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Multiple built-in cameras and the small size of mobile phones are underexploited assets for creating novel applications that are
ideal for pocket size devices, but may not make much sense with laptops. In this paper we present two vision-based methods for the
control of mobile user interfaces based on motion tracking and recognition. In the first case the motion is extracted by estimating
the movement of the device held in the user’s hand. In the second it is produced from tracking the motion of the user’s finger
in front of the device. In both alternatives sequences of motion are classified using Hidden Markov Models. The results of the
classification are filtered using a likelihood ratio and the velocity entropy to reject possibly incorrect sequences. Our hypothesis
here is that incorrect measurements are characterised by a higher entropy value for their velocity histogram denoting more random
movements by the user. We also show that using the same filtering criteria we can control unsupervised Maximum A Posteriori
adaptation. Experiments conducted on a recognition task involving simple control gestures for mobile phones clearly demonstrate
the potential usage of our approaches and may provide for ingredients for new user interface designs.

1. Introduction

Designing comfortable user interfaces for mobile phones is a
challenging problem, given the limited amount of interaction
hardware and the small size of the device. Touch sensitive
technology has already enabled new ways for users to interact
with handheld devices. Recent touch screens provide an
intuitive interface for navigating content but this equipment
still imposes some limitations: the user’s fingertip size can de-
crease pointing accuracy, the area of interest can be occluded
by fingers, and most importantly the operation area is
restricted. Moreover, the amount of functionalities in mobile
devices is likely to keep increasing due to the forthcoming 3D
user interfaces and applications. Going forward we will see
also multiple sensors in portable devices that can enrich the
mobile user experience by allowing control through gestures
and other types of movement. Studies into alternatives to
mobile user interaction have, therefore, become a very active
research area in recent years.

Much of the work in mobile interaction has been in
direct manipulation interfaces, such as screen navigation by

scrolling or pointing and clicking. In particular, it has been
shown that different sensors provide viable alternatives to
conventional user interaction. For example, tilting interfaces
can be implemented with gyroscopes [1] and accelerometers
[2]. Using both tilt and buttons, the device itself is used as
input for navigating menus and maps. During the operation,
only one hand is required for manipulation. Several devices
employ a detachable stylus in which interaction is done by
tapping the touch screen to activate buttons or menu choices.
Interestingly, Apple’s products make use of the same technol-
ogy in a different way. In the iPhone, users are allowed to
zoom in and out by performing multiple fingers gestures on
the touch screen. In addition, a proximity sensor shuts off
the display in certain situations to save battery power, and
an accelerometer senses the orientation of the phone and
changes the screen accordingly.

On the other hand, many of the current mobile phones
have also two cameras built-in, one for capturing high-reso-
lution photography and the other for lower-resolution video
telephony. Even the most recent devices have not yet utilised
these unique input capabilities enabled by cameras for
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purposes other than just photographing. With appropriate
computer vision methods, information provided by images
allow us to create new self-intuitive user interface concepts.
In our work we have focused on what could be described as
indirect interfaces, where an abstract shape is recognised, and
this is then interpreted as a command by the mobile device.

In this paper we investigate two specific approaches for
creating patterns of motion: firstly the estimation of the
egomotion of the device itself using the inbuilt camera now
available on most mobile devices and also the use of this
camera for tracking the motion of an external object, in our
case the user’s finger. These motion trajectory sequences are
then modelled using Hidden Markov Models (HMMs). In
order to improve the initial, we propose to automatically
filter incorrectly classified sequences from the final result.
This filtering is based on two criteria: entropy and likelihood
ratio. The first, entropy, is a measure of the data itself, whilst
the second, likelihood ratio, is a measure of the confidence
in the classification result. In our case the entropy measure
is used to characterise the randomness of the velocity of
the motion sequence. Our hypothesis is that sequences with
more random velocity are more likely to be incorrectly classi-
fied, as opposed to a sequence with a more constant velocity.
The likelihood ratio is the ratio between the most likely
sequence and the second most likely sequence. This ratio can
be seen as a confidence measure of the classification result.

In the following section, Section 2, we look at previous
approaches to vision-based control of mobile user interfaces.
In Section 3, we present two methods used for producing
motion information from image sequences. In Section 4, we
describe the HMMs used for sequence classification and the
use of Maximum A Posteriori (MAP) adaptation in adapting
these models. In Section 5, we demonstrate in two sets of
experiments how the criteria of entropy and likelihood ratio
can be used to filter the results of a recognition task and
also how the same criteria can be used to select data for
performing unsupervised adaptation of HMMs using MAP
adaptation. Finally we present our conclusion in Section 6.

2. Related Work

Much of the previous work on vision-based user interaction
with mobile phones has utilised measured motion infor-
mation directly for controlling purposes. In these systems
the user can operate the phone through a series of hand
movements whilst holding the phone to perform actions on
the screen of the device such as scrolling or pointing and
clicking [3]. For example, Siemens introduced an augmented
reality game called Mozzies developed for their SX1 cell
phone in 2003. This was the first mobile phone application
utilizing the camera as a sensor. The goal of the game was to
shoot down the synthetic flying mosquitoes projected onto
a real-time background image by moving the phone around
and clicking at the right moment. During user movements,
the motion of the phone is recorded using a simple optical
flow technique.

After this work, we have seen many other image motion
based approaches. Möhring et al. [4] presented a tracking

system for augmented reality on a mobile phone to estimate
3D camera pose using special colour coded markers. Other
marker-based methods use a printed or hand-drawn circle
[5], a hand-held target [6], and a set of squares [7] to
facilitate the control task. One new solution was presented by
Pears [8]. The idea of this approach was to use a camera on
the mobile device to track markers on the computer display.
This technique can compute which part of the display is
viewed and the 6-DOF position of the camera with respect
to the display.

An alternative to markers is to estimate motion between
successive image frames with similar methods to those
commonly used in video coding. Rohs [9] divided incoming
frames into the fixed number of blocks and then determined
the relative x, y, and rotational motion using a simple block
matching technique in order to to interact with an RFID
tag. Another possibility is to extract distinctive features such
as edges and corners from images which exist naturally in
the scene. Haro et al. [10] have proposed a feature-based
method to estimate movement direction and magnitude, so
the user can navigate the device screen in 2D. Instead of using
local features, some approaches extract global features such
as integral projections from the image [11].

Some recent and generally interesting directions for
mobile interaction are to combine information from several
different sensors. In their feasibility study, Hwang et al. [12]
combined forward and backward movement and rotation
around the y-axis from camera-based motion tracking, and
tilts about the x- and z-axis from the 3-axis accelerometer.
Also, a technique to couple wide area, absolute, and low
resolution global data from a GPS receiver with local tracking
using feature-based motion estimation was presented by
DiVerdi and Höllerer [13].

Recently, the motion input was also applied for more
advanced indirect interaction such as recognising signs. This
increases the flexibility of the control system as the abstract
signs can be used to represent any command, such as controls
for a music player. A number of authors have examined the
possibility of using phone motion to draw alphanumeric
characters. Liu et al. [14] show examples of Latin and Chinese
characters drawn using the ego-motion of a mobile device,
although these characters are not recognised or used for
control. Kratz and Ballagas [15] propose using a simple
set of motions to interact with the external environment
through the mobile device. In their case there are four
symbols, consisting of a three-sided square in four different
orientations, and due to the small size of the symbol set they
report good performance with no user training.

The other solution studied in this paper, vision-based
finger tracking, is well studied problem on desktop com-
puters with numerous applications [16, 17]. On mobile
devices, Henrysson et al. [18] considered how a front-facing
camera on the phone can be used for 3-D augmented
reality interaction. They compared finger gesture input to
tangible input, keypad interaction, and phone tilting in
user interface tasks. However, in their work finger tracking
was performed by using simple frame differencing method.
Similar system called Finteraction was introduced by Jenabi
and Reiterer [19] but they do not provide much detail of
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the tracking method. Davis et al. [20] presented a real-time
algorithm for finger pointing. The method is based on skin
detection which makes it susceptible to illumination changes
and noise. In experiments, they evaluate the method in a
picture browsing task achieving promising results. Recently,
Terajima et al. [21] presented another template-based finger
tracking system for recognizing motion made by the user.
They achieve real-time performance but they do not provide
any quantitative analysis of the algorithm.

3. Motion Feature Extraction

In our contribution, we propose two alternative solutions to
extract motion information from successive images which
can be used as a feature for classification. In the first
approach, the ego-motion of the device is estimated while the
user operates the phone through a series of hand movements.
The second technique is to move an object such as a finger
in front of the camera and simultaneously track the object
during gestures. Both these approaches utilise the feature-
based motion analysis as a subtask where a sparse set of image
features are first selected from one image and then their
displacements are determined. In order to improve accuracy
of the motion information, an uncertainty of these features
is also analysed.

3.1. Feature Motion Analysis. Feature motion analysis begins
with the selection of image features from the first frame.
The goal is to ensure that the features are distributed over
the image so that the probability of sufficient presentation
of overall image motion is high. We use a computationally
straightforward way where the image area is split to nonover-
lapping regions and one feature is selected from each region
[22].

Another goal is to select some distinctive features which
guarantee high precision in the estimation of the displace-
ment vectors. Various criteria for selecting such features
typically analyse the richness of texture within an image
area [23]. One approach is to consider first-order image
derivatives in the horizontal and vertical directions. The sum
of squared derivatives provides a computationally simple
criterion. An alternative approach we have used is eigenvalue
analysis of 2 × 2 normal matrice which can give better
features, but has slightly higher computational complexity.

To estimate the displacement of the features i, a block
matching measure is evaluated exhaustively for a suitable
range of integer displacements in both x- and y-directions.
As a matching measure, we use either the sum of squared
differences (SSDs) measure or its variant, zero-mean sum
of squared differences (ZSSDs). The latter measure is more
robust to lighting changes which can be crucial in some
applications. Exhaustive evaluation of either of these meas-
ures gives a motion profile. The displacement that minimizes
the criterion provides a feature motion estimate di which can
be refined to subpixel accuracy via quadratic interpolation of
the motion profile values.

Uncertainty of the obtained estimate is analysed by de-
tecting those displacements that may be close to the true

displacement according to the matching measure value.
Selection of the set of those displacements is based on
gradient-based thresholding of the motion profile. The result
of this analysis is summarized as a covariance matrix Ci.

As a result of these computational steps, we obtain a set
of motion features. A motion feature i consists of the feature
centroid location in the first image, pi, its displacement
estimate di, and the result of uncertainty analysis (Ci). Device
motion estimation and object tracking use this information
as an input.

3.2. Device Motion Estimation. A mobile user interface
system controlled through a series of hand movements
requires a method for estimating the ego-motion of the
device’s camera [22]. Camera ego-motion is often estimated
from 2-D image motion measured between two successive
frames. As the observed motion in an image sequence may
consist of multiple motions due to moving objects in a
scene and motion parallax, one must consider solutions that
estimate the dominant motion.

The ego-motion estimation generally refers to the com-
putation of 6-DOF motion. However, the choice of a
model and the number of parameters for the computation
are application dependent. For simplicity we use a four-
parameter similarity motion model which represents the
displacement d of a feature located at p = [x, y]T using

d = d
(
θ, p

) = H
[

p
]
θ =

⎡

⎣
1 0 x y

0 1 y −x

⎤

⎦θ, (1)

where θ = [θ1, θ2, θ3, θ4]T is a vector of model parameters
and H[p] is an observation matrix. Here, θ1 and θ2 are related
to common translational motion, and θ3 and θ4 encode
information about 2-D rotation φ and scaling s, θ3 = s cosφ−
1 and θ4 = s sinφ.

The global motion describing the device motion is
estimated using those motion features which pass an outlier
analysis stage. Such analysis is necessary as feature displace-
ment estimates can be erroneous due to image noise, or
there may be several independent motions in the scene. It is
assumed that the majority of motion features are associated
with the global motion we want to estimate. To select those
inlier features, we use an RANSAC-based scheme where pairs
of motion features are used to instantiate motion model
hypotheses, which are then voted for by other features.

A feature votes for a hypothesis if the displacement
instantiated from the hypothesis is close to the estimated dis-
placement. The covariance matrix Ci provides information
about the feature motion uncertainty in different directions,
and the calculation of votes uses Ci-based Mahalanobis
distance measure. Once inlier features have been selected,
a weighted least squares approach is used to compute the
estimate of the device motion. Primarily, weighting is based
on measured uncertainties.

3.3. Object Tracking. The goal of object tracking is to
estimate the motion of an object such as a finger which
can then be used as a feature for recognising gestures [24].
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Figure 1: (a) Motion features. Estimates of feature displacements (lines) and associated error covariances (ellipses). (b) Assignment of
motion measurements to two components. Weightings are illustrated using colors (red : background (wi,1 large), blue : foreground (wi,2

large)). (c) Values of displacement estimates di = [ui, vi]
T . Ellipses visualize the covariances of the two distributions.

With hand-held devices the camera also moves slightly when
the user is operating the device. The problem is therefore
formulated as a task of estimating two distinct motion
components, the camera motion and the object motion.
However, we are not so interested in segmenting the observed
displacements into coherent regions in an image.

One way to track multiple object motions and cope with
multimodal distribution is combinatorial data association
methods [25]. In many tracking problems there is more
than one measurement at the same time step available. Data
association is a process to assign each of measurements to
the appropriate objects or motion. Assigning measurements
can be effective in the case of incoherent motion. Methods
of this kind often perform data association and estimation
separately by first assigning the measurements and then
estimating the state. In the following, we review our method
that is able to track multiple motions using a sparse set
of motion features. One benefit compared to previous
approaches is that no iterations are needed, making the
algorithm computationally efficient.

In our model, we assume that the background and
foreground motions are constant but subject to random
perturbations. Translational models are considered as suffi-
cient approximations, and then the state-space model of the
camera ( j = 1) and object + camera ( j = 2) motions is

s j(k) = s j(k − 1) + εj(k), (2)

where the state s j(k) = [uj(k), vj(k)]T denotes the motion
between the frames k − 1 and k. uj(k) is the motion in x-
direction and vj(k) is the motion in y-direction. εj(k) is
the process noise term, which is assumed to be zero-mean
white Gaussian noise with covariance matrix Q j = σ2

j I. As
foreground motion contains both camera and object motion,
it is reasonable to assume that σ2

2 > σ2
1 .

Object tracking uses motion features described in
Section 3.1 and illustrated in Figure 1(a) as an input.
Observed displacements of those features, di(k), are mod-
elled as

di(k) = λis1(k) + (1− λi)s2(k) + ηi(k), (3)

where ηi(k) is the observation noise, which is assumed to
obey zero-mean Gaussian distribution with covariance Ri,
and λi is a hidden binary assignment variable which indicates
the object that generates the measurement.

To estimate the motions we use a technique where the
Kalman filter [26] and the EM algorithm [27] are combined.
The basic assumption is that the motion measurements di

are drawn from either of two distributions corresponding
to the background or foreground. Having some estimate of
distribution parameters, we can assign measurements to the
appropriate motion. Note that the Kalman filter could be
used to directly estimate s j(k) if the assignments λi were
known. As these assignments are unknown, the predicted
estimates of s j(k) and a priori probabilities of associating
features to motion components are used to compute soft as-
signments wi, j using a Bayesian formulation. An example of
assignments is shown in Figures 1(b) and 1(c). The assign-
ments step corresponds to the E step of the EM algorithm.

Soft assignments are then used in the computation of the
Kalman gains which are needed to get the filtered estimates
of s j(k). The principle is that the lower the value of wi, j is
the higher the observation noise Ri, j becomes. This weighting
of the measurements corresponds to the M step of the EM
algorithm.

To describe the algorithm in more detail, we denote the
estimate of the state s j(k) with ŝ+

j (k) and associated error
covariance matrix with P+

j (k). The steps used to obtain the
state estimate at time instant k + 1 are as follows.

(1) Predict estimate ŝ−j (k + 1) by applying dynamics (2)

ŝ−j (k + 1) = ŝ+
j (k), (4)

and predict error covariance P−j (k + 1)

P−j (k + 1) = P+
j (k) + Q j . (5)

(2) Compute the weights wi, j for each motion feature
Fi(k + 1) = (di(k + 1), Ci(k + 1)) using a Bayesian
formulation. Let πj(k) > 0 be the a priori probability
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Figure 2: Sample frames from the sequence 1. (a) Frame 40, (b) frame 50, (c) frame 60, (d) frame 70, (e) frame 80, and (f) frame 110.

of associating a feature with the motion j (
∑

j πj(k) =
1). The weight wi, j is the a posteriori probability given
by (

∑
j wi, j = 1)

wi, j ∝ p
(

di | ŝ−j (k + 1), P−j (k + 1) + Ci(k + 1)
)
πj(k), (6)

where the likelihood function p(·) is a Gaussian pdf,
with mean ŝ−j (k + 1) and covariance P−j (k + 1).

(3) Use the weights wi, j to set the observation noise
covariance matrices in (3) according to

Ri, j = Ci

(
wi, j + ε

)−1
, (7)

where ε is a small positive constant. Compute the
Kalman gain

K j(k + 1) = P−j (k + 1)HT
(

HP−j (k + 1)HT + R j

)−1
, (8)

where R j is a block diagonal matrix composed of Ri, j

and H = [I2 . . . I2]T is the corresponding 2N × 2
observation matrix. Note that if wi, j has a small value,
corresponding measurement is effectively discarded
by this formulation.

(4) Compute filtered estimates of the state

ŝ+
j (k + 1) = ŝ−j (k + 1) + K j(k + 1)

(
z(k + 1)−Hs−j (k + 1)

)

(9)

and compute the associated error covariance matrix

P+
j (k + 1) =

(
I−K j(k + 1)H

)
P−j (k + 1), (10)

where z(k + 1) = [d1(k + 1)T , d2(k + 1)T , . . . ,

dN(k + 1)T]
T

.

(5) Update a priori probabilities for assignments with a
recursive filter

πj(k + 1) = aπj(k) + (1− a)
1
N

N∑

i=1

wi, j , (11)

where a < 1 is a constant learning rate.

Figure 2 shows some frames of the sequence 1 with
motion features observed during tracking. The weightings
for each feature are illustrated using colors. The red and blue
colors depict the background motion and the finger motion,
respectively. It can be seen that most of the features are
correctly associated. In Figure 2(b) all features are associated
to the background because the finger motion is negligible.
In our experimental tracker, 100 motion features are used,
the image feature size is 5 by 5 pixels, and the maximum
displacement is 12 pixels. We assume that the majority of
features are extracted from the background. Therefore, the
initial probabilities π1 and π2 (see (6)) for the background
and the finger motion were set to 0.7 and 0.3, respectively.
The learning rate a in (11) was set to 0.95 that guarantees a
decent change in the proportion of mixture components.

4. Motion Sequence Recognition

In order to perform classification we must select an appro-
priate method of modelling the motion sequences produced
by the feature extraction methods described in Section 3. The
most common method currently used to model sequences of
data are HMMs [28]. An HMM is a statistical model capable
of representing temporal relations in these sequences. The
data is characterised as a parametric stochastic process, and
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the parameters of this process are automatically estimated.
The data sequence is factorised over time by a series of
hidden states and emissions from these states. The transition
between states is probabilistic and depends only on the
previous state. In our case [22, 24] the continuous emission
probability from each state is modelled using Gaussian
Mixture Models (GMMs) [28]. HMM training can be carried
out using the Expectation-Maximisation (EM) algorithm
[27] and sequence decoding using the Viterbi algorithm [29].

4.1. Maximum a Posteriori Adaptation. Due to the difficultly
in tracking and the noisy nature of the measurements,
in some applications, it may be difficult to create general
models for each class that will perform well for many
different users. In order to improve the models performance
we propose using unsupervised Maximum A Posteriori
(MAP) adaptation to tailor the general models for a specific
user. We address the problem of controlling unsupervised
learning by proposing a method of selecting adaptation data
using a combination of entropy and likelihood ratio. We
demonstrate how this approach can significantly improve the
performance in the task of finger gesture recognition.

When using statistical models for pattern recognition we
must train the models based on a training set. If this training
set is labelled, then the Maximum Likelihood (ML) principle
is used to update the model parameters during training. The
likelihood of a training set Xtrain is maximised with respect
to the parameters of the model θ. So we select the parameters
θML such that

θML = arg max
θ

p(Xtrain | θ). (12)

The EM algorithm can be used to estimate (12). If, however,
we are presented with unlabelled data to train the model,
then there is the possibility that some of the training data
will not correspond to the class we wish to recognise.
Therefore we need some way of constraining the estimation
of the model parameters to limit the effects of incorrect
data. In MAP adaptation [30] a prior distribution over
the parameters θ, P(θ), is used to constrain the updated
parameters. The formulation for MAP estimation is similar
to the formulation for ML estimation given in (12). However,
in MAP estimation it is assumed that there is a prior distri-
bution on the parameters to be estimated. The estimation of
the parameters θ according to the MAP principle is given by

θMAP = arg max
θ

P
(
θ |Xadapt

)

= arg max
θ

p
(
Xadapt | θ

)
P(θ),

(13)

where Xadapt is the data selected for adaptation. Again the
EM algorithm can be used for MAP estimation. The next
section will look at the use of MAP learning for adapting the
parameters of HMMs.

4.2. MAP Adaptation for Hidden Markov Models. In a GMM
the set of parameters θ for each mixture m is given by

θ = {W ,μ,Σ
}

, (14)

where W = {ωm} is the set of scalar mixture weights,
μ = {μm} is the set of vector means, and Σ = {Σm}
is the set of covariance matrices of the Gaussian mixture.
This HMM is trained by updating the parameters of each
Gaussian and also the transitions between each state. In
MAP adaptation the estimation of the model parameters
for each state is constrained by a prior distribution for
these parameters, θprior = {Wprior,μprior,Σprior}. The updated
parameters of a particular GMM mixture m, θMAP

m , can be
estimated according to the following update equations:

wMAP
m = α ·wprior

m + (1− α) · wML
m ,

μMAP
m = α · μprior

m + (1− α) · μML
m ,

hΣMAP
m

= α ·
⎡

⎣
prior∑

m

+
(
μ

prior
m − μMAP

m

)(
μ

prior
m − μMAP

m

)T
⎤

⎦

+ (1− α) ·
⎡

⎣
ML∑

m

+
(
μML
m − μMAP

m

)(
μML
m − μMAP

m

)T
⎤

⎦,

(15)

where α is a weighting factor on the contributions of the prior
parameters, θprior, and the current estimated parameters
using ML, θML.

4.3. Filtering Recognition Results. A key point in unsuper-
vised learning is controling of either the learning process
or the data used for adaptation. One way to control unsu-
pervised adaptation is to filter out any incorrectly classified
sequences before they are used for adapting the model. In
this case we propose the use of entropy and the log likelihood
ratio as criteria for selecting sequences for adaptation. This
is based on our previous work [22] where we demonstrated
that a combination of log likelihood ratio and entropy can be
used as a measure of the confidence in the recognition result
for a sequence.

To adapt the general model to a user specific model, we
first classify the sequences produced by the user using the
general model. We then use the entropy and log-likelihood
ratio as the criteria for filter incorrect sequences from these
results. Finally the sequences that pass the selection criteria
are used to update the model for that class using MAP
adaptation.

4.3.1. Likelihood Ratio. If we have a set of classes {Cl1,
Cl2, . . . ,ClN} and a sequence of data X, then the class with
the highest likelihood given X is denoted by Cla and the class
with the second highest likelihood given X is denoted by Clb.
The log-likelihood ratio δ for a particular sequence is given
by

δ = log
(
p(Cla |X)

)− log
(
p(Clb |X)

)
, (16)

where p(Cl | X) is the likelihood of the class Cl given
the data sequence X. In our experiments any sequence that
produces a value of δ below a certain threshold is not used
for adaptation.
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Figure 3: An overview of the proposed system for the recognition of device ego-motion, with result filtering based on log likelihood ratio
and entropy.

4.3.2. Entropy. Information Entropy is a measure of the
randomness of a probability distribution of a random
variable Y and is given by [31]

Ent
(
Y
) = −L

N∑

n=1

P
(
yn
)
log2P

(
yn
)
, (17)

where P(yn) is the probability of y, N is the number of
samples, and L is a constant. In our case we take the first
derivative of the motion trajectory X, and this gives us the
velocity of the motion. This continuous velocity sequence is
quantised into a histogram, and we calculate the entropy of
the entries in this histogram.

So a sequence with a higher entropy will have a more
random velocity, while a sequence with lower entropy would
have a more constant velocity. Our hypothesis is that well-
formed signs will have a more constant velocity, and so a
lower entropy, as opposed to more random or poorly formed
signs. In this paper we demonstrate that sequences with
higher entropy are more likely to be incorrectly classified
and that by setting a threshold on the entropy we can filter
these potentially incorrect sequences from the data used for
adaptation.

5. Experiments

5.1. Device Motion Recognition. The system we propose here
uses HMMs, described in Section 4, to model the device
motion features described in Section 3.2. These models are
then used to classify the device motion sequences that are
input from the user. In order to ensure a minimum number
of incorrect classifications this initial result is then filtered in
order to reject any possibly incorrect commands before they
can be executed. The methods used for filtering the results,
likelihood ratio and entropy, are described in Section 4.3. An
overview of the system is shown in Figure 3.

We use a two-level filtering of the result. The first level
of filtering is based on the likelihood ratio between the
most likely command and the second most likely command.
This ratio can be seen as a confidence measure of the
classification result. If this ratio is below a certain predefined
threshold, then the confidence in the result is low and the
sequence is rejected. A second level of filtering is employed

to reject unintentional or accidental sequences, such as when
the input system is activated without the user’s knowledge
or the user loses control of the phone for some reason.
It is important that these unintended commands are not
recognised and executed as real commands.

In our experiments we use two threshold values for δ.
The first, δhard, is a hard decision, and any sequence with
a log-likelihood ratio below this threshold is rejected. The
second, δsoft, is a soft decision, for any sequence where δhard <
δ < δsoft the entropy of the sequence is used as an additional
indicator of the quality of the classification. Those sequences
with a log likelihood ratio, δ, satisfying δhard < δ < δsoft are
classified according to their entropy. Any sequences with an
entropy higher than a predetermined threshold are rejected
as potentially incorrect. This entropy threshold Entth is set on
the validation set as described in the next section.

Entropy is used for filtering the final classification result.
In our experiments we have included a number of sequences
where the user has either deliberately made a bad sign or has
just moved the phone at random. These sequences are used to
test the case where the system may be unintentionally turned
on by the user or the user loses control of the phone whilst
making a sign. The mean of the entropy of “bad” sequences
in the validation was found to be significantly higher than
the mean of the “good” sequences. This initial result indicates
the potential of using the velocity entropy as a measure of the
quality of the sign.

5.1.1. Experimental Procedure. In order to validate the
technique described here a hypothetical control system of
mobile phone functions was devised. In this system a series
of control commands was proposed. These commands are
composed of seven simple elements based on seven different
motions. These seven elements are shown in Table 1. Using
these basic elements alone the system would be limited
to seven different commands, so in order to provide a
greater number of commands more complex commands are
constructed from these motion elements. These complex
commands are used for our recognition experiments and
are shown in Table 2. Although we have used 11 complex
commands this could easily be extended to a larger number
of commands.
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Table 1: Seven basic motion elements.

Element Type of motion

← Left horizontal

→ Right horizontal

↑ Up vertical

↓ Down vertical

↙ Left diagonal

↘ Right diagonal

� Anticlockwise circle

Table 2: Eleven complex commands constructed from the seven
basic motions.

Name Command

Com1 ↙↘�
Com2 ↙↘
Com3 �

Com4 ↑→
Com5 ↑←
Com6 ↓→
Com7 ↓←
Com8 ↑→�
Com9 ↑←�
Com10 ↓→�
Com11 ↓←�

The experimental data was collected from 35 subjects.
Each subject was asked to draw each of the commands
in Table 2 five times using a standard camera equipped
mobile phone, a Nokia N90. The majority of subjects
had no previous experience in performing this task. There
was considerable variability of the sequences both between
subjects and also between different attempts from the same
subject; this can clearly be seen in Figure 4.

The subjects were randomly divided into training, valida-
tion, and test sets. There were 20 subjects in the training set,
5 subjects in the validation set, and 10 subjects in the test set.
Additionally 10 “bad” sequences were added to the validation
set and 20 to the test set, giving a total of 1100, 285, and
570 sequences in the training, validation, and testing sets,
respectively.

In addition to these subjects 30 random sequences were
collected. These sequences were produced by moving the
camera in a random way. These random or “bad” sequences
were included in the data to test the system’s performance
with input caused by accidental activation of the camera or
the user losing control of the phone whilst making a sign. The
mean of the entropy of “bad” sequences in the validation set
is 0.88 with standard deviation of 0.11, while the mean and
standard deviation of the “good” sequences is 0.58 and 0.13,
respectively.

It must be emphasised that there was no overlap of sub-
jects between these three sets. The training set was used to
train the parameters of the HMMs. The validation set was
used to set the hyperparameters of the individual models,
such as the number of Gaussians in the GMMs, that model

the state distributions of the HMMs, and the number of
states in the HMMs. The validation set was also used to
set the hard threshold, δhard, and the soft threshold, δsoft. In
addition the entropy threshold Entth was set by using the
validation set. The values of these parameters were; number
of states = 11, number of Gaussians = 10, δhard = 5, δsoft = 30
and Entth = 0.72.

5.1.2. Results and Discussion. The results of running the
system on the 570 test sequences are shown in Table 3. It
can be seen from these results that only 5 sequences are
incorrectly classified, while 27 sequences that would have
produced an incorrect result were rejected by the system.
These rejected sequences included all of the 20 deliberately
bad sequences. It is particularly interesting that 13 of these
bad sequences were rejected using the entropy criteria. This
result confirms that the higher entropy of the bad sequences
observed in the validation set can be generalised to the bad
sequences in the test set.

5.2. Object Motion Recognition. In this section we propose
a system for control of a mobile device by again recognis-
ing motion sequences. In this instance the sequences are
generated from tracking the users finger motion in front
of the mobile device camera, as described in Section 3.3.
In this system a series of simple control commands were
proposed; these eight commands are shown in Figure 5.
These command gestures are formed by the user drawing
the sign in the air with an extended index finger in front
of the mobile phone camera. So there are two challenges to
overcome, first the tracking of the finger and secondly the
classification of the sequences produced by this tracking.

In order to recognise the motion trajectories produced
by finger tracking we are again using HMMs. However, due
to the diversity in how people make the gestures it may
be difficult to create general models for each class that will
perform well for many different users. In order to improve
the model performance we propose using unsupervised
MAP adaptation to tailor the general models for a specific
user. We address the problem of controlling unsupervised
learning by proposing a method of selecting adaptation data
using a combination of entropy and likelihood ratio. We
demonstrate how this approach can significantly improve the
performance in the task of finger gesture recognition.

5.2.1. Experimental Procedure. The experimental data was
collected from 10 subjects. Each subject was asked to draw
each of the commands in Figure 5 four times using a
standard camera equipped mobile phone, a Nokia N73. This
data formed the initial training and validation sets and also
the baseline test set to measure the models performance
before any adaptation. The collected data was divided into
a training set of four subjects (128 sequences), a validation
set of two subjects (64 sequences), and a test set of four
subjects (128 sequences). To form the training and test sets
for adaptation two subjects from the test set were asked
to draw each sign an additional 11 times. These sequences



ISRN Signal Processing 9

−200 −150 −100 −50 0 50
−150

−100

−50

0

50
Subject A attempt 1

y
co

or
di

n
at

e
(p

ix
el

s)

x coordinate (pixels)

(a)

x coordinate (pixels)

y
co

or
di

n
at

e
(p

ix
el

s)

−400 −300 −200 −100 0 100
−250

−200

−150

−100

−50

0

50
Subject A attempt 2

(b)

−150

−100

−50

0

50

y
co

or
di

n
at

e
(p

ix
el

s)

−200−250 −150 −100 −50 0

x coordinate (pixels)

Subject B attempt 1

(c)

−150

−100

−50

0

50

y
co

or
di

n
at

e
(p

ix
el

s)

−200 −150 −100 −50 0

x coordinate (pixels)

Subject B attempt 2

(d)

Figure 4: The sequence ↓ ← � performed by two different users. Each row shows two attempts of the same sign from a single user. This
shows both the intrauser and interuser variability of the data.

S1 S2 S3 S4

S5 S6 S7 S8

Figure 5: The eight signs chosen to represent mobile phone commands. In the experiments each user was asked to draw the sign in the air
in front of the mobile phone camera.

form an adaptation set and test set for each of the subjects.
Seven sequences from each subject are used to create a
model adapted to that specific subject, and four sequences
from each subject are used to test the performance of the
adapted models. During MAP adaptation experiments the

initial prior model is the baseline model, after this the prior
model, θprior, is the ML estimated model, θML, from the
previous iteration. The adaption weighting, α, used in the
testing was 0.8; this was found to be a reasonable value from
previous work and was also tested using the validation set.
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Figure 6: The signs S1 (a) and S8 (b) performed by a single user.

Table 3: Results of testing on 570 sequence of which 20 were
intentionally bad. It should be noted that of 570 sequences only 5
were finally incorrectly classified.

Command Correct
Correct
rejected

Incorrect
rejected

Incorrect

Com1 50 0 0 0

Com2 47 2 0 1

Com3 46 4 0 0

Com4 49 0 1 0

Com5 50 0 0 0

Com6 48 0 2 0

Com7 50 0 0 0

Com8 47 0 1 2

Com9 46 1 1 2

Com10 48 0 2 0

Com11 50 0 0 0

Bad seq 0 20 0 0

Total 531 27 7 5

5.2.2. Results and Discussion. We first ran the baseline
experiments using the training set of four subjects and the
test set of four different subjects. This produced a sequence
recognition rate of 82% on the test set. It can be seen from
the confusion matrix shown in Table 4 that the errors show
a distinct pattern of confusion between sign S1 and sign
S8 and also between sign S2 and sign S7. These signs are
quite similar to each other with the only difference being a
horizontal or vertical separation of the strokes in signs S8
and S7. This may be due to the variability between different
subjects when making the signs, so if a user in the training set
does a particularly narrow S8 or S7 this may cause the model
to incorrectly classify S1 and S2 in the test set. This problem
can clearly be seen in Figure 6.

In the next set of experiments we tailor the general model
to an individual user using unsupervised MAP adaptation.

Table 4: Confusion matrix for the baseline recognition experiment
using unadapted HMMs. The rows are the recognition result, and
the columns are the labelling.

S1 S2 S3 S4 S5 S6 S7 S8

S1 6 0 0 0 0 0 0 0

S2 0 8 0 0 1 0 0 0

S3 2 2 15 0 0 1 1 0

S4 2 0 0 16 0 0 0 0

S5 0 0 0 0 15 0 0 0

S6 0 0 0 0 0 15 1 0

S7 0 6 0 0 0 0 14 0

S8 6 0 1 0 0 0 0 16

Table 5: Confusion matrix for recognition experiment using
HMMs adapted to the two subjects. The rows are the recognition
result, and the columns are the labelling.

S1 S2 S3 S4 S5 S6 S7 S8

S1 7 0 0 0 0 0 0 0

S2 0 8 0 0 0 0 0 0

S3 0 0 8 0 0 0 0 0

S4 1 0 0 8 0 2 0 0

S5 0 0 0 0 8 0 0 0

S6 0 0 0 0 0 4 0 0

S7 0 0 0 0 0 0 8 0

S8 0 0 0 0 0 2 0 8

The results of these experiments can be seen in Table 6; this
shows that adapting with no constraints on the data used
for adaptation can produce an increased recognition rate.
If, however, we filter the sequences used for adaptation by
applying the likelihood ratio and entropy criteria we can
significantly improve this result. This improvement can also
been seen in the confusion matrix shown in Table 5.
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Table 6: Results for the adaptation experiments. This shows the
baseline percentage recognition rate, the recognition rate when
adapting with no constraints, and the recognition rate after
adapting with entropy and likelihood ratio constraints.

Baseline
Adapting with no

constraints
Adapting with

constraints

Subject 1 81.2 84.4 90.6

Subject 2 81.2 87.5 93.7

6. Conclusions

We have presented here two camera-based user interaction
techniques for mobile devices that combine motion features
and statistical sequence modelling to classify the hand
movements of a user: the first by recognising the motion of
the device held in the user’s hand and second by recognising
the motion of the user’s finger. In order to improve the results
produced by these systems we have introduced two methods
of filtering the result of this classification, likelihood ratio
and entropy. In the first application these criteria were used
to filter incorrect or random sequences from the final result,
while in the second the criteria are used for selecting data for
unsupervised adaptation. It is clear from the results shown in
Section 5.1.2 that our proposed method of using entropy as
an indicator of badly formed sequences is able to filter out all
such sequences from the final result. Additionally the results
in Section 5.2.2 demonstrate that the same criteria can be
used to improve the performance of the models using MAP
adaptation.

We conclude that the computer vision-based motion
estimation and recognition techniques presented in this
paper have clear potential to become practical means for
interacting with mobile devices. They can possibly also
augment the information provided by other sensors, such
as accelerometers and touch screens, in a complementary
manner. In fact, the cameras in future mobile devices may,
for most of time, be used as sensors for self-intuitive user
interfaces rather than using them for digital photography.
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