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Abstract. In this paper we present equivalence results for several types
of unbounded operator functions. A generalization of the concept equiv-
alence after extension is introduced and used to prove equivalence and
linearization for classes of unbounded operator functions. Further, we
deduce methods of finding equivalences to operator matrix functions
that utilizes equivalences of the entries. Finally, a method of finding
equivalences and linearizations to a general case of operator matrix poly-
nomials is presented.
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1. Introduction

Spectral properties of unbounded operator matrices are of major interest in
operator theory and its applications [24]. Important examples are systems
of partial differential equations with λ-dependent coefficients or boundary
conditions [1,9,10,19,23]. A concept of equivalence can be used to compare
spectral properties of different operator functions and the problem of classify-
ing bounded analytic operator functions modulo equivalence has been stud-
ied intensely [6,7,11,15]. The properties preserved by equivalences include
the spectrum and for holomorphic operator functions there is a one-to-one
correspondence between their Jordan chains, [14, Prop. 1.2]. Our aim is to
generalize some of the results in those articles and study a concept of equiv-
alence for classes of operator functions whose values are unbounded linear
operators. A prominent result in this direction is the equivalence between an
operator matrix and its Schur complements [2,21,24].

In this paper, we consider systems described by n × n operator matrix
functions and study a concept of equivalence when some of the entries are
Schur complements, polynomials, or can be written as a product of operator
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functions. Examples of this type are the operator matrix function with qua-
dratic polynomial entries that were studied in [3] and functions with rational
and polynomial entries in plasmonics [17]. In order to extend previous results
to cases with unbounded entries, we generalize in Definition 2.2 the concept
of equivalence after extension in [11]. This new concept can be used to com-
pare spectral properties of two unbounded operator functions, but also for
determining the correspondence between the domains and when two opera-
tor functions are simultaneously closed. Our main results are (i) equivalence
results for operator matrix functions containing unbounded Schur comple-
ment entries (Theorem 3.4) and polynomial entries (Theorem 3.11) and (ii) a
systematic approach to linearize operator matrix functions with polynomial
entries (Theorem 4.1 together with the algorithm in Propositions 4.9 or 4.10).

Throughout this paper, H with or without subscripts, tildes, hats, or
primes denote complex Banach spaces. Moreover, L(H, ˜H) denotes the col-
lection of linear (not necessarily bounded) operators between H and ˜H. The
space of everywhere defined bounded operators between H and ˜H is denoted
B(H, ˜H) and we use the notations L(H) := L(H,H) and B(H) := B(H,H).
For convenience, a product Banach space of d identical Banach spaces is
denoted

Hd :=
d
⊕

i=1

H, where Hd := {0} for d ≤ 0.

The domain of an operator A ∈ L(H, ˜H) is denoted D(A) and if A is closable
the closure of A is denoted A. In the following, we denote for a linear operator
A the spectrum and resolvent set by σ(A) and ρ(A), respectively. The point
spectrum σp(A), continuous spectrum σc(A), and residual spectrum σr(A)
are defined as in [8, Section I.1].

Let Ω ⊂ C be a non-empty open set and let T : Ω → L(H,H′) denote
an operator function. Then the spectrum of T is

σ(T ) := {λ ∈ Ω : 0 ∈ σ(T (λ))}.

An operator matrix function T : Ω → L(H⊕ ˜H,H′⊕ ˜H′) have a representation
as

T (λ) :=
[

A(λ) B(λ)
C(λ) D(λ)

]

, λ ∈ Ω .

Unless otherwise stated the natural domain

D(T (λ)) := D(A(λ)) ∩ D(C(λ)) ⊕ D(B(λ)) ∩ D(D(λ)), λ ∈ Ω

is assumed [24, Section 2.2].
The paper is organized as follows. In Sect. 2 we generalize concepts of

equivalence to study functions whose values are unbounded operators. In par-
ticular, the concept equivalence after operator function extension is defined,
which enable us to show an equivalence for pairs of unbounded operator func-
tions. We provide natural generalizations of results that for bounded operator
functions are well known. Further, we show how equivalence for an entry in
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an operator matrix function can be used to find an equivalence for the full
operator matrix function.

Section 3 contains three subsections, one for each of the studied equiva-
lences: Schur complements, [2,9,18,24], multiplication of operator functions,
[11], and operator polynomials, [13,16], each structured similarly. First, an
equivalence for the class of operator functions is presented and then we show
how this equivalence can be used to prove equivalences for operator matrix
functions.

In Sect. 4 we use the results from Sect. 3 to also find equivalences be-
tween a class of operator matrix functions and operator matrix polynomials.
Moreover, we discuss two different ways of finding linear equivalences (lin-
earizations) of operator matrix polynomials. The section is concluded with
an example on how the results from Sects. 3 and 4 can be used jointly to
linearize operator matrix functions.

2. Equivalence and Equivalence After Operator Function
Extension

In this section we introduce the concepts used to classify unbounded opera-
tor functions up to equivalence. These concepts were used to study bounded
operator functions [5,11] and we present natural generalizations to the un-
bounded case.

Let ΩS ,ΩT ⊂ C and consider the operator functions S : ΩS → L(H,H′)
and T : ΩT → L( ̂H, ̂H′) with domains D(S(λ)), λ ∈ ΩS and D(T (λ)), λ ∈
ΩT , respectively. Then S and T are called equivalent on Ω ⊂ ΩS ∩ΩT if there
exist operator functions E : Ω → B( ̂H′,H′) and F : Ω → B(H, ̂H) invertible
for λ ∈ Ω such that

S(λ) = E(λ)T (λ)F (λ), D(S(λ)) = F (λ)−1 D(T (λ)). (2.1)

It can easily be verified that (2.1) is an equivalence relation.
Note that analytic equivalence is assumed in e.g. [4,11,22]. Analyticity

can also be assumed in (2.1), but it is not necessary for several of the results
in this section, which are point-wise, i.e. for a fixed operator. For consistency,
we state all theorems for operator functions.

The following proposition is immediate from its construction [21], [24,
Lemma 2.3.2].

Proposition 2.1. Assume that S : ΩS → L(H,H′) is equivalent to T : ΩT →
L( ̂H, ̂H′) on Ω ⊂ ΩS ∩ΩT , and let E and F denote the operator functions in
the equivalence relation (2.1). Then the operator S(λ) is closed (closable) for
λ ∈ Ω if and only if T (λ) is closed (closable), where the closure of a closable
S(λ) is

S(λ) = E(λ)T (λ)F (λ), D(S(λ)) = F−1(λ)D(T (λ)).

Let SΩ and TΩ denote the restrictions of S and T to Ω. Then

σ(TΩ) = σ(SΩ), σp(TΩ) = σp(SΩ), σc(TΩ) = σc(SΩ), σr(TΩ) = σr(SΩ).
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Gohberg et al. [11] and Bart et al. [5] studied a generalization of equiv-
alence called equivalence after extension. Here, we introduce a more general
definition of equivalent after extension, which we for clarity call equivalence
after operator function extension.

Definition 2.2. Let S : ΩS → L(H,H′) and T : ΩT → L( ̂H, ̂H′) denote
operator functions with domains D(S(λ)), λ ∈ ΩS and D(T (λ)), λ ∈ ΩT ,
respectively. Assume there are operator functions WS : Ω → L(

̂

HS ,

̂

HS) and
WT : Ω → L(

̂

HT ,

̂

HT ) invertible on Ω ⊂ ΩS ∩ΩT such that

S(λ) ⊕ WS(λ), D(S(λ) ⊕ WS(λ)) = D(S(λ)) ⊕ D(WS(λ)),
T (λ) ⊕ WT (λ), D(T (λ) ⊕ WT (λ)) = D(T (λ)) ⊕ D(WT (λ)),

are equivalent on Ω. Then S and T are said to be equivalent after operator
function extension on Ω. The operator functions S and T are said to be
equivalent after one-sided operator function extension on Ω if either

̂

HS or̂

HT can be chosen to {0}. If

̂

HT can be chosen to {0} then we say that S is
after WS-extension equivalent to T on Ω.

The definition of equivalent after extension in [5] correspond in Defini-
tion 2.2 to the case WS(λ) = IȞS

and WT (λ) = IȞT
for all λ ∈ Ω. We allow

WS and WT to be unbounded operator functions and can therefore study a
concept of equivalence for a larger class of unbounded operator function pairs
S and T .

In particular, the equivalence results for Schur complements and poly-
nomial problems presented in Sect. 3.1 respectively Sect. 3.3, can not be
described by an equivalence after extension with the identity operator. In
the equivalence results for multiplication operators in Sect. 3.2 the operator
function W is bounded (actually W (λ) = I for all λ ∈ C). Thus, in that case
the standard definition of equivalence after extension is sufficient as well.

Proposition 2.1 shows that two equivalent unbounded operator func-
tions have the same spectral properties and it provides the correspondence
between the domains. In the following proposition, those results are extended
to include operator functions that are equivalent after operator function ex-
tension.

Proposition 2.3. Assume that S : ΩS → L(H,H′) and T : ΩT → L( ̂H, ̂H′),
are equivalent after operator function extension on Ω ⊂ ΩS ∩ΩT . Let WS :
Ω → L(

̂

HS ,

̂

HS) and WT : Ω → L(

̂

HT ,

̂

HT ) denote the invertible operator
functions such that S(λ) ⊕ WS(λ) is equivalent to T (λ) ⊕ WT (λ) for λ ∈ Ω
and let E, F be the operator functions in the equivalence relation (2.1). Define
the operator πH′ : H′ ⊕

̂

HS → H′ as πH′u ⊕ v = u and let τH denote the
natural embedding of H into H⊕

̂

HS given by τHu = u⊕0ȞS
. Then for λ ∈ Ω

we have the relations

S(λ) = πH′E(λ)
[

T (λ) 0
0 WT (λ)

]

F (λ)τH,

D(S(λ)) = πHF−1(λ)(D(T (λ)) ⊕ D(WT (λ))),
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and the operator S(λ) is closed (closable) if and only if T (λ) is closed (clos-
able). The closure of a closable operator S(λ) is

S(λ) = πH′E(λ)
[

T (λ) 0
0 WT (λ)

]

F (λ)τH,

D(S(λ)) = πHF−1(λ)(D(T (λ)) ⊕ D(WT (λ))),

and we have then

σ(TΩ) = σ(SΩ), σp(TΩ) = σp(SΩ), σc(TΩ) = σc(SΩ), σr(TΩ) = σr(SΩ),

where SΩ and TΩ denote the restrictions of S and T to Ω.

Proof. From Definition 2.2 it follows that for λ ∈ Ω the following relations
hold

[

S(λ) 0
0 WS(λ)

]

= E(λ)
[

T (λ) 0
0 WT (λ)

]

F (λ),

D(S(λ) ⊕ WS(λ)) = F−1(λ)(D(T (λ)) ⊕ D(WT (λ))).

The result then follows from Proposition 2.1 and that the closure of a block
diagonal operator coincides with the closures of the blocks. �

Below we show how an equivalence for an entry in an operator matrix
function can be used to find an equivalence for the full operator matrix func-
tion. A general operator matrix function ̂S : Ω → L (

⊕n
i=1 Hi →

⊕n
i=1 H′

i)
defined on its natural domain can be represented as

̂S(λ) :=

⎡

⎢

⎣

S1,1(λ) . . . S1,n(λ)
...

. . .
...

Sn,1(λ) . . . Sn,n(λ)

⎤

⎥

⎦
, λ ∈ Ω . (2.2)

However, any entry S(λ) := Sj,i(λ) can be moved to the upper left corner by
changing the orders of the spaces, which result in the equivalent problem

[

S(λ) . . .
...

. . .

]

=
[

S(λ) X(λ)
Y (λ) Z(λ)

]

=: S(λ). (2.3)

Hence, it is sufficient to study the 2× 2 system given in (2.3), where S : Ω →
L(H,H′), X : Ω → L( ˜H,H′), Y : Ω → L(H, ˜H′) and Z : Ω → L( ˜H, ˜H′).

Lemma 2.4. Assume that S : ΩS → L(H,H′) is equivalent to T : ΩT →
L( ̂H, ̂H′) on Ω ⊂ ΩS ∩ΩT . Let E : Ω → B( ̂H′,H′) and F : Ω → B(H, ̂H) be
the operator functions invertible for λ ∈ Ω, such that S(λ) = E(λ)T (λ)F (λ).
Consider S(λ) defined in (2.3) and let ˜E : Ω → B( ̂H′, ˜H′), ˜F : Ω → B( ˜H, ̂H)
be a solution pair of

˜E(λ)E(λ)−1X(λ) + Y (λ)F (λ)−1
˜F (λ) − ˜E(λ)T (λ) ˜F (λ) = 0, λ ∈ Ω . (2.4)

Then S is equivalent to T : Ω → L( ̂H ⊕ ˜H, ̂H′ ⊕ ˜H′) on Ω, where

S(λ) = E(λ)T (λ)F(λ), D(S(λ)) = F−1(λ)D(T (λ)),
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with

T (λ) :=

[

T (λ) E−1(λ)X(λ) − T (λ) ˜F (λ)
Y (λ)F−1(λ) − ˜E(λ)T (λ) Z(λ)

]

,

and

E(λ) :=
[

E(λ) 0
˜E(λ) I

˜H′

]

, F(λ) :=
[

F (λ) ˜F (λ)
0 I

˜H

]

.

Proof. Under the assumption (2.4), the lemma follows immediately by veri-
fying S(λ) = E(λ)T (λ)F(λ). �

Remark 2.5. The condition (2.4) is satisfied in the trivial case ˜E = 0, ˜F = 0,
and for the problems we study in Sect. 3. A similar result holds also when
(2.4) is not satisfied, but then the (2, 2)-entry in T (λ) will not be of the same
form.

3. Equivalences for Classes of Operator Matrix Functions

In this section, we study Schur complements, operator functions consisting of
multiplications of operator functions, and operator polynomials. Each type
will be studied similarly: First an equivalence after operator function exten-
sion is shown, which then together with Lemma 2.4 is utilized in an operator
matrix function.

Remark 3.1. Assume that S(λ) ⊕ W (λ) is equivalent to T (λ) for λ ∈ Ω and
let S be defined as (2.3). For the equivalence relation between T and S we
want the block S(λ) ⊕ W (λ) intact to be able to apply Lemma 2.4 directly.
Therefore, an equivalence after W -extension of S(λ) is given as
⎡

⎣

S(λ) 0 X(λ)
0 W (λ) 0

Y (λ) 0 Z(λ)

⎤

⎦ =

⎡

⎣

I 0 0
0 0 I
0 I 0

⎤

⎦

⎡

⎣

S(λ) X(λ) 0
Y (λ) Z(λ) 0

0 0 W (λ)

⎤

⎦

⎡

⎣

I 0 0
0 0 I
0 I 0

⎤

⎦ ,

(3.1)

instead of S(λ) ⊕ W (λ).

3.1. Schur Complements

Let D : ΩD → L(

̂

H) denote an operator function with domain D(D(λ)) for
λ ∈ ΩD ⊂ C. Assume that Ω′ ⊂ ΩD ∩ρ(D) is non-empty and let S : Ω′ →
L(H,H′) for λ ∈ Ω′ be defined as

S(λ) := A(λ) − B(λ)D(λ)−1C(λ), D(S(λ)) := D(A(λ)) ∩ D(C(λ)), (3.2)

where A : Ω′ → L(H,H′), B : Ω′ → L(

̂

H,H′), C : Ω′ → L(H,

̂

H), and
D(D(λ)) ⊂ D(B(λ)). The claims in the following lemma are standard results
for Schur complements [21], [24, Theorem 2.2.18] formulated in terms of an
equivalence after operator function extension. For convenience of the reader
we provide a short proof.
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Lemma 3.2. Let the operator S(λ) denote the operator defined in (3.2), as-
sume that C(λ) is densely defined in H, and that D−1(λ)C(λ) is bounded on
D(C(λ)) for all λ ∈ Ω′. Define the operator matrix function T on its natural
domain as

T (λ) :=
[

A(λ) B(λ)
C(λ) D(λ)

]

, λ ∈ Ω′.

Then S is after D-extension equivalent to T on Ω′, where the operator matrix
functions E and F in the equivalence relation (2.1) are

E(λ) :=
[

IH′ −B(λ)D(λ)−1

0 IȞ

]

, F (λ) :=
[

IH 0
−D(λ)−1C(λ) IȞ

]

.

The operator T (λ) is closable if and only if S(λ) is closable, and

T (λ) =
[

S(λ) + B(λ)D(λ)−1C(λ) B(λ)
D(λ)D(λ)−1C(λ) D(λ)

]

,

D(T (λ)) = {(u, v) ∈ H ⊕

̂

H : u ∈ D(S(λ)),D(λ)−1C(λ)u + v ∈ D(D(λ))}.

Proof. The operators matrices E(λ) and F (λ) are bounded on D(C(λ)) and
D(λ)−1C(λ) = D(λ)−1C(λ) on D(S(λ)). The result then follows from the
factorization
[

S(λ) 0
0 D(λ)

]

=

[

IH′ −B(λ)D(λ)−1

0 IȞ

] [

A(λ) B(λ)
C(λ) D(λ)

] [

IH 0
−D(λ)−1C(λ) IȞ

]

and Proposition 2.3. �
Remark 3.3. If D is unbounded, S and T are not equivalent after extension.
However, they are equivalent after D-extension.

The domain and the closure are not explicitly stated in the equivalences
in the remaining part of the article but they can be derived using the relations
in Proposition 2.3.

Theorem 3.4. Let S, E, and F denote the operator functions on Ω′ ⊃ Ω
defined in Lemma 3.2. The operator matrix function S : Ω → L(H ⊕ ˜H,H′ ⊕
˜H′) is on its natural domain defined as

S(λ) :=
[

S(λ) X(λ)
Y (λ) Z(λ)

]

, λ ∈ Ω .

Define the operator matrix function T : Ω → L(H ⊕

̂

H ⊕ ˜H,H′ ⊕

̂

H′ ⊕ ˜H) by

T (λ) :=

⎡

⎣

A(λ) B(λ) X(λ)
C(λ) D(λ) 0
Y (λ) 0 Z(λ)

⎤

⎦ , λ ∈ Ω .

Then, S is after D-extension with respect to structure (3.1) equivalent to T
on Ω, where the operator matrix functions E and F in the equivalence relation
(2.1) for λ ∈ Ω are

E(λ) :=
[

E(λ) 0
0 I

˜H′

]

, F(λ) :=
[

F (λ) 0
0 I

˜H

]

.
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Proof. From Lemma 3.2, it follows that S(λ) ⊕ D(λ) = E(λ)T (λ)F (λ). By
using Lemma 2.4 with ˜E = 0 and ˜F = 0, the proposed E(λ) and F(λ) are
obtained and

T (λ) =

⎡

⎣

A(λ) B(λ)
C(λ) D(λ) E(λ)−1

[

X(λ)
0

]

[

Y (λ) 0
]

F−1(λ) Z(λ)

⎤

⎦ =

⎡

⎣

A(λ) B(λ) X(λ)
C(λ) D(λ) 0
Y (λ) 0 Z(λ)

⎤

⎦ .

�

3.2. Products of Operator Functions

Assume that for some n ∈ N the operator M : Ω′ → B(Hn,H0) can be
written as

M(λ) := M1(λ)M2(λ) . . . Mn(λ), λ ∈ Ω′, (3.3)
where Mk : Ω′ → B(Hk,Hk−1). The following lemma is a straightforward
generalization of a result in [11].

Lemma 3.5. Let M denote the operator function (3.3) and set H := ⊕n−1
k=1Hk.

Define the operator matrix function T : Ω′ → B(H ⊕ Hn,H0 ⊕ H) as

T (λ) :=

⎡

⎢

⎢

⎢

⎢

⎣

M1(λ)

−IH1

. . .

. . . . . .
−IHn−1 Mn(λ)

⎤

⎥

⎥

⎥

⎥

⎦

, λ ∈ Ω′.

Then M is after IH-extension equivalent to T , where the operator matrix
functions E : Ω′ → B(H0 ⊕ H) and F : Ω′ → B(H ⊕ Hn) in the equivalence
relation (2.1) are

E(λ) :=

⎡

⎢

⎢

⎢

⎢

⎣

IH0 M1(λ) . . .
∏n−1

k=1 Mk(λ)
. . . . . .

...
. . . Mn−1(λ)

IHn−1

⎤

⎥

⎥

⎥

⎥

⎦

,

F (λ) :=

⎡

⎢

⎢

⎢

⎢

⎣

∏n
k=2 Mk(λ) −IH1

... 0
. . .

Mn(λ)
. . . −IHn−1

IHn
0

⎤

⎥

⎥

⎥

⎥

⎦

.

Proof. For n = 2 the equivalence result is used in the proof of [11, Theo-
rem 4.1] and the claims in the lemma follows by applying that equivalence
iteratively. �

Remark 3.6. Consider the operator function (3.3) with n = 2 and write M(λ)
in the form

M(λ) = −M1(λ)(−IH1)
−1M2(λ).

Then, Lemma 3.2 can be used to obtain the same equivalence result as in
Lemma 3.5. Doing this iteratively for n > 2 shows that Lemma 3.5 is a
consequence of Lemma 3.2. However, M(λ) is an important case that has
been studied separately (see e.g. [11, Theorem 4.1]).
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Below we show how Lemma 3.5 can be applied to an operator matrix
function.

Theorem 3.7. Let M , E, and F denote the operator functions on Ω′ ⊃ Ω
defined in Lemma 3.5. The operator matrix function M : Ω → L(Hn ⊕
˜H,H0 ⊕ ˜H′) is on its natural domain defined as

M(λ) :=
[

M(λ) X(λ)
Y (λ) Z(λ)

]

, λ ∈ Ω .

Then M is after IH-extension, with respect to the structure (3.1), equivalent
to T : Ω → L(H ⊕ Hn ⊕ ˜H,H0 ⊕ H ⊕ ˜H′), which on its natural domain is
defined as

T (λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

M1(λ) X(λ)
−IH1 M2(λ)

. . . . . .
−IHn−1 Mn(λ)

Y (λ) Z(λ)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, λ ∈ Ω.

The operator matrix functions E : Ω → B(H0 ⊕ H ⊕ ˜H′) and F : Ω →
B(H ⊕ Hn ⊕ ˜H) in the equivalence relation (2.1) are

E(λ) :=
[

E(λ) 0
0 I

˜H′

]

, F(λ) :=
[

F (λ) 0
0 I

˜H

]

.

Proof. The claims follow by combining the extension in Lemma 3.5 with
Lemma 2.4 for the case ˜E(λ) = 0, ˜F (λ) = 0. This derivation is similar to the
proof of Theorem 3.4. �
3.3. Operator Polynomials

Let l ∈ {0, . . . , d} and consider the operator polynomial P : C → L(H),

P (λ) :=
d
∑

i=0

λiPi, D(P (λ)) := D(Pl), λ ∈ C, (3.4)

where Pi ∈ B(H) for i 	= l. A linear equivalence is for l = 0 in principal
given by [11, p. 112]. Only bounded operator coefficients are considered in
that paper but the operator matrix functions E and F in the equivalence
relation (2.1) are independent of P0. Hence they remain bounded also when
P0 is unbounded. However, the method in [11] can not be used directly if Pi

is unbounded for some i > 0. The following example illustrates the problem
for a quadratic polynomial.

Example 3.8. Consider the operator polynomial P : C → L(H) defined as

P (λ) := λ2 + λA + B, D(P (λ)) := D(A), λ ∈ C,

where A ∈ L(H) is an unbounded operator and B ∈ B(H). Then the method
in [11] is not applicable to find an equivalent linear problem after extension
as E(λ) and E(λ)−1 would be unbounded for all λ as can be seen below:

[

P (λ) 0
0 IH

]

=
[

−IH −A − λ
0 IH

] [

−A − λ −B
IH −λ

] [

λ IH
IH 0

]

.
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However for all λ 	= 0, an equivalent spectral problem is S(λ) := P (λ)/λ =
A − λ − (−B)/(−λ). By extending S(λ) by −λIH an equivalent problem is
given by Lemma 3.2 as

[

S(λ) 0
0 −λ

]

=
[

−IH B
λ

0 IH

] [

−A − λ −B
IH −λ

] [

IH 0
1
λ IH

]

,

and as a consequence P (λ) ⊕ W (λ) = E(λ)(T − λ)F (λ) with W (λ) = −λ
and

E(λ) =
[

−IH B
λ

0 IH

]

, T =
[

−A −B
IH 0

]

, F (λ) =
[

λ 0
IH IH

]

.

Using this method, the obtained T has the same entries as the operator
given in [11, p. 112], but the functions E(λ), F (λ) are bounded for λ 	= 0.
Inspired by the previous example, we show how an equivalence can be found
independent of which operator Pi in Lemma 3.9 that is unbounded. Note
that Lemma 3.9 is the standard companion block linearization for operator
polynomials formulated as an equivalence after extension.

Lemma 3.9. Let P denote the operator polynomial defined in (3.4) and assume
that Pd is invertible. For i < d set ̂Pi := P−1

d Pi and ̂Pd := IH. Let Ω′ := C

if l = 0, and Ω′ := C \ {0} otherwise. Define the operator matrix T ∈ L(Hd)
on its natural domain as

T :=

⎡

⎢

⎢

⎢

⎣

− ̂Pd−1 · · · − ̂P1 − ̂P0

IH 0
. . . . . .

IH 0

⎤

⎥

⎥

⎥

⎦

.

Further, define the operator matrix function W : Ω′ → L(Hmax(d−1,l)) as

W (λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IHd−1−l

−λ

IH
. . .
. . . . . .

IH −λ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, λ ∈ Ω′.

Then, the following equivalence results hold:

i) if l < d, P (λ) ⊕ W (λ) is equivalent to T − λ for all λ ∈ Ω′.
ii) if l = d, P (λ) ⊕ W (λ) is equivalent to Pd ⊕ (T − λ) for all λ ∈ Ω′.

The operator matrix functions in the equivalence relation (2.1) are for
λ ∈ Ω′ defined in the following steps: For l < d, define the operator matrix
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functions Eα, Fα : Ω′ → L(Hd−l) as

Eα(λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−Pd −
∑1

k=0 λkPd−1+k . . . . . . −
∑d−l−1

k=0 λkPl+1+k

IH λ . . . λd−l−2

. . . . . .
...

. . . λ
IH

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

Fα(λ) :=

⎡

⎢

⎢

⎢

⎢

⎣

λd−1 IH
... 0

. . .

λl−1 . . . IH
λl 0

⎤

⎥

⎥

⎥

⎥

⎦

,

whereas for l = d − 1 define Eα(λ) := −Pd and Fα(λ) := λd−1IH.
For l > 0 define the operators matrix functions Eβ : Ω′ →

B(Hl,Hmax(d−l,1)) and Fβ : Ω′ → B(Hmax(d−l,1),Hl) by

Eβ(λ) :=
[
∑l−1

k=0
Pk

λl−k . . .
∑1

k=0
Pk

λ2−k
P0
λ

0 . . . 0 0

]

, Fβ(λ) :=

⎡

⎢

⎣

λl−1 0
...

...
IH 0

⎤

⎥

⎦
,

where for l ≥ d − 1 we use the convention that the 0-row/column vanish. If
l = d, we define the operators Eγ ∈ B(H,Hd) and Fγ ∈ B(Hd,H) as

Eγ :=
[

P−1
d

0

]

, Fγ :=
[

̂Pd−1 . . . ̂P0

]

.

Then, for all λ ∈ Ω′ the operator matrix functions E and F in the equivalence
relation (2.1) are given by

E(λ) := Eα(λ), F (λ) := Fα(λ), l = 0,

E(λ) :=
[

Eα(λ) Eβ(λ)
0 IHl

]

, F (λ) :=
[

Fα(λ) 0
Fβ(λ) IHl

]

, 0 < l < d,

E(λ) :=

[

P (λ)P −1
d

λd Eβ(λ)
Eγ IHd

]

, F (λ) :=
[
∑d

i=0 λi
̂Pi Fγ

Fβ(λ) IHd

]

, l = d.

Proof. For l = 0, the result follows in principle from [11, p. 112]. Hence, we
show the claim for l > 0 and Ω′ = C \ {0}. Define for all λ ∈ Ω′ the operator
function S by

S(λ) :=
P (λ)
λl

=
d−l
∑

k=0

λkPk+l +
l−1
∑

k=0

Pk

λl−k
, D(R(λ)) = D(P (λ)).

Assume l < d, then apart from the sum
∑l−1

k=0 Pk/λl−k, S is polynomial in
λ and only the zeroth-order term Pl can be unbounded. Then, from [11, p.
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112] it can be seen that S is after IHd−1−l-extension equivalent to

̂T (λ) :=

⎡

⎢

⎢

⎢

⎣

− ̂P−1
d · · · − ̂Pl+1 − ̂Pl −

∑l−1
k=0

̂Pk

λl−k

IH 0
. . . . . .

IH 0

⎤

⎥

⎥

⎥

⎦

.

Since, the following identity holds,

l−1
∑

k=0

̂Pk

λl−k
= −

[

̂Pl−1 . . . ̂P0

]

⎡

⎢

⎢

⎢

⎣

−λ
IH −λ

. . . . . .
IH −λ

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

IH
⎤

⎥

⎥

⎦

,

Theorem 3.4 gives that S(λ) after W (λ)-extension is equivalent to T − λ on
Ω. By multiplying the first column in S(λ) ⊕ W (λ) with λl the same result
is obtained for P (λ). The operators E(λ), F (λ) are obtained by multiplying
the corresponding operator matrix functions for the different equivalences.

For l = d, Theorem 3.4 gives that S(λ) ⊕ W (λ) is equivalent to

˜T (λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Pd Pd−1 Pd−2 . . . P0

IH −λ
IH −λ

. . . . . .
IH −λ

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

Since T − λ can be written in the form

T − λ =

⎡

⎢

⎢

⎢

⎣

−λ
IH −λ

. . . . . .
IH −λ

⎤

⎥

⎥

⎥

⎦

−

⎡

⎢

⎢

⎣

IH
⎤

⎥

⎥

⎦

P−1
d

[

Pd−1 Pd−2 . . . P0

]

,

it follows from Theorem 3.4 that Pd ⊕ (T − λ) is equivalent to ˜T (λ). �

Example 3.10. In Lemma 3.9, the result is rather different when l = d even
though T has the same entries. In this case the equivalence is after both P (λ)
and T − λ have been extended with an operator function and the following
example shows that this extension in general cannot be avoided. Let A ∈
L(H), B ∈ B(H) and define P : C \ {0} → L(H) as

P (λ) := λA + B, D(P ) = D(A),

where A is invertible. If A is bounded, P (λ) is equivalent to T − λ, T =
−A−1B but this equivalence do not hold if A is unbounded. However, these
operator functions are equivalent on C\{0} after operator function extension
as can be seen from Lemma 3.9 where the lemma for λ ∈ C \ {0} gives that

[

P (λ) 0
0 −λ

]

=
[

IH + BA−1

λ
B
λ

A−1 IH

] [

A 0
0 T − λ

] [

A−1B + λ A−1B
IH IH

]

.
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Theorem 3.11. Let P , E, F , and W denote the operator functions on Ω′ ⊃ Ω
defined in Lemma 3.9 and let ̂Pi, i = 1, . . . , d denote the operators in that
lemma. The operator matrix function P : Ω → L(H ⊕ ˜H,H ⊕ ˜H′) is on its
natural domain defined as

P(λ) :=
[

P (λ) X(λ)
Q(λ) Z(λ)

]

, λ ∈ Ω,

where

Q(λ) =
d−1
∑

i=0

λiQi, Qi ∈ L(H, ˜H′), λ ∈ Ω .

Assume that Qi ∈ B(H, ˜H) for i 	= l and if l = d then P−1
d X(λ) ∈ B( ˜H,H)

for all λ ∈ Ω. Define for all λ ∈ Ω the operator matrix function T : Ω →
L(Hd ⊕ ˜H,Hd ⊕ ˜H′) on its natural domain as

T (λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− ̂Pd−1 − λ − ̂Pd−2 · · · − ̂P1 − ̂P0 −P−1
d X(λ)

IH −λ

IH
. . .
. . . −λ

IH −λ
Qd−1 Qd−2 · · · Q1 Q0 Z(λ)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

Then, with respect to (3.1), the following equivalence results hold:

i) if l < d, P(λ) ⊕ W (λ) is equivalent to T (λ) for all λ ∈ Ω.
ii) if l = d, P(λ) ⊕ W (λ) is equivalent to Pd ⊕ T (λ) for all λ ∈ Ω.

The operator matrix functions in the equivalence relation (2.1) are for
λ ∈ Ω defined in the following steps:

If l < d, define the operator matrix function ˜Eα : Ω → L(Hd−l, ˜H) as

˜Eα(λ) :=
[

0 −Qd−1 −
∑1

k=0 λkQd−2+k · · · −
∑d−l−2

k=0 λkQl+1+k

]

,

where ˜Eα(λ) := 0 for l = d − 1.
If l > 0, define the operator matrix function ˜Eβ : Ω → B(Hl, ˜H),

˜Eβ(λ) :=
[

∑l−1
k=0

Qk

λl−k . . .
∑1

k=0
Qk

λ2−k
Q0
λ

]

.

The operator matrices ˜E : Ω → B(Hmax(d,l+1), ˜H) and ˜F : Ω →
B( ˜H,Hmax(d,l+1)) are then defined as

˜E(λ) := ˜Eα(λ), ˜F (λ) := 0, l = 0,

˜E(λ) :=
[

˜Eα(λ) ˜Eβ(λ)
]

, ˜F (λ) := 0, 0 < l < d,

˜E(λ) :=
[

Q(λ)P −1
d

λd
˜Eβ(λ)

]

, ˜F (λ) :=
[

P−1
d X(λ)

0

]

, l = d.

(3.5)
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Finally define the operator matrices E(λ) and F(λ) in the equivalence relation
(2.1):

E(λ) :=
[

E(λ) 0
˜E(λ) I

˜H′

]

, F(λ) :=
[

F (λ) ˜F (λ)
0 I

˜H

]

.

Proof. Similar to the proof of Theorem 3.4, where Lemma 3.9 with (3.5) is
used in Lemma 2.4. Note that P−1

d X(λ) = P−1
d X(λ) on D(X(λ)). �

Remark 3.12. Theorem 3.11 requires Q to be an operator polynomial. For a
general Q an equivalence is obtained by using the equivalence given in Lemma
3.9 together with Lemma 2.4 with ˜E := 0 and ˜F := 0.

4. Linearization of Classes of Operator Matrix Functions

In Sect. 3 we considered three types of operator functions. One vital property
differs between operator functions of the forms (3.2) and (3.3) compared to
operator polynomials (3.4): For polynomials the equivalence is to a linear
operator function (Lemma 3.9), but it is clear that a similar result will not
hold in general for (3.2) and (3.3).

If A, B, C, and D in (3.2) and M1, . . . ,Mn in (3.3) are operator poly-
nomials, Lemma 3.2 respective Lemma 3.5 can be used to find an equivalence
after operator function extension to an operator matrix polynomial. Hence,
if the entries in a n×n operator matrix function are either multiplications of
polynomials or Schur complements, then Theorem 3.4 and Theorem 3.7 can
be used iteratively to find an equivalence to a operator matrix polynomial.
An example of this form is considered in Sect. 4.3.

4.1. Linearization of Operator Matrix Polynomials

Set H := ⊕n
i=1Hi and consider the operator matrix polynomial P : C →

L(H), defined on it natural domain as

P(λ) :=

⎡

⎢

⎣

P1,1(λ) . . . P1,n(λ)
...

. . .
...

Pn,1(λ) . . . Pn,n(λ)

⎤

⎥

⎦
, λ ∈ C, (4.1)

where Pj,i(λ) :=
∑di,j

k=0 λkP
(k)
j,i and P

(k)
j,i ∈ L(Hi,Hj). There are different ways

to formulate (4.1) that highlight different methods to linearize the operator
matrix polynomial. By using the notation: P

(k)
j,i := 0 for k > dj,i and d :=

max dj,i, it follows that P can be written in the form

P(λ) =
d
∑

k=0

λkPk, Pk :=

⎡

⎢

⎢

⎣

P
(k)
1,1 . . . P

(k)
1,n

...
. . .

...
P

(k)
n,1 . . . P

(k)
n,n

⎤

⎥

⎥

⎦

. (4.2)

In the formulation (4.2), the problem is written as a single operator function,
which makes it possible to utilize Lemma 3.9, provided certain conditions
hold. This is the most commonly used formulation, see e.g., [3]. For the
original formulation (4.1), Theorem 3.11 can be applied iteratively for each
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column, which results in a linear function. In Theorem 4.1 we present the
linearization obtained using this method and in Sect. 4.2 we will present a
systematic approach to linearize operator matrix polynomials that relies on
Theorem 4.1.

Theorem 4.1. Let P be the operator matrix polynomial (4.1), where di :=
di,i > 0 and di > dj,i for j 	= i. Assume that P

(di)
i,i are invertible and that

there exist constants li ∈ {0, . . . , di} such that P
(k)
j,i ∈ B(Hi,Hj) for k 	= li.

For k < di set ̂P
(k)
i,j := P

(di)
i,i

−1
P

(k)
i,j and ̂P

(di)
i,i := IHi

. Let Ω := C if li = 0 for

all i, Ω := C \ {0} otherwise. If li = di assume that ̂P
(k)
i,j ∈ B(Hj ,Hi) for all

indices k, j. Define the operator matrix

T ∈ L
(

n
⊕

i=1

Hdi
i

)

as T :=

⎡

⎢

⎣

T1,1 . . . T1,n

...
. . .

...
Tn,1 . . . Tn,n

⎤

⎥

⎦
,

where Tj,i ∈ L(Hdi
i ,Hdj

j ) are the operator matrices

Tj,i :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎣

− ̂P
(di−1)
i,i · · · − ̂P

(1)
i,i −P

(0)
i,i

IHi
0
. . . . . .

IHi
0

⎤

⎥

⎥

⎥

⎦

, i = j,

[

− ̂P
(di−1)
j,i · · · − ̂P

(1)
j,i − ̂P

(0)
j,i

0 . . . 0 0

]

, i 	= j.

Let W(λ) := ⊕n
i=1Wi(λ), where Wi : Ω → L(Hmax(di−1,li)

i ) are the operator
matrix functions

Wi(λ) :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

IHdi−li−1
i

−λ

IHi

. . .

. . . . . .
IHi

−λ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, λ ∈ Ω .

Set L := {i ∈ {1, . . . , n} : li = di}. Then the following results hold:

i) if L = ∅, P(λ) ⊕ W(λ) is equivalent to T − λ for all λ ∈ Ω.
ii) if L 	= ∅, P(λ) ⊕ W(λ) is equivalent to Pd ⊕ (T − λ) for all λ ∈ Ω,

where

Pd :=
⊕

i∈L

P
(di)
i,i ∈ L

(

⊕

i∈L

Hi

)

is defined on its natural domain.

In the case L = ∅ the operator matrix functions in the equivalence
relation (2.1) with respect to the structure (3.1) are defined in the following
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steps: Let the operator matrix functions E
(α)
i , F

(α)
i : Ω → B(Hdi−li

i ) and
˜E

(α)
j,i : Ω → B(Hdi−li

i ,Hdj

j ) for i 	= j be defined as

E
(α)
i (λ) :=

⎡

⎢

⎢

⎢

⎣

−P
(di)
i,i −

∑1
k=0 λkP

(di−1+k)
i,i . . . −

∑di−li−1
k=0 λkP

(li+1+k)
i,i

IHi
. . . λdi−li−2

. . .
...

IHi

⎤

⎥

⎥

⎥

⎦

,

F
(α)
i (λ) :=

⎡

⎢

⎢

⎢

⎢

⎣

λdi−1 IHi

... 0
. . .

λli−1 . . . IHi

λli 0

⎤

⎥

⎥

⎥

⎥

⎦

,

E
(α)
j,i (λ) :=

[

0 −
∑0

k=0 λkP
(di−1+k)
j,i · · · −

∑di−li−2
k=0 λkP

(li+1+k)
j,i

0 0 . . . 0

]

.

Note, if li = di − 1 this means that E
(α)
i (λ) := −P

(di)
i,i , F

(α)
i (λ) := λdi−1 and

E
(α)
j,i (λ) := 0. If li > 0, define for i 	= j the operator matrix functions E

(β)
i :

Ω → B(Hli
i ,Hdi−li

i ), F
(β)
i : Ω → B(Hdi−li

i ,Hli
i ), and E

(β)
j,i : Ω → B(Hli

i ,Hdj

j )
as

E
(β)
i (λ) :=

[

∑li−1
k=0

P
(k)
i,i

λli−k . . .
∑1

k=0

P
(k)
i,i

λ2−k

P
(0)
i,i

λ

0 . . . 0 0

]

, F
(β)
i (λ) :=

⎡

⎢

⎣

λli−1 0
...

...
IHi

0

⎤

⎥

⎦
,

E
(β)
j,i (λ) :=

[

∑li−1
k=0

P
(k)
j,i

λli−k . . .
∑1

k=0

P
(k)
j,i

λ2−k

P
(0)
j,i

λ

0 . . . 0 0

]

.

For i 	= j define the operators matrices:

Ei,i(λ) = E
(α)
i (λ), Fi(λ) = F

(α)
i (λ), li = 0,

Ei,i(λ) =

[

E
(α)
i (λ) E

(β)
i (λ)

0 IHli
i

]

, Fi(λ) =

[

F
(α)
i (λ) 0

F
(β)
i (λ) IHli

i

]

, li > 0,

Ej,i(λ) = E
(α)
j,i (λ), li = 0,

Ej,i(λ) =
[

E
(α)
j,i (λ) E

(β)
j,i (λ)

]

, li > 0.

Then the operator matrices E(λ) and F(λ) in the equivalence relation
(2.1) are

E(λ) =

⎡

⎢

⎣

E1,1(λ) . . . E1,n(λ)
...

. . .
...

En,1(λ) . . . En,n(λ)

⎤

⎥

⎦
, F(λ) =

⎡

⎢

⎣

F1(λ)
. . .

Fn(λ)

⎤

⎥

⎦
.

Proof. The claims follows from applying Theorem 3.11 to each column in
(4.1). However, for columns 2, . . . , n reordering of the diagonal blocks as in
(2.3) is needed to be able to apply Theorem 3.11 directly. �
Remark 4.2. In Theorem 4.1 the operator matrix functions E and F in the
equivalence relation (2.1) are not specified for the case li = di. The reason
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is that then E(λ) and F(λ) depend on the order of which Theorem 3.11 is
applied to the columns and are very complicated albeit possible to determine.

Remark 4.3. For operator polynomials it is common to consider equivalence
after extension to a non-monic linear operator pencil, T −λS, [11]. In Theorem
4.1 the condition that Pi,i is invertible for i = 1, . . . , n can be dropped if the
matrix block in the equivalence is non-monic. However, the reduction of a
non-monic pencil to an operator is as pointed out by Kato [12, VII, Section
6.1] non-trivial; see also Example 3.10.

There are both advantages and disadvantages of using Theorem 4.1
instead of Lemma 3.9 for operator matrix polynomials. One advantage is
that Pd does not have to be invertible. Furthermore, for unbounded operators
functions Theorem 4.1 can handle more cases since it allows li 	= lj while in
Lemma 3.9, Pl is unbounded for at most one l ∈ {0, . . . , d}. However, a
disadvantage of this method is that the highest degree in each column has
to be in the diagonal. Importantly, if both methods are applicable for P,
then the obtained linearization using Theorem 4.1 and Lemma 3.9 is the
same up to ordering of the spaces. Even if the conditions on P in Lemma 3.9
and/or Theorem 4.1 are not satisfied an equivalent operator matrix function
̂P that satisfies these conditions can in many cases still be found. For example,
Lemma 3.9 cannot be applied if the highest degree in the columns, di, are not
the same. However, for λ ∈ Ω \{0} an equivalent operator matrix function is
obtained as

̂P(λ) := P(λ)

⎡

⎢

⎣

λd−d1

. . .
λd−dn

⎤

⎥

⎦
, λ ∈ Ω,

where in ̂P, the highest degree is the same in each column, unless one column
is identically 0. However, the coefficient to the highest order, ̂Pd, might still
be non-invertible and the boundedness condition might not be satisfied. Even
if all conditions are satisfied the method increases the size of the linearization
and introduces false solutions at 0. This is connected to the column reduction
concept for matrix polynomials discussed for example in [20]. Due to these
common problems that restrict use of Lemma 3.9 and the problems that
can occur when trying to find a suitable equivalent problem, we prefer to
use the results in Theorem 4.1. Therefore we develop a method that for a
given operator matrix polynomial P provides an equivalent operator matrix
polynomial ̂P for which the conditions in Theorem 4.1 are satisfied.

4.2. Column Reduction of Operator Matrix Polynomials

Theorem 4.1 is only applicable when the diagonal entries in (4.1) are of
strictly higher degree than the degrees of the rest of the entries in the same
column. The aim of this subsection is to find for given operator matrix poly-
nomial P a sequence of transformations that yields an equivalent operator
matrix polynomial, where the diagonal entries have the highest degrees.
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One type of column reduction algorithms of polynomial matrices was
considered in [20], but the column reduction algorithms presented in this sec-
tion are different also in the finite dimensional case. Naturally, new challenges
emerge in the infinite dimensional case and when some of the operators are
unbounded. This can be seen in the following example, which also illustrates
that it is not necessary to have an equivalence in each step.

Example 4.4. Consider the operator matrix function P : C → L(H1 ⊕ H2 ⊕
H3)

P(λ) :=

⎡

⎣

λA B λC

λD + ̂D λG λ2H + ̂H
J 0 λL

⎤

⎦ , λ ∈ C,

on its natural domain. P does not have the highest degrees in the diagonal
entries. However, under the assumptions stated at the end of the example,
an equivalent operator matrix polynomial can be found, where the highest
degrees are on the diagonal. In the following, we will apply particular trans-
formations that for the general case are defined in (4.4). Let ˜K1 denote the
operator matrix

˜K1 :=

⎡

⎣

IH1 0 0
−DA−1 IH2 0

0 0 IH3

⎤

⎦ .

The operator matrix function ˜K1P is then

˜K1P(λ) =

⎡

⎣

λA B λC
̂D λG − DA−1B λ2H − λDA−1C + ̂H
J 0 λL

⎤

⎦ , λ ∈ C,

which for the first two columns has the highest degree in the diagonal but
not in the last column. Let ˜K3 denote the operator matrix function defined
by

˜K3(λ) :=

⎡

⎣

IH1 0 −CL−1

0 IH2 −(λH − DA−1C)L−1

0 0 IH3

⎤

⎦ , λ ∈ C.

Then

˜K3(λ)˜K1P(λ) =

⎡

⎣

λA − CL−1J B 0
−λHL−1J + ̂D + DA−1CL−1J λG − DA−1B ̂H

J 0 λL

⎤

⎦ .

(4.3)
Hence, for ˜K3

˜K1P the third column has the highest degree in the diagonal.
However, in the first column the entry in the diagonal is not of strictly higher
degree than the rest of the column. We will therefore apply the operator
matrix

̂K1 :=

⎡

⎣

IH1 0 0
HL−1JA−1 IH2 0

0 0 IH3

⎤

⎦
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to (4.3). In order to justify the formal steps above, we first state some condi-
tions on P. Assume that A, L are invertible and CL−1, (D − HL−1J)A−1,
HL−1 are bounded. The domain of P is chosen as

D(P) := (D(A) ∩ D( ̂D) ∩ D(J)) ⊕ (D(B) ∩ D(G)) ⊕ (D( ̂F ) ∩ D(L)).

Let E : C → B(H1,H2,H3) be defined as E(λ) := ̂K1
˜K3(λ)˜K1, where

E(λ) =

⎡

⎣

IH1 0 −CL−1

−(D − HL−1J)A−1 IH2 −λHL−1 + (D − HL−1J)A−1CL−1

0 0 IH3

⎤

⎦.

Define ̂P : C → L(H1,H2,H3), D( ̂P) = D(P) as ̂P(λ) := E(λ)P(λ), where

̂P(λ) =

⎡

⎣

λA − CL−1J B 0
̂D + (D − HL−1J)A−1CL−1J λG − (D − HL−1J)A−1B ̂H

J 0 λL

⎤

⎦.

The operator matrix polynomial ̂P has the highest degrees in the diagonal.
Furthermore, since E(λ) is bounded and invertible for λ ∈ C it follows that
P and ̂P are equivalent on C.

Example 4.4 indicates that in the general case it is not feasible to obtain
a closed formula for the final equivalent operator matrix polynomial. However,
algorithms that follow the steps in Example 4.4 will below be developed for
bounded operator matrix polynomials. These algorithms also work for classes
of operator matrix functions with unbounded entries, as in Example 4.4, and
it is in each case possible to check if one of the algorithms is applicable.

Let P denote the operator matrix polynomial (4.1) and assume that
for i 	= j there exists operator polynomials Kj,i(P) and Rj,i(P) such that
Pj,i = Kj,i(P)Pi,i + Rj,i(P), where deg Rj,i(P) < deg Pi,i(P). A sufficient
condition for the existence of these operators is that P

(di,i)
i,i is invertible.

The dependence on P : C → B(H) is written out explicitly since we want
to use Kj,i(P) : C → B(Hi,Hj) in the algorithms. Define Kj,i(P) : C → B(H)
as

Kj,i(P) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎢

⎢

⎣

IH1

. . .

−Kj,i(P)
. . .

IHn

⎤

⎥

⎥

⎥

⎥

⎦

, i 	= j (Kj,i is in position (j, i)),

IH, i = j.
(4.4)

Multiplying an operator matrix polynomial P from the left with Kj,i(P)
will be called reduction of the i-th column in the j-th row. Additionally a
column in P is said to be reduced if the highest degree is in the diagonal
of P in that column. When we in the algorithms presented below reduce
the (i, j)-entry in P the condition that Pj,i = Kj,i(P)Pi,i + Rj,i(P) has a
solution with deg Rj,i(P) < deg Pi,i(P) is not stated explicitly. Moreover, the
notation Kl:k,i(P) := Kl,i(P) . . . Kk,i(P) is used and it is clear that Kj,i(P)
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commutes so Kl:k,i(P) is independent of the ordering in the multiplication.
For convenience, the notation Ki(P) := K1:n,i(P) is used. For example, the
first column in the operator function ̂P defined by

̂P := K1(P)P =

⎡

⎢

⎢

⎢

⎣

P1,1 P1,2 . . . P1,n

R2,1(P) ̂P2,2 . . . ̂P2,n

...
...

. . .
...

Rn,1(P) ̂Pn,2 . . . ̂Pn,n

⎤

⎥

⎥

⎥

⎦

, (4.5)

is reduced. The entries in ̂P satisfy the conditions deg P1,1 > deg Rj,1(P) and
̂Pj,i := Pj,i − Kj,1(P)P1,i.

With the notation above the operator functions defined in Example 4.4
reads E := (K1 ◦ K3 ◦ K1)(P) and ̂P := (K1 ◦ K3 ◦ K1)(P)P.

Definition 4.5. Let P : C → L (
⊕n

i=1 Hi) denote an operator matrix function
with the operator polynomial entries Pj,i : C → L (Hi,Hj) and define its
R

n×n degree matrix

D(P) =

⎡

⎢

⎣

d1,1 . . . d1,n

...
. . .

...
dn,1 . . . dn,n

⎤

⎥

⎦
,

where the (i, j)-th entry is the degree of Pi,j and we set di,j = −∞ if Pi,j = 0.
For given D(P) we define the difference matrix

Δ(P) :=

⎡

⎢

⎣

d1,1 . . . d1,n

...
. . .

...
dn,1 . . . dn,n

⎤

⎥

⎦
−

⎡

⎢

⎣

d1,1 . . . dn,n

...
. . .

...
d1,1 . . . dn,n

⎤

⎥

⎦
.

Define the functions

f(x, y, z) =
{

max(x, y + z) y ≥ 0
x y < 0 , (4.6)

and
f0(x, y, z, w) = f(x, y, z) − f(0, w, z). (4.7)

Lemma 4.6. The following properties hold for (4.7):

i) f0(x, y, z, w) ≤ max(x, y + z).
ii) f0 is non-decreasing in the first and second argument.

Proof. i) Follows from the inequalities f(0, w, z) ≥ 0 and f(x, y, z) ≤
max(x, y + z). ii.) The function f(x, y, z) is non-decreasing in x and y,
which implies the same properties for f0. �

The case deg ̂Pj,i < max{deg Pj,i,deg Kj,1(P)P1,i} in (4.5) can only oc-
cur if deg Pj,i = deg Kj,1(P)P1,i and even then it is improbable in
general. Therefore, in the following we assume that deg ̂Pj,i =
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max{deg Pj,i,deg Kj,1(P)P1,i}. This means that the degree matrix of ̂P is

D( ̂P) =

⎡

⎢

⎢

⎢

⎣

d1,1 d1,2 . . . d1,n

m(d2,1,d1,1−1) f(d2,2, ̂δ2,1, d1,2) . . . f(d2,n, ̂δ2,1, d1,n)
...

...
. . .

...
m(dn,1,d1,1−1) f(dn,2, ̂δn,1, d1,2) . . . f(dn,n, ̂δn,1, d1,n)

⎤

⎥

⎥

⎥

⎦

,

where f is defined in (4.6) and ̂δj,i := Δ(P)j,i = dj,i − di,i denote the matrix
entries in Definition 4.5. Moreover, m(x,y) denotes a value that is less than
or equal to min(x, y). It then follows that the difference matrix of ̂P is

Δ( ̂P) =

⎡

⎢

⎢

⎢

⎢

⎣

̂δ1,1 f0(̂δ1,2, ̂δ1,1, ̂δ1,2, ̂δ2,1) . . . f0(̂δ1,n, ̂δ1,1, ̂δ1,n, ̂δn,1)
m

̂δ2,1,−1 f0(̂δ2,2, ̂δ2,1, ̂δ1,2, ̂δ2,1) . . . f0(̂δ2,n, ̂δ2,1, ̂δ1,n, ̂δn,1)
...

...
. . .

...
m

̂δn,1,−1 f0(̂δn,2, ̂δn,1, ̂δ1,2, ̂δ2,1) . . . f0(̂δn,n, ̂δn,1, ̂δ1,n, ̂δn,1)

⎤

⎥

⎥

⎥

⎥

⎦

,

where f0 is given by (4.7). Hence, the difference matrix, Δ(Ki(P)P), can be
computed using only the difference matrix Δ(P), apart from the column i
where an upper estimate is found. This knowledge of the difference matrix is
sufficient for the presented algorithms.

Lemma 4.7. Let P be the operator matrix polynomial (4.1). Assume Δ(P)j,i <
0 for all j, i ≤ k − 1 with j 	= i and Δ(P)k,i ≤ δ for i ≤ k − 1. Define the
operator matrix polynomial ̂P := EP where

E = (Kk,k−1 ◦ . . . ◦ Kk,1)δ+1(P).

Then Δ( ̂P)j,i < 0 for j 	= i and i ≤ k − 1, j ≤ k.

Proof. Since Δ(Kk,1(P)P)k,1 < 0 it follows from the definition of f0 that
Δ(Kk,1(P)P)k,i ≤ δ for 2 ≤ i ≤ k−1. Hence, Δ((Kk,2◦Kk,1)(P)P)k,1 ≤ δ−1,
Δ((Kk,2 ◦ Kk,1)(P)P)k,1 < 0, and Δ((Kk,2 ◦ Kk,1)(P)P)k,i ≤ δ for 3 ≤ i ≤
k − 1. This implies Δ((Kk,k−1 ◦ . . . ◦ Kk,1)(P)P)k,i ≤ δ − 1 for 1 ≤ i ≤ k − 1
and the result follows by induction. �
Lemma 4.8. Let P be the operator matrix polynomial (4.1). Assume that
Δ(P)j,i < 0 for k ≥ i, j and j 	= i > 1. Moreover, assume Δ(P)j,1 ≤ Δ(P)l,1

for 1 < j < l ≤ k. Set δ := Δ(P)k,1 and define ̂P = EP, where

E :=

{

K2:k,1(P), δ = 0,
(

K1:k,k−1 ◦ . . . ◦ K1:k,1 ◦ (Kk:k,k−1 ◦ . . . ◦ K2:k,1)
δ−1

)

(P), δ > 0.

Then Δ( ̂P)j,i < 0 for i, j ≤ k and j 	= i.

Proof. If δ = 0 the result is trivial. Now let δ > 0 and define for p ∈ {0, . . . , δ−
2} and q ∈ {1, . . . , k − 1} the operator

Pq
p := (Kq+1:k,q ◦ . . . ◦ K2:k,1 ◦ (Kk:k,k−1 ◦ . . . ◦ K2:k,1)

p) (P)P
and the constants δj = Δ(P)j,1 − Δ(P)j−1,1, for j = 2, . . . , k.

The non-negative values in the first k columns of Δ(P) are nondecreas-
ing in the first k rows. By Lemma 4.6 ii) f0 is non-decreasing in the first
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and second argument. Thus, the non-negative values in the first k columns
of Δ(Pq

p) are nondecreasing in the first k rows. This also implies that there
can be no positive value above the diagonal in Δ(Pq

p).
The rest of the proof relies on showing that the following conditions

hold

Δ(Pq
p)j,i ≤ max(Δ(Pq

p)j−1,i + δj , δj − 1,−1), for k ≥ j > i, (4.8)

Δ(Pq
p)j,i ≤ max(Δ(P)j,1 − (p + 2),−1), q ≥ i, j > i,

Δ(Pq
p)j,i ≤ max(Δ(P)j,1 − (p + 1),−1), q < i, j > i.

(4.9)

The proof of these conditions is based on induction over p and q and it is
clear from the definition of f0 that (4.8) and (4.9) are satisfied for P1

0 .
For i = q + 1 the conditions (4.8) and (4.9) are satisfied trivially for

Δ(Pq+1
p )j,i. Further for j < q + 2 the induction is trivial for both (4.8)

and (4.9). Hence, in the following we assume j ≥ q + 2 and i 	= q + 1. Let
Δ(Pq

p) satisfy the conditions (4.8), (4.9) and take q < k − 1. Then since
Δ(Pq+1

p )j,i = Δ(Kq+2:k,q+1(Pq
p)Pq

p)j,i, we have

Δ(Pq+1
p )j,i = f0(Δ(Pq

p)j,i,Δ(Pq
p)j,q+1,Δ(Pq

p)q+1,i,Δ(Pq
p)i,q+1).

First we will show that condition (4.8) holds for Pq+1
p . Since Δ(Pq

p)q+1,i,
Δ(Pq

p)i,q+1 are independent of j, (4.7) gives

Δ(Pq+1
p )j,i − Δ(Pq+1

p )j−1,i = f(Δ(Pq
p)j,i,Δ(Pq

p)j,q+1,Δ(Pq
p)q+1,i)

−f(Δ(Pq
p)j−1,i,Δ(Pq

p)j−1,q+1,Δ(Pq
p)q+1,i).

By assumption, condition (4.8) holds for Pq
p and the result follows directly

from definition (4.6) unless Δ(Pq
p)j,q+1 ≥ 0, Δ(Pq

p)j−1,q+1 < 0, and

Δ(Pq+1
p )j,i − Δ(Pq+1

p )j−1,i = Δ(Pq
p)j,q+1 + Δ(Pq

p)q+1,i − Δ(Pq
p)j−1,i.

The conditions Δ(Pq
p)j−1,q+1 < 0 and (4.8), yields that Δ(Pq

p)j,q+1 < δj .
Since j−1 ≥ q+1 the non-decreasing property of f0 implies that Δ(Pq

p)q+1,i−
Δ(Pq

p)j−1,i ≤ 0 or Δ(Pq
p)q+1,i < 0. In the first case we have

Δ(Pq+1
p )j,i − Δ(Pq+1

p )j−1,i ≤ Δ(Pq
p)j,q+1 ≤ δj .

In the latter case the inequality Δ(Pq+1
p )j,i ≤ δj − 1 holds. Hence, condition

(4.8) holds for Δ(Pq+1
p )j,i.

Assume that the condition (4.9) holds for Pq
p . If Δ(Pq

p)j,q+1 < 0, then
(4.9) holds trivially for Δ(Pq+1

p )j,i. Otherwise, it holds that

Δ(Pq+1
p )j,i ≤ max(Δ(Pq

p)j,i,Δ(Pq
p)j,q+1 + Δ(Pq

p)q+1,i).

Assume i < q +1. If Δ(Pq
p)q+1,i ≥ 0 it follows from condition (4.9) that

Δ(Pq
p)q+1,i ≤ Δ(P)q+1,1 −(p+2). Condition (4.8) and Δ(P)q+1,i ≥ 0 implies

that Δ(Pq
p)j,q+1 ≤ Δ(P)j,1−Δ(P)q+1,1. Hence, Δ(Pq+1

p )j,i ≤ max(Δ(P)j,1−
(p + 2),−1). Otherwise, Δ(Pq

p)q+1,i < 0, and condition (4.9) gives

Δ(Pq
p)j,q+1 ≤ max(Δ(P)j,1 − (p + 1),−1).

Thus Δ(Pq
p)j,q+1 + Δ(Pq

p)q+1,i ≤ max(Δ(P)j,1 − (p + 2),−1).
Assume i > q +1. If Δ(Pq

p)q+1,i ≥ 0 it follows from condition (4.9) that
Δ(Pq

p)q+1,i ≤ Δ(P)q+1,1 −(p+1). Condition (4.8) and Δ(P)q+1,i ≥ 0 implies
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Δ(Pq
p)j,q+1 ≤ Δ(P)j,1 −Δ(P)q+1,1. Hence, Δ(Pq+1

p )j,i ≤ max(Δ(P)j,1 −(p+
1),−1). Otherwise, Δ(Pq

p)q+1,i < 0, and condition (4.9) gives

Δ(Pq
p)j,q+1 ≤ max(Δ(P)j,1 − (p + 1),−1).

Thus Δ(Pq
p)j,q+1+Δ(Pq

p)q+1,i ≤ max(Δ(P)j,1−(p+1),−1). Hence condition
(4.9) is satisfied.

Assume q = k −1. Then we show the conditions (4.8), (4.9) for P1
p+1 :=

K2:k,1(Pk+1
p )Pk+1

p . This is done similarly as for q < k − 1 with the exception
that i > 1, which implies that only one case has to be considered in (4.9).

In conclusion, Δ(P k−1
d−2 )j,i ≤ 0 holds for k ≥ j > i due to condition (4.9)

and for j < i ≤ k the inequality holds since f0 is non-decreasing in the first
two arguments. By definition we have ̂P = K1,k,k−1 ◦ . . . ◦K1:k,1(P k−1

d−2 )P k−1
d−2 ,

which satisfies the conditions in the theorem. �
The following propositions present two algorithms that for given opera-

tor matrix polynomial P generates an equivalent operator matrix polynomial
̂P, where the highest degrees are in the diagonal. The algorithm in Proposi-
tion 4.9 usually preserves a greater number of the original operator polyno-
mial entries and exploits the structure of P. However, it is only applicable
when Hi  Hj for i, j ∈ {1, . . . , n}. In the algorithms presented in Propo-
sitions 4.9 and 4.10, Ji,j denote the operator matrix permuting the rows of
entries i and j.

Proposition 4.9. Let P be defined as (4.1) and assume that Hi = Hj for
i, j ∈ {1, . . . , n}. Define the algorithm:

1. Set P1 := P, E1 := I, and k := 1.
2. If k = n, set P ′

k := Pk and E′
k := Ek. Else, let i ≥ k be the least index

such that Δ(Pk)i,k ≥ Δ(Pk)l,k for all l ≥ k. Set P ′
k := Kk+1:n,k(Jk,iPk)

Jk,iPk and E′
k := Kk+1:n,k(Jk,iPk)Jk,iEk.

3. Set

̂

Pk := J1,kP ′
kJ1,k and

̂

Ek := J1,kE′
k.

4. Let J be the operator matrix that permutes the 2, . . . , k diagonal operators
in

̂

Pk to obtain ˜Pk := J

̂

PkJ−1, which satisfies Δ( ˜Pk)i,1 ≤ Δ( ˜Pk)j,1 for
all j > i > 1 and define ˜Ek := J

̂

Ek.
5. Obtain ̂E and ̂Pk by applying Lemma 4.8 on ˜Pk and set ̂Ek := ̂E ˜Ek.
6. Set Pk+1 := J1,kJ−1

̂PkJJ1,k and Ek+1 = J1,kJ−1
̂Ek.

7. If k = n set ̂P := Pk+1, E := Ek+1 and terminate. Else set k := k + 1
and return to (2).

By applying the algorithm to P, we obtain operator matrix functions
̂P : C → L(Hn

1 ) and an invertible E : C → B(Hn
1 ) such that

E(λ)P(λ) = ̂P(λ) =

⎡

⎢

⎣

̂P1,1(λ) . . . ̂P1,n(λ)
...

. . .
...

̂Pn,1(λ) . . . ̂Pn,n(λ)

⎤

⎥

⎦
, λ ∈ C,

where deg ̂Pi,i > deg ̂Pj,i for i 	= j.
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Proof. The result holds trivially for k = 1 and the proof for k > 1 is by
induction. In the inductive step we show that Pk = EkP and Δ(Pk)j,i <
Δ(Pk)i,i for all j ∈ {1, . . . , n}, i ∈ {1, . . . , k − 1}, and j 	= i.

Assume that induction hypothesis holds for k ≥ 1. By applying step
2 it follows that P ′

k = E′
kP. Further since Δ(Jk,iPk)k,k ≥ Δ(Jk,iPk)l,k,

the condition Δ(Jk,iPk)j,i < 0 for j > k and i ≤ k implies the condition
Δ(Pk)′

j,i < 0 for j > k and i ≤ k. After step 3 we have

̂

Pk =

̂

EkPJ1,k and the

inequality Δ(

̂

Pk)j,i < Δ(

̂

Pk)i,i holds for all j ∈ {1, . . . , n} and i ∈ {2, . . . , k},
since the k-th column is swapped with column one.
The existence of J in step 4 is obvious and from the definitions ˜Pk =
˜EkPJ1,kJ−1 and Δ( ˜Pk)j,i < Δ( ˜Pk)i,i for all j ∈ {1, . . . , n} and i ∈ {2, . . . , k}.
By construction ˜Pk satisfies the assumptions of Lemma 4.8. This lemma then
implies that ̂Pk = ̂EkPJ1,kJ−1 and Δ( ˜Pk)j,i < Δ( ˜Pk)i,i for all j ∈ {1, . . . , n}
and i ∈ {1, . . . , k}.

Hence, ̂Pk satisfies the desired condition for Pk+1, but the equivalence
is ̂Pk = ̂EkPJ1,kJ−1. Step 6 finds an equivalence of the desired type, Pk+1 =
Ek+1P and since J1,kJ−1 is a permutation operator matrix of first k rows
the condition Δ( ˜Pk)j,i < Δ( ˜Pk)i,i for all j ∈ {1, . . . , n}, i ∈ {1, . . . , k} and
i 	= j implies the same conditions for Pk+1. Hence, the result follows by
induction. �

Proposition 4.10. Let P be defined as (4.1) and define the algorithm:

1. Set P2 := P, E2 := I, and k := 2.
2. Obtain E and P ′

k by applying Lemma 4.7 on Pk and set E′
k := EEk.

3. Set

̂

Pk := J1,kP ′
kJ1,k and

̂

Ek := J1,kE′
k.

4. Let J be the operator matrix that permutes the 2, . . . , k diagonal opera-
tors in

̂

Pk to obtain ˜Pk := J

̂

PkJ−1, which satisfies Δ( ˜Pk)i,1 ≤ Δ( ˜Pk)j,1

for all j > i > 1 and define ˜Ek := J

̂

Ek.
5. Obtain ̂E and ̂Pk by applying Lemma 4.8 on ˜Pk and set ̂Ek := ̂E ˜Ek.
6. Set Pk+1 := J1,kJ−1

̂PkJJ1,k and Ek+1 = J1,kJ−1
̂Ek.

7. If k = n set ̂P := Pk+1, E := Ek+1 and terminate. Else set k := k + 1
and return to (2).

By applying the algorithm to P, we obtain operator matrix functions
̂P : C → L(H1 ⊕ . . . ⊕ Hn) and an invertible E : C → B(H1 ⊕ . . . ⊕ Hn) such
that

E(λ)P(λ) = ̂P(λ) =

⎡

⎢

⎣

̂P1,1(λ) . . . ̂P1,n(λ)
...

. . .
...

̂Pn,1(λ) . . . ̂Pn,n(λ)

⎤

⎥

⎦
, λ ∈ C,

where deg ̂Pi,i > deg ̂Pj,i for i 	= j.

Proof. The proof is by induction, where we show that Pk = EkP and Δ(Pk)j,i

< Δ(Pk)i,i for all j ∈ {1, . . . , k − 1} and i ∈ {1, . . . , k − 1} such that i 	= j.
The basis P2 follows from definition and the proof of the induction step is
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very similar to the induction in Proposition 4.9. The only difference is in step
2, where Lemma 4.7 is used. �

Remark 4.11. Despite Proposition 4.10 it is important to realize that when
Hi 	= Hj for some i, j, additional problems might occur. For example, con-
sider the operator matrix polynomial P : C → L(H ⊕ ˜H), defined as

P(λ) =
[

A − λ Bλ
Cλ2 D − λ

]

, λ ∈ C.

Define ̂P : C → L(H ⊕ ˜H) as

̂P(λ) := K2,1(P)P(λ) :=
[

A − λ Bλ
CA2 D + (CAB − I

˜H)λ + CBλ2

]

.

̂P(λ) has the form assumed in Theorem 4.1, but the highest order in the
(2, 2)-th entry, CB, might be degenerate for all operators C and B regardless
if D is invertible or not.

By combining the results in Theorems 3.4, 3.7, 4.1, and Proposition
4.10 (or Proposition 4.9) we obtain a method of linearizing a class of operator
matrix functions. This class consists of operator matrices where, each entry is
a product and/or Schur complement of polynomials and the method extends
the applicability of linearization to a larger class compared with a method
based on the results in Sect. 3 alone. An illustrative example is presented in
the following subsection.

4.3. Example of Linearization of an Operator Matrix Function

Let M,Ni ∈ B(H) for i = 0, 1, 2, 3, A ∈ B(H, ˜H), Ci ∈ L(H, ˜H) for i = 0, 1, 2,
D0 ∈ L( ˜H), B,D1,D2, Q ∈ B( ˜H), and P0, P1 ∈ L( ˜H,H). Further assume
that there is a j and an l such that Ci ∈ B(H, ˜H) for i 	= j and Pi ∈ B( ˜H,H)
for i 	= l. Let D : C → L( ˜H) be defined as D(λ) = D2λ

2+D1λ+D0, λ ∈ C. If
j = l = 0 let Ω := ρ(D) else Ω := ρ(D) \ {0}. Finally assume that D−1(λ)Cj

for λ ∈ Ω is bounded on D(Cj), which is dense in H and N3, and D2Q are
invertible operators.

In each step the operator matrix function is defined on its natural do-
main. Consider the operator matrix function S : Ω → L(H ⊕ ˜H),

S(λ) =
[

(M − λ)(N3λ
3 + N2λ

2 + N1λ + N0) P1λ + P0

Aλ − (B − λ)D−1(λ)(C2λ
2 + C1λ + C0) Qλ

]

.

This function can be linearized by the following steps:
Theorem 3.7 states that after IH-extension S is equivalent to ̂S : Ω →

L(H2 ⊕ ˜H),

̂S(λ) :=

⎡

⎣

M − λ 0 P1λ + P0

−I N3λ
3 + N2λ

2 + N1λ + N0 0
0 Aλ − (B − λ)D−1(λ)(C2λ

2 + C1λ + C0) Qλ

⎤

⎦ .
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Theorem 3.4 states that ̂S is after D-extension equivalent to P : Ω → L(H2⊕
˜H2),

P(λ) :=

⎡

⎢

⎢

⎣

M − λ 0 0 P1λ + P0

−IH N3λ
3 + N2λ

2 + N1λ + N0 0 0
0 Aλ B − λ Qλ
0 C2λ

2 + C1λ + C0 D(λ) 0

⎤

⎥

⎥

⎦

.

P is an operator matrix polynomial, but in the last two columns the
highest degree is not strictly in the diagonal. Hence, an equivalent problem
has to be found. Apply the algorithm given in Proposition 4.10 to P. This
results in the equivalent operator function ̂P := K4,3(P)P,

̂P(λ) =

⎡

⎢

⎢

⎣

M − λ 0 0 P1λ + P0

−IH N3λ
3 + N2λ

2 + N1λ + N0 0 0
0 Aλ B − λ Qλ
0 Gλ2 + (C1 + KA)λ + C0 DB D2Qλ2 + KQλ

⎤

⎥

⎥

⎦

,

where G = C2 + D2A, D(G) = D(C2), DB := D2B
2 + D1B + D0, D(DB) =

D(D0), and K := D1 + D2B. In ̂P the highest degrees are in the diagonal
and at most one coefficient in Gλ2 + (C1 + KA)λ + C0 and P1λ + P0 are
unbounded. Hence, Theorem 4.1 can be applied. Define ̂G := (D2Q)−1G,
̂K := (D2Q)−1K, ̂Ci := (D2Q)−1Ci, and ̂DB := (D2Q)−1DB . Let W denote
the function defined in Theorem 4.1. Then is ̂P(λ) after W(λ)-extension
equivalent to T − λ on Ω, where the operator matrix T ∈ L(H4 ⊕ ˜H3) is
defined as

T :=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

M 0 0 0 0 P1 P0

N−1
3 −N−1

3 N2 −N−1
3 N1 −N−1

3 N0 0 0 0
0 IH 0 0 0 0 0
0 0 IH 0 0 0 0
0 0 A 0 B Q 0
0 − ̂G − ̂C1 − ̂KA − ̂C0 − ̂DB − ̂KQ 0
0 0 0 0 0 I

˜H 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

In conclusion, S(λ) is after IH ⊕ D(λ) ⊕ W(λ)-extension equivalent to T − λ
for all λ ∈ Ω. Hence, Proposition 2.3 yields that the spectral properties of T
and of S coincides.
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