a sub-region occurs,
all vehicles within the same sub-region that listened to
this transmission will cancel their scheduled transmission.
Figure 2 describes this procedure.

3.4 Traffic condition estimation

With the traffic knowledge of each sub-region, BSTS
computes the average speed of each road uv periodi-
cally (during the re-routing phase based on the re-routing
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Fig. 2 Sub-regions employed by BSTS

frequency) using the information about the number of
vehicles on it and their respective speeds speed,, received
in the last report. Thus, the average speed of each road
avg (uv) at time ¢ is:

t
ZneN,ﬁV speed!,

gt un) = =N
uv

, 1
where N!, is the set of vehicles on the road uv at time
t. Then, based on the average speed of each road, BSTS
computes its traffic condition t,, at time ¢, defined as:

maxs(uv) — avgt(uv)
Tuy =

2)

maxs(uv)

where maxg(uv) is the maximum speed of the road uv.
When the system does not receive any information from
a specific road, that road is defined as free-flow; thus, its
mean speed is the same value of its maximum speed.

Based on 1y, it is possible to detect bottlenecks in the
traffic efficiency, using the Level of Service (LOS) classi-
fication defined by the Highway Capacity Manual (HCM)
[4]. The relation of 7,, and its classification is described in
Table 2.

Table 2 Relation of 7, and its classification

Ty LOS Traffic classification
(0,0.15] A

Free flow
(0.15,0.33] B
(0.33,0.50] C ,

Slight congested
(0.50,0.60] D
(0.60,0.70] E

Congested
(0.70,1.00] F

3.5 Safety risk estimation

To estimate the safety risk of each road, BSTS uses infor-
mation about criminal activities over the city. This infor-
mation is provided by heterogeneous sources, being: State
Departments of Public Safety, social media (e.g., Twit-
ter), participatory sensing applications (e.g., Onde Fui
Roubado - Where I Was Robbed) and news websites that
report crime events. The first one provides official data
(e.g., crime records) about city crimes, generally con-
sidered as the most reliable source, and the other ones
offer non-official data, usually unreliable. However, non-
official data are considered a valuable qualitative source of
human-provided input.

It is expected that official data to be better organized
and having more significant information. However, it also
might have missing and information (e.g., blank fields),
which can make the correct identification and quantifi-
cation of crime events harder. Moreover, most criminal
records are unstructured, since it is often provided by
victims who still are emotionally affected by the crimi-
nal event, consequently directly influencing in the data
quality.

To properly analyze crime data (official and non-
official), improve their quality and infer specific crime
events, a previously developed assessment process was
applied. Such process is composed by pre-processing to
clean and discard dirty data, data mining methods for
extracting relevant objects, fusion techniques for corre-
lation and integration, and semantic models to obtain
meaningful information. The result of this assessment
process is a reliable criminal event database[5].

Therefore, to each processed data sample (official and
non-official) BSTS employs mechanisms to (i) extract the
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Fig. 3 Safety risk estimation data flow

information about the location of each criminal event
using its address (e.g., geocoding); (i) map the location
of each crime to the closest road; and (iii) characterize
the safety risk of each crime based on its complexity (e.g.,
robbery, theft, extortion abduction, etc.).

In this way, it is possible to classify each criminal
event attributing a weight based on its characteristics
[5]. Figure 3 depicts the data flow for estimating a safety
risk of each road. Besides, Table 3 describes how each
criminal activity is classified, presenting its type, a brief
description, and its safety risk.

To map criminal events to the closest road, BSTS uses
the coordinates obtained from the address of the criminal
activity as well as the coordinates of all vertices from the
road network. In this way, it is possible to identify which
vertices u,v € V are closest to the criminal event, such
thatuv € E.

Upon classifying and mapping each criminal activity,
BSTS computes the safety risk of each road r,, based on
the weighted-sum of crimes happened on each road, as
follows:

Fyy = Z riske, (3)

ceCE,,y

where CE,, is the set of criminal events within the road uv
and risk, is the safety risk of each criminal event c.

3.6 Improving mobility and safety

When BSTS detects signs of congestion (e.g., 7, > 0.6
at time £), it sends a re-routing notification containing the
traffic conditions and the safety risk estimations to the
closest vehicle to the congestion that has sent the last traf-
fic estimation reporting. Therefore, this vehicle is respon-
sible for disseminating the message to its neighbors. To
ensure that all vehicles that are going towards the con-
gestion receive the message, BSTS employs a multi-hop
data dissemination protocol that addresses the broadcast
storm problem using a delay-based broadcast suppression
mechanism, whose the forwarding delay is based on the
inverse distance between sender and receiver [11]. In this
way, as a vehicle receives the re-routing notification, it can
compute a new route for improving its mobility and safety.

BSTS implements a non-deterministic optimization
algorithm to improve both metrics (e.g., mobility and
safety) and also to minimize the problem of creating
different congestion spots which are inherent to deter-
ministic approaches [14, 26]. To do so, BSTS defines a set
of potential routes and then selects one of them using a
probabilistic approach. The set of potential routes is deter-
mined based on a Pareto curve, which provides the fastest
route (e.g., optimal) to every possible safety risk value of
each route. Figure 4 shows an example of a Pareto curve
to optimize both mobility and safety. In this example, the
safer the route is, the slower it becomes.

The complete re-routing algorithm is described in Algo-
rithm 1. First, as soon as a vehicle receives the re-routing
notification, it updates the both pieces of knowledge
(Line 1) and computes the waiting time to forward the
message to nearby vehicles (Line 2). The knowledge
update is performed locally in each vehicle using a lin-
ear function based on the size of the road network graph
D with complexity O(E), this update is done whenever
a vehicle receives a knowledge update with a re-routing
notification (e.g., in our implementation this notification
has a frequency of 450 s). Thereafter, the vehicle com-
putes the Pareto set P based on its current position s and
destination ¢ (Lines 3-6). It is important to consider that
different drivers can have different preferences concern-
ing a safer or faster route. Thus, we enabled that each
vehicle filters the Pareto set according to its preference.
However, to maintain a suitable traffic flow balancing the
filtering is based on the set of k fastest or k safest routes
(Lines 8 and 11). Then, each vehicle applies the Boltzmann

Table 3 Criminal activity classification

Type Criminal event description Risk

1 Low complexity events without fire guns 1
executed by a single individual

2 Medium complexity events potentially exe- 2
cuted by two individuals having fire guns
in more complexity locations through a
planned schema

3 High complexity events executed by several 4
individuals having fire guns and/or especial
weapons in high complexity locations
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Algorithm 1: Whenever a vehicle receives a re-
routing notification from the server

Algorithm 2: Dynamic programming algorithm for
computing the Pareto set.

Input : D// road network with updated
values of 1y, and ry, VYuveE
preference // preference of

selecting the set of fastest or

safest routes from the Pareto set

Output: Alternative route for improving mobility
and safety

1 D.updateKnoweledge();

// Compute the delay to forward the
message

T <« computeDelay();

s < currentPosition;

t < destination;

if s £ t then

// Compute the Pareto set from s
to t

6 P <« Pareto(s, t);

// Check the re-routing preference

s WN

7 if preference == Fastest then

8 ‘ P <« getKFastestRoutes(P, k);
9 end

10 else

1 ‘ P <« getKSafestRoutes(P, k);
12 end

// Select a route from the Pareto

set using the Boltzamann

distribution

13 new_route < BoltzmannSelection(P);

14 setNewRoute(new_route);

15 end
// wait for T seconds

16 wait(T);

17 if did not listen to a re-transmission in T seconds?
then

18 ‘ forwardMessage();

19 end

20 else

21 ‘ Cancels the transmission;

22 end

algorithm [20] to select a route from the filtered Pareto set
(Line 13), which will be further defined as its new route
(Line 14). If the vehicle did not hear any transmission of
the update message in T seconds, it forwards its message;
otherwise, it cancels the transmission.

3.7 Computing the pareto set
The problem to find the Pareto set of with origin s and
destination ¢ is similar to the problem of finding the fastest

Input :s// current position of vehicle n
t// destination of vehicle n
A // maximum risk of the path
Output: Pareto set of paths stating in s and ending in
t with risk at most A.

—

DP <[ ];// table to store T(v,¢)
¥ <[ ];// stores predecessor vertex in
the route DP[v,¢]

(]

3 foreach ¢ € {1,2,...1} do

4 Yls, @] < 0;

5 DP[s, @] < 0;

6 end

7 foreachv € V' \ {s} do

8 Yv,0] < 0;

9 DP[v,0] < oc;

10 end

11 foreach ¢ € {1,2,...,1} do

12 foreachv € V do

13 Viv,pl < ¥lv,p —1];

14 DP[v,¢] < DP[v,p — 1];

// Edge linking v to its
predecessor u

15 foreach uv € E do

16 if r,, < ¢ then

17 if [v,¢] > DP[u, r,, — 1] +1,, then
18 Ylv, o] < u;

19 DP[v,¢] < DP[u,ryy — 1] +7y;
20 end
21 end
22 end
23 end
24 return DP[t,],v ;
25 end

path P with rp < ¢ such that ¢ € {1,2,...,1}, thus,
satisfying the following recurrence:

0 ifop=0andv=s,
o0 ifo=0andv #s,
T, @)= Tw,0—1) (4)
min min TG rgy — 1) + ) Otherwise
Uryy=¢

Such recurrence naturally derives a recursive algorithm
with exponential time complexity, but it also can be solved
using a dynamic programming approach having complex-
ity O(EL), which has polynomial complexity since, in our
scenario, the value of X is not arbitrarily large.
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Fig. 4 Example of a Pareto curve for mobility and safety

Route safety risk

Algorithm 2 describes the dynamic programming
approach used for computing the Pareto set. In the algo-
rithm, DP is a dynamic programming table used to memo-
rize the traffic efficiency value to reach each vertex v from
a vertex s with risk ¢, for s,v € V. Such a path can be
stored by table ¥, in which ¥[v,¢] is a predecessor of
v in the (s, v)-path with risk ¢. The first and the second
loops (lines 3-10) are responsible for preparing the DP and
Y tables in the base cases of the recurrence, which mark
empty paths by clearing the predecessor of source s, and
mark (s, v)-paths as unfeasible whenever the demanded
risk is ¢ = 0. Later, the algorithm fills up the table DP, for
the following risk values ¢ € {1,2,...,A}: the best traffic

efficiency is either the same as that of risk ¢ —1 (line 14), or
is achieved by following some non empty (s, v)-path from
s to some predecessor u, and edge uv (lines 15-22). Pos-
sible predecessors are those vertices u for which r,, < ¢,
and the corresponding (s, v)-path in this case has traffic
efficiency DP[ u, r, — 1] +74y (line 19). Finally, the Pareto
set can be obtained through line ¢ for all values of ¢.
Figure 5 shows a digraph D = (V, E) with edges having
two weights in the form 7,,/r,, representing traffic effi-
ciency and safety risk, respectively, in a certain scenario.
Table 4 exhibits the values obtained for DP when we run
the Algorithm 2 in this example scenario, if a vehicle has
origin s and destination ¢, with safety risk of the shortest

0.3/3

0.3/1

Fig. 5 Digraph D = (V, E) with traffic condition ., and safety risk r,, representation built by BSTS
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Table 4 Dynamic Programming table for the Digraph of Fig. 5
e 0 1 2 3 4 5 6 7 8 9 10

s 0 0 0 0 0 0 0 0 0 0 0

u oo 01 01 01 01 01 01 01 01 01 01
X oo o0 oo 03 03 03 03 03 03 03 03
v oo oo oo oo 04 04 04 04 04 04 04
y oo oo oo oo 06 06 05 05 05 05 05
t oo o 00 00 00 00 10 10 07 07 06

path of A = 10. It is important to stress that the Pareto
set for the scenario mentioned above is DP[¢,] (e.g., the
whole line).

3.8 Route selection

The Boltzmann selection works as follows. Let k and T
be the two parameters used by the Boltzmann algorithm,
in which the first one represents the Boltzmann constant
and the other one the parameterized attribute. In this way,
each vehicle computes its Boltzmann constant according to:

k(P) = Z exp (—ZTV), (5)

uvelP

where P is a route from the Pareto set P, 1., is the traffic
condition of each road in the path and T is the param-
eterized value of the Boltzmann algorithm. Notice that
the greater the value of T is, the higher is the chance of
achieving a uniform distribution, which must be avoided
to provide a better traffic balance (e.g., avoid selecting
either a longer alternative path or a least efficient one). It
is worth noticing that considering the Pareto set to select
the new route for a vehicle we ensure that all routes in that
set are improving both metrics (e.g., mobility and safety).
Therefore, to provide a better traffic flow balancing, the
route selection is based only on the traffic condition of
the road tp, but the new route will also improve the safety
of the drivers and passengers of the vehicle compared its
previous route.

After computing the Boltzmann constant, each vehicle
can compute the selection probability of each P € P based
on the traffic condition of the whole path. The probability
is defined by Pr(P):

Pr(P) = (6)

1
vep Tuy
€xp (Zku(zf)PT )

where, P is a possible alternative path and ), p Tuv
represents its traffic condition.

Finally, based on the probability of each path, the vehi-
cle can choose its alternative route P’ using a random
procedure based on each probability. The key idea is to
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select the path with the highest probability that satisfies
the following condition:

P = argmax {X - Pr(P),X €[0,1]} (7)
PeP

where, X is a random variable to represent the random
procedure and can assume values between 0 and 1.

4 Results

This section describes the BSTS performance. First of all,
Subsection 4.1 introduces the simulation platform, pre-
senting the tools, the scenario, and the analyzed metrics.
Subsection 4.2 describes the dataset of criminal incidents
used to extract safety knowledge. Subsection 4.3 presents
the network performance analysis. Subsection 4.4 shows
the system efficiency and re-routing complexity analysis
for BSTS and literature solutions. Subsection 4.5 shows
trade-off of traffic efficiency and safety risk of BSTS
and literature solutions. Finally, Subsection 4.6 shows the
impact of selecting the fastest and the safest routes in
BSTS.

4.1 Methodology

To provide the simulation, we use simulator of urban
mobility SUMO [3] version 0.30.0, the network simulator
OMNeT++ [24] version 5.0 and also the vehicular net-
working framework Veins [31] 4.6. The road network is
composed of a fragment of 5 km? from Sao Paulo city,
Brazil, obtained using OpenStreetMap. The traffic mobil-
ity was produced using the TrafficModeler [28] tool to
ensure a close to real traffic mobility resulting in a total of
five thousand routes. The number of routes was defined to
create free-flow mobility and heavy traffic congestion (i.e.,
the travel time for the majority of vehicles is significantly
higher than the free flow travel time). In this way, we gen-
erate the traffic at a constant rate by deploying one car
each second in the simulator from one side of the scenario
to another one. By default, the shortest travel time paths
are automatically calculated and assigned to each vehicle
at the beginning of simulation based on the road speed
limits. The results are the average over ten runs, which is
sufficient because the result variation between the runs is
not significant. Table 5 shows additional parameters used
in the simulation.

4.2 Safety dataset

The knowledge about safety risks was built based on the
official criminal statistics of police departments of the Sao
Paulo city, Brazil. The dataset is composed of several crim-
inal reports from 2002 to 2016. However, to this work,
just criminal reports related to robbery, theft, extortion
abduction and kidnapping of the last three years were
used. The time window definition (e.g., 2014 — 2016),
was used to minimize issues related to poor data quality,
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Table 5 Simulation parameters

Parameters Values
Channel frequency 5.890e9 Hz
Propagation model Two ray
Transmission power 22 mW
Communication range 300 m
Maximum data message size 250 Kbytes
Bit rate 18 Mbit/s
Max hop count 10

Density 100, 250, 500 and 1000 vehicles/km?
# Sub-regions 18
Re-routing frequency 450's

for instance, out of date information. Some of the main
attributes regarding each crime report include the address
of the crime occurrence, its type, and a brief description.

Figure 6 depicts an example of both pieces of knowledge
employed by BSTS over the simulated scenario. The left-
hand side figure represents the piece of knowledge about
traffic conditions, while the other one represents the piece
of knowledge about safety risks on the roads.

4.3 Network cost analysis

This section evaluates the network cost and the scalabil-
ity of each solution by analyzing the overhead produced
by them to deliver their services. To this evaluation we
have compared BSTS with our previous solution itsSAFE
[9] that employs a centralized architecture and also with
EcoTrec [15] that employs a hybrid architecture. In this
way, we analyze the following metrics:

e Transmitted messages are the total number of data
messages transmitted by all vehicles in the network
during the whole simulation. A high number of
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transmissions is a strong indication of redundant
communications, which might produce network
contentions that can limit the system performance.

e Accuracy of the traffic view is the percentage of
correct traffic condition estimations computed by the
system. The accuracy is measured considering the
estimation produced by the system at time t and the
real traffic condition in the same timestamp which
can be retrieved from the mobility simulator. The
accuracy is directly related to the performance of the
re-routing algorithm, since the higher the accuracy is
the better the re-routing traffic management
provided by the system.

Figure 7 shows the results for the analyzed metrics with
respect to the density of vehicles comparing BSTS with
the literature solutions itsSAFE [9] and EcoTrec [15]. As
expected, itsSAFE presents the higher number of trans-
missions for all densities of vehicles due to its centralized
approach. Therefore, every vehicle in the road network
needs to report its traffic information to the central server
at least once during each re-routing phase. Also, each
vehicle needs to request a new route to the central server
to improve its mobility, which increases even more the
number of V2I transmissions (see Fig. 7a). The central-
ized architecture employed by itsSAFE produces high
overhead, which potentially limits the system scalability.
Thus, as the density of vehicles rises the number of trans-
missions goes up dramatically. However, the centralized
architecture contributes to a better knowledge about the
traffic conditions, since it the server receives the traf-
fic reports from all vehicles, consequently producing a
very accurate knowledge about traffic conditions, which is
roughly 100% for all densities of vehicles (see Fig. 7b).

In EcoTrec, a hybrid approach is employed to offload
the re-routing computation to each vehicle to enable real-

2500

1.0

09

2000F 0.8
0.7

1500 0.6
E 05
1000 /JH:'/ 0.4
0.3

500 0.2
0.1

0 0.0

[m]

Fig. 6 Pieces of knowledge employed by BSTS
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time traffic management. The offloading approach also
reduces the number of transmissions, because the vehicles
do not have to spend a new transmission to request a new
route to the server. However, EcoTrec does not implement
any mechanism to reduce the number of traffic reporting
transmissions to build the knowledge about traffic con-
ditions on the roads, thus every vehicle will transmit a
traffic report at least once during each route phase. In this
way, the reduction in the number of transmissions pro-
vided by offloading mechanism implemented by EcoTrec
is approximately 50% in higher densities of vehicles, when
compared to the number of transmissions achieved by
itsSAFE (see Fig. 7a). Nevertheless, EcoTrec produces very
accurate traffic knowledge with average accuracy higher
than 98%, which is because the server knows the position
and velocity of all vehicles in the road network.

The number of transmissions of BSTS is displayed in
Fig. 7a as V2I transmissions (with the dark blue color) and
V2V transmissions (with light blue color), since BSTS uses
both types of transmissions to build the traffic knowledge
as well as to spread it out to the vehicles. The effectiveness
of the traffic reporting mechanism employed by BSTS can
be seen in both results (total number of transmitted mes-
sages and traffic view accuracy, respectively). Regarding
the number of transmissions, BSTS reduces the total num-
ber of transmissions by 90% and 75% when compared to
itsSAFE and EcoTrec (see Fig. 7a), respectively. Such a
reduction in the total number of transmissions is achieved
because only one vehicle per sub-region estimates and
reports the traffic information of the entire sub-region to
the central server (i.e., V2I transmission).

The majority of the messages transmitted by BSTS
is to spread the traffic view to all vehicles (e.g., V2V
transmissions) since the knowledge needs to be for-
warded throughout a multi-hop approach. The accu-
racy of the traffic view, although few vehicles report

the traffic information, BSTS still can build an accu-
rate knowledge about traffic conditions with an accu-
racy greater than 93%, which is the consequence of its
efficient mechanism to estimate the traffic in each sub-
region. Eventually, the considerable reduction in the num-
ber of transmissions presented by BSTS contributes to
improve system scalability, despite the increase in the
density of vehicles BSTS still can maintain a relatively
small number of transmissions when compared to the
other solutions.

With the presented results we can conclude that BSTS
is a more efficient solution because it presents lower
overhead with accurate traffic view. Furthermore, BSTS
provides better system scalability in comparison with
itsSAFE and EcoTIrec since the high network traffic
produced by them limits the system scalability. Thus,
depending on the density of vehicles, it can overload
the network, and consequently, introduces an undesired
latency to the system, potentially degrading its overall
performance.

4.4 System efficiency and complexity evaluation
To evaluate the overall system performance and its com-
plexity, the following metrics were assessed:

e System efficiency is a metric to analyze how
efficient each system is. It is computed as the ratio of
the traffic density and the number of transmitted
messages required by the system to deliver its service.
The higher the values is the better the system
efficiency will be.

e CPU time is the time spent by the re-routing
algorithm to compute the new alternative route to
the intended vehicles. A longer CPU time potentially
introduces latency to the system, consequently
degrading its overall performance.
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For the complexity analysis, we assume that the short-
est path implementation of EcoTrec uses the Fibonacci
heap, thus it has a complexity of O(E + VlogV). On
the other hand, itsSAFE uses a dynamic programming
algorithm with complexity O(EX), in which X is the
upper bound value for the safety risk of a path linking
the origin to the destination. Thus, as itsSAFE uses a
centralized architecture it will perform such algorithm
for the set of vehicles that needs to be re-routed (lets
define this set as N,). In this way, the overall complex-
ity of itsSAFE is O(N,EA). Eventually, like the itsSAFE,
BSTS also implements a dynamic programming based
algorithm to compute the Pareto set with complexity
O(EX). However, as BSTS offloads the routing com-
putation in each vehicle such algorithm is distributed
over the set of vehicles to be re-routed, consequently
the overall complexity of BSTS is upper bounded from
above by the Pareto set computation complexity, which is
just O(EA).

To evaluate the time complexity, we considered the CPU
time of each solution. For this evaluation, we counted
the amount of time spent in each re-routing step using
an Intel(R) Core(TM) i5-5257U CPU with 2.70 GHz.
Figure 8a shows the results for the average CPU usage.
As it was expected, itsSAFE presents the highest CPU
time for all re-routing steps, which is a consequence of
its centralized architecture. Therefore, the server needs to
compute the alternative routes for all intended vehicles. In
contrast, EcoTrec presents the lowest CPU time not only
as a result of its shortest path implementation but also
due to its offloading approach. In turn, BSTS also offloads
the routing computation in each vehicle, which dramat-
ically reduces the average CPU time when compared to
itsSAFE, but it is still higher than the CPU of EcoTrec. In
particular, BSTS reduces the CPU time by 99% when com-
pared to itsSAFE. Eventually, it is important to notice that
even with CPU time higher than EcoTrec the average CPU
time for BSTS considering the worst case scenario (e.g.,
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1000 vehicles/km?) is lower than 1.5 s, which shows to be
a suitable solution to enable real-time re-routing.

Figure 8b shows the average system efficiency for each
density of vehicles. Thanks to the efficient traffic report-
ing mechanism and also to the cooperative re-routing
algorithm employed by BSTS, it reduces the overhead
while being able to deal with traffic efficiency issues prop-
erly. In this way, BSTS provides substantial improvements
in the system efficiency when compared to itsSAFE and
EcoTrec, which have shown to be costly solutions. In our
scenario, BSTS is able to improve the system efficiency by
at least 6 and 4 times compared to itsSAFE and EcoTrec,
respectively.

4.5 Evaluation of the trade-off between traffic efficiency
and safety risk

To evaluate the trade-off between the traffic efficiency

and the safety risk, we compared the performance of

BSTS with the following literature solutions: itsSAFE [9],

EcoTrec [15], and SafePaths [16] concerning the following

metrics:

e Travel time is the time spent for each vehicle to
complete its route P from origin s and destination t.
This time is obtained by computing the difference
between the time that the vehicle enters into the
simulation with respect to the time that it left. Also,
this metric measures the overall traffic efficiency
since long travel time can be a strong indication of
traffic congestion

e Safety risk is the total safety risk of each vehicle to
complete its route P from origin s and destination t.
The safety risk is computed based on the safety risk of
each road of its route (e.g., Y, cp 'u¥). This metric
evaluates how dangerous a route is (considering the
public safety data used). Thus, high values of safety
risks mean that a vehicle potentially had passed by
one or more dangerous roads.
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Fig. 8 Results of CPU time and system efficiency comparing BSTS with literature solutions. a CPU time. b System efficiency
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Figure 9 shows the results in function of the density
of the vehicles for the average travel time (Fig. 9a) and
the average route safety risk (Fig. 9b) for each solution.
In addition, Fig. 10 shows the travel time and safety risk
as a probability density function (PDF) and also as a

cumulative distribution function (CDF) of all densities
concerning each solution.

The VNS results show the common scenario character-
istics, since it does not apply any re-routing mechanism
to improve neither mobility nor safety. In this way, we can

ooz oor2
00z s s oczs Ecorrec Eootres
oot o010
0020 0020
0008 0008
0015 5 2 oots i 2
" g H 5 ., u 4 H N .,
5 7 & & oo 5 2 5 = & & oo 5 2
g 14 g - 3 8 g 5 &
\$ 5 8 = H
i i
0010 -~ 2 000 ~ 4
] 0.004 ﬁ ] 0.004 B
& &
0005 0.002 0008 0.002
0.000 0.000 \ 0.000 0.000
o s w1 w @ w W 0 0 0 00 ) E o » ® s w0 s w m v 0 20 ) w0 0
Travel ime (minutes) Route safty sk Travel tme (rinutes) Rout safety sk
ootz oorz
oazs e — Satepams 0025 e e
00t 000
oo 00z
o00e 0008
oors 5 2 oots 5 i
. K = W W H 2 uw .
& o s & oo & e 5 o § & 000 ]
g 8 g H = g 8 g H =
< r 3 s i 3
a0 = S 0010 o S
3 o004 £ 5 0004 =
3 3
\/\ d "
- L - - K -
0.000 0.000 L\ 0.000 0.000 \
o s w7 w0 w w m B 0 20 00 w0 w00 o s w7 w0 ws w  m w 0 10 200 w00 w 500
Travel time (minutes) Route safety risk Travel time (minutes) Route safety risk
0.012 10 B
oazs B— —n s issare s ssare
Ecotre Ecotrec
. - Sofepans - Sofepaths
0010 0.8 #=—k BSTS 0.8 #—k BSTS
oa
o008
o 06 06
00rs e
& s & 000 12 § g
o 4 o = 9 ©
s 5
4 3
0010 e H o4 o4
3 000 £
=
02 02
ows ooz
0.000 0.000 \ 0.0 o.
o s ® o w0 s w m B 100 o B w0 w0 000 025 050 075 100 125 150 175 200 000 025 o050 o075 150 175 200

Fig. 10 Travel time and route safety risk results represented as PDF and CDF. a Travel time VNS. b Safety risk VNS. ¢ Travel time EcoTrec. d Safety risk
EcoTrec. e Travel time SafePaths. f Safety risk SafePaths. g Travel time itsSAFE. h Safety risk itsSAFE. i Travel time BSTS. j Safety risk BSTS. k Relative

Travel time (minutes)

travel time. | Relative safety risk

201 00
Route safety risk

Relative travel time

Relative route safety risk




de Souza et al. Journal of Internet Services and Applications

observe that as the density of the vehicles/km? increases
the average travel time goes up, varying from 10 min
with 100 vehicles/km? to approximately 60 min with 1000
vehicles/km? (see Fig. 9a). Regarding the safety risk, VNS
keeps the risk around 100 for all densities (see Fig. 9b).
Analyzing the PDF for the travel time and safety risk of
VNS, we have a better understanding of their behavior. As
itis shown in Fig. 10a and b, 95% of the vehicles finish their
trip with less than 110 min and a risk lower than 250.

On the other hand, EcoTrec re-routes vehicles using the
shortest path algorithm based on the travel time on the
roads, consequently computing faster routes to each vehi-
cle. Therefore, EcoTrec reduces the average travel time
by up to 18% when compared to the original mobility
with density of 1000 vehicles/km?(see Fig. 9a). However,
EcoTrec presents two limitations: (i) lack of knowledge
about risky areas, which consequently increases the aver-
age route safety risk by approximately 95%, since it does
not care about safety issues while computing the fastest
route to each vehicle (see Fig. 9b); and (ii) deterministic
re-routing algorithm that decreases its overall efficiency
as the scenario becomes denser. This is because many
vehicles (with similar origin and destination) will com-
pute the same route to avoid traffic congestion which
creates different congestion spots. The PDF of travel
time and safety risk shows that 95% of the vehicles ends
their trip with less than 80 min (see Fig. 10c) with risk
lower than 430, which is very high risk compared to VNS
(see Fig. 10d).

SafePaths, in turn, re-routes the vehicles based on the
safest routes, but as it does not have any knowledge
about traffic conditions, it is not able to manage the
traffic effectively. In this way, SafePaths minimizes the
average route safety risk by approximately 30% and 60%
compared to VNS and EcoTrec with a density of 1000
vehicles/km? (see Fig. 9b). However, considering the traf-
fic efficiency SafePaths provides the average travel time
close to the original scenario mobility because while
improving safety without knowing the current traffic con-
ditions on the roads potentially creates different con-
gestion spots, consequently reducing the overall traffic
efficiency. The rise of different congestion spots is shown
in Fig. 10e in which the 95¢h percentile is only 10% lower
when compared to VNS and 25% higher when compared
to EcoTrec. However, Fig. 10f shows that the majority of
the vehicles has a route safety risk lower than VNS and
EcoTrec.

itsSAFE does not know only the current traffic condi-
tions but also the safety risk on the roads, so it uses a
bi-objective re-routing algorithm to provide a good trade-
off between traffic efficiency and safety risk. In this way,
it can decrease the average safety risk by about 20% while
decreasing the average travel time by approximately 18%.
Yet, like EcoTrec, itsSAFE also implements a deterministic
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re-routing algorithm, which reduces its performance as
the scenario becomes denser. Naturally, it also creates
different congestion spots (see the 95 percentile in Fig. 10g
similar to the one presented by the SafePaths solution). On
the other hand, it improves the safety for the majority of
the vehicles (see that the density distribution in Fig. 10h is
close to the distribution presented by SafePaths).

BSTS uses a non-deterministic multi-objective re-
routing algorithm that balances the traffic flow over the
set of routes available in the Pareto set (e.g., set that
optimizes both safety and traffic efficiency). Hence, it
presents a better traffic efficiency than literature solu-
tions, which gives a reduction in the average travel
time of about 50% when compared to VNS. Moreover,
BSTS also shows an improvement in the average route
safety risk of 15%. The effectiveness of traffic balancing
employed by BSTS is shown in the travel time distri-
bution (Fig. 10i), where 95% of the vehicles finish their
trip earlier than 60 min (e.g., the average travel time
of VNS). These results also show that different from
the other solutions, BSTS does not create different con-
gestion spots, consequently providing a smooth traffic
flow.

Finally, Fig. 10k and | show the CDF for the results as
a relative values in respect to the VNS (e.g., the ratio
between the metrics without any re-routing over the
results of each re-routing solution). In summary, these
results highlight the better performance of BSTS since it is
able to reduce the travel time for 80% of the vehicles com-
pared to VNS (see values lower than 1 in Fig. 10k) while
improving the safety for 60% of the vehicles compared to
VNS (see values lower than 1 in Fig. 101). Another impor-
tant aspect to observe is that the number of impaired
vehicles in BSTS (e.g., vehicles that an increase on their
travel time or their safety risk) is lower than 10% in both
metrics (see values greater than 1 in Fig. 10k and 1). How-
ever, when analyzing the other solutions, we can see that
despite of the improvement in the travel time for 60%
of the vehicles, they potentially impair 40% of them. In
particular, such impairment on the traffic efficiency can
grow up to twice more than the expected travel time
(e.g., travel time presented by VNS) and to more than 5
times when considering the safety risk (see EcoTrec values
on Fig. 101).

With these results we can conclude that: (i) considering
only traffic conditions is not enough to improve the safety
of drivers and passengers as well as considering just safety
issues does not provide efficient traffic mobility; (i) using
deterministic approaches for dealing with multi-objective
routing problems do not provide the desired efficiency in
terms of traffic management, since many vehicles can take
the same route which will create bottlenecks in the trans-
portation infrastructure (e.g., different congestion spots)
as the scenario becomes denser.
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4.6 BSTS: k fastest routes vs k safest routes

Considering that vehicles can filter the Pareto set to use
only the k fastest or safest routes during the route selec-
tion. In this section, we evaluate how this customization
can impact on the performance of BSTS. To this evalua-
tion, we considered only the density of 1000 vehicles/km?
with k €[ 1, 3,7] based on the following metrics: (i) travel
time; (ii) route safety risk; and (iii) re-routing efficiency,
which is that ratio between the safety risks and travel time.
The re-routing efficiency represents the trade-off of each
customization (e.g., the higher the value the better the
re-routing efficiency)

Figure 11 shows the results for the assessed metrics con-
sidering the BSTS with the k fastest routes and with the
k safest routes from the Pareto set P. As expected for
k = 1, BSTS does not perform the traffic flow balancing,
consequently, it creates different congestion spots (like
EcoTrec, SafePaths and itsSAFE in the previous evalua-
tion). In other words, by selecting the fastest and the safest
route from the Pareto set, BSTS provides performance
very similar to EcoTrec and SafePaths, since these are the
shortest path solutions considering traffic efficiency and
safety, respectively. Therefore, with k = 1 BSTS has the
worst average travel time for the safest and fastest routes
with an average travel time of approximately 50 min. How-
ever, regarding the safety risk, with k = 1, the fastest
approach provides the worst results while the safest one
provides the best results.

Yet, with kK = 3 and k = 7 BSTS is able to perform traffic
balancing for both approaches (e.g., the k safest and the k
fastest). Thus, considering the k safest routes of the Pareto
set, BSTS reduces the average travel time in approximately
5 and 10 min with kK = 3 and kK = 7 in comparison with
k = 1, respectively. On the other hand, it increases the
average route safety risk, but such increase is only 5% and
7% higher than the average route safety risk of k = 1.
Regarding, the fastest k routes of the Pareto set with k = 3
and k = 4, BSTS reduces the average travel time in 12
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and 6 min when compared with kK = 1, respectively. In
addition, it also reduces the average safety risk since it has
more safe options to choose from.

Finally, the effectiveness can be assessed by analyzing
the re-routing efficiency of both approaches. Therefore, as
it is shown in Fig. 11c the k fastest approach with k = 3
provides a better trade-off considering mobility and safety
with the highest re-routing efficiency considering the met-
ric f—ﬁ However, considering only the k safest approach,
the performance of k = 7 provides better effectiveness.
This behavior is the result of the feasible routes available
in each set (e.g., k fastest and k safest routes). In this way,
the k fastest routes approach with k' = 7 can include
slower routes in the resulting set to choose the route of
each vehicle. Meanwhile, the k fastest approach with k = 7
can include faster routes to be selected from the set of
feasible routes.

With these results we can conclude that filtering the
set of feasible routes can improve even more the per-
formance of the BSTS. However, it needs to be tuned
accordingly to each metric, since the k fastest and the k
fastest routes can have different values for k to achieve
the best performance. Eventually, it is important to stress
that the re-routing algorithm employed by BSTS can also
work with different metrics such as weather conditions,
greenhouse emissions, pavement quality, and etc.

5 Conclusion

This work proposed BSTS, an ITS for vehicular traffic
re-routing that considers both traffic conditions and pub-
lic safety issues while computing alternative routes using
a non-deterministic multi-objective re-routing algorithm.
Also, BSTS implements an efficient traffic reporting pro-
tocol to minimize network contentions and improve the
system scalability. Simulation results have shown that
when compared to literature solutions for dealing with
traffic and safety issues, BSTS presents a better trade-off
between safety and traffic efficiency. It also minimizes the
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problem of creating different congestion spots, which is a
limitation of deterministic approaches.

Specifically, BSTS reduces the average travel time up to
50% and improves the average safety risk by about 15%,
when compared to original traffic mobility. However, con-
sidering individual travels, BSTS can reduce the travel
time for 80% of the vehicles while improving the safety risk
of 60% of them. It is worth noticing that we use the traf-
fic efficiency and safety risk as a use case for BSTS, but
the re-routing algorithm implemented in this paper can
also work with other metrics that can impact in a route
planning decision such as distance, greenhouse emissions,
pavement quality, scenery, and etc.

As future work, we intend to investigate alternative
approaches to define safety risks and incorporate social
media data into the system to provide a more dynamic
safety sensing. Moreover, we also plan to use machine
learning techniques to predict future safety risk to be con-
sidered in the re-routing algorithm. Finally, a more com-
plex decision making based on drivers’ preference will be
implemented to enable drivers to plan a route according
to their personal preferences.
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