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Highlights
d Systematic analysis of alternative splicing landscape across

8,705 cancer patients

d Somatic trans-sQTL analysis identifies drivers of global

splicing aberrations

d Many tumors contain numerous neojunctions not typically

found in normal samples

d Neojunctions can be confirmed by MS and form a class of

potential neoantigens
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SUMMARY
Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from
8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome
sequencing data. Tumors have up to 30%more alternative splicing events than normal samples. Association
analysis of somatic variants with alternative splicing events confirmed known trans associationswith variants
in SF3B1 and U2AF1 and identified additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors
have thousands of alternative splicing events not detectable in normal samples; on average, we identified
z930 exon-exon junctions (‘‘neojunctions’’) in tumors not typically found in GTEx normals. From
Clinical Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we
confirmed z1.7 neojunction- and z0.6 single nucleotide variant-derived peptides per tumor sample that
are also predicted major histocompatibility complex-I binders (‘‘putative neoantigens’’).
INTRODUCTION

Analyses of cancer genomes have predominantly focused on the

evaluation of somatic non-synonymous protein-altering muta-

tions and the potentially pathogenic impact such mutations
Significance

Immunotherapy is currently a promising direction for treating c
approach. Among those that show potential benefit from immu
geted vaccine is a considerable challenge. Tumor-specific splic
tial neoantigens that may affect the immune response and coul
vaccines. By considering neojunction-derived, in addition to S
samples for which at least one putative neoantigen can be ide
creases from 30% to 75%.
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have on gene expression, protein function, and downstream

pathways (Futreal et al., 2001; Greenman et al., 2007). The types

of samples collected and the data generated by The Cancer

Genome Atlas (TCGA) have been specifically chosen to support

such analyses (Cancer Genome Atlas Research Network, 2008).
ancer patients. Not all cancer types are suited for this type of
notherapeutic treatment, deriving suitable antigens for a tar-
ing presents a large new class of splicing-associated poten-
d be exploited in immunotherapy; e.g., in personalized tumor
NV-derived, peptides as potential antigens, the fraction of
ntified and confirmed by mass spectrometry proteomics in-
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However, the developed resources also provide an excellent op-

portunity for an in-depth analysis of the changes of the transcrip-

tome in tumors, which has received much less attention so far.

Individual changes in regulatory binding sites or alterations to

the protein coding sequences can have a strong functional

impact, leading to selective growth advantages for tumor cells.

Several cases have been reported where the physiological

outcome of such alterations comes into functional effect through

the alteration of splicing. A prominent example for cis-acting

mutations is found in the splice junctions ofMET leading to skip-

ping of exon 14, resulting in activation of MET but also providing

specific sensitivity to MET inhibitors (Frampton et al., 2015; Paik

et al., 2015). In addition, trans-acting alterations have been

described where a somatic variant in a splicing factor leads to

many splicing changes across the genome. For instance, so-

matic alterations of the splicing factor U2AF1 lead to a widely

altered landscape of splicing events in certain cancer types,

such as lung adenocarcinomas (Brooks et al., 2014) or myelo-

dysplastic syndromes (Graubert et al., 2012). Another well-char-

acterized set of alterations are changes of the splicing factor

SF3B1, which have been linked to changes in splicing patterns

in various tumor types, such as uveal melanoma (Furney et al.,

2013) or lymphocytic leukemia (Rossi et al., 2011), and are

suggested to promote aberrant splicing patterns via alternative

branchpoint usage (Alsafadi et al., 2016). More recently, the

analysis of alternative splicing has also been shown to be of

prognostic value for multiple cancer types, including non-small

cell lung cancer (Li et al., 2017), ovarian cancer (Zhu et al.,

2017), breast cancer (Bjørklund et al., 2017), uveal melanoma

(Robertson et al., 2017), and glioblastoma (Marcelino Meliso

et al., 2017).

RESULTS

Workflow for Integrated Pan-Cancer Analysis
We devised a versatile and comprehensive workflow to integrate

analyses of RNA and whole-exome sequencing data from tu-

mors from 8,705 donors, including 670 matched normal sam-

ples, spanning a range of 32 cancer types (Figure 1 left, middle).

The main questions answered by the developed methodology

are (1) the identification of underlying genetic changes leading

to splicing variability in tumors (Figure 1 right top), (2) a compre-

hensive analysis of quantitative and qualitative changes of

alternative splicing in tumors (Figure 1 right middle), and (3)

determining the extent to which splicing aberrations can be ex-

ploited for immunotherapy (right bottom).

Landscape of Alternative Splicing Events in Cancer
Based on recently developed methodology to construct individ-

ual splicing graphs for large gene sets (Kahles et al., 2016), we

have systematically quantified changes in splicing event usage

across the full TCGA cohort. Throughout all cancer types we

found a substantial number of high-confidence splicing events,

confirmed by at least 20 RNA sequencing (RNA-seq) reads (Dje-

bali et al., 2012; Nellore et al., 2016; Wang et al., 2008), that

contain introns not annotated in GENCODE (Figures 2A, S1A,

and S1B), increasing the total number of observed events at

least 2-fold. Despite accounting for cohort size and read length

effects, we still observed a high variability of additional splicing
212 Cancer Cell 34, 211–224, August 13, 2018
across individual cancer types. Compared with the alternative

splicing events in the GENCODE annotation, we observed that

exon skip and alternative 30 site events represent the majority

(27.1% and 27.5%, respectively) of the non-annotated events

(Figures S1C and S1D).

When directly contrasted to matching normal tissue, we found

a larger amount of alternative splicing events in tumor samples

than in normal samples for the majority of the investigated

cancers (Figures 2B and S1E–S1H; sample size of tumor and

normal samples is 40 for all sets). This difference is especially

pronounced for lung adenocarcinoma (LUAD), where we

observed an over 30% increase in exon skip events in tumor

samples. This effect became even stronger when only events

with the strongest splicing changes (measured as an increased

DPSI [percent spliced in]; Schafer et al., 2015) were used (Fig-

ures S1I and S1J).

We have visualized the splicing diversity across the full cohort

utilizing a standard dimensionality reduction technique (t-distrib-

uted stochastic neighbor embedding [t-SNE]; Van der Maaten

and Hinton, 2008; Figures 2C and S1K–S1N) highlighting both

the tissue-specific nature of alternative splicing but also can-

cer-type-specific differences and commonalities. We observed

that cancer types, such as colon adenocarcinoma (COAD) and

rectum adenocarcinoma (READ) or the group of squamous cell

cancers, including lung squamous cell carcinoma (LUSC),

cervical squamous cell carcinoma (CESC), and head and neck

squamous cell carcinoma (HNSC), that are commonly ascribed

with similar characteristics (Cancer Genome Atlas Network,

2012; Hoadley et al., 2014) clustered closely together, even over-

powering the identity of the tissue of origin. Examples of the latter

are LUAD and LUSC. The same pattern was observed based on

a clustering of themedian splicing profile (Figures S1O and S1P).

Here, we also observed a cluster of uterine carcinosarcoma,

uveal melanoma, mesothelioma, skin cutaneous melanoma,

and sarcoma, which was less pronounced in a similar clustering

based on gene expression profiles (Figures S1Q and S1R). Simi-

larly, kidney chromophobe cancers (KICH) are clearly separated

from kidney renal papillary cell carcinomas and kidney renal

clear cell carcinomas in the t-SNE based on splicing profile as

well as in the corresponding clustering (Figures S1K–S1N). We

did not observe similarities in exon skip splicing patterns be-

tween breast basal-like and serous ovarian cancers as reported

previously based on gene expression (Cancer Genome Atlas

Network, 2012), suggesting that gene expression profiles did

not drive the patterns in the same way as observed with alterna-

tive splicing. However, several breast basal-like cancers were

located in the cluster of squamous cell cancers, including sam-

ples of LUSC, which had previously been reported as similar to

basal-like breast cancer based on the analysis of transcriptional

similarities (Chung et al., 2002). Interestingly, we found that, in

breast cancer patients (BRCA), different cancer subtypes can

be distinguished based on exon skip splicing features (Figures

2D and S1L), forming a notable trajectory across the four main

subtypes with the luminal subtypes closely connected and the

basal subtype clearly separated. For tumor-matched normal

samples we found that, in almost all cases, they cluster clearly

separated from the corresponding tumors (Figure S1M). With re-

gard to possible confounding factors, such as library size, we did

not observe clear associations to the clustering (Figure S1N).
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Figure 1. Project Overview

Flow diagram of data and analyses presented in this work. The left schema represents approximate body source sites for the samples of the 32 analyzed cancer

types. Bar charts describe numbers of tumor and matched normal samples for each cancer. The numbers for tumor samples represent cases where both tumor

RNA-seq as well as whole-exome sequencing (WXS) data are available. The numbers for normal represent matched normal RNA-seq. All samples underwent

uniform preprocessing (middle, top), including sequence alignment, expression quantification, and alternative splicing analysis (middle, RNA). Furthermore,

samples were used for tumor variant calling and somatic variant calling by the Multi-Center Variant Call (MC3) project (center). In addition, data from other

sources, such as the GTEx project, the Broad Firebrowse, and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were included (middle bottom). Different

data types were then combined into four integrative analysis sections. For the identification of splicing quantitative trait loci (sQTL, right, top), we associated

RNA-seq-derived splicing quantifications with WXS-derived genetic variants, to identify cis and trans effects. To highlight quantitative splicing differences be-

tween tumor and normal samples, we used the splicing quantifications to test for significant differences between tumor and normal (illustratedwith ***) and ranked

the results across all cancers (right, second). To discover neojunctions only present in cancer samples but unobserved in normals or a tissue-matched outgroup,

we integrated TCGA RNA-seq data and GTEx RNA-seq data to determine the degree of splicing aberration per sample, marking stark splicing outliers (right,

third). Lastly, we analyzed the neojunctions and tested the extent they are translated into proteins, utilizing CPTAC data, confirming a large number of peptides.

Many confirmed peptides were also predicted to be MHC-I binders and are excellent neoantigen candidates, promising for immunotherapy (right, bottom). See

also Figures S1–S5.
These observations were less pronounced for gene expression

counts (Figures S1S and S1T).

Somatic trans Associations Drive Changes of Splicing
Events
We performed an association study linking somatic single nucle-

otide variant (SNV) positions with alternative splicing changes in

up to 8,255 donors. As phenotypes we considered a total of

94,749 exon skipping, 30,755 alternative 50, and 48,365 alterna-

tive 30 events. We considered recurrently called tumor sample

population-level variant calls. For the pan-cancer association

study we used a linear mixed model implemented in LIMIX (Lip-

pert et al., 2014), correcting for population, tissue, and batch ef-

fects. We also checked trans-splicing quantitative trait loci

(sQTL) for a potential bias toward purity and ploidy as well as a
potential bias for patient gender and total mutational load (Fig-

ure S2A). We found that mutational load oftentimes strongly

correlates with the genotype of individual variants (Figures

S2B–S2D) and those variants also showed significant correlation

among each other. This finding makes it difficult to determine

whether individual variants themselves affect splicing event

changes or are rather tagging higher mutational load, which in

turn may have an effect on a wide range of splicing events. For

this reason, we have excluded variants showing evidence of

association with mutational burden (nominal p value <0.01)

from further analysis. A subset of variants, including variants in

SF3B1 and U2AF1, did not show this pattern (Figure S2E). In a

joint analysis of cis and trans associations with 50% prior on

each type, we identified 32 cis- and seven trans-sQTL (Bonfer-

roni corrected p < 0.05).
Cancer Cell 34, 211–224, August 13, 2018 213
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Figure 2. Detection of Tumor Alternative Splicing and Splicing Landscape

(A) Detection of alternative splicing events. For each cancer type, we considered 40 randomly chosen samples and jointly identified alternative splicing events

(exon skipping events are shown) containing junctions that each can be confirmed with a minimum (min) of 20 spliced reads in at least one sample for the

respective cancer type. The darker bar fractions correspond to known alternative splicing events and the lighter bar fractions to additional events that are not part

of the GENCODE (v19) annotation.

(B) Comparison of the number of alternative splicing events on 40 matched tumor (T) and normal sample (N) pairs for TCGA cancer types with at least 40 normal

samples, for events containing junctions confirmed with at least five reads (top) or 20 reads (bottom) in the respective cancer type.

(C) Landscape of alternative splicing for all considered TCGA samples computed on exon skipping PSI scores only. Each point represents a sample, colored ac-

cording to its TCGA project code. The position of each sample is computed as a t-distributed stochastic neighbor embedding (t-SNE) representation of the higher-

dimensional splice event PSI matrix. Tumor samples are shown as circles and normal samples as triangles. The dashed box represents an area detailed in (D).

(D) Samples in the splicing landscape highlighted for subtypes of BRCA. Normal samples are shown as triangles and tumor samples as circles colored according

to subtype. Samples of all other cancer types are shown in gray.
The trans-sQTL genes included variants with known effect on

splicing in SF3B1 (Alsafadi et al., 2016) (Figure 3A and 3B) and

U2AF1 (Brooks et al., 2014) but also several candidates whose

effects on splicing are less established. One such example is

TADA1, where we observe that the distribution of splice event

targets across the alternative event types shows a similar 30

alternative splicing bias as the targets of the SF3B1 mutations

(Figure 3C). TADA1 interacts with SF3B5, which itself interacts

with various other splicing factors (including SF3B1) and

suggests a possible mechanism (Figure 3D). We also found

that mutations in the cancer driver gene PPP2R1A are associ-

ated with alternative splicing changes in SCRIB, which itself is

a tumor suppressor gene and suggests a mechanism on how

PPP2R1A may be driving tumorigenesis (Sayani et al., 2008). A

further example is IDH1, where the same recurrent somatic
214 Cancer Cell 34, 211–224, August 13, 2018
missense variant had been associated with inhibiting the enzy-

matic functions of histones and demethylases. IDH1 variants

have been shown to be most prevalent in brain lower grade

glioma (LGG) and glioblastoma multiforme (GBM), which we

also observe in the Pan-Cancer Atlas cohort (Figure S2F) (Yan

et al., 2009). They often appear in patients with low-grade

gliomas and have been associated with more favorable out-

comes (Yen et al., 2010). Due to the prevalence pattern of

IDH1 variants, we also tested for association within the glioma,

glioblastoma, and pheochromocytoma and paraganglioma

(GBM/LGG/PCPG) cohort to exclude the possibility of tissue-

specific effects. In total, we observed broad splicing changes

across 377 events (Figure 3B), which are also observed in 326

(243 for LGG only) events (Spearman correlation, Bonferroni cor-

rected p value <0.05) within the GBM/LGG/PCPG cohort,
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Figure 3. Large-Scale Somatic cis- and trans-sQTL Analysis

(A) Two-dimensional Manhattan plot with location of a variant (x axis) associated (p % 0.05 after Bonferroni correction separately for cis and trans associations)

with an alternative splicing event at a separate location (y axis). Points along the diagonal correspond to cis associations (window 1Mb) and the remaining points

correspond to trans associations. The marginal bar plots show the number of splicing events found to be associated with a single variant (top) and the number of

associations found for each alternative splicing event (right). The colored points indicate whether an alternative splicing event or sQTL is within an RNA binding

gene (green), cancer census gene (blue), or cell cycle gene (orange). The pie charts on top of the bar show the breakdown of splicing event type composition of the

sQTL targets. Brown indicates alternative 30 events, gray alternative 50 events, and green exon skip events.

(B) Heatmaps of selected trans-sQTL: PSI z scores of alternative splicing events (columns) significantly associated in trans with the variant. The color bar on the

left shows the mutation status for each sample (rows). For visualization purposes, the heatmaps are downsampled to highlight the differences.

(C) Pie charts from (A) detailing the distribution of splicing event targets across three categories (alternative 50, alternative 30, and exon skip events).

(D) Protein-protein interaction network of TADA1 and some selected partners (e.g., SF3B5).

See also Figure S2.
excluding the possibility that this association was mainly driven

by tissue identity. Here, we report a link between IDH1 variant

and splicing, which is noteworthy since the importance of tu-

mor-specific alternative splicing has already been established

(Lefave et al., 2011; Venables et al., 2009).

Tumor-Specific Splicing Patterns
While significant differences in splicing between tumor and

normal samples have been described before (Sebestyén et al.,

2015; Srebrow and Kornblihtt, 2006), our analysis strategy
allowed us to draw a more complete picture of the splicing

landscape over a large array of different tumor types and sub-

types. Observations described in the previous sections have

shown that a large fraction of the identified events are either quite

rare in general or are observed across multiple cancer types but

remain rare within the individual tissue, which complicates

differential analysis. Also, tissue-specific splicing confounds

the assessment of significant differences between tumors and

normal samples across cancer types. Our strategy was therefore

2-fold: (1) uncovering rare splicing outliers in tumor samples that
Cancer Cell 34, 211–224, August 13, 2018 215
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Figure 4. Differential and Outlier Splicing

(A) Strip plots showing outlier splicing for an exon skipping event inPTEN (top) and an alternative 30 splice site event inNDRG1 (bottom). Each column represents a

cancer type with its matched normal directly adjacent if available (left of dashed line) and GTEx normal samples (right of dashed line). Each dot corresponds to the

PSI value of the selected splicing events in one sample. Outlier samples are emphasized through increased marker size with black outline.

(B) Result of differential splicing analysis between tumor and matched normals for 14 cancer types. Rows correspond to the 40 most significantly altered genes

from the COSMIC cancer census set. Shading corresponds to �log10(p value). Columns represent cancer types.

(legend continued on next page)
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recur over multiple cancer types (PSI value deviates strongly

from all other samples), and (2) differentially analyzing the

broader changes in splicing within the cancer types where tis-

sue-matched normal samples are available.

We identified a large set of 2,570 outlier events in 936 genes,

56 (6%) of which are included in the COSMIC (Catalogue of So-

matic Mutations in Cancer) cancer gene census list. One prom-

inent example is the tumor suppressor PTEN, which shows

recurrent skipping of exon 3 in multiple cancer types (Figure 4A

top) with a strong signal in COAD, LUSC, and uterine corpus

endometrial carcinoma (UCEC), not correlating with sample

size for the individual groups. Although alternative splicing of

PTEN in the context of cancer has been described before

(Agrawal and Eng, 2006; Okumura et al., 2011), the skipping of

exon 3 has so far been mostly linked to predisposition for herita-

ble disorders (Celebi et al., 2000; Chen et al., 2017). Another

example not well linked to splicing is the metastasis suppressor

gene NDRG1 (Kovacevic et al., 2011) (Figure 4A bottom).

Although in each cancer type only very few outlier samples exist

(with BRCA showing the strongest signal), a clear recurrence

was apparent with 14 of the 32 cancer types showing at least

one notable outlier. When comparing the splicing pattern with

an outgroup set of more than 3,000 normal samples for 31 tis-

sues from the GTEx study, we found none of the outliers to be

present (Figure 4A).

In addition to rare outliers, we also analyzed broader shifts in

splicing within the individual cancer types through a differential

analysis of splice form usage between tumor and normal

samples. We recovered a significant number of genes from the

cancer gene census set as recurrently differentially spliced

across tumor types (Figure 4B), partially showing pan-cancer

properties (TPM3 in BRCA, HNSC, READ, and lung cancers).

One of the genes we found most frequently differentially spliced

across all tumor types is PKM. While alternative splicing of exon

9 exclusion giving rise to a change from PKM into PKM2 has

been reported previously (Clower et al., 2010; David et al.,

2010), suggesting a role not only in the alteration of metabolic

function but also in tumor cell proliferation, we detect alternative

30 site usage for exon 2. Another gene worth highlighting in the

context of tumor-specific splicing is BCL2L1 (BCL-x), which

produces two splice forms with opposite functions via differen-

tial 50 splice site usage regulated byRBM4 expression, switching

between anti-apoptotic or pro-apoptotic states (Wang et al.,

2014). Among the top differentially spliced genes, we find a

significant enrichment of cancer census genes (5 out of 50,

p < 0.003, fold change 3.45, hypergeometric test). In addition,

we also observed differential splicing in numerous other factors

previously connected to cancer progression, such as NUMB,

which encodes a negative regulator of NOTCH and has been

previously linked to lung cancers (Pece et al., 2011). We found
(C) Number of neojunctions per sample for 32 cancer types. Each dot represent

annotation and not (or only very rarely) in tissue-matched GTEx samples. If at le

indicated by a horizontal dotted red line. Cancer types are sorted from left to rig

(D) Overview of tumor introns exclusively detected in cancer samples but not in m

middle panel to TCGA matched normal samples, and the right panel to tissue-m

tumor-specific intron confirmedwith RNA-seq in the corresponding sample group

between tumor and matched normal samples. For multiple introns per gene, the

See also Figures S3 and S4.
NUMB to be differentially spliced not only in lung cancers but

also in UCEC (Figure S3). In summary, the joint ranking of differ-

entially spliced genes provides a rich resource for the develop-

ment of new hypotheses.

Increased Complexity of Splicing in Cancer
In addition to the differential usage of splice forms, we were also

interested in the identification of exon-exon junctions (EEJs),

predominantly observable in tumor samples. We call such

tumor-specific EEJs ‘‘neojunctions’’. Over all samples of the

study, we identifyz251,000 such neojunctions, with an average

of 930 per sample (Figures 4C and S4A and S4B). Despite being

similar in sample size, LUAD and UCEC had generally higher

numbers of neojunctions than LUSC or prostate adenocarci-

noma. We found the strongest outliers in bladder urothelial

carcinoma (BLCA), UCEC, LUAD, BRCA, and COAD. We

observed amarked distinction between tumors and normal sam-

ples, where normal samples had substantially lower levels of

splicing burden than tumor samples (note that, according to

our definition, normal samples can also have neojunctions).

This difference appeared to vary across cancer types. Although

BLCA, CESC, LUSC, and LUAD showed a very strong distinc-

tion, other cancer types, such as liver hepatocellular carcinoma

or KICH, had no difference between tumor and normal samples.

Notably, on the other end of the spectrum, cholangiocarcinoma

seems to have an opposite pattern, with normal samples

showing a consistently higher number of neojunctions. Further,

different tumor types showed differences in their most extreme

complexity values, which cannot be explained by library size or

mutational load (Figures S4C and S4D).

To answer the question of which genes contribute most often

to the set of neojunctions that could potentially be used as diag-

nostic or therapeutic markers, we derived a neojunctions-based

ranking. Surprisingly, we observed EEJs that show RNA-seq

support in over 50% of samples of specific tumor types but

are virtually non-existent in TCGA normal samples or GTEx (Fig-

ure 4D). Further, we found a large degree of recurrence across

cancer types but also observed tissue-specific patterns.

There is a large degree of variation among the cancer types

with the largest numbers of neojunctions in BLCA, UCEC,

LUAD, BRCA, and COAD that we cannot easily attribute to

technical factors. We hypothesize that the large number of

neojunctions in some samples can be attributed to a partial

breakdown of the splicing machinery that may be the result of

somatic mutations or dysregulation of splicing-related factors.

In analogy to the term chromothripsis (Stephens et al., 2011),

we call this effect syndeo mechanism thripsis, or syndeothripsis.

We have identified 110 and 37 TCGA tumor samples with high

and very high degree of splicing aberration (Figures S4E and

S4F), respectively. The splicing burden in those samples goes
s the number of tumor-specific introns of a single sample not observed in the

ast five tumor-normal samples were available, the median of neojunctions is

ht by the mean number of neojunctions.

atched normals. The leftmost panel corresponds to TCGA tumor samples, the

atched GTEx samples. Shading indicates the fraction of samples that have a

. Rows are sorted according to a ranking that is the result of significance testing

most significant intron was chosen.
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far beyond what we observe in most normal samples and we

therefore suggest that they are affected by syndeothripsis.

Neojunctions Lead to Potential Neoepitopes
The direct oncogenic effects of tumor-specific alternative

splicing are only one of the many consequences splicing can

have in a cancer context.We saw evidence indicating that a large

fraction of the increased splicing diversity often seems to be a

passenger rather than being the driving effect; in particular, we

did not find an enrichment of neojunctions in the cancer census

gene set (in contrast to the enrichment for differential exon

usage). It is quite possible that the increased splicing complexity

is due to a lower accuracy, or more ‘‘noise’’ (Pickrell et al., 2010),

of splicing in cancer cells that may have a disrupted splicing

machinery, although we did not find a direct correspondence

between mutational load and detected junctions (Figure S4G).

However, this additional transcriptomic complexity can poten-

tially be used to inform cancer therapy. The classic argument

is that a fraction of somatic alterations specific to the tumor is

translated and can potentially lead to specific neoepitopes.

Following this argument, we studied whether a similar effect

can be observed for tumor-specific alternative splicing. This is

motivated by our prior observation that such events are at least

an order of magnitude more abundant than somatic variants.

We will denote tumor-specific peptides generated through

splicing and predicted to be major histocompatibility complex

(MHC)-I binders as alternative splicing-derived putative neoepi-

topes (ASNs).

Due to the limited availability of proteomics data for TCGA

samples, we have restricted the scope of this study to 63 donors

for BRCA and ovarian serous cystadenocarcinoma (OV). Based

on patient-specific splicing graphs, we derived all polypeptides

generated by an EEJ. This resulted in a median of 539,925

EEJ-spanning polypeptides per donor (Figure 5A and Table 1).

From these polypeptides, we extracted a list of candidate

ASNs based on a pipeline of Clinical Proteomic Tumor Analysis

Consortium (CPTAC) mass spectrometry (MS) data confirmation

(Mertins et al., 2016; Zhang et al., 2016) andMHC-I binding affin-

ity prediction (Andreatta and Nielsen, 2016) incorporating infor-

mation on the human leukocyte antigen (HLA) type of each donor

(Figure 5A). When considering only RNA-seq-confirmed EEJs,

this resulted in, on average, 1.7 ASNs from 1.2 EEJs for each

of the samples. For 43/63 (68%) of all considered samples we

identified at least one ASN that was CPTAC confirmed and

that was a predicted MHC-I binder (Figure 5B). If we do not

require RNA-seq confirmation of the specific EEJ in a sample,

the number of CPTAC-confirmed, MHC-I binding 9-mers in-

creases significantly (on average z11 9-mers from eight EEJs

per sample, Figure S5A). Generally, we expect the real number

of ASNs to be higher as it would also include 9-mers not span-

ning an EEJ but completely residing inside a newly included

exon or inside a retained intron (not counted in this analysis).

Furthermore, a recent study showed that junction-spanning pep-

tides resulting from alternative splicing are underrepresented in

protein MS datasets due to the cleavage specificity of trypsin

(Wang et al., 2017).

In order to compare ASNs with putative neoepitopes derived

from SNVs, following an analogous protocol, we generated a

list of all SNV-derived 9-mers that are observed in the respective
218 Cancer Cell 34, 211–224, August 13, 2018
tumor DNA, can be confirmed by CPTAC mass spectra, and are

predicted MHC-I binders. On average we find 0.6 SNV-derived

putative neoepitopes derived from 0.4 SNVs per sample. Overall,

we found at least one SNV-derived putative neoepitope for 19/63

(30%) of all considered samples. Compared with other studies,

these numbers appear relatively low. This can be explained by

our requirement of MS validation, which retains only about 1%

of otherwise viable peptides due to the low sensitivity of MS.

For both cancer types, we found more ASNs than putative

neoepitopes derived from SNVs (Figure 5B). Considering ASNs

in addition to SNV-derived putative neoepitopes significantly

increased the fraction for which at least one CPTAC-confirmed

putative neoepitope can be confirmed from 30% to 75%

(Figure 5B).

We used RNA-seq data to determine the expression of all

neojunctions as a proxy for neojunction-derived 9-mer expres-

sion. Similarly, we used the product of RNA-seq-based

expression estimates for an exon segment with an SNV and

the respective variant allele frequency as a proxy for SNV-

derived 9-mer peptide expression. For comparison, we also

provide average exon fragment RNA expression as a proxy for

overall 9-mer expression. The expression distribution for neo-

junctions is notably different from the SNV-derived and

overall 9-mer expression distribution. Generally, neojunction-

derived 9-mers show slightly lower expression than SNV-derived

9-mers (Figure 5C). CPTAC-confirmed SNV-derived putative

neoepitopes show a higher overall associated RNA expression

than ASNs, but there are fewer of them per sample.

Independent of the source of a neoepitope, potential thera-

peutic utility arises from recurrent observation across multiple

patients. SNVs are typically rare, and we did not observe any

recurring CPTAC-confirmed SNV-derived putative neoantigens.

However, we did find that 15 ASNs in our study are observed

across several samples within the same cancer type and five

ASNs recur in both cancer types (Figure S5B and Table S1).

DISCUSSION

Alternative splicing events have previously been shown to

contribute to cancer development and progression. Several

examples of such mechanisms are known, but only a few

comprehensive studies on transcript changes are available

(Climente-González et al., 2017) and a complete picture of alter-

native splicing complexity and its potential to generate neoanti-

gens is still missing.

In this work, we focus on five types of alternative splicing

events, namely intron retention, exon skipping, mutually exclu-

sive exons, and alternative 30 and alternative 50 splice site

changes (Cartegni et al., 2002; Hatje et al., 2017; Roy et al.,

2013; Wang et al., 2008). Our study builds on a previously pub-

lished tool (Kahles et al., 2016) and analyzes specific splicing

event types involving a small number of exons from RNA-seq

data without the need to know complete transcripts. This study

is a major contribution toward a comprehensive analysis of alter-

native splicing events across all suitable TCGA samples (another

study without focus on cancer was performed in Nellore et al.,

2016). Most previous studies considered isoform expression of

known transcripts. For instance, a recent study analyzed the

impact of isoform switches on gene function (Climente-González
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Figure 5. Alternative Splicing-derived Putative Neoepitopes (ASNs)

(A) Overview of the ASN detection and validation workflow. Starting from the personalized splicing graph including sample-specific germline and somatic SNVs

and the GENCODE genome annotations, polypeptides are generated across the junctions of all introns (including neojunctions). Expression of the resulting

polypeptides is validated using CPTACmass spectra. From the expressed polypeptides, 9-mer substrings spanning junctions are enumerated and filtered based

on their presence in a non-cancer background set. For the remaining 9-mers, MHC binding predictions (NetMHC) are obtained with respect to the individual’s

HLA-I type. Predicted MHC-I binders (percentile rank <2.0) are considered ASNs. The analysis is repeated for somatic SNV-derived 9-mer peptides for com-

parison.

(B) Comparison of the contribution of alternative splicing and SNVs to the CPTAC-confirmed putative neoepitope landscape by cancer type. Average number of

CPTAC-confirmed neojunction- and SNV-derived 9-mers per sample (left). Average number of CPTAC-confirmed alternative splicing and SNV sites generating

putative neoepitopes per sample (center). Sample fractions with at least one CPTAC-confirmed alternative splicing- or SNV-derived putative neoepitope (right).

‘‘UNION’’ corresponds to the combination of both variant types. ‘‘Total’’ refers to the combination of both cancer types. Only neojunctions RNA-expressed in the

respective sample or with a minimum RNA expression of 20 spliced reads in at least one of the samples are considered.

(C) Violin plot showing the RNA expression distribution over all expressed neojunction- and SNV-derived 9-mers as well as the overall 9-mer expression dis-

tribution. Expression of neojunctions is estimated using the library-size normalized read count confirming the neojunction. For SNV-derived peptides expression

is determined by multiplying normalized segment read coverage by the SNV somatic variant allele fraction, and for overall 9-mer expression normalized segment

read coverage of all 9-mers is used. The set of SNV-derived 9-mers is used as a representative peptide set for overall 9-mer expression. Filled violins with dotted

margins represent the distribution over all 9-mers in the respective set; solid lines represent the distribution over the subset of CPTAC-confirmed 9-mers.

See also Figures S4 and S5 and Table S1.
et al., 2017). We combine the splicing phenotypes with variants

obtained from re-analysis of exome sequencing data for an

sQTL association study. A previous study considered alternative

splicing across 48 tissues from up to 620 donors (GTEx Con-

sortium et al., 2017; Saha et al., 2017). Another work considered

genetic determinants of alternative splicing in blood (Zhang

et al., 2015). Both studies were restricted to cis associations of

common germline variants with known isoform expression.

Large QTL association studies of common variants with gene

expression were reported on both TCGA (Gong et al., 2017; Li

et al., 2013) and non-TCGA datasets (GTEx Consortium et al.,

2017). In our study, we focus on variants that have been shown

to occur as somatic variants in some individuals but may also

occur in the germline genome in others. Those variants are typi-
cally substantially less frequent (between 0.1% and 5% across

the cohort) than most common germline variants. The available

data provide sufficient statistical power to detect trans-sQTL

events that were difficult to detect previously (Fonseca et al.,

2017; GTEx Consortium et al., 2017; Lehmann et al., 2015).

Finally, our study comprehensively analyzes the extent to which

alternative splicing in tumors leads to cancer-specific RNA tran-

scripts that are translated into tumor-specific proteins and,

hence, may be targeted by immunotherapy. This has been

shown for specific genes for B cell lymphomas and ovarian can-

cers (Barrett et al., 2015; Vauchy et al., 2015). Here we use the

data from TCGA and GTEx to identify alternative splicing events

that are tumor specific and integrate them with re-analyzed

CPTAC MS data (Mertins et al., 2016; Zhang et al., 2016) to
Cancer Cell 34, 211–224, August 13, 2018 219



Table 1. Distribution of Intron-Spanning Polypeptide Sources

Type Median Mean

Germline variant 87,466.00 88,536.17

Somatic variant 172.00 610.94

Germline + somatic variant 42.00 208.63

Reference 518,831.00 518,831.00

Total 606,917.00 608,186.75
show for two tumor types that the resulting mRNAs are indeed

translated into tumor-specific proteins that contain peptides

with the potential for MHC presentation.

We built a catalog of alternative splicing events found in these

samples with hundreds of thousands of events of which z80%

are not annotated in GENCODE. In addition, we show that in

tumor samples we can observe on averagez20%more alterna-

tive splicing than in matched normal samples. The analysis of

RNA-seq data to extract splicing events is computationally

demanding and we hope that the identified and quantified alter-

native splicing events for all Pan-Cancer Atlas donors can be

used as a resource to simplify future analyses. One limitation

of this study, however, is that we only analyze bulk RNA-seq

and whole-exome sequencing data and we therefore have

limited power to detect and understand subclonal effects.

To understand the impact of somatic variants on alternative

splicing events, we performed a large-scale association study

of tumor variants with alternative splicing variation across the

genome. In order to characterize individual variants and to avoid

a burden-type strategy, we based our analysis on tumor variant

calls that overlap with recurrent highly confident somatic variant

calls allowing us to leverage changes at the germline as well as

the tumor levels. Associationmapping in trans is technically chal-

lenging and requires large cohorts such as the one considered

here. In particular, identifying and addressing confounders

appropriately is often challenging. Here we have accounted for

common confounders in the model and additionally checked

our results against correlation with purity, ploidy, patient sex,

as well as mutational load. Besides the aforementioned strong

effect of mutational load, we did find that the variant in PPP2R1A

is sex biased, which is expected as this gene is a known driver of

ovarian/uterine cancer. We also observed a correlation between

purity and one of the SF3B1 mutations. Eventually, this strategy

allowed us to identify a small number of known (SF3B1, U2AF1)

and a larger number of additional (TADA1, PPP2R1A, IDH1)

distal sQTLs that affect multiple alternative splicing events.

Overall, 385 genes have a splicing event that is the target of

one of these sQTLs. This illustrates the power of the pan-cancer

analyses of TCGA data to generate valuable hypotheses for

further mechanistic studies; for instance, to understand how a

somatic variant in IDH1 leads to widespread changes in alterna-

tive splicing across the genome. It is likely that splicing and

expression patterns are changed as an indirect, downstream ef-

fect of altered histone and demethylase patterns. The link of

TADA1 to alternative splicing events may be more direct, since

TADA1 interacts with SF3B5 and also shows a similar distribu-

tion of affected AS types as the known mutations in SF3B1.

PPP2R1A has previously been reported to affect nonsense-

mediated decay (NMD) (Sayani et al., 2008). We hypothesize
220 Cancer Cell 34, 211–224, August 13, 2018
that the loss-of-function somatic mutation in PPP2R1A leads

to a disruption of NMD function, which then leads to a detection

of AS variants that would otherwise get degraded by NMD. This

would explain why we find associations with alternative splicing.

In summary, this sQTL analysis, utilizing a large sample set size,

reveals promising additional long-range associations with

changes in exon composition of multiple genes.

Our study of the alternative splicing landscape demonstrated

that taking information on alternative splicing events into ac-

count is beneficial for characterizing cancer subtypes. A system-

atic analysis of splicing events in tumors enabled us to identify

genes that are recurrently alternatively spliced across multiple

cancer types. These events include well-understood examples

of alternative splicing changes promoting tumor development

(e.g.,BCL2L1, PKM) but also alternative splicing in cancer genes

for which the effect is not yet well understood (e.g., NUMB).

However, in this context we would like to note that even though

TCGA is a tremendous resource for cancer research, certain

biases are inherent to the dataset (mostly related to the design

of the study), which might not be representative in certain cir-

cumstances. For instance, TCGA tumors are treatment naive,

consist predominantly of primary tumors, and are biased toward

larger tumors with sufficient size to extract analysis material.

Within this study we cannot directly address this sampling bias

other than pointing it out and interpreting our results within its

context.

One important element of this study was to determine the

number of additional EEJs, which we called neojunctions, that

appear predominantly in tumors. We found that some samples

have a large degree of splicing aberration, where we can identify

thousands of neojunctions. Overall, we identifiedz251,000 neo-

junctions with an average ofz930 neojunctions per sample, and

many of them are recurrent: z18,000 of those neojunctions

appear in at least 100 samples. For comparison, there are only

13 somatic SNVs that were found in at least 100 tumors (the high-

ly recurrent SNVBRAFV600E being one of them). The vast number

of neojunctions and the high level of recurrence are very prom-

ising for future work.

To further develop the hypothesis of the importance of alterna-

tive splicing for the immune response to cancer, we have

analyzed to what extent neojunctions contribute to the transla-

tion of potential neoepitopes. This required the development of

an analysis pipeline to go from neojunctions to the predicted

translations of peptides around the neojunctions to the MS

confirmation, and theMHC-I binding prediction in order to deter-

mine which peptides are potential neoepitopes. Overall, by

considering splicing-derived in addition to SNV-derived pep-

tides, the fraction of samples with at least one CPTAC-confirmed

putative neoepitope increases from 30% to 75% for BRCA and

OV tumors. In addition, the splicing-derived putative neoepi-

topes have a high degree of recurrence, suggestive of potential

use in immunotherapeutic intervention.

In addition to the already completed analyses, we are currently

investigating further extensions and refinements. While the

current work only focuses on MHC-I alleles for peptide binding

predictions, incorporation of MHC-II alleles appears to be bene-

ficial as well (Sun et al., 2017). Also, MHC binding is essential but

not sufficient for a peptide to be capable of inducing an immune

response. Both the actual expression and processing of the



peptide as well as its immunogenicity need to be validated. The

tandem MS-based proteomics analysis employed in this

study aims at validating peptide expression. However, prote-

omics analysis alone cannot validate processing let alone

presentation of a given peptide by MHC. An important improve-

ment will be to replace this step; e.g., with MS-based immuno-

peptidomics (Bassani-Sternberg et al., 2016). Subsequently,

immunogenicity of the detected naturally processed neoepi-

topes could be determined via CD8+ T cell killing (Vitiello and

Zanetti, 2017). In addition, it may also be helpful to usemore sen-

sitive protein MS techniques; for instance, data-independent

acquisition MS (Gillet et al., 2012). Lastly, our current choice of

cancer types was mainly driven by availability within the TCGA

and CPTAC cohorts. We are actively working on extending this

work to other cancer types and into a more controlled experi-

mental setup.

In summary, in this study we considered the many differences

of alternative splicing in cancer compared with normal cells and

suggest that these differences are characteristic for individual

cancer types and could be used for the design of immunothera-

peutic interventions, such as chimeric antigen receptor T cell

therapy or personalized anti-cancer vaccines.
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METHOD DETAILS

Data Download
RawRNA-sequencing samples in FASTQ format andwhole-exome sequencing alignment files in BAM format were downloaded from

the CancerGenomicsHub (CGHub) at UCSC (Wilks et al., 2013) using the cgtools software. CGHub has been decommissioned over

the course of this project’s duration. All data is now available at the Genomic Data Commons (https://gdc.cancer.gov/, more

information below). Proteomics data for TCGA breast and ovarian cancer samples were downloaded from the CPTAC data portal

(Edwards et al., 2015).
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RNA-Seq Alignment
All previously downloaded RNA-seq samples were individually aligned using a uniform processing pipeline based on the STAR

aligner (Dobin et al., 2013). Due to the long duration of the whole project and the extensive analyses, we used two different alignment

strategies to include further samples in a second run. While almost all analyses were performed with both strategies, the sQTL anal-

ysis was completed on strategy 1 only and the neoepitope analysis was completed on the junctions resulting from the intersection of

strategies 1 and 2., For the remaining analysis, we compared all results and found no significant differences between the two align-

ment strategies.

Strategy 1

The STAR software (version 2.4.0i) was used in a 2-pass setup, where the first alignment pass was used to identify non-annotated

junctions in the input data, allowing for the construction of a genome index containing non-annotetd junctions. The second pass

alignment was then performed against the junction-aware index, allowing for amore sensitive recovery of non-annotated splice junc-

tion from the data. A complete set of command line parameters:

1st Pass. STAR –genomeDir GENOME –readFilesIn READ1 READ2 –runThreadN 4 –outFilterMultimapScoreRange 1 –outFilter

MultimapNmax 20 –outFilterMismatchNmax 10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –align

SJDBoverhangMin 1 –genomeLoad NoSharedMemory –readFilesCommand cat –outFilterMatchNminOverLread 0.33 –outFilter

ScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif –outSAMtype None –outSAMmode None.

Re-indexing. STAR –runMode genomeGenerate –genomeDir GENOME_TMP –genomeFastaFiles GENOME_FASTA –sjdb

Overhang 100 –runThreadN 4 –sjdbFileChrStartEnd SJ.out.tab (from 1st pass)

2nd Pass. STAR –genomeDir GENOME_TMP –readFilesIn READ1 READ2 –runThreadN 4 –outFilterMultimapScoreRange 1 –out

FilterMultimapNmax 20 –outFilterMismatchNmax 10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –align

SJDBoverhangMin 1 –genomeLoad NoSharedMemory –limitBAMsortRAM 70000000000 –readFilesCommand cat –outFilterMatch

NminOverLread 0.33 –outFilterScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif –outSAMattributes NH

HI NM MD AS XS –outSAMunmapped Within –outSAMtype BAM SortedByCoordinate –outSAMheaderHD @HD VN:1.4 –out

SAMattrRGline ID SM:

Strategy 2

Again, this strategy comprises a two-pass alignment approach. As a difference to strategy 1, a newer version of the STAR aligner was

used (2.5.3a), that re-creates the index augmented with non-annotated junctions on the fly and does not require manual rebuild of the

reference genome index. Hence only a single run per sample was necessary. The full list of command line parameters was as follows:

STAR –genomeDir GENOME –readFilesIn READ1 READ2 –runThreadN 4 –outFilterMultimapScoreRange 1 –outFilterMultimap

Nmax 20 –outFilterMismatchNmax 10 –alignIntronMax 500000 –alignMatesGapMax 1000000 –sjdbScore 2 –alignSJDBoverhang

Min 1 –genomeLoad NoSharedMemory –limitBAMsortRAM 70000000000 –readFilesCommand cat –outFilterMatchNminOverLread

0.33 –outFilterScoreMinOverLread 0.33 –sjdbOverhang 100 –outSAMstrandField intronMotif –outSAMattributes NH HI NM MD AS

XS –sjdbGTFfile GENCODE_ANNOTATION –limitSjdbInsertNsj 2000000 –outSAMunmapped None –outSAMtype BAM Sorted

ByCoordinate –outSAMheaderHD @HD VN:1.4 –outSAMattrRGline ID::<ID> –twopassMode Basic –outSAMmultNmax 1

RNA-Seq Quality Control and Filtering
For each RNA-seq library we ran the FastQC analysis tool (version 0.11.6) and collected library statistics. Further we collected

alignment statistics and computed a bias score between 3 and 50 end of each gene tomeasure possible degradation. Based on these

measurements, we developed a scoring scheme to exclude samples. A sample could be flagged as low-quality if at least 3 of key

FastQC criteria were labeled as fail (criteria: per base quality, per sequence quality, gc content, N content, sequence overrepresen-

tation), the degradation score was larger than Q3 + 1.5xIQR, the GC content was more than 1.5xIQR below Q1 or above Q3 or the

number of reads wasmore than 1.5xIQR belowQ1 or above Q3. A sample was excluded, if it was flagged for at least three low quality

criteria, the degradation score was larger than Q3 + 3xIQR, the GC content was more than 3xIQR below Q1 or above Q3 or the

number of reads was more than 3xIQR below Q1 or above Q3.

Tumor Variant Calling
We have used Picard (version 1.87) and theGenome Analysis Toolkit (GATK, version 3.4.46) (McKenna et al., 2010) for variant calling.

We followed the good-practice guidelines for variant calling withGATK (Van der Auwera et al., 2013).We omitted a duplicate-marking

of the input files as the alignment versions downloaded from CGHub already had duplicates marked. Each alignment file was then

stripped of all unmapped reads and re-indexed using samtools (version 1.2).

Utilizing the capture-region information for the exome capture procedure of each file and dbSNP (version 138), the 1000 Genome

Project Phase 1 and the Mills and 1000G gold standard set as compendium of known sites, we usedGATK for base quality score re-

calibration.

Re-calibration Step 1

java -jar GenomeAnalysisTK.jar -T BaseRecalibrator -R <genome.fasta> -I <alignment.bam> -knownSites <known_sites> -L

<capture_region> -o <outfile1> -nct <threads>

Re-calibration Step 2

java -jar GenomeAnalysisTK.jar -T PrintReads -R <genome.fasta> -I <alignment.bam> -BQSR <outfile1> -o <outfile2> -nct

<threads>
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Variant calling was then performed using theGATK Haplotype Caller. The calling limit was defined as a +/� 1kb window around all

genes in the GENCODE annotation (v19), including all intron regions.

Variant Calling

java -Xmx4g -Xms512m -Djava.io.tmpdir=<TMPDIR> -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R <genome.fasta> -I

<alignment.bam> –dbsnp <dbsnp_v138.vcf> -o <outfile> –output_mode EMIT_ALL_CONFIDENT_SITES -ERC GVCF –variant_

index_type LINEAR –variant_index_parameter 128000 -pairHMM VECTOR_LOGLESS_CACHING -mbq 15 –minPruning

5 -S STRICT –activeRegionOut <outfile_region> –activityProfileOut <outfile_profile> -L <calling_limit.bed> -nct <threads>

The gVCF files created in the previous step for each sample were then merged in an iterative process until less than 100 merged

files remained:

java -jar GenomeAnalysisTK.jar -T CombineGVCFs -R <genome.fasta> –variant <s1> . –variant <sN> -o <outfile_merged1>

The merged gVCF files were then used for joint variant calling on each chromosome independently using the GATK:

java -Xmx16g -jar GenomeAnalysisTK.jar -T GenotypeGVCFs -L <chr> -nt <threads> –dbsnp <dbsnp_v138.vcf> -R

<genome.fasta> –variant <outfile_merged1> . –variant <outfile_mergedN> -o <outfile_final>

Tumor Variant Filtering
Tumor variant calls have been filtered in the following way: Variants that have less than 100 samples with valid calls, quality of less

than 100, are multi-allelic or indels have been removed from analysis. We further required more than 5 alternate alleles for each poly-

morphic position. All variants have been encoded into an additive scheme with 0 representing the homozygous reference state, 1 the

heterozygous state and 2 the homozygous alternate allele. In this study, we ignore the existence of variants that appear sub-clonally.

For somatic variant calls the unfiltered MC3 calls from PanCanAtlas have been used (version 0.2.8; Synapse ID: syn7834470). From

that variant call set we extracted single nucleotide variants (SNVs) but excluded variants tagged by the following criteria:

d StrandBias

d contest

d oxog

d ndp

d pcadontuse

d nonpreferredpair

d badseq

d gapfiller

d common_in_exac

d PoN

We also required that at least three variant callers agree on a variant call and excluded variants which have a higher than 5%minor

allele frequency in the 1,000 genomes cohort. Non-recurrent variant calls (variants which appear in only one sample) have also been

excluded from further analysis. This filtering ensures a high-quality variant call set which includes intronic variants at exon

boundaries.

The somatic and tumor variant calls have subsequently been intersected, resulting in a total of 4,041 variant calls considered in this

analysis.

Gene Expression and Splicing Event Quantification
For expression counting we used a custom python script that counted a read towards a gene if at least one base of the read over-

lapped an exonic position of the gene. We did not count secondary alignments (as indicated in the BAM files with flag 256) and

masked regions from the annotation where multiple genes overlapped. We also generated a second set of expression counts

(non-alt) that excluded all genomic positions from counting that were annotated with both intron and exon.

Alternative splicing events were detected and quantified using theSplAdder toolkit (Kahles et al., 2016). Briefly, with the pipeline we

generated a sample-specific splicing graph per sample and gene, integrating additional information based on RNA-seq alignment

data. For each gene all graphs of all samples were then merged into a joint splicing graph. If a graph of a gene had more than

10,000 edges, we excluded it from further merging. Lastly, we pruned edges from the merged graphs if they were supported by

less than 10 samples in the cohort. This procedure resulted in a single merged graph per gene for all samples.

Subsequently, we quantified nodes and edges of themerged graph for all samples based on the RNA-seq alignments. Edges were

quantified as number of supporting spliced alignments and exons as mean read coverage over all exonic positions. From the

quantified graphs we detected all alternative events of the following types: exon skipping, intron retention, alternative 30 splice
site and alternative 50 splice site (Figure S1A). For each event we then computed percent spliced in (PSI) values based on the pre-

viously quantified splicing graphs.

Detection of Cancer-specific Introns
To account for cohort size and read length effects, this analysis was performed on a randomly selected subset of 40 tumor samples

from each tumor type (for all types with sufficient number of samples) and the RNA-seq reads were trimmed to a uniform length of
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50 nt if their length was exceeding this threshold. The detection and quantification of alternative splicing events was otherwise per-

formed as described above.

Characterization of Neojunctions
Starting with the splicing graphs for all genes that we generated previously, we removed all intron edges that could be confirmed with

at least 2 reads in at least 1%of samples (�30) from theGTEx cohort. Before thresholding, junction counts were normalized for library

size differences. Further, samples with a library size (measured as the upper quartile expression of autosomal genes) of less than

2,500 were excluded from this analysis to exclude artifacts caused by low complexity libraries not caught by the global QC. We

then computed splicing complexity (the number of neojunctions) as the sum of the total number of splice graph edges confirmed

with at least 3 reads in a sample and at least 20 reads over the whole cohort as total sum over all genes of a sample.

For a ranking of neojunctions, we sorted all EEJswith an increased specificity towards tumor samples requiring aminimumnumber

of spliced alignments across the EEJ per sample to count it as expressed (tumor: 10 spliced reads, normals: 3 spliced reads, GTEx:

2 spliced reads). Further, we removed all junctions that were present in more than 1% of GTEx or TCGA normal samples or had a

higher mean expression in TCGA normals compared to TCGA tumor samples (within the same cancer type). We then ranked all

EEJs by predominant occurrence in tumor samples based on Fisher’s exact test. To aggregate over multiple events in a gene, we

show only the event with the strongest effect.

Identification of Rare Splicing Outliers
For outlier detection we applied a set of hard filter criteria on our full set of detected alternative splicing events. To allow for a stable

and comparable analysis, we only checked for outliers in cancer types with at least 100 samples available. For each event we

required that the maximum spread of PSI values in the GTEx cohort as well as within the TCGA normal sample is at most 0.3. We

further excluded an event if it i) had less than 80 samples with sufficiently many reads (N = 10) to compute a PSI, ii) had a spread

of PSI values in the respective cancer type of less than 0.4. We then computed the number of samples with a PSI value of at least

10 times the inter-quartile range above/below the upper/lower quartile and marked them as outliers. If we found less than 5 or more

than 100 outliers for the event and cancer-type, there were no TCGA normal samples with sufficient read count (N = 10) available or

theminimumPSI over all normal samples was lower than the smallest tumor sample PSI, we excluded the event. All remaining events

were noted as outliers in the respective cancer type.

t-SNE
Wehave generated t-SNE figures for every event type (exon-skip, alternative events and intron retention) aswell as for a list of concat-

enated events based on a matrix of sample by event matrix of percent spliced in values. All t-SNE figures have been produced using

the package sklearn (Pedregosa et al., 2011). The aforementioned matrix has been filtered to remove events which had more than

30% samples missing values. A value is missing, if we were unable to compute a stable PSI value, which was the case when we

had less than 10 spliced reads available in the denominator. Samples have been filtered if more than 10% of events had samples

missing. Remaining missing values have beenmean-imputed. Next, we performed a PCA based on a linear kernel of this data matrix.

The first 100 principal components have been used for the t-SNE generation. t-SNE with learning rate 500 and perplexity 50 have

been used for visualization throughout this work unless stated otherwise.

Differential Analysis of Splicing Events
The differential splicing analysis was run on all tumor types that had at least 50 tumor samples and 10 tissue-matched normal

samples available. For each tumor type independently, we randomly subsampled the available groups to 50 tumor and 10 normal

samples.We then usedSplAdder to perform a differential test (based on a generalized linear model) between the two groups, utilizing

the split-alignment counts acress the junctions of an event. To account for additional variability in the tumor samples, we repeated the

testing 9 times, each time on a different random subset. For each event, the final p value was recorded as the median of the 9 results.

If the same gene had more than one splicing event tested, we kept the one with the minimal p value. The results from all individual

tissues were then aggregated into a common ranking using Fisher’s method for meta-analysis.

Filtering of Events and Variants for Somatic trans-Association
As phenotypes we considered a total of 94,749 exon skipping, 30,755 alternative 50 and 48,365 alternative 30 events for all samples

that had a total of at least five reads across all junctions in the splicing event. We considered tumor sample population-level variant

calls that are confirmed by at least three somatic variant callers as high-quality somatic variants in at least two donors in the MC3

variant calls, including intronic regions. For each of these positions, we re-analyzed the tumor whole exome sequencing data in order

to determine the genotype in all samples. This strategy considered germline as well as somatic variants for the association analysis.

Therefore, we leveraged the occurrence of single nucleotide variants on the germline genome in conjunction with somatic single

nucleotide variants to determine functional effects of these variants.

Statistical Association of Genetic Variation and Alternative Splicing
A linear mixed model has been used (Lippert et al., 2014), accounting for population structure as a random effect and cancer type as

fixed effect to account for cancer specific variation as well as batch effects. We also included gender and gene expression as fixed
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effects to account for potential detection bias. All splicing event quantifications have been quantile normalized to match a standard

normal distribution. Depending on the amount of read support of individual splice events, we used up to 8,255 samples for the

QTL-analysis. More specifically, we required that the sum of reads across all junction for every sample and splice event are covered

by more or equal to 5 reads.

The splicing index is being used as a quantitative phenotype. In order to address some unwanted properties of this phenotype we

have performed an inverse normal transform on all PSI’s estimated by SplAdder. To avoid ties, we have added a small amount of

random pseudo-noise in the range of 10�5 to each estimate before transformation. Splicing events which exclusively exhibited

ties, have been removed from analysis. We also excluded phenotypes in which less than 10%of the samples had any valid estimates.

We applied a Bonferroni multiple testing correction on cis-associations and trans-associations separately accounting for the total

number of variants (cis-associations, p value < 6.19e-6) as well as the total number of events and variants tested (trans-associations,

p value < 3.55e-11).

In the resulting set of sQTL, we have removed all events which showed over-inflation for the variants tested (more than 20 variants

significantly associated). Further, we tested all variants for association with mutational load (Spearman Correlation) and removed all

variants showing any evidence of correlation (nominal p value < 0.01). Mutational load has been calculated as total number of SNV

based on MC3 calls from PanCanAtlas have been used (version 0.2.8 PUBLIC; Synapse ID: syn7834470).

Derivation of Splicing-Derived Peptides
Based on the splicing graphs, all intron-spanning polypeptides (encoding the translated amino acid sequence of a node pair) for a

subset of 63 TCGA cancer samples (including BRCA andOV) were derived. For each gene, we generated a foreground splicing graph

by collapsing the reference transcripts of each gene into a graph and augmenting it with patient-specific germline and somatic var-

iants as well as additional junction information from RNA-seq across the TCGA cohort as follows.

The polypeptides were obtained by seeding the splicing graph traversal at the first CDS of the canonical transcripts and then

following the splicing graph structure along any existing edges in read strand order. While traversing the graph, all possible

read-frame shifts that could exist while translating an exon/CDS were taken into account. We define an intron-spanning polypeptide

as the peptide generated by translating the pair of exons connected by the intron with respect to a certain reading-frame. The poly-

peptides were generated both for the reference DNA sequence and the personalized DNA sequences. Personalized DNA sequences

are comprised of three subsets obtained by introducing variants into the reference genome as follows: (i) the germline variants of a

particular donor only, (ii) the somatic variants of a particular donor only, and (iii) both the germline and the somatic variants. To obtain

background sequences, we generated polypeptides that result from translating canonical transcripts annotated in the GENCODE

reference annotation (version 19). Furthermore, we generate background peptides by using a splicing graph derived from GTEx

control tissue samples. For each donor, we also generate a personalized GTEx background set by introducing germline variants.

MHC-I Binding Predictions
MHC class I binding predictions were performed using NetMHC-4.0 (Andreatta and Nielsen, 2016). Donor HLA-I types originate from

a previous study on the same TCGA samples (Shukla et al., 2015) and were downloaded from the PanCanAtlas Jamboree server.

For each tumor sample, MHC-I binding affinity and corresponding ranks were determined for all 9-mers derived from background

and personalized protein sequences with respect to all donor HLA-I alleles supported by NetMHC-4.0. (For seven donors only three

HLA-I alleles were supported, for 17 donors all six were. Median number of supported alleles was 5.) For each 9-mer NetMHC-4.0

outputs a binding affinity rank per allele. This rank is based on a reference set of 400,000 random natural peptides. Peptides with a

predicted binding affinity rank of better than 2% are considered binders. NetMHC-4.0 was used as follows:

MHC-I Binding Prediction

netMHC -a <donor_allele_string> -l 9 -f <proteins.fasta>

Identification of Expressed Peptides
For each of the 63 TCGA tumor samples under consideration, we generated individual polypeptide databases comprising reference-

based and personalized versions of all sample-specific splicing-derived and reference annotation-derived protein sequences.

Personalized versions of the reference annotation-derived protein sequences were generated analogously to those of the

splicing-derived sequences.

OpenMS (Kohlbacher et al., 2007; Röst et al., 2016) was used to identify polypeptides from a sample’s polypeptide database as

follows: In order to allow to control for false discovery rates, decoy sequences were added to the database. Subsequently, we used

MS-GF+ to search the corresponding CPTAC data set for tryptic sequences from the database. A false discovery rate of 5% on the

peptide-spectrum match level was used to filter the identified polypeptides. Any 9-mer contained in at least one of the identified

polypeptides is considered CPTAC-confirmed. The following OpenMS commands were used to perform the polypeptide

identification:

Add Decoy Sequences

DecoyDatabase -in <input.fasta> -out <decoy_db.fasta>
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Search CPTAC Data Set

MSGFPlusAdapter -ini MSGF_iTRAQ.ini -in <cptac_spectra> -out <output.idXML> -database <decoy_db.fasta> -executable

<path_to_msgfplus> -java_memory 80000 -threads 6

The file MSGF_iTRAQ.ini is available at https://github.com/ratschlab/pancanatlas_code_public.

Control for False Discovery Rate

PeptideIndexer -in <msgf_output.idXML> -fasta <decoy_db.fasta> -out <pi_output.idXML> -allow_unmatched -enzyme:

specificity ’semi’

FalseDiscoveryRate -in <pi_output.idXML> -out <fd_output.idXML>

IDFilter -in <fd_output.idXML> -out <fdr_filtered.idXML> -score:pep 0.05

Alternative Splicing-Derived Neoepitope Candidates
Starting from a sample’s splicing-derived polypeptide sequences we extracted all intron-spanning peptides of length 9. Due to the

lack of normal RNA samples, tumor-specific splicing events cannot be accurately determined. In order to increase specificity,

we consider all splicing events observed in GTEx as normal and exclude all GTEx 9-mers (including personalized peptides) from

the list of alternative splicing-derived neoepitope candidates. Furthermore, all 9-mers also observed in the reference genome or

the personalized reference genome, i.e., the reference genome after introduction of the respective donor’s germline variants and/or

the somatic variants, were removed from the list. Furthermore, in order to increase specificity, we only considered 9-mers derived

from EEJs also contained in the splicing graph generated on the new RNA-seq alignments (strategy 2).

SNV-Derived Neoepitope Candidates
Starting from a donor’s personalized reference genome representing either somatic variants only or both germline and somatic

variants, all peptides of length 9 containing a somatic variant are extracted. All 9-mers also found in the reference genome or in

the personalized genome containing germline variants only are removed from this list. Moreover, analogous to the identification of

alternative splicing-derived neoepitope candidates, all GTEx 9-mers (including personalized peptides) are excluded.

Estimation of RNA Expression of 9-mer Peptides
RNA expression of 9-mers overall was determined by using the average RNA expression of the corresponding exon fragment as a

proxy. For SNV-derived 9-mers this expression was multiplied by the respective variant allele frequency. We estimated the RNA

expression of neojunction derived 9-mers by library size-normalizing the read counts confirming the respective junction.

Re-analysis on Representative Sample Subset
As a means to account for various sampling differences in the TCGA RNA-seq data set, we generated a representative sub-cohort

with a reduced variability to repeat some of the key analysis. From the set of whitelisted samples passing our initial QC, we selected

10 tumor and 10 normal samples for all cancer types that had at least 10 tumor and 10 normal samples available. We pre-processed

the fastq files of these samples and randomly subsampled each sample to contain 48,000,000 reads. All reads exceeding 50nt were

trimmed down to 50nt. For alignment, we used strategy 2 as described above. All downstream analyses were analog as

described above.

DATA AND SOFTWARE AVAILABILITY

Supplementary data accompanying this manuscript is available at the Genomic Data Commons (GDC) of the National Cancer

Institute under the following URL: https://gdc.cancer.gov/about-data/publications/PanCanAtlas-Splicing-2018.

Research code that was used to implement methods described above along with further descriptions is publicly available on

GitHub under the following address: https://github.com/ratschlab/pancanatlas_code_public.
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