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Abstract

Background: The role of corynebacteria in canine and feline otitis has not been investigated in detail;
however, members of this genus are increasingly recognized as pathogens of otitis in both human and
veterinary medicine.

Case presentation: Here we report the first case of feline otitis associated with the recently described
species Corynebacterium provencense. A seven-month old cat presented with a head tilt and ataxia was
diagnosed with peripheral vestibular syndrome associated with an otitis media/interna. This took place 6
weeks after resection of a polyp, having initially shown a full recovery with topical ofloxacin and
glucocorticoid treatment. Bacteriology of an ear swab yielded a pure culture of corynebacteria, which could
not be identified at the species level using routine methods. However, the 16S rRNA gene sequence was
100% identical to the recently published novel corynebacterium species, Corynebacterium provencense.
Whole genome sequencing of the cat isolate and calculation of average nucleotide identity (99.1%)
confirmed this finding. The cat isolate was found to contain additional presumptive iron acquisition genes
that are likely to encode virulence factors. Furthermore, the strain tested resistant to clindamycin, penicillin
and ciprofloxacin. The cat was subsequently treated with chloramphenicol, which lead to clinical
improvement.

Conclusion: Corynebacteria from otitis cases are not routinely identified at the species level and not tested
for antimicrobial susceptibility in veterinary laboratories, as they are not considered major pathogens. This
may lead to underreporting of this genus or animals being treated with inappropriate antimicrobials since
corynebacteria are often resistant to multiple drugs.
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Background
The genus Corynebacterium consists of 128 species [1], with
a large number pathogenic to humans and animals [2]. The
main animal pathogens include C. pseudotuberculosis, C.
kutscheri, the C. renale group, C. bovis and C. ulcerans while
C. diphtheriae is considered the main human pathogen [3].
Many other Corynebacterium spp. have been isolated from
opportunistic infection sites in humans and animals, some-
times also with a zoonotic origin [2]. Besides the diphtheria
toxin, which is the major virulence factor in C. diphtheriae
(also found in other species like C. ulcerans) [4], and
phospholipase D, a virulence factor of C. pseudotuberculosis

and C. ulcerans [5], relatively little is known about virulence
traits in the genus Corynebacterium.
Recently human and veterinary diagnostic laboratories

have begun to investigate the role of Corynebacterium
spp. as causative agents for otitis with a study [6] finding
Corynebacterium spp. to be present in 33% of human pa-
tients with otologic infections. These cases were often re-
sistant to fluoroquinolones, an antibiotic frequently used
as a first-line in treatment [6]. In dogs, Corynebacterium
spp. are also increasingly recognized as otitis-associated
pathogens, however, in most cases they are isolated to-
gether with other pathogens [7, 8]. There are even fewer
publications describing corynebacteria-associated otitis in
cats than in dogs. Henneveld et al. described four cats
with otitis externa/media from which corynebacteria were
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isolated, albeit in association with other bacterial species
[7]. Two of these cats also suffered from an aural polyp.
In addition to scant information linking corynebac-

teria and otitis, knowledge is also limited concerning
the microbiome of the healthy feline ear canal. Kose
et al. investigated the flora of the normal tympanic
bulla in cats but did not detect any corynebacteria,
although the sample size was very small (five ani-
mals) [9].
Thus, further research is needed to elucidate the role

of pathogenic bacteria in feline otitis. In this study, we
present a case of feline otitis media and interna from
which the recently described species Corynebacterium
provencense was isolated in pure culture.

Case presentation
A 7-month-old male, neutered Maine Coon cat was
presented to the Small Animal Teaching Hospital at
the University of Bern with acute neurological signs
consistent with unilateral otitis media/interna. Six
weeks earlier an inflammatory aural polyp had been
removed by traction and flushing of the ear canal.
The cat had fully recovered after three weeks of
treatment with oral and topical glucocorticoids and
topical ofloxacin (Floxal, Bausch & Lomb Swiss AG).
Otoscopic and cytologic examinations revealed
brown-colored fluid in the external canal with nu-
merous extra- and intracellular rod-shaped bacteria
and neutrophils. A deep ear swab was submitted for
culture and subsequent antimicrobial susceptibility
testing.
The ear swab was cultured on sheep blood agar at 37 °C

for 2 days, yielding a pure culture of small white colonies
(strain number 17KM38). Gram staining showed
Gram-positive, polymorphic rods and the bacteria were cata-
lase positive. Thus, the bacteria were classified as belonging
to the genus Corynebacterium, however species identification
was not possible with either Maldi-Tof MS (MALDI Bioty-
per, Bruker using the in-house database and MBT 6903
MSP Library, Bruker) or VITEK® 2 Compact (Biomérieux)
(cards GP and CBC). Therefore, the 16S rRNA gene was
amplified and Sanger sequenced using universal primers
[10]. Sequence analysis and sequence comparison using the
BLAST program (NCBI, ‘rRNA_typestrains/prokaryo-
tic_16S_ribosomal_RNA’ database) revealed 98.6% identity to
Corynebacterium variabile (NR_025314.1), 98.0% to Coryne-
bacterium terpenotabidum (NR_121699.1) and 97.8% to Cor-
ynebacterium glyciniphilum (NR_121782.1), thus the strain
17KM38 could not be assigned to any species present in the
database. However, the 16S rRNA sequence showed a 100%
identity with the whole genome shotgun sequence of the
recently described Corynebacterium provencense SN15
(GenBank accession no.: NZ_LT160593.1) isolated from fae-
ces of an obesity patient [11].

In order to select the appropriate antimicrobial ther-
apy, the isolate was tested for antimicrobial resistance
using broth microdilution (Sensititre EUST, Thermo
Fisher Scientific) initially following in-house guidelines.
Minimum inhibitory concentration (MIC) testing was
however repeated according to the most recent
EUCAST (European Committee on Antimicrobial Sus-
ceptibility Testing) guidelines [12] using Streptococcus
pneumoniae ATCC 49619 as a quality control. Briefly,
the bacteria were grown on sheep blood agar at 37 °C
for 24 h. They were then suspended in Mueller-Hinton
broth with 5% lysed horse blood (Thermo Fisher Scien-
tific) and 20 mg/l β-NAD to a concentration of 5 × 105

CFU/ml and used for plate inoculation. Our strain tested
resistant to clindamycin, penicillin and ciprofloxacin but
susceptible to tetracycline, gentamicin and vancomycin.
In addition, high MIC values were found for cefoxitin
(8 mg/l), mupirocin (≥256 mg/l) and trimethoprim
(≥32 mg/l) while the MIC for chloramphenicol was low
(≤4 mg/l) (Table 1).
To better characterize the strain, whole genome sequen-

cing was performed using the PacBio method. The strain
was grown on sheep blood agar at 37 °C for 24 h and the
harvested cells were used to extract gDNA according to a
protocol published earlier [13]. Sequencing was performed
by the Lausanne Genomic Technologies Facility (University

Table 1 Minimal inhibitory concentrations for 17KM38, interpretation
according to EUCAST clinical breakpoints where available

Antimicrobial MIC (mg/l) Interpretation

Clindamycin 2 R

Tetracycline 1 S

Rifampin 0.25 I

Streptomycin ≤4 –

Fusidate 1 –

Penicillin 1 R

Chloramphanicol ≤4 –

Kanamycin ≤4 –

Tiamulin ≥4 –

Quinupristin/dalfopristin 1 –

Vancomycin ≤1 S

Gentamicin ≤1 S

Trimethoprim ≥32 –

Erythromycin ≤0.25 –

Ciprofloxacin ≥8 R

Cefoxitin 8 –

Linezolid ≤1 –

Mupirocin ≥256 –

Sulfamethoxazole ≤64 –
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of Lausanne, Switzerland). The genome was assembled
from PacBio reads using Canu 1.4 [14]. A single contig was
built after assembly of the obtained reads, and circularized
using amos 3.1.0 [15]. Subsequently the genome was anno-
tated using Prokka 1.12 [16] and submitted to GenBank
(Accession No. CP024988). The genome of 17KM38 has a
size of 3.11 Mb and 2682 coding sequences were detected.
Of these, 862 out of 2682 were annotated as hypothetical
proteins. In order to confirm that 17KM38 belongs to the
same species as SN15 and is indeed distinct from its closest
relatives, average nucleotide identity (ANI) was calculated
according to Goris et al. [17] using an online tool (ANI cal-
culator) developed by Rodriguez-R and Konstantinidis [18]
with default settings. The ANI of 17KM38 was found to be
81.5% with C. variabile (NC_015859.1), 81.0% with C. ter-
penotabidum (NC_021663.1), 79.1% with C. glyciniphilum
(CP006842.1) and 99.1% with SN15 (FIZC01). Since the
recommended cutoff point for species delineation is 95%
ANI [17], these results confirm that SN15 [11] and
17KM38 indeed belong to the same species which is
distinct from related species. Furthermore, a phylogenetic
tree was constructed from the theoretical proteome
according to Qi et al. [19] applying the online tool CVTree
[20] (Fig. 1).
The genome of 17KM38 was compared to the genome

of the strain SN15 using mauve [21]. Gap regions were ex-
tracted and annotated resulting in 280 coding sequences

(CDS), 113 of which could be assigned a putative function
(Additional file 1). Interestingly, 12 CDS unique to
17KM38 are related to iron acquisition (Fig. 2), which is
important for bacterial survival in the host and thus for
virulence [22]. Most interesting is an approximately 17kbp
region containing nine genes for siderophore synthesis
and transport organized in two presumptive operons
(Fig. 3) [23]. Genes dhbBCEF are related to the corre-
sponding genes in Bacillus subtilis (between 36 and 52%
identity in blastx) where they form the biosynthetic path-
way for the catecholic siderophore bacillibactin [24]. The
whole gene cluster has similarity to the enterobactin gene
cluster in E. coli which also includes fep genes and the fes
gene [25]. A gene corresponding to dhbA/entA is missing
from this cluster in 17KM38, but is located elsewhere on
the genome (1,026,704 - > 1,027,528). C. variabile, the
closest relative to C. provencense, also possesses a reper-
toire of iron acquisition genes, since its habitat is the
iron-restricted environment found in cheese [26]. Interest-
ingly the genome of C. variabile also encodes a pathway
similar to that for bacillibactin. However, the dhbBCEF
genes in 17KM38 are no closer related to those in C. var-
iabile than those in B. subtilis.
In terms of virulence factors 17KM38 encodes a candi-

date adhesin (Csp1_16740) related to (82% query cover,
51% identity in blastx) a cell wall-associated hydrolase of
C. resistens (encoded by cwlH) [27]. The exact function

Fig. 1 Phylogenetic tree based on the proteome, showing 17KM38 in relation to other corynebacteria. The tree was constructed using CVTree
with K = 6. Nocardia asteroides was used as outgroup. The scale bar indicates normalized distance between composition vectors
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of this protein is unknown, however knockout of the
homologous gene DIP1621 in C. diphtheriae led to re-
duced adherence to epithelial cells [28]. This gene is also
present in strain SN15.
As mentioned above, 17KM38 showed resistance to

several antibiotics. Quinolone resistance in corynebac-
teria has been described to rely on mutations in the

quinolone resistance determining region (QRDR) of gyrA
leading to changes in the SAIYD (aa 87–91 in C. gluta-
micum) motif of susceptible strains [29]. Mutations of
Ser-87 to Arg in C. amycolatum and to Val in C. stri-
atum have been shown to confer quinolone resistance
[29]. 17KM38 showed a mutation in this region chan-
ging Ser to Ala, which could explain the quinolone

Fig. 2 Comparison of 17KM38 (green) with SN15 Corynebacterium provencense (blue). CDS in gap regions are shown. Hypothetical proteins are
shown in grey, proteins presumptively related to iron acquisition are shown in red. The image was constructed with BRIG (BLAST Ring Image
Generator v0.95)

Fig. 3 Comparison of the presumptive siderophore synthesis genomic region in 17KM38 and the dhb genes containing region in Bacillus subtilis
(NC_000964 region: 3280000–3,293,000). The graph was generated using Easyfig 2.2.2 [23]. Comparisons were performed using tblastx, min.
Length 50, max. e value 0.001
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resistance. A mechanism for resistance to ß-lactams in
corynebacteria has been demonstrated for C. jeikeium
where acquisition of the gene pbp2C encoding the
low-affinity class B penicillin binding protein 2C was
shown to confer resistance [30]. 17KM38 has four genes
encoding penicillin binding proteins one of which is re-
lated to pbp2C (Csp1_14570, 96% query cover, 44% iden-
tity), however, if this gene is actually related to penicillin
resistance remains to be shown.
Following sensitivity testing results, the cat was

treated with oral chloramphenicol palmitate solution
(Cloropal, Dr. E. Gräub AG) 20 mg/kg twice daily
for three weeks and an ear cleaner containing chlor-
hexidine digluconate (Otodine®, Ufamed AG) twice
daily for two weeks. Re-examination after three
weeks of therapy revealed that the head tilt was
much improved and the cat was no longer ataxic
and cytology of the ear canal did not show any bac-
teria or neutrophils.

Discussion and conclusion
Ear infections with corynebacteria in dogs and cats are
rather rare; however, they are of concern to clinicians as
they can be difficult to treat due to antibiotic resistance.
This has also been described in human medicine where
fluoroquinolones are normally used as a first-line
therapy for otitis media [6]. A retrospective study by
Crowson et al. found 58% of Corynebacterium sp. iso-
lates from otitis patients were resistant to ciprofloxacin,
compared to only 32% of non-Corynebacterium isolates
[6]. In dogs and cats, quinolones are also frequently used
to treat otitis. Aalbaek et al. found US Corynebacterium
isolates from canine otitis to show a high percentage of
enrofloxacin resistance when compared to Danish iso-
lates [8]. In the case described here, the animal had also
initially received topical quinolone therapy from the re-
ferring veterinarian before removal of the ear polyp. As
cultures were not performed prior to this treatment, the
nature of the initial infectious agent is unknown.
Possibly a different bacterium caused the first infection,
and the Corynebacterium provencense was able to prolif-
erate under therapy. Alternatively, as quinolone resist-
ance is presumably caused by a point mutation, the
bacteria may have developed resistance under therapy as
has been described for other species [31].
As mentioned before, not much is known about viru-

lence factors of corynebacteria, however, iron acquisition
systems are known to contribute to virulence in many
pathogens [22]. Interestingly, the strain in this study
contained a genomic region coding for a siderophore
synthesis pathway that was not present in the human C.
provencense strain and therefore might contribute to its
virulence. As corynebacteria from ear infections are not
routinely identified to species level in many laboratories,

cases with this species may have been previously under-
reported. It is therefore desirable to pay more attention
to corynebacterial ear infections in dogs and cats with
importance placed on resistance testing as is increasingly
done in human medicine. Consequently, this will improve
the treatment success rate for otitis in veterinary medicine.

Additional file

Additional file 1: Annotations of Gap regions comparing 17KM38 and
SN15. The genome sequences of 17KM38 and SN15 were compared with
mauve and gap regions extracted. Annotations of these regions are
shown here (XLSX 21 kb).
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