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Diverse discrete systems share common global properties that
lack a unifying theoretical explanation. However, constraining
the simplest measure of total information (Hartley–Shannon) in
a statistical mechanics framework reveals a principle, the
conservation of Hartley–Shannon information (CoHSI) that
directly predicts both known and unsuspected common
properties of discrete systems, as borne out in the diverse
systems of computer software, proteins and music. Discrete
systems fall into two categories distinguished by their
structure: heterogeneous systems in which there is a
distinguishable order of assembly of the system’s components
from an alphabet of unique tokens (e.g. proteins assembled
from an alphabet of amino acids), and homogeneous systems in
which unique tokens are simply binned, counted and rank
ordered. Heterogeneous systems are characterized by an
implicit distribution of component lengths, with sharp
unimodal peak (containing the majority of components) and a
power-law tail, whereas homogeneous systems reduce
naturally to Zipf’s Law but with a drooping tail in the
distribution. We also confirm predictions that very long
components are inevitable for heterogeneous systems; that
discrete systems can exhibit simultaneously both heterogeneous
and homogeneous behaviour; and that in systems with more
than one consistent token alphabet (e.g. digital music), the
alphabets themselves show a power-law relationship.
1. Introduction
Discrete systems, i.e. systems that comprise pieces that can be
consistently counted, are everywhere in the inanimate world
(e.g. matter itself ), the biological world (e.g. DNA, proteins,
species) and the world of human endeavour and creativity (e.g.

https://core.ac.uk/display/237221171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191101&domain=pdf&date_stamp=2019-10-23
mailto:lesh@oakcomp.co.uk
http://orcid.org/
http://orcid.org/0000-0003-2226-3453
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191101
2
computer software, written texts, digital music). The possibility that the global properties of such discrete

systems might be shaped by a single unifying principle is attractive but challenging given their diverse
provenance and the clear knowledge that discrete systems have been shaped by completely different
forces from the fundamental laws of physics and chemistry to evolution and human creativity. The
properties of discrete systems have been examined from many perspectives (e.g. [1–13]), and although
a number of explanations have been advanced to explain the behaviour of particular systems, no
satisfactory unifying theory has emerged. A significant complicating factor is that the common
property of discrete systems most frequently observed is the rank order/frequency power-law
relationship exemplified by Zipf’s Law [14] for written texts; when specific words in a text are
counted and their frequencies rank ordered, the log–log plot of frequency versus rank is a straight
line. Power-law relationships are ubiquitous [15] and occur in natural (including societal) phenomena
as diverse as solar flares, earthquakes, power failures, distribution of wealth, wildfires and neural
functions; attempts to explain all power laws in nature by a single underlying physical principle such
as self-organized criticality are considered untenable [16], with the favoured explanation for the
ubiquity of power-law relationships being that diverse processes can lead to the same outcome. Thus,
in seeking to uncover a principle that guides the shared behaviour of discrete systems, we must
engage with more than Zipf’s Law [17].

A theory of discrete systems should satisfy, at a minimum, the following criteria: (i) it must explain and
predict the observed properties of discrete systems that extend beyond simple power-law (Zipfian)
relationships, (ii) it must be agnostic with respect to the types of pieces (tokens) of which discrete systems
are composed, (iii) it must be agnostic with respect to mechanism, and (iv) it must be scale-independent.
The mathematical theory that we describe and test in this study meets these criteria. It takes an approach
that is both mechanism- and token-agnostic; we take the simplest measure of information, Hartley–
Shannon, in which the tokens (also called signs or symbols in information theory) are explicitly without
meaning [18–21] and embed this in a statistical mechanical framework which is ipso facto independent of
mechanism. The theory distinguishes two types of discrete system: heterogeneous, in which the tokens are
assembled sequentially in a distinguishable order; and homogeneous systems, in which tokens are
assembled in an indistinguishable order. We show that the single differential equation that we derive,
which embodies the principle of conservation of Hartley–Shannon information or CoHSI, accurately
predicts the global properties of discrete systems (both heterogeneous and homogeneous) as diverse as
proteins, computer software and digital music. The properties that are accurately predicted include the
distinctly un-Zipfian size distributions that are seen identically in, for example, both proteins and
software (figures 3 and 4) and that we will address in greater detail later in this article.
2. Heterogeneous discrete systems
Consider figure 1, a simple string of differently coloured beads appearing in order distinguishable by
position. There are 35 beads altogether in 12 colours in this string, and an assemblage of 7 such
strings of beads, as shown in figure 2 constitutes a simple example of a heterogeneous system. In our
nomenclature, each bead is a token and each string of beads is a component. Simple though it is,
numerous important discrete systems in both the natural and man-made world contain strings exactly
like this. For example, this string could be a protein, where the beads are amino acids. Alternatively, it
could just as easily be a particular computer program, where each bead represents a fundamental
symbol of one of the hundreds of programming languages. It might also be a string of notes in a
musical composition, this time with each bead corresponding to one note with different colours
corresponding to different notes. Clearly, each representation will mean something only when we
attach appropriate meaning to each bead. However, this does not alter the fundamental property that
each of these disparate systems contains something very much like a string of beads as some kind of
basic building block.

Table 1 illustrates with real-world examples the nomenclature we will use as we develop this
argument. We consider a discrete system to be a set of components, each of which is built from a
unique alphabet of discrete indivisible choices or tokens (also known as symbols or signs in information
theory). At first glance, this seems a very coarse taxonomy. In the case of proteins, there is no
mention of the domain of life or species or any other kind of aggregation. Similarly with computer
programs, we do not include the programming language in which they were written or the
application area that they serve. We will see that these considerations will turn out to be irrelevant. It
might be thought that if systems as disparate as computer software, proteins and music share a



Figure 1. A simple string of coloured beads.

Figure 2. Illustrating the CoHSI heterogeneous model. Seven components are shown as strings of tokens that are distinguishable by
both their colour and their order. In the case of the system of proteins, each string would correspond to a unique protein and each of
the tokens would be an amino acid. Different colours would indicate different amino acids.
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Figure 3. The frequency distributions of protein lengths measured in amino acids as represented in version 17-03 of the TrEMBL
database, https:/uniprot.org/ totalling around 80.2 million proteins assembled from 26.9 billion amino acids.
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Table 1. Comparable entities in discrete systems considered in this study.

system component token

proteome protein amino acid

computer program function language token

music composition note
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Figure 4. The frequency distributions of function lengths in 80 million lines of open-source software, in this case written in the
programming language C, comprising some 500 million programming language tokens [12].
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fundamental organization equivalent to that of our simple string of beads, that these systems might also
share other fundamental properties in common; this consideration is at the heart of this study.

When we define information content consistently across discrete systems, two measures of a
component emerge naturally; these are the total length of the component and the size of the unique
alphabet. If we consider the component (the string of beads) shown in figure 1, its length (in beads) is
35 and the size of the unique alphabet is 12 (there are 12 different colours of bead in this string).
Similarly, if we consider a string of letters, say AABABFGAYXYTCM, then the length is 14 and the
unique alphabet size is 9 (A,B,C,F,G,M,T,X,Y). Systems built in this way are ubiquitous. Some such as
proteomes (a proteome is the full collection of proteins expressed by a species) and computer software
packages are naturally so, whereas others such as music have moved from the analogue domain into
the discrete domain with the advent of digital representations of music such as MusicXML [22]. Each
type of system may be very different. For example, proteins and computer software are obviously and
comprehensively different. While proteins are essential components of all known life forms, and it is
generally accepted that they arose concomitantly with the origins of life some 3.5–3.8 × 109 years ago,
computer programs are not (yet) essential to life on Earth and are the recent abstract product of
deliberate cognitive activity on the part of humans. Music is a similar abstract product of deliberate
cognitive activity, although its discrete digital representation is recent.

We now consider in more detail one of the component measures (length) that we defined above, and
turn to figures 3 and 4, which show the distribution of component lengths for the two largest systems
of table 1; the collection of all known proteins and a system of computer software. For example,
version 17-03 of the protein database (https://uniprot.org/) contains more than 80 million entries,
essentially the collection of all known proteins at the point of that release, each comprising strings of
anywhere between 5 and some 37 000 amino acids, with each of the 22 genetically encoded amino
acids represented digitally by a letter of the alphabet. If we plot the frequency distribution of protein
lengths against their length, we obtain figure 3. Amongst other things, this shows that the proteins
with length around 300 amino acids occur most frequently.

https://uniprot.org/
https://uniprot.org/
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Figure 5. The data of figure 3, the frequency distributions of protein lengths, plotted as a complementary cumulative distribution
function (ccdf ).
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Switching our attention to computer software, this consists of functions (components) built from
strings of programming language tokens (syntactically indivisible symbols of a computer program
such as if, ] or numberOfCollisions). If we plot the frequency distribution of function lengths in a
large quantity of open-source software from a typical Linux distribution against their length, we
obtain figure 4.

From the point of view of this study, we need to know little more about the intrinsic nature of these
systems, but they are clearly of completely different provenance; the proteins have arisen in the natural
world in the course of the evolution of life, and computer software has arisen from human volition and
the actions of human programmers. Despite these different origins of these systems, their distributions of
component length show striking qualitative similarity—is this a symptom of some deeper unifying principle?

Pursuing our comparison of figures 3 and 4 a little further, we can see that although both systems are
large the two systems are of quite different scale—by about a factor of 50 in tokens. Both have a sharply
defined unimodal peak with almost linear slopes; both are significantly left-skewed and both appear to
decay to zero for large component lengths in a similar manner. The nature of this decay can be
understood better by plotting them as complementary cumulative distribution functions (ccdfs),
utilizing the well-known noise-reducing properties of the ccdf [15].

It is immediately apparent that both figures 5 and 6 show the characteristic straight-line behaviour in
log–log of a power-law tail over multiple decades, albeit with different slopes. Indeed in both cases,
R reports an adjusted R2 > 0.99 with a p < 2.2 × 10−16 with a slope of − 2.14 ± 0.20 in the case of
figure 5 (over two decades) and a slope of − 1.52 ± 0.08 in the case of figure 6 (over four decades).

We might at this point start trying to fit different common statistical distributions to these
data. Visually, they are similar to a gamma distribution, but gamma distributions have exponential
tails, and neither figure 5 nor figure 6 shows any obvious evidence of this. In addition, the unimodal
peak of figures 3 and 4 is unusually sharply distinguished. Alternatively, we might simply ascribe
the similarity in their tails to the well-known ubiquity of power-laws [15] and look no further.
However, we note that a value of an adjusted R2 so close to 1, although a necessary condition to
infer the presence of a power law, is not sufficient to infer such presence [23]. We will return to the
issue of sufficiency but simply note here that a detailed analysis using the methods of Clauset et al.
[23] outlined later, justifies us in describing the distributions of both figures 5 and 6 as having a
power-law tail.

Although such justification is important, either of these strategies seems to limit our opportunities
unnecessarily. The ubiquity of power laws is not well understood, but more importantly, the majority
of the contributing components in figures 3 and 4 fall into the unimodal peak (the power-law tail represents an
interesting but minority adjunct, about 10% to 25% of the respective distributions).
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Figure 6. The data of figure 4, the frequency distributions of function lengths, plotted as a ccdf.
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Instead, we will seek a more fundamental unifying principle in an attempt to understand why such
disparate systems have such extraordinarily similar distributions. In doing so, we will try to understand
the nature of the transition from the sharp unimodal peak to the power-law tail. In short, we seek to derive
the entire heterogeneous CoHSI distribution from first principles with as few assumptions as possible.

We can draw clues from the intrinsic diversity of the two systems. If a unifying principle exists,
it must have at least the following properties:

— It must necessarily be agnostic to the meaning of the symbols—programming language tokens and
amino acids have absolutely no meaning in common.

— Since the two systems examined here evolved under such different external conditions, the unifying
principle must be agnostic to any mechanism. We might of course make the assumption that diverse
mechanisms will aggregate to the same result, but it would be more elegant to find a methodology in
which mechanism is irrelevant and assumptions are dispensed with to the greatest extent possible.

— As we noted earlier, figures 3 (∼2.7 × 1010 tokens) and 4 (∼6 × 108 tokens) represent significantly
different scales. The principle must be scale-independent.

Similarities between physical systems are often associated with the unseen action of conservation
principles. Conservation principles are well understood for such systems. For example, in Lagrangian
systems, conservation principles are intimately associated with symmetries [24], and while scale is a
form of symmetry, uncovering such principles is more challenging when we are considering not only
physical but also biological systems and systems of origin in human cognition in which we do not
have a Lagrangian.

Considering the first two points above, that an explanation must be independent of both mechanism
and token meaning, the present approach significantly extends the initial development of theory (and
supporting results) that dealt solely with the asymptotic power-law tail reported in [11,12,25] but
omitted consideration of the sharp unimodal peak. It achieves this first by consolidating this
asymptotic theory with work reported in arXiv preprints which showed how the solution could be
naturally extended to include the unimodal peak and then completes the argument by placing it here
on firm analytical grounds while embracing more sophisticated statistical tests for power-law
behaviour due to Clauset et al. [23] for the extensive empirical support presented. The provenance is
described in appendix A, Consolidated arXiv work.

Our approach embeds the original and arguably a simplest measure of information (Hartley–Shannon
information) in a statistical mechanics framework. The rationale for this was that Hartley’s original
definition of information [18] specifically cautions against assigning any meaning to the symbols. Indeed, the
only relevant consideration is that symbols are distinguishable. Furthermore, statistical mechanics does
not consider mechanisms. Instead, it concerns itself with the overwhelmingly most likely distribution
given certain constraints, irrespective of any mechanisms. It is not that such mechanisms are
unimportant, they are simply irrelevant. From this, we were able to show with compelling support from
measurement that this alone was sufficient to generate asymptotically, for long components in the tail of
the distribution, the precise power laws observed not only in component length distributions but also



royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191101
7
the distributions of the alphabets of unique tokens, for diverse systems [25]. However, aswe noted above, to

be sufficiently persuasive, any candidate theory must be able to explain the more populous sharply defined
unimodal peak as well as a power-law tail, preferably with no additional assumptions.

The approach of combining information theory with statistical mechanics is not new—it has also
notably been used by Frank [13], building on the maximum entropy framework of Jaynes [26], which
is rooted in probability theory. Frank showed that by combining Shannon information [19] in a
maximum entropy context along with additional information in the form of knowledge about, for
example, the mean of a distribution, the common patterns of nature, such as Gaussian, power-law
and exponential, naturally emerged as predicted by neutral generative processes.

We do not follow this general approach for two reasons.
First, although Frank is perfectly clear in that he is maximizing Jaynes’ concept of ‘information

entropy’; both ‘entropy’ and ‘information’ are often used synonymously in general literature, but they
are not the same. Their conflation is famously attributed to John von Neumann by Claude Shannon
[27]. It is true that they have the same mathematical form but they have entirely different units and
entropy, von Neumann’s comments notwithstanding, is perfectly well understood by engineers and
physicists and furthermore is physically measurable [28]. We will have more to say on the distinction
between (physical) entropy and information entropy shortly so we can avoid any use of the concept
‘entropy’ in our main development as we feel it is more likely to obfuscate than to clarify the argument.

Second, some aspects of discrete systems are known not to conform to properties that can be
represented by a single common pattern. We have already seen this with figures 3 and 4 which
combine an unusually sharp unimodal peak abruptly transitioning into a power law.

To summarize, the questions addressed in this study are, first, whether or not the extraordinary
similarity of figures 3 and 4 can be predicted mathematically without recourse to local mechanisms
and without assigning meaning to the respective tokens or symbols used in the assembly of these
systems. Second, does the theory derived by this approach also predict other observed scale-
independent properties of a wide class of discrete systems, regardless of their natural origins or their
development as the product of creative human endeavour? In the following sections, we build on
prior work [11,12,25] embedding Hartley–Shannon information directly into statistical mechanics to
show here that, without additional assumptions, and encapsulated in a single differential equation,
the conservation of Hartley–Shannon information (or CoHSI) can indeed explain not only why figures
3 and 4 are so similar but also why other common patterns of behaviour, including Zipfian power
laws, are characteristic of a wide variety of discrete systems.

This study therefore (i) develops a theory, (ii) makes predictions from that theory, (iii) collects
substantial measurements from large datasets of different provenance, (iv) compares the properties of
the experimental datasets with the predictions of the theory, (v) attempts but fails to falsify the
predictions based on the experimental datasets, and (vi) in line with the recommendations of [29] and
others provides the complete means including all software, computational framework, statistical
analysis and data sources to reproduce the results independently.
3. Theory
3.1. Hartley–Shannon information and statistical mechanics
The methodology we use combines two disparate but long-established methodologies—statistical
mechanics and information theory in a novel way using the simplest possible definition of
information originally due to Hartley [18]. We will show that statistical mechanics can be used to
predict the component distributions in general systems (such as those of table 1) made from discrete
tokens subject to restrictions known as constraints.

The classical origins of statistical mechanics can be found in the kinetic theory of gases [30] (p. 217
et seq.) wherein constraints are applied by fixing the total number of particles and the total energy
[31]. However, the methodology is very general and can equally well be used with different
constraints on collections as disparate as those of table 1 where the only two constraints are total
Hartley–Shannon information and the total number of tokens.

Hartley–Shannon information theory is the result of the pioneering works of Ralph Hartley [18] as
developed later by Claude Shannon [19,20]. It forms the backbone of modern digital communication
theory and is also astonishingly versatile.
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The Hartley–Shannon information content of a component in the sense we use here, is simply defined to be the

natural logarithm of the total number of distinct ways of arranging the tokens of that component, without any
regard for what those tokens actually mean [21]. Token choice is equally likely and the size of the unique
alphabet of each component is preserved as component contents are redistributed during the
variational process.

3.2. Why conserve information?
In the kinetic theory of gases, conserving the total energy along with the total number of particles in the
methodology of statistical mechanics leads directly to the Maxwell–Boltzmann distribution of particle
velocities [31]. If we simply replace energy by information, it follows that another class of
distributions will emerge related to information. These turn out to be length distributions. In
retrospect, this is not surprising as the length of a sequence of symbols directly influences its
information content. Indeed, following our earlier comments, the unique alphabet of symbols also
influences the information content and we expect that it too will appear as a parameter in the
resulting distributions.

The approach of conserving information is a perfectly reasonable thing to do as statistical mechanics
is simply a mathematical technique—we require only that the conserved quantity be additive. If total
energy is conserved, then it turns out that physical entropy necessarily intrudes. The origin of
physical entropy is based on Clausius’s work in the nineteenth century. In essence, conservation of
energy is not enough to describe the phenomenon of irreversibility and resolve Loschmitz’s paradox
(macroscopic irreversible systems are built from microscopic reversible systems). Clausius and
others resolved this by supplementing energy with an additive measurable quantity, entropy. By the
Second Law of Thermodynamics, the physical entropy of a closed system can never decrease.
When Boltzmann introduced his statistical mechanics approach, he postulated that entropy was
proportional to the log of the number of possible configurations. Later Planck wrote this down as the
famous S = k log W, where k is Boltzmann’s constant and W is the number of possible microstates of
the system. This approach is therefore built on an assumption. Either we assume S = k log W or we
can assume that the Lagrange parameter β, which determines the shape of the distribution, is equal to
1/kTA, where TA is the absolute temperature. One implies the other [31].

When we replace energy by information, we no longer need to be bound by these considerations. It so
happens that Hartley–Shannon information content, like energy, is also additive for independent
subsystems. The total energy E of two independent subsystems with individual energies E1 and E2 is
E = E1 + E2. Similarly by virtue of its logarithmic definition, the total Hartley–Shannon information
content I of two independent subsystems with individual information content I1 and I2 is I = I1 + I2.

It is therefore in the following sense that we assert that conservation of Hartley–Shannon information
underlies the length distribution and other properties of discrete systems whatever their provenance. It is
a natural consequence of statistical mechanics that if we are presented with a system with a total number of tokens T
and a total information content I distributed among its components, then the length distribution of those
components is (as we will demonstrate below) overwhelmingly likely to be the size distribution we have already
seen as figures 3 and 4. The scale-independence of the results follows from the fact that the shape of the
predicted distribution is independent of (T, I ).

3.3. Heterogeneous CoHSI equation
The classic formulation of statistical mechanics [31] for a simple heterogeneous system of the form of
figure 2 when we set as constraints the total information content (I) and the total number of tokens
(T), and using Stirling’s approximation for log (ti!) reduces to

logV ¼ T logT � T �
XM
i¼1

{ti log (ti)� ti}þ a T �
XM
i¼1

ti

( )
þ b I �

XM
i¼1

Ii

( )
, (3:1)

where Ω is the number of ways of arranging the system (i.e. possible microstates), α and β are Lagrange
multipliers,M is the number of components (represented as strings here), ti is the number of tokens in the
ith string, ai is the unique alphabet (i.e. the number of unique tokens as defined by colour in figure 2) in
the ith string, Ii = Ii(ti,ai) is the Hartley–Shannon information content of the ith string, T ¼PM

i¼1 ti is their
total content of tokens and I ¼PM

i¼1 Ii is their total Hartley–Shannon information content. α controls the
constraint on total size T and β controls the constraint on total information I. In essence, the variational
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process envisages varying only the contents ti of each of the strings subject to T, I and the ai remaining

constant, until a maximum of log Ω is found. Keeping the ai constant during this process is exactly
analogous to keeping the energy levels constant in the development of the Maxwell–Boltzmann
distribution [31]. The maximum is found by taking δ(logΩ) = 0 (analogous to finding maxima in
differential calculus). Following our earlier comments, we do not attempt to interpret this in terms of
any kind of entropy; the process is simply finding the most likely distribution (which corresponds in
the language of statistical mechanics to the macrostate with the greatest number of contributing
microstates, where each microstate is assumed equi-probable).

Applying the δ() variation to (3.1) in the usual way and simplifying gives

0 ¼ �
XM
i¼1

log ti þ aþ b
dIi
dti

� �
dti: (3:2)

The size of strings ti in a heterogeneous system can vary enormously, and at the largest sizes typically
exceeds the maximum unique alphabet by many decades. For example, the size of proteins in the
databases ranges from as few as 5 to over 37 000 amino acids, while the maximum unique alphabet of
genetically encoded amino acids is 22. Thus, it is clear that to compute the Hartley–Shannon
information content of a string, the distribution of tokens among strings needs to be considered
separately for the situations where string length greatly exceeds its unique alphabet of tokens, and the
situation where the size of the string is closer to the size of its unique alphabet.

Considering first what happens when strings are very large compared with their unique alphabet,
i.e. ti≫ ai. In this case [12,25], the Hartley–Shannon information content is

Ii ¼ log (ai � ai � � � � � ai) ¼ log (atii ) ¼ ti log ai: (3:3)

In other words, for the example of a string of beads, in assembling the string, we select a bead ti times
from a choice of ai colours of bead secure in the knowledge that since ti≫ ai, it is very unlikely that any of
the ai colours would be missed out and we therefore meet the requirement of having exactly ai unique
colours (i.e. at least one of each).

In these circumstances, (3.2) and (3.3) reduce to

0 ¼ �
XM
i¼1

( log ti þ aþ b log ai)dti: (3:4)

Since this must be true whatever choices of δti are made during their variation, the parenthesized
term must be identically zero, which gives a pure power-law probability distribution function (pdf)
with solution ti � a�bi , or equivalently ai � t�1=bi . This is why both length and unique alphabet
distributions in heterogeneous systems asymptote to a power-law tail [25]. However, for the shorter
strings of beads in figure 2, there is an increasingly high probability that we might miss out one of
the colours available in the maximum unique alphabet as the ti beads are selected, breaking the
fundamental assumption of the variational process that the ith string must retain a unique alphabet
of exactly ai.

We must therefore think more carefully how the Hartley–Shannon information content of shorter
strings of beads is calculated in order to guarantee that each of the ai colours appears at least once
among the ti. This is not trivial, although its asymptotic nature when ti≫ ai is already known from above.

To explore this when ti � ai, suppose we have a simple example of a string of ti = 5 beads such that it
contains exactly ai = 2 different beads of colours A and B. The total number of ways this can be done if all
combinations are equally probable N(ti, ai), is given by

N(5, 2) ¼ 5!
1!4!
þ 5!
4!1!
þ 5!
3!2!
þ 5!
2!3!

: (3:5)

Note:

— The first term on the right-hand side of (3.5) is the total number of ways of selecting 5 beads by using 1
bead of colour A and 4 beads of colour B. This is equal to 5 (ABBBB, BABBB, BBABB, BBBAB, BBBBA).

— The second term corresponds to 4 beads of colour A and 1 of B and is also equal to 5 (BAAAA,
ABAAA, AABAA, AAABA, AAAAB).

— The third term corresponds to taking 3 beads of colour A and 2 of colour B. This is equal to 10
(AAABB, AABAB, AABBA, ABAAB, ABABA, ABBAA, BBAAA, BABAA, BAABA, BAAAB).
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— The fourth term corresponds to taking 2 beads of colour A and 3 of colour B. This is also

equal to 10 (BBBAA, BBABA, BBAAB, BABBA, BABAB, BAABB, AABBB, ABABB, ABBAB,
ABBBA).

There are no other ways of arranging the string such that there are exactly two colours of bead and
exactly five beads altogether. There are therefore 5 + 5 + 10 + 10 = 30 different such strings in total. (Note
that if we use the ti≫ ai form for information content, we erroneously get a higher value atii ¼ 25 ¼ 32,
because this includes AAAAA and BBBBB, both of which violate ai = 2.) Looking ahead, it is this subtle
reduction in information content in smaller strings which is responsible for the unimodal peak in figures 3 and 4.

The denominators of (3.5) correspond to elements of the additive compositions (https://en.
wikipedia.org/wiki/Partition_(number_theory) (accessed 4 June 2019)) of size 2 of the number 5.
These are

5 ¼ 1þ 4; 5 ¼ 4þ 1; 5 ¼ 3þ 2; 5 ¼ 2þ 3: (3:6)

There are other additive compositions such as 2 + 2 + 1, but this corresponds to three different kinds
of token, i.e. ai = 3, so must be excluded.

It turns out that there is a recursive solution for N(ti, ai). First, we slightly modify the definition in (3.5)
by letting N(ti, ai; ai0) be the number of ways of producing a string with ti beads containing exactly ai0

unique colours chosen from a total unique number of colours of ai for that string, where ai0 ≤ ai. In this
notation, for example, N(5, 2; 1) = 2 (AAAAA,BBBBB), N(5, 2; 2) = 30 (see above), N(5, 3; 3) = 150,
N(5, 4; 4) = 240, N(5, 5; 5) = 120. The distinction between ai and ai0 is to make way for the use of
recursion and we note that by definition,

N(ti, ai) ; N(ti, ai; ai):

It can be verified that the following recursion then generates the desired total number of ways
N(ti, ai; ai) of generating a string of ti tokens from a unique set of tokens ai.

for ti ¼ 1, . . . , ti(MAX) do
for ai ¼ 1, . . . , ti do

N(ti, 1; 1) ¼ 1;
for i ¼ 1, . . . , (ai � 1) do

N(ti, ai; i) aiCiN(ti, i; i)
end for
N(ti, ai; ai) atii �

Pai�1
i¼1 N(ti, ai; i)

end for
end for
We then arrive at the corresponding heterogeneous Hartley–Shannon information content for a string

containing ti tokens chosen from a unique alphabet of ai tokens, in which each of the ai appears at least once,
which is

Ii ¼ log (N(ti, ai)): (3:7)

From (3.2), we therefore assert that the length distribution of a heterogeneous discrete system such as
aggregations of software systems or proteins, at all scales with total number of tokens T and total
Hartley–Shannon information I is therefore the solution (ti, ai) of the implicit pdf (probability
distribution function) for all ti such that Stirling’s approximation is valid, corresponding to the
solution of

log ti ¼ �a� b
dIi
dti

� �
, (3:8)

with

T ¼
XM
i¼1

ti (3:9)

and

I ¼
XM
i¼1

Ii ¼
XM
i¼1

logN(ti, ai): (3:10)

https://en.wikipedia.org/wiki/Partition_(number_theory
https://en.wikipedia.org/wiki/Partition_(number_theory
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We note that the fact that (3.8) defines an implicit pdf is not without precedent [32,33]. Furthermore,

the fact that it asymptotes to an explicit power-law pdf for ti≫ ai as in (3.4) allows us to assert that (3.8)
does indeed represent a pdf.

Before applying this theory predictively to various systems so that we may test it, we note that the
Lagrange multipliers α, β in (3.8) are undetermined by the methodology of statistical mechanics but
have the following interpretation:

— In the Boltzmann development constraining total energy, α parametrizes the total size of the system
and therefore emerges naturally as a normalization condition so that a pdf in particle velocities
results. Its role when constraining total information as in (3.8) is more subtle as the implicit nature
means it can also affect the shape of the resulting length distribution.

— β parametrizes the total payload and affects the shape of the distribution. The payload in our theory
is Hartley–Shannon information, which depends on the size of the alphabet we use to categorize each
of the components of a discrete system. Small alphabets correspond to large β and vice versa. The
implication of this indeterminism is that the range of values of β which emerge via information
theory can be rather different to those tied to physical systems. (In the Maxwell–Boltzmann
distribution where the payload is energy, we recall that it is defined by Boltzmann’s constant
together with the absolute temperature, through the Second Law of Thermodynamics.)

3.4. The homogeneous CoHSI distribution
In contrast to the string of beads model of the heterogeneous case, there is another way of arranging our
beads among components. We therefore define homogeneous systems here as systems wherein a
component has only one kind of distinct token and the tokens are assembled in indistinguishable order,
with each distinct token unique to one component, as shown for the example of coloured beads in
figure 7. The indistinguishable order suggests that we can consider each component simply as a bin.
This distribution encompasses a wide class of systems as different as word counts in textual
documents and the distribution of elements in the universe. In such systems, a heterogeneous
definition of information is degenerate and a different definition is necessary, which as we will show
leads directly in our theory to an alternative proof of Zipf’s Law which is known to be present in
many datasets [15].

We anticipate that these distinctions between heterogeneous and homogeneous systems will lead to
different information measures with consequently different properties. We should not be surprised
by this as precisely the same occurs in physical systems where distinguishable order leads to
Bose–Einstein statistics and indistinguishable order leads to Fermi–Dirac statistics [31].

Whichever definition of Hartley–Shannon information is used, the methodology simply tells us the
most likely, or canonical distribution for discrete systems with the same fixed size and fixed
information content, howsoever defined.

In homogeneous systems, each token carries a payload such that each bin contains only tokens with the
same payload, unique to that bin. We represent this by assembling beads of the same colour in the
appropriate bin (figure 7). We cannot simply set ai = 1 as in the heterogeneous formulation as the total
Hartley–Shannon information would then degenerate to zero. Recall, however, that we are only
looking for the total number of ways of arranging the beads in these bins so that each bin has beads
of a unique colour without any regard to order.

Suppose then we have M bins such that the ith bin contains ti beads of unique colour bi, where
the total number of beads is T ¼PM

i¼1 ti. We will renumber them without loss of generality so that
t1≤ t2≤ · · ·≤ tM.

We proceed as follows. Select any bin and then fill it by selecting the tM beads of the corresponding
colour. Since we are selecting from M different colours, the probability that we will achieve this selecting
at random is (1=M)tM . For the second bin, we then have an alphabet available of M− 1 colours, so the
probability of filling this bin with the tM−1 beads of this colour from the remaining colours is
(1=(M� 1))tM�1 , and so on.

The total number of ways Nh this can be done is then given by this probability multiplied by the total
number of ways in which T beads can be selected without constraint, which is T!

Nh ¼ T!
1
M

� �tM

� 1
M� 1

� �tM�1
� � � � � 1

1

� �t1
" #

¼ T!
YM
i¼1

1
i

� �ti

: (3:11)



Figure 7. Illustrating the CoHSI homogeneous model. In each bin, all of the tokens are identical (i.e. of the same colour). Each bin
contains tokens of a different colour and the beads are by definition in no distinguishable order.
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Rewriting (3.11) then, the information content of this system is

logNh ¼ logT!þ
XM
i¼1

ti log
1
i

� �
¼ logT!�

XM
i¼1

ti log i: (3:12)

Following the heterogeneous development by folding this into the third term on the right-hand side
of (3.1) and applying the δ() operator using Stirling’s approximation, the equivalent of (3.2) now gives

0 ¼ �
XM
i¼1

( log ti þ kþ h log i)dti, (3:13)

leading to a homogeneous system pdf given by

ti � i�h, (3:14)

where η, κ are once again Lagrange undetermined multipliers.
There are notable differences between this and the heterogeneous case:

— No approximation is necessary for components (i.e. bins rather than strings as there is no
distinguishable order), for which ti is comparable to ai, since this does not arise in the
homogeneous case.

— This is a pure power law at all values of ti but arranged in order of rank; it is in fact Zipf’s Law, except
for bins which have the lowest populations, in which case Stirling’s Law may not be sufficiently
accurate and the result is a natural droop in the tail of the distribution, i.e. the most sparsely
populated bins, as we shall see.

4. Results
4.1. Solution of the heterogeneous CoHSI equation
We recall that (3.8) involved the use of Stirling’s approximation to log (ti!) but we could use higher-order
approximations such as that of Ramanujan [34]. Unlike the homogeneous case which follows, this was
not, however, necessary as the essential features of the unimodal peak emerge before Stirling’s
approximation becomes unacceptable for ti close to the origin; thus improving the approximation does
not add anything fundamental to the heterogeneous case. We can solve (3.8) either in its differential
form or in an integrated form. Here we use the differential form.

There are three practical difficulties:

— The function N(ti, ai) can indeed be evaluated recursively using integer values of ti, ai. However, to
solve an implicit equation, we need to analytically extend the domain over which this function is
defined, to the real numbers. Since it involves sums of terms with pure factorials, which could in
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principle be written out in full explicitly by unwinding the recursion, it is sufficient to replace the
factorials with the gamma function identity, n! = Γ(n + 1). The gamma function does the necessary
continuation in a natural way. The real-valued N(ti, ai) is then coincident with the integer-valued
N(ti, ai) at integral values of ti, ai.

— We must then differentiate log (N(ti, ai)). The above continuation allows us to do this in practice by
evaluating log (N(ti, ai)) over an integer grid in ti, ai, and then calculating the differential coefficient by
finite differences and interpolation on this grid.

— The function N(ti, ai) can only be evaluated accurately for a relatively small range of integers with
conventional arithmetic (approximately, ti, ai∈ [1, 30], depending on machine arithmetic precision).
Fortunately, the solution asymptotes into the power-law tail quite quickly and even this rather
restricted range proved more than enough to enclose the unimodal peak, as using unrestricted
precision arithmetic slows computation down unacceptably.

Once we did this, a typical solution of (3.8) looks like figure 8 (α = 6, β = 0.5).
This is qualitatively identical to figures 3 and 4. It is illuminating to see how and when the solution

departs from the power-law tail as we approach the origin from large ti. Figure 9 gives a compelling
demonstration of this. Analysing this departure, it is caused by the information function log (N(ti, ai))
reducing and flattening more quickly than the asymptotic information function tilog(ai) because of the
constraint to maintain the unique alphabet ai at the same value.

This solution is explored for different values of the Lagrange parameters α, β in [35]. In essence,
both Lagrange parameters contribute to the shape and position of the unimodal peak because of the
implicit nature of the solutions and there indeed may be no solutions for the smallest values of ti for
α, β. This is certainly the case with the datasets we used—for example a total of only six sequences
shorter than seven amino acids is included in the TrEMBL 19-04 database and the smallest legal
component in the programming language C, for example, contains three tokens, but it exists only as
an oddity as it has no functional behaviour. Whilst fitting the asymptotic power law is relatively
simple, the implicit nature of (3.8) and other complications, such as the scale of the numerics and the
subtle relationship between α, β, the alphabet of tokens and corresponding parameters in the real data
as revealed in [35], present significant challenges for the quantitative fitting of our real datasets to the
shape and position of the mode in the CoHSI heterogeneous equation and this remains a work
in progress.

We consider this to be an ample qualitative demonstration of the properties of the CoHSI
heterogeneous equation (3.8) and is a validation of our mechanism- and token-agnostic approach. We
will demonstrate this in depth shortly with numerous examples of real data, but first, we will
complete this section by outlining how the no less interesting homogeneous equation may be solved.
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4.2. Solution of the homogeneous CoHSI equation
Solving the homogeneous form was much less challenging because it is explicit; however, this equation
too has an interesting property. We stated earlier that the homogeneous CoHSI equation serves as a proof
of Zipf’s Law, an empirical law of great ubiquity. However, Zipf’s Law is a pure power law, leading to a
straight line when plotted as frequency vs rank in log–log on a ccdf. Indeed this straight line, usually over
several decades, is used as the fingerprint of Zipf’s Law when analysing real data.

However, for the highest ranks (i.e. the bins with sparsest occupancy), a droop is often observed
indicating these bins are less well populated than would be expected with a pure power law. Zipf’s
law does not allow for this drooping tail but it would be supportive of our approach if such a droop
naturally emerged from the mathematics. In short, it does and the source of the droop is the
gradually increasing departures between Stirling’s approximation and the approximated function
log(ti!) leading up to (3.13), when bins are sparsely populated, i.e. ti is small. Recall in the
heterogeneous case, the equivalent approximation in the solution occurs for the lowest values of ti
before the heterogeneous unimodal peak has appeared and including better approximations did
not add any new features of interest in the frequency vs length distribution. In the homogeneous
case, however, the data are ordered as frequency vs rank and the sparsely populated bins appear in
the tail of this distribution. In this case, including the higher-order approximations (e.g. [34] or even
an exact evaluation for the smallest ti) leads naturally to a new feature. The tail of the otherwise
pure power law corresponding to Zipf’s Law, droops. This can clearly be seen in figure 10, where we
compare the Stirling and Ramanujan approximations and the exact evaluation in the tail of
the distribution.

We would argue that the natural appearance of this droop from the mathematics alone is further
supporting qualitative evidence for our approach, although we must inject a note of caution in
interpreting this in real data, as the affected bins will be sparsely populated by definition and subject
to considerable statistical fluctuation. The best we might expect is a tendency for tails to droop in real-
world datasets.

4.3. Testing the predictions of CoHSI
So far, we have presented the theory behind the heterogeneous and homogeneous CoHSI models and
how they may be solved. We have also seen that the CoHSI heterogeneous prediction of length
distributions is in close agreement with those observed in systems as disparate as collections of
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proteins and computer software, providing a bridging but parsimonious theory to explain why they are
so extraordinarily alike. Our approach is therefore theory-driven with prediction rather than data-driven
with assumptions about qualifying standard distributions.

Moreover, the existence of a CoHSI theory embracing both heterogeneous and homogeneous discrete
systems considerably increases the number of possible cases in which the predictions of CoHSI can
readily be tested.

This we now do.

4.3.1. Justifying the presence of power-law tails

Since both heterogeneous and homogeneous CoHSI solutions asymptote to a power law, it is appropriate
to return to a consideration of whether or not the datasets analysed in figures 5 and 6 indeed display
power-law tails.

As mentioned earlier, an adjusted R2 fit close to 1 in a linearity test on a log–log scale [23] is certainly
necessary but is not of itself sufficient to conclude power-law behaviour. There are a number of facets to
this subtle statistical issue. Can we reject a power law on well-defined statistical grounds and if not,
would a different distribution such as lognormal provide a better fit? Our strategy (which follows
below) to address this issue is defined by our methodology; we are working from first principles with
a consistent theory, the predictions of which we attempt to falsify by examination of experimental
datasets. Whenever something as apparently ubiquitous as a power-law distribution appears, it is
tempting to enter the long-standing debate about whether or not it is in fact a power law or whether
lognormal, stretched exponential or some other distribution might give a better fit. However, as
Clauset et al. [23] advise, ‘In cases such as these, it is important to look at physical motivating or theoretical
factors to make a sensible judgement about which distributional form is more reasonable—we must consider
whether there is a mechanistic or other non-statistical argument favouring one distribution or another.’

We concur completely. In this case, we have:

— A model with both physical and theoretical motivating factors.
— The power law is only the asymptotic and indeed minority part of the CoHSI heterogeneous

distribution. The CoHSI distribution also explains the sharply defined unimodal peak without any
further assumption.

— The adjusted R2 are extremely close to 1 in each of the highly disparate datasets (computer software
and proteins) that we examined.

It is therefore sufficient for our arguments to demonstrate rigorously that power-law behaviour in the
tails of figures 5 and 6 is not ruled out. This process relies on sophisticated likelihood arguments
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described in detail by Clauset et al. [23] and implemented in R as the poweRlaw package [36] in which
Monte Carlo simulations are used to assess whether a particular distribution is possible. With our
datasets for both proteins and software in their raw form, such simulations were inordinately
expensive in computer time, so each of the datasets was first examined by exponential binning of the
raw data to balance the bin contents followed by fitting to a power law. For the data of figure 5, the
results of this process are exemplified by figure 11.

Visually, this is satisfactory, so the binning process was adapted to produce from the data of figures 5
and 6 suitable input to the Monte Carlo bootstrap process in the poweRlaw package. When the dataset of
figure 5 was tested for the ability to reject a power law, the associated p-value was 0.789. The
corresponding p-value for the dataset of figure 6 was 0.922. Clauset et al. [23] suggest a cut-off p-value
of 0.1, below which a power law is not considered plausible. Therefore, we conclude that the presence
of a power law in both of these datasets cannot be rejected.

Taking these results together, the fundamental nature of the CoHSI distribution and its central role in
defining the length distributions of these highly disparate discrete datasets at all scales is strongly
supported qualitatively by these results.

4.3.2. Simultaneous heterogeneous and homogeneous behaviour

CoHSI theory is consistent with the simultaneous presence of both heterogeneous and homogeneous
behaviour in the same system; the two behaviours would then each correspond to a different but
consistent categorization of the same data.

We test this prediction using the data for the systems of proteins and of computer software. The
heterogeneous CoHSI theory predicted with considerable precision the unimodal peak transitioning into a
precise power-law tail in both these systems (figures 3 and 5 for proteins and 4 and 6 for software).
However, suppose that for both proteins and software we recategorize the very same data into a
homogeneous system by simply redefining the ‘frequency of occurrence of a specific length’ for proteins or
software functions as a bin; we can then rank order the bins. This clearly satisfies the requirements of the
homogeneous model and the contents of the bins are equally clearly in indistinguishable order—we
simply do not care which proteins are in a particular bin, provided they have the appropriate length for
that bin. In the process of rank ordering, we are discarding knowledge about the lengths.

Homogeneous CoHSI theory then states that when heterogeneous frequencies are ordered by rank,
we should observe a Zipfian power law with a drooping tail. It might be argued that this is a trivial
observation as we already know that both heterogeneous distributions have power-law tails. However,
it should also be recalled that the majority of the components of these two systems (approx. 90% and
75%) appear in the unimodal peaks of figures 3 and 4, respectively, rather than in the power-law tail,
so it is far from intuitively obvious how these should appear when arranged in rank order.

However, figures 12 and 13 illustrate very clearly that the prediction of CoHSI homogeneous
behaviour for the rank-ordered heterogeneous distribution is accurate. The predicted straight-line
power-law behaviour appears to be emphatically present over multiple decades in both systems, with
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the expected droop in the tail for the sparsely occupied bins. In both cases, R reports an adjusted R2 > 0.99
with a p < 2.2 × 10− 16 with a slope of −0.27 ± 0.04 in the case of figure 12 (four decades) and a slope of
−0.43 ± 0.05 in the case of figure 6 (three decades). This necessary condition for a power law is therefore
satisfied and further investigation using the bootstrap techniques of Clauset et al. [23], described earlier,
gave p-values of 0.923 and 0.998 for these two datasets respectively. Once again, we conclude that we
cannot reject a power law as the underlying distribution.

This predicted but non-intuitive behaviour provides further substantial experimental support for the
CoHSI theory.

4.3.3. Categorization and the uniqueness of alphabets

When considering the application of the heterogeneous CoHSI model, a unique alphabet has to be
defined consistently so that we can populate the components appropriately. It is not always obvious
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how this can be done. Consider, for example, a colour-blind person counting the number of beads in

strings of coloured beads and categorizing the beads by colour. They will count the same total
number of beads as a person with normal colour-sight but they will probably categorize them
differently by colour. Provided the normally sighted and colour-blind person are self-consistent, who
has the correct categorization? Clearly, the total number of beads cannot depend on how the alphabet
was categorized, and thus we must assume that both categorizations, although different, are equally
valid. How would the co-existence of two different but consistent categorizations by the alphabet
affect the predictions of CoHSI?

We will take as a concrete example digitally represented music, in which compositions are
represented in terms of notes. Musical notes not only have a pitch but they also have duration. This
raises the question as to whether we should distinguish, for example, between a short duration
middle C and a long duration middle C. Provided we are consistent, we know it cannot affect the
number of notes in the composition. However, CoHSI then implies a special relationship between two
consistent but alternative alphabets categorizing the same system as we will now see.

We can use the asymptotic power-law behaviour of the CoHSI heterogeneous equation to derive such
a relationship which we can then test. If we consider the 88 notes of a full-scale piano as defining the
possible notes in the equal-tempered scale used in the vast majority of published music, then we have
a candidate unique alphabet of up to 88, ai0 say, the (no-duration alphabet). However, we can subdivide
this alphabet quite naturally and consistently into notes and duration. The standard durations are
divided into fractions of a whole note as breve (2), semi-breve (1), minim (1/2), crotchet (1/4), quaver
(1/8), semiquaver (1/16) and demisemiquaver (1/32). There are others defined off either end of this
list but they are sufficiently rare that none occurred in our datasets. This gives seven durations of each
note and expands the potential unique alphabet considerably up to 88 × 7 = 616 items, ai00 say, the
(duration alphabet).

Since it cannot affect the size of each composition, then our asymptotic theory (3.4) tells us that

ti � (a0i)
�b0 (4:1)

and

ti � (a00i )
�b00 , (4:2)

where ai0, ai00 are the two unique alphabets and β 0, β 00 their slopes. We can see straight away from (4.1) and
(4.2), that CoHSI predicts that the two unique alphabets must themselves be related asymptotically as a power law.

(a0i)
�b0 � (a00i )

�b00 ) a0i � (a00i )
�b000 , (4:3)

where β 000=−β 00/β 0. This implies that if we plot the size of the unique alphabet of a composition including
duration, against the size of the unique alphabet of the composition not including duration, on a log–log
scale, we should see a straight line. This is certainly not intuitive but is easy to test and the result for the
whole population of digital music described in appendix A is shown as figure 14. R reports that the
associated p-value matching the power-law tail linearity in the ccdf of figure 14 is less than 2.2 × 10−16

over the duration range 10.0−616.0, with an adjusted R-squared value of 0.977. The slope is 1.58 ± 0.09.
This is indeed closely linear exactly as predicted by CoHSI even though the system (883

compositions) is statistically a much smaller sample than the populations of proteins and software
considered elsewhere in this study. The bootstrap procedure of [23] gave a p-value of 0.351 so again
we cannot reject the presence of a power law.
4.3.4. Scale-independence and the longest component

CoHSI heterogeneous and homogeneous theory is not dependent on scale. Both distributions are
independent of the total size of the system in tokens T and the total information content I. This scale-
independence directly implies a profound property. The largest component in a system as it grows is
determined only by the total size of that system.

In the case of proteins, these are strings of amino acids which fold in extraordinarily complex ways as
part of their defining functionality. The mode of the length distribution of figure 5 is around 300 amino
acids, and some 130 000 proteins have this length in this plot. Since each position could be occupied by
up to 22 amino acids, the total number of possible ways of arranging 22 amino acids in 300 positions is
22300, a gigantic number. In other words, only an infinitesimal fraction of possible rearrangements
(130 000/(22)300) has been explored by the known proteins. An important question to ask therefore is
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why do proteins with over 36 000 amino acids occur in this collection? Surely nature does not need the
implied degrees of freedom? CoHSI heterogeneous theory offers a simple solution to this question. Very
long proteins are inevitable; it is unnecessary to postulate that they result from natural selection. We show the
impact of scale-independence on the longest protein in a collection as figure 15. This shows three
versions of the TrEMBL database over approximately 4 years (it is updated monthly), during which the
database grew by a factor of four as can be seen on the y-axis. The strong self-similarity is obvious.

For example, by drawing a line upwards from protein length 10 000 on figure 15, it is clear that
there are, by around a factor of 10, more proteins of this length in release 19-04 than in release 15-07.
The tail of these distributions is statistically noisy, but while the largest validated protein in release
15-07 is 36 805 amino acids (Q3ASY8_CHLCH, Chlorobium chlorochromatii (strain CaD3)), in release
19-04, it is 39 677 amino acids (A0A410P257_9BACT, Vampirococcus sp. LiM). These results are
consistent not just with the number of identified very long proteins increasing, but also their maximum
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length increasing as the size of the collection grows. In fact, TrEMBL release 19-04 contains an

uncharacterized protein of >74 400 amino acids (A0A316Q3J5_9FIRM Clostridiales bacterium) but its
identification is still preliminary.

In the case of software, the occurrence of unusually large components (for the sake of argument say at
least a factor of 20 bigger than the modal size) has hitherto been considered a failure of design and is
generally associated with poor practice and increased potential for error [37–39]. However, CoHSI
heterogeneous theory also applies to software as we have already seen earlier in figures 4 and 6, again
with the clear implication that unusually long components are an inevitable by-product of the total
size of the system. The importance of this conclusion is that software designers must then switch their
software design techniques from avoidance of such long components, since they are essentially
unavoidable, to mitigating any potential damaging effects they might have.

5. Conclusion
We make the following claims:

— Discrete systems as disparate, as the known collection of proteins, on the one hand, and computer
software, on the other, share common system properties to an extraordinary degree. This is a
matter of observation, and we single out, in particular, the distribution of lengths of their
components. This similarity is evident in spite of their completely different provenance.

— Amechanism- and token-agnostic scale-independent theory embracing statistical mechanics in which
the simplest possible measure of Hartley–Shannon information is embedded as a constraint (CoHSI)
is capable of explaining this underlying similarity with only the standard assumptions of statistical
mechanics; that all microstates are equally probable; and that components are reasonably well
populated so that Stirling’s approximation is satisfactory, (and even this latter was mitigated by
higher-order approximations).

— Two forms of CoHSI system naturally emerge from the theory depending on how humans categorize
the discrete systems they measure:

(a) Heterogeneous systems in which each component is a string of tokens chosen in distinguishable
order from some unique alphabet of tokens. These are characterized by a length distribution as
shown in figure 8.

(b) Homogeneous systems in which each component is a bin containing tokens in indistinguishable
order and of a single kind that represents some shared property unique to that bin. These systems
are characterized by a frequency versus rank distribution as shown in figure 10.

— We have demonstrated the accuracy of CoHSI predictions and some of its implications in a variety of
both heterogeneous and homogeneous systems, including the known set of all proteins, large
amounts of computer software and a body of digital music.

— By using the example of digital music choosing notes with and without information about duration,
we have demonstrated that CoHSI heterogeneous theory predictions are unaffected by consistent but
different choices of categories, i.e. alphabets. Moreover, the predicted but non-intuitive power-law
relationship between different alphabets was confirmed as present.

— Although we incidentally give a proof of Zipf’s Law in the case of homogeneous systems, the
asymptotic power law present in heterogeneous systems is a minority feature. We stress that CoHSI
theory predicts the entire distribution and notably the sharp unimodal peak abundantly obvious in
figures 3 and 4, even though these systems differ in size by a factor of 50. (We should recall,
however, that in spite of its minority status, the asymptotic power-law behaviour in the tail of a
heterogeneous system implies the existence of unusually long components whose length depends
only on the total size of the system. For example, we showed in multi-gigabyte collection of
proteins, a number of proteins exist which exceed the average protein length by a factor of 100, and
demonstrated that the longest known protein does indeed increase predictably with size of collection.)

— Last but not least, CoHSI theory predicts a previously unknown property of discrete systems such as
proteins and software, whereby both heterogeneous and homogeneous behaviour concurrently
manifests itself, simply depending on how information content is defined, as shown in figures 5
and 12. In other words, what we measure is determined by how we choose to categorize a
system, providing we are consistent. We have yet to explore the full implications of this.

Finally, we reiterate that here we are neither explicitly data-fitting to known distributions, nor
comparing known distributions. Instead, we have started from first principles guided by important
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clues provided by the datasets themselves. These clues necessarily led us to a scale-independent,
mechanism-independent and token-independent theory capable of making predictions. It so turns out
that power laws are a natural asymptotic feature of our theory (given their ubiquity, we might worry
if they were not), but this played a minor part in the theoretical development; it is an emergent property.

We have attempted to falsify the resulting predictions of our theory in large numbers of tests on systems
big and small and of completely different provenance.We have so far failed to falsify these predictions, but it
is important to note that CoHSI is not a straitjacket and embodies the ergodic nature of statisticalmechanics. It
is perfectly possible within our theory for a discrete system to have a different length distribution other than
that predicted by CoHSI; CoHSI only identifies the overwhelmingly most likely distribution within its
constraints. This can be seen clearly by construction in the domain of computer software. In a matter of
seconds, the simple computer program shown in appendix A could be copied several million times and
the result deemed a system in our nomenclature. Artificial though it may seem, this is a perfectly valid
system in a theory which is agnostic with regard to the tokens—the functionality, however useless, is
irrelevant. This system manifestly does not satisfy CoHSI but is simply unlikely in the ensemble of all
systems with the same number of tokens T and the same information content I. In the natural world too,
natural selection could force a departure from the most likely distribution implied by CoHSI, which we
interpret as CoHSI acting only to guide and not to enforce. We therefore conclude the following:
sci.6:19
If presented with a discrete system containing T tokens in all, and an overall Hartley–Shannon information content I (defined
appropriately but consistently according to whether it is heterogeneous or homogeneous), it is overwhelmingly likely to have the
canonical heterogeneous or homogeneous length distribution predicted by CoHSI.
1101
We have presented a substantial set of data examples to justify this.
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Appendix A
A.1. Consolidated arXiv work
This study consolidates early peer-reviewed work on the asymptotic power-law tail present in the
heterogeneous distribution [11,12,25] with later results from a series of arXiv papers, and then extends this
further as follows. The methods of the solution proposed for the differential form of the full theory
presented in [46], which includes treatment of the unimodal peak, are here placed on firm analytical
grounds whereby the solutions may be extended from integer values to the real line. (Figures 1–7 and a
version of table 1 also appeared in this preprint.) In addition the results have been exposed to more
sophisticated statistical tests due to [23], to allow us to assert that asymptotic power-law behaviour is
indeed plausible in each of the datasets we use here. Figures 8 and 9 in the present publication, with their
underlying analysis, appeared in [35] and figure 10 in the present publication is in [47]. Finally, it is
appropriate to mention here that as this is a consolidated work over several years, numerous colleagues
contributed at early stages and these are individually acknowledged in each arXiv paper as appropriate.
A.2. Datasets

A.2.1. Proteins

The data analysed as figures 3, 5 and 12 were derived from the European Protein Database TrEMBL v. 17-03
(March 2017) [48]. The data shown analysed as figure 15 were derived from versions 15-07, 17-03 and 19-04.

https://datadryad.org/stash/dataset/doi:10.5061/dryad.gm957n1
https://www.leshatton.org/HattonWarr_RSOS_Jun-2019.html
https://www.leshatton.org/HattonWarr_RSOS_Jun-2019.html


Table 2. The protein 20 kDa chaperonin, chloroplastic, from gene CPN21 of Pisum sativum (garden pea) https://www.uniprot.
org/uniprot/P31233.
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TrEMBL is a large and rapidly growing databasewhich is updatedmonthly and the last releasewe usedwas
19-04 as shown in figure 15 which contained some 156 million proteins.

An example of a short protein is shown in table 2. Proteins appear as sequential strings of letters in a
22-letter alphabet, each letter corresponding to an amino acid encoded from the DNA of the organism;
for example, the letter V corresponds to the amino acid valine. The theory we develop here does not
depend in any way on the physico-chemical properties of the amino acids. They are treated simply as
symbols with no other property than that they can be distinguished.

A.2.2. Computer software

In the 50 or so years since they first appeared, many programming languages have arisen, from
which computer programs of almost limitless functionality are built. We have already seen that individual
symbols of a programming language are called tokens. They may take two forms: the fixed tokens of the
language as provided by the language designers, and the variable tokens [49,50] which programmers
supply as identifier and constant names. From our point of view, this distinction is irrelevant, they are all
just tokens. There are many programming languages but all obey the same principles and every form of
software system evolves from such tokens. Note that language tokens are syntactically indivisible, even
though in programming languages they can comprise one or more characters.

Computer programs are often large. The software deployed in the search for the recently discovered
Higg’s boson comprises around 4 million lines of code [51]. At an average of around six tokens per line of
code, this corresponds to some 24 million tokens, although this is still less than 1% of the human genome
in which the tokens are the four bases adenine, cytosine, guanine and thymine. The largest systems in use
today appear to be in the tens of millions of lines of source code [52], corresponding to perhaps 15% of
the number of tokens of the human genome. The population of open systems used to test the model
described here total almost 100 million lines (specifically 98 476 765 lines), containing some 600 million
tokens.

As an example of the nomenclature, consider the following simple program written in the language C
which, given an integer will return its incremented value:

int addOne(int i) {return i + 1;}

This algorithm contains 13 tokens in all based on 8 of the fixed tokens and 3 of the variable tokens
of ISO C, so the size of the unique alphabet for this component is 8 + 3 = 11, (int and i are both
repeated). We note in passing that unique alphabets in programming functions are usually much
larger than the known unique alphabets of proteins, further differentiating between the two systems.
Note finally that extracting the tokens of programming languages to assemble these measures
requires the development of language compiler front-end tools [53,54]. This is caused by the fact
that tokens can contain one or more characters and some knowledge of the syntax of a language is
necessary to parse them. Analysing proteins is considerably simpler from a programming point of
view as each token is simply a letter.

A.2.3. Music

Modern digital formats for musical annotation such as MusicXML (https://en.wikipedia.org/wiki/
MusicXML (accessed 7 July 2017)), are yet another distinct discrete system where, in this case, the
components are pieces of music and the unique alphabet comprises notes as shown in table 1,
although we note that this representation is verbose compared with either that of proteins or even
computer software.

Extracting the appropriate data is relatively simple—intermediate in difficulty between computer
software and proteins—as the following XML snippet shows, taken from “Nun danket alle Gott”,

https://en.wikipedia.org/wiki/MusicXML
https://en.wikipedia.org/wiki/MusicXML
https://en.wikipedia.org/wiki/MusicXML
https://www.uniprot.org/uniprot/P31233
https://www.uniprot.org/uniprot/P31233
https://www.uniprot.org/uniprot/P31233
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(Words Rinkart 1636, Music Crüger, 1647). (https://hymnary.org/media/fetch/99378 (accessed

7 July 2017))
<part id="P1">

<measure number="1">

…

<note>

<pitch>

<step>E</step>

<alter>-1</alter>

<octave>4</octave>

</pitch>

<duration>480</duration>

<voice>1</voice>

…

This fragment refers to the note Eb in the 4th octave (middle C is annotated C4, so this is a minor third
(3 semitones) above middle C). The duration must be determined in conjunction with other parameters in
the XML but this note actually corresponds to a 1/4 note or crotchet. MusicXML is verbose but mostly
easy to parse even though note timing is determined by more than one set of parameters.

In this study, we used 883 pieces of music, mostly classical but a very eclectic mix of chorales, piano
concertos, horn duets, blue-grass music and indeed almost anything in an XML format we could get our
hands on, but this dataset is still very much smaller than the others at around 8 × 105 tokens. The scale-
independence of the theory, however, means that this is sufficient.
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