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Effect of cluster configuration and auxiliary variables on the efficiency of local
pivotal method for national forest inventory
Minna Räty a, Juha Heikkinen a, Kari T. Korhonen b, Jouni Peräsaaria, Antti Ihalainen a, Juho Pitkänen b

and Annika Susanna Kangas b

aNatural Resources Institute Finland (Luke), Helsinki, Finland; bNatural Resources Institute Finland (Luke), Joensuu, Finland

ABSTRACT
Planning a forest inventory comprises making decisions related to the sampling strategy: cluster
configuration, sample size and sample allocation within the survey area. Cluster configuration
includes deciding on the number of sample plots within the cluster and distances between them.
Available resources set the limit for field work in terms of man-days. If the time consumption for
measurements is known, the sample size can be determined under the constraint. In this study, we
simulated the second phase of inventory sampling with fixed time resources by replicating sample
selection with a spatially balanced sampling utilizing local pivotal method (LPM) for different
cluster configurations to find the most efficient. As a result, the temporary cluster configuration
was changed from 9 to 5-sample plot configuration in a pilot inventory. Further, the sample
selection was performed with LPM having total growing stock volume and broadleaf volume
proportion as auxiliary information. The pilot results were aligned with the time series in respect to
forest area and total growing stock volume, but in tree species groups deviations were observed in
growing stock volume. A more comprehensive optimization should include the travelling routes,
the plot-to-plot distances and the plot design. In any case, the result is region specific.
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Glossary

Cluster size = number of sample plots in a cluster
Cluster configuration = cluster size + the actual chosen sample plots

which determine the dimensions of a cluster
and within cluster plot-to-plot distances

Auxiliary information =MS-NFI10 forest resource maps
Auxiliary variable = from auxiliary information derived cluster level

variable
Sampling strategy = unique combination of set of auxiliary variables

and cluster configuration (and window size used
when auxiliary information was gathered)

Forested land = forest land and poorly productive forest land

Introduction

National forest inventories (NFI) collect information on vari-
ables related to the forest state and health, mean growing
stock volume and forest area being the most commonly
reported variables (Tomppo et al. 2010). Lately, most attempts
to enhance NFI with the help of remote-sensing data have
concentrated on the estimation phase (McRoberts et al.
2010). Methods like post-stratification (McRoberts et al.
2012; Tipton et al. 2013; Magnussen et al. 2015; Myllymäki
et al. 2017) and model-assisted estimation (Särndal et al.
1992; Opsomer et al. 2007; Gregoire et al. 2011; McRoberts
et al. 2013; Tipton et al. 2013; Saarela et al. 2015; Kangas
et al. 2016) have been widely studied in connection to
forest inventory. However, spatially balanced sampling has
recently been demonstrated to offer great potential to

enhance the design phase (Grafström et al. 2017; Räty et al.
2018). Samples that are well spread in the space generated
by any given set of auxiliary variables can be obtained with
the local pivotal method (LPM, Grafström et al. 2012).

Operational NFIs often apply systematic cluster sampling,
where clusters of sample plots are spread out over the inven-
tory region, for example, in the form of a square grid (Tomppo
et al. 2010). NFI budget defines how many man-days each
year can be allocated to the field work. The limit to the
number of clusters is thus determined as a function of the
cluster configuration (number and locations of plots in a
cluster) and the resulting time needed to measure one cluster.

LPM can be implemented to a cluster-based operational
inventory through a two-phase design (Grafström et al.
2017): A dense grid of clusters is first overlaid to the inventory
region. Values of auxiliary variables are then obtained for each
cluster of this first-phase sample. The final second-phase
sample to be measured is then a subset of the first-phase
sample such that the distribution of the auxiliary variables is
matched as well as possible to that of the first-phase
sample. In other words, LPM sample is drawn from the finite
population of first-phase clusters.

Motivated by the promising results obtained in earlier
simulation studies (Grafström et al. 2017; Räty et al. 2018),
Finnish NFI decided to implement a pilot project where LPM
is tested as a part of the operational inventory. The number
of second-phase clusters to sample was limited by the
resources, but choices had to be made concerning the
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cluster configuration and the auxiliary data. In case of wall-to-
wall multilayer raster map of auxiliary data (in our case, the-
matic maps of forest resources produced as a result of the pre-
vious inventory), the latter includes (1) selection of map layers
used as auxiliary variables, (2) selection of pixels from which
the cluster-level auxiliary variable is computed and (3) selec-
tion of cluster-level parameters computed from pixel-level
values. The second question is necessary because the auxiliary
information used does not fully correspond to one fixed
location in the field due to georeferencing errors and
influence of atmospheric conditions and geometrical correc-
tion of satellite image that enable the sample plot to spread
over more than one pixel (Katila 2004; Tomppo et al. 2008).

The aim of this study was to analyse the effects of the choice
of cluster configuration and auxiliary variables on the efficiency
of the resulting LPM sampling design. The analysis was based
on sampling simulation, where the role of the first-phase
sample was played by real field data from the previous inven-
tory and auxiliary variables were derived from an earlier multi-
source inventory forest resources map. Such an approach was
made possible by the fact that extra resources available during
the previous inventory of the study region had led to excep-
tionally intensive sampling. Themost applicable sampling strat-
egy from the above analysis was applied in a pilot inventory in
summer 2018. In this paper, we present the selected sampling
strategy and preliminary inventory results.

Material and methods

Different LPM designs were compared by simulating sub-
samples from the whole set of field sample plots of the

11th National Forest Inventory (NFI11) within the 1227 km2

study region located in the Southwestern archipelago of
Finland in Åland region and inventoried in the summer
of 2013 (Figure 1). The target variables were the proportion
of forested land and the growing stock volumes on forested
land by tree species groups (Table 1). “Forested land” in this
study refers to a combination of two forestry land classes in
the national system, i.e. classes “forest land” and “poorly pro-
ductive forest land” (Tomppo et al. 2011), which is close to the
United Nations Food and Agriculture Organisation (FAO)
definition of forest (FAO 2012).

The auxiliary information was derived from the results of the
10th Multi-Source National Forest Inventory (MS-NFI10),which
was based on field data of the 10th NFI of Finland (Korhonen
et al. 2017) and Landsat 5 TM images, both from year 2007, as
well as digital map data used for delineating other land uses
from forestry land (Tomppo et al. 2008; Tomppo et al. 2012).
The forest resource maps of MS-NFI10 were available with
20 m× 20 m pixel size. Six map layers were utilized: (1) total
growing stock volume, (2) pine volume including all other con-
ifers except spruce, (3) spruce volume, (4) birch volume, (5)
other broadleaf growing stock volumes and (6) land use class.

Two different auxiliary data sets were subsampled from
each thematic map. The first set contained only those pixels
within which a sample plot centres was located. The second
set was composed of 5-pixel windows around each plot also
including pixels adjacent to the plot centre pixels in the cardi-
nal directions, i.e. so-called Rook’s case contiguity (e.g. Lloyd
2009). The cluster level auxiliary variables derived from the
selected pixels included means, total values, variances and
ratios (Table 2; Appendix Tables 1–2). Different combinations

Figure 1. (a) The Åland region in the southwestern Finland (in blue) and (b) the locations of the subset of NFI11 sample plots (red dots) within the region used in the
simulation study.

Table 1. Proportion of forest land, mean and total volume of growing stock by tree species group and combined according to NFI11 in simulation study material.

Forested land Total volume

Mean volumes

Pine Spruce BL All

62.9%. 9.5 × 106 m3 72.2 m3 ha−1 25.5 m3 ha−1 25.1 m3 ha−1 122.7 m3 ha−1

2 M. RÄTY ET AL.



of these variables and geographic coordinates in the Finnish
uniform coordinate system (epsg: 2393) were tested (Table 3).
The set of combinations was based on previous experience
and simulations(Räty et al. 2018; Räty and Kangas 2019).

Cluster configurations compared in this study were subsets
of the NFI11 clusters of nine sample plots with 200 m intervals
(Figure 2 and Figure 3). Only those clusters were sampled that
contained at least one plot at least partially on land according
to the digital map data (Table 4).

The costs for each cluster configuration were defined as a
sum of three time consumption components that were
needed to reach the sample plot: (1) the travelling time on
land to reach the cluster centre (30 min for each cluster), (2) tra-
velling with boat to the cluster centre (0–100 min) and (3) time
to reach the sample plot from the cluster centre (0–40 min).
Obviously, boat cost above equalled to 0 if the cluster was
reachable without a boat, i.e. located on one of the main

islands connected with bridges and road network. Additionally,
if the sample plot located in water the last cost component was
also 0 because it would have not been visited in the field
survey. The cost did not include an estimate of the actual
field measurement time demanded, just the reaching time.
All the field sample plots were assumed to bemeasured follow-
ing the same principles and procedures and thus their time
consumption would have been the same regardless of the
cluster configuration.

Subsampling of NFI11 field plots under each sampling
strategy obtained as some combination of the two auxiliary
data sets, 23 sets of auxiliary variables and 10 cluster configur-
ations was replicated T = 5000 times. Number of sampled clus-
ters varied between replications, most remarkably between
cluster configurations, as a result of limiting the anticipated
cost to 7000 ± 70 min.

The sample selection was based at LPM, which aims at a
sample as close as possible to its distribution in population
by excluding the most similar unit when promoting the
other (Grafström et al. 2012). While the selection process is
based on updating the inclusion probabilities of the clusters
iteratively, the actual inclusion probabilities (both first and
second order) are fixed.

Estimates ŷ for population parameters k in sampling strat-
egy j were derived using standard NFI estimators (Tomppo
et al. 2011, Ch. 3) from each replication, which allowed us to
estimate a mean squared error (MSE). MSE presents the vari-
ation around the true NFI11 population mean value Yk

MSEk,j =
∑T

i=1
(ŷk,j − Yk)

2

T
, (1)

where k, k = 1,… ,6, is the estimated population parameter, T
is the number of replications, and j, j = 1,… ,360 is the combi-
nation of the set of auxiliary variables (23), cluster configur-
ation (10) and pixel window size (2) combination. The
smaller the MSE the more accurately the sampling strategy
was capable to estimate the population parameter. Efficien-
cies of the strategies were compared with relative measure:

REk,j = MSEk,ref
MSEk,j

, (2)

where MSEk,ref is the MSE of the reference sampling strategy:
one-pixel windows when comparing auxiliary data sets, coor-
dinates only when comparing auxiliary variable combinations,
and nine-plot cluster when comparing cluster configurations.

Table 2. Estimation of auxiliary variables from the forest resource MS-NFI map layers in two different ways: estimating mean volumes and total volumes. Note that
the land class proportion variables (For) and total growing stock variance (Var) are the same for both auxiliary variables.

Auxiliary variable Forest resource map Mean estimation Total estimation

Vol Total growing stock volume of all tree species Mean1 Total1

Pi Pine growing stock volume2 Mean1 Total1

Spr Spruce growing stock volume Mean1 Total1

BL Birch and other broadleaf growing stock volume Mean1 Total1

BLprop BLMean/VolMean or BLTotal/VolTotal Proportion
Var Total growing stock volume Variance1

For Land class Proportion of forested land3

1 Mean, total and variance are calculated over forested land pixels within plots included in the cluster.
2 Includes all conifer species except Norway spruce.
3 Forested land consists of forestry land and shrub land classes.

Table 3. Tested auxiliary variable combinations in sampling simulations with
both mean volume and total volume based variables. X and Y are geographic
coordinates in Finland uniform coordinate system.

Vol Pi Spr BL Var For BLprop X Y

1 X X X X
2 X X X X X
3 X X X X X
4 X X X X X
5 X X X X X
6 X X X X X X
7 X X X X X X X
8 X X X X X X X
9 X X X X X X X X
10 X X
11 X X X X
12 X X X X X

Figure 2. Temporary cluster configuration used in the 11th National Forest
Inventory in Åland.

SCANDINAVIAN JOURNAL OF FOREST RESEARCH 3



From the pilot survey, the inventory results were estimated for
the area and growing stock volumes. These were compared to
the corresponding results of the same region in the previous
NFIs.

Results

Number of clusters that can be measured within the given
time limit varied from 66 (using the nine-plot clusters) to 99
(using the four-plot clusters, Table 5). With larger clusters,

we obtained larger numbers of plots, but they are also more
correlated due to stronger clustering. The five-pixel window
was slightly but consistently better than one-pixel window
(Table 6) and therefore the rest of the results are based on
auxiliary data set estimated from a five-pixel window.

Utilizing of auxiliary information did enhance the sampling
efficiency with most of the simulated auxiliary variable combi-
nations and with total volume based auxiliary variables in all

Figure 3. Different cluster configurations tested in the simulations. The numbered sample plots were included to the designs. Also the original 9 sample plot
configuration was included.

Table 4. Sampling population sizes as total number of clusters and number of
sample plots in land for different cluster configurations. Sampling population
was limited to the clusters where at least one sample plot would have been
visited in the field measurements.

Cluster size Sample plots Number clusters Land plots

4 1, 3, 7, 9 181 494
4 2, 4, 6, 8 180 494
4 3, 4, 6, 7 171 497
5 1, 3, 5, 7, 9 192 619
5 3–7 175 622
6 1, 2, 4, 6, 8, 9 196 745
6 2–4, 6–8 188 742
7 2–8 189 863
8 1–4, 6–9 201 989
9 1–9 203 1113

Table 5. Average sample sizes (= number of chosen temporary clusters) and
land and forested land sample plots in the samples with the predefined total
cost of 7000 ± 70 min for different cluster sizes and configurations.

Cluster
size

Sample
plots

Sampled clusters

Land
plots

Forested land
plotsNumber

% of
population

4 1, 3, 7, 9 98 54 266 172
4 2, 4, 6, 8 99 55 271 165
4 3, 4, 6, 7 97 57 282 174
5 1, 3, 5, 7, 9 89 46 286 185
5 3–7 87 50 308 192
6 1, 2, 4, 6, 8,

9
82 42 309 193

6 2–4, 6–8 81 43 318 195
7 2–8 74 39 337 210
8 1–4, 6–9 70 35 343 215
9 1–9 66 33 357 225

4 M. RÄTY ET AL.



cases (Table 7). The rest of REs were within the range of ±0.3
for both the mean and total types of auxiliary variables. In
cluster configurations, the sparsest four-plot configuration
was clearly less efficient than the original nine-plot configur-
ation, and many configurations were close to the original
design. The densest cluster configurations with 5 and 6
sample plots provided highest REs (Table 8). Thus one could
expect to gain on average a RE of 1.0–1.5 over the population
parameters in respect to the original 9-sample plot configur-
ation due to higher number of clusters. Also one of the 4-
sample plot configurations had on average as high relative
efficiency, but it resulted from very efficient growing stock
estimation on expense of forested land proportion estimation
which was regarded as not acceptable.

To favour simplicity, a 5-sample plot cluster configuration
with plots number 3–7 in the original cluster configuration
(Figure 2) and LPM utilizing only two auxiliary variables
besides geographic coordinates, namely total growing stock
volume and proportion of broadleaved volume of total
growing stock volume in the sample selection, were chosen
for the pilot of operational NFI.

We utilized the most recent multi-source forest inventory
result maps dated at year 2015 (Mäkisara et al. 2019). For
the sample selection, a primary cluster grid at 96 m intervals
from a centre of cluster corner sample plot to the next clus-
ter’s corner was span over Åland. In the newest MS-NFI
map, the pixel size was 16 × 16 m and therefore we collected
four pixels corresponding to a square of 32 × 32 m from
location of each sample plot, the cluster-level auxiliary vari-
ables were estimated from pixels, and a sample of 175
cluster was selected (Figure 4).

The clusters were measured during summer 2018 as a part
of the 12th NFI (years 2014–2018). According to primary
analysis, no changes have happened in land use class area
estimates. The estimate of total volume of growing stock
has increased to the level of the NFI10 (2007 in Åland) after
a clear decrease in NFI11 (Figure 5). Both the area and
volume estimates are credible as compared to the previous
inventories and expected variance of the estimates.

Discussion

The aim of this study was to find an optimal cluster configur-
ation for the southwestern archipelago in Finland, and a
method to select a sample, and then finally apply the
derived sampling design in selection of temporary clusters
for the 12th NFI in the Åland region (Figure 1). The

Table 6. The ratio of mean squared errors when utilizing only the centre pixel
auxiliary information against the 5-pixel-window around the sample plot centre
to the estimation.

Forested land Total volume

Mean volumes

Pine Spruce BL All

Min 0.80 0.81 0.74 0.67 0.73 0.74
1stQ 1.03 1.01 0.95 0.93 0.94 0.95
Median 1.10 1.07 1.01 1.02 0.99 1.02
Mean 1.13 1.10 1.02 1.04 1.00 1.04
3rdQ 1.19 1.15 1.09 1.11 1.04 1.09
Max 1.93 1.79 1.60 1.79 1.55 1.63
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optimization of cluster configuration was conducted by simu-
lating the second stage of two-stage sampling with spatially
balanced sampling method utilizing local pivotal method
(LPM) in sample selection. The number of sampled clusters
was limited with time consumption cost to reach the plots,
i.e. fixed inventory resources. This optimization was the
novel part of this study. As far as we know, no one has
applied LPM in a similar set-up before us. Thus the fundamen-
tal question was whether it could be connected to the
decision making concerning the overall sampling strategy.

As we initially assumed, instead of only one single pixel
within which the sample plot centre fell in, it was better to
use the larger 5-pixel window in the auxiliary information
extraction (Table 6). Apparently, the cluster level auxiliary vari-
ables which were totals, means or variances of the single pixel
values of the MS-NFI forest resource maps benefitted from
having larger pixel window from the positions of sample
plots within the cluster. Further studies on the cluster level

pixel selection could be carried on by enlarging the window
or weighting the pixels according to the assumed proportion
of sample plot that belongs to that pixel (Grafström et al. 2017).

In the auxiliary variables, we had both growing stock
volume mean and total based and land use related variables
(Table 7). In general, it was a beneficial to use auxiliary vari-
ables in sampling but between the set of used auxiliaries
the differences were not large. Therefore even really simple
sampling designs with few auxiliary variables would come
into question. The auxiliary variables are the crucial part of
the method since they are supposed to have explanatory
power over the inventory variables and the distances are cal-
culated between them. In fact, the auxiliary variables and
inventory variables were linearly correlated (Appendix Table
1), which indicate the explanatory power of the chosen auxili-
ary variables. Compared to the previous study (Räty et al.
2018), we introduced in this work also the total value based
auxiliary variables. Thus we had sum, mean and variance stat-
istics at the cluster level. Further investigations on describing
and comparing the clusters with the auxiliary variables could
be tried out, for example, by introducing other descriptive
statistics like quantiles.

We had reference field data only from the locations of the
previous inventory’s sample plot locations, and therefore we
were only able to alter the set of sample plots that existed
in the original cluster configuration. Thus we could neither
simulate any larger clusters than the original cluster (Figure 2
and Figure 3) nor include the plot-to-plot distance optimization
to the study (except for the comparison between 200 m dis-
tance to 400 m distance in plot types 1-3-5-7-9 and 3-4-5-6-7,
Figure 3). The latter could have been used to evaluate spatial
autocorrelation (see e.g. Schabenberger and Gotway 2004).
In cluster sampling, to gain the most out of an inventory the
sample plots are placed at distance where spatial autocorrela-
tion between the plots vanishes (Tomppo et al. 2001).

Our time constraint was based on the visual interpret-
ation of an expert. Those can be considered to be as realis-
tic as possible taking into account that the resulting sample
is not known in advance and hence the time consumption
was defined for a generic case without travelling route
optimization. Our time cost constraint included only the tra-
velling time, but in more realistic estimation also the time to
measure the sample plots would have been included. Typi-
cally the measurement time of a plot in simulation studies is

Figure 4. Temporary sample clusters (red) in the 12th Finnish National Forest
Inventory in southwestern archipelago.

Table 8. Average relative efficiencies of cluster configurations for estimated population parameters over auxiliary variable combinations excluding the sampling
design with only geographic coordinates. On the left are the results for auxiliary variables estimated using mean volumes and on the right with total volumes.

Auxiliary variables based on mean volumes Auxiliary variables based on total volumes

Cluster design Forested
land

Total
volume

Mean volumes Mean
RE

Forested
land

Total
volume

Mean volumes Mean
RESize Sample plots Pi Spr BL All Pi Spr BL All

4 1, 3, 7, 9 1.07 0.45 0.54 0.63 0.99 0.49 0.70 1.08 0.44 0.51 0.62 0.99 0.47 0.69
4 2, 4, 6, 8 0.82 0.78 1.33 1.72 1.54 1.29 1.25 0.86 0.79 1.37 1.69 1.42 1.29 1.24
4 3, 4, 6, 7 1.25 1.43 0.54 1.36 0.47 1.07 1.02 1.28 1.52 0.53 1.42 0.45 1.10 1.05
5 1, 3, 5, 7, 9 0.89 0.77 1.03 0.88 1.07 0.97 0.94 0.90 0.74 0.99 0.92 1.03 0.94 0.92
5 3–7 1.43 1.24 1.17 1.27 0.94 1.05 1.18 1.51 1.33 1.13 1.23 0.94 1.03 1.20
6 1, 2, 4, 6, 8, 9 1.23 1.16 1.10 1.37 1.24 1.05 1.19 1.28 1.14 1.08 1.33 1.19 1.01 1.17
6 2–4, 6–8 0.85 1.00 0.88 1.13 0.83 1.05 0.96 0.87 1.03 0.87 1.12 0.83 1.09 0.97
7 2–8 1.02 0.92 0.91 1.19 1.03 0.97 1.01 1.09 0.98 0.88 1.22 1.05 0.97 1.03
8 1–4, 6–9 1.05 0.96 0.82 1.05 0.92 0.85 0.94 1.03 0.96 0.82 1.00 0.94 0.83 0.93
9 1–9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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an average value used for all plots, as more detailed infor-
mation is not available, and therefore that would have
only a slight impact on the results in our case. Introducing
the route optimization (e.g. Yim et al. 2015) would have
made the study more realistic but also more tedious as
we compared 360 sampling designs using 5000 repetitions
for each.

For a comprehensive sampling planning (e.g. Tomppo
et al. 2014) also the considerations of plot configuration
should have been included (e.g. Henttonen and Kangas
2015). Including the plot type optimization into the
problem, however, would require mapped data of trees in
the simulation. Connecting above-mentioned components
into one and same optimization would actually allow to
adjust the sampling strategy locally, in an optimal case seam-
lessly but at least for smaller regions than is currently the case
(Figure 1 in Korhonen et al. 2017), but the adjustment should
not depend on the measurements done in a plot. An optional
approach would be to base the decision of sampling design
on Cost + Loss analysis (Gilabert and McDill 2010; Barth and
Ståhl 2012).

The result including both the cluster configuration and
auxiliary variable combination in sample selection holds

only for the study region. For example, spatial variation
differs in regions (Ranneby et al. 1987; Tomppo et al. 2001),
which impacts on the within cluster distances, cluster size
and sampling intensity. Thus we expect that for other
regions similar analysis should be carried out to find the
best sampling strategy for those other conditions. Particularly
in our case, the study region we had is exceptional compared
to the other regions in Finland. On the other hand, this opens
up the chance to use different datasets in different regions
that are locally relevant and perhaps limitedly available such
as laser-scanning data.

Based on the previous results on the cluster configuration
(Table 8), it was clear that either 5 or 6 sample plot configur-
ation would be the most efficient. Additionally, the auxiliary
variables would most probably be based on the total
growing stock volumes than means as the former proved to
be clearly more efficient (Table 7). This might have been
due to the way how mean volumes were estimated just
over the forested land: in a scattered landscape as in the archi-
pelago where the most remarkable feature is the variation in
the size of forest patches. Most of the clusters included only
few forested sample plots and with mean value auxiliaries
there is no link to the actual amount of wood. With the

Figure 5. National forest inventory result time series of land area distribution (above) and growing stock volume (below) in Åland including the 12th inventory
carried out with spatially balanced sampling for the temporary clusters.
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total growing stock volume based auxiliary variables, the
samples describe more efficiently the variation in the forested
area and therefore also in the amount of wood. In the
mainland, where the forest areas are more contiguous, the
differences may not be as large. So, we eliminated all mean
value based auxiliary variable combinations from our
considerations.

In conclusion, the simulations utilizing auxiliary remote-
sensed data and spatially balanced sampling with local
pivotal method could make a distinction between different
cluster configurations. If the target is to get equally good esti-
mates for all tested population parameters, the cluster size
could be smaller than in previous survey – 5–6 sample
plots. Further, when estimating the auxiliary variables from
auxiliary information (forest resource maps) a bigger
window around the sample plots is preferable and the auxili-
ary variables should be based rather on total than mean
growing stock volume. The best sampling design from practi-
cal point of view was applied over our survey area and the
results showed similar trends to previous inventories. The
resulting sampling strategy is a region specific and thus
similar analysis should be carried out if applied elsewhere.
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Appendices

Appendix Table 1. Descriptive statistics of field survey data (NFI) and auxiliary variables and correlations between datasets for different population parameters in
cluster configurations.

Configuration NFI AUX

CorSize Plots Min 1Q Med Mean 3Q Max Min 1Q Med Mean 3Q Max

Forest proportion 4 1,3,7,9 0.25 0.25 0.50 0.54 0.75 1 0.05 0.25 0.50 0.51 0.75 1 0.83
4 2,4,6,8 0.25 0.25 0.50 0.60 0.75 1 0.05 0.25 0.50 0.53 0.75 1 0.84
4 3,4,6,7 0.25 0.50 0.50 0.61 0.75 1 0.05 0.30 0.55 0.56 0.80 1 0.81
5 1,3,5,7,9 0.20 0.20 0.60 0.52 0.80 1 0.04 0.20 0.48 0.49 0.72 1 0.85
5 3–7 0.20 0.40 0.60 0.59 0.80 1 0.04 0.28 0.60 0.55 0.80 1 0.83
6 1,2,4,6,8,9 0.17 0.33 0.50 0.52 0.67 1 0.03 0.20 0.47 0.47 0.70 1 0.88
6 2-4,6-8 0.17 0.33 0.50 0.54 0.83 1 0.03 0.23 0.50 0.50 0.77 1 0.88
7 2–8 0.14 0.29 0.57 0.53 0.71 1 0.03 0.23 0.51 0.50 0.77 1 0.89
8 1–4,6–9 0.13 0.25 0.50 0.49 0.75 1 0.03 0.18 0.48 0.46 0.69 1 0.89
9 1–9 0.11 0.22 0.44 0.49 0.67 1 0.02 0.18 0.44 0.46 0.72 1 0.90

Mean volume,
m3 ha−1

4 1,3,7,9 3 87 115 125 164 355 0 56 96 97 131 251 0.38
4 2,4,6,8 11 82 122 125 164 310 0 52 93 91 130 229 0.54
4 3,4,6,7 4 69 125 127 172 310 0 43 93 91 135 222 0.49
5 1,3,5,7,9 1 78 116 122 159 358 0 54 92 91 123 251 0.46
5 3–7 5 71 119 123 156 301 0 44 91 88 124 223 0.42
6 1,2,4,6,8,9 15 89 121 125 158 327 0 52 94 92 128 206 0.49
6 2–4,6–8 10 84 124 129 168 310 0 46 93 87 125 223 0.47
7 2–8 10 79 122 124 163 286 0 52 95 87 122 225 0.43
8 1-4,6-9 10 87 123 125 159 302 0 52 92 89 123 199 0.55
9 1–9 10 88 121 123 156 316 0 53 92 88 121 199 0.52

Mean pine volume,
m3 ha−1

4 1,3,7,9 3 46 72 81 110 219 0 33 52 53 69 170 0.41
4 2,4,6,8 2 48 69 79 103 310 0 28 49 50 69 139 0.33
4 3,4,6,7 4 41 68 80 112 310 0 23 47 49 72 141 0.43
5 1,3,5,7,9 1 39 68 75 100 255 0 31 47 49 68 170 0.47
5 3–7 5 42 66 75 103 237 0 24 45 47 68 140 0.48
6 1,2,4,6,8,9 5 46 68 78 100 283 0 31 51 51 68 125 0.36
6 2-4,6-8 2 44 68 80 105 310 0 25 45 47 67 140 0.43
7 2–8 2 43 67 75 98 260 0 30 46 47 66 138 0.45
8 1–4,6–9 5 45 71 76 101 193 0 29 49 49 67 120 0.46
9 1–9 5 45 69 73 97 189 0 30 48 48 66 123 0.50

Mean spruce volume,
m3 ha−1

4 1,3,7,9 1 11 22 34 39 193 0 4.8 16 20 29 97 0.19
4 2,4,6,8 1 10 21 32 48 123 0 3.7 12 18 28 71 0.45
4 3,4,6,7 1 11 26 37 47 232 0 3.0 13 17 28 70 0.35
5 1,3,5,7,9 1 11 20 32 36 256 0 4.3 15 18 27 80 0.24
5 3–7 1 6 23 33 44 232 0 4.0 15 17 24 59 0.37
6 1,2,4,6,8,9 1 11 22 31 42 184 0 5.4 14 18 28 81 0.35
6 2-4,6-8 1 10 22 33 48 232 0 4.3 14 16 25 70 0.44
7 2–8 1 8 20 31 44 232 0 4.9 14 17 25 64 0.45
8 1–4,6–9 1 11 23 31 42 184 0 4.4 15 18 28 72 0.36
9 1–9 1 11 23 29 40 162 0 5.9 14 17 26 62 0.39

Mean broadleaf
volume, m3 ha−1

4 1,3,7,9 0 4 9 15 19 146 0 8.6 19 25 34 146 0.32
4 2,4,6,8 0 5 8 13 15 94 0 6.2 17 23 36 108 0.42
4 3,4,6,7 0 4 9 14 20 93 0 4.4 19 24 38 109 0.42
5 1,3,5,7,9 0 4 8 14 17 125 0 7.8 19 24 34 125 0.38
5 3–7 0 3 7 13 14 93 0 4.7 19 24 39 109 0.45
6 1,2,4,6,8,9 0 4 7 11 13 113 0 6.7 18 23 32 113 0.43
6 2–4,6–8 0 4 7 12 14 94 0 5.6 19 24 36 109 0.45

(Continued )
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Appendix Table 1. Continued.

Configuration NFI AUX

CorSize Plots Min 1Q Med Mean 3Q Max Min 1Q Med Mean 3Q Max

7 2–8 0 3 6 11 13 71 0 6.0 18 23 35 109 0.47
8 1–4,6–9 0 3 5 10 11 83 0 7.1 18 22 31 97 0.48
9 1–9 0 3 5 9 10 71 0 6.3 19 22 32 84 0.51

Volume variance, m6 4 1,3,7,9 0 17 45 72 93 424 0 990 3110 3516 5354 14226 0.15
4 2,4,6,8 0 22 53 82 111 659 0 839 2407 2786 3948 10546 0.08
4 3,4,6,7 0 13 45 79 104 584 0 719 2458 2887 4586 10187 0.17
5 1,3,5,7,9 1 18 47 73 91 406 0 1148 3512 3596 5369 12191 0.29
5 3–7 0 16 48 81 99 584 0 924 2622 3056 4778 10194 0.11
6 1,2,4,6,8,9 0 26 59 82 95 437 0 1185 3119 3246 4574 10971 0.22
6 2–4,6–8 0 20 53 84 103 584 0 1106 2815 3097 4416 11634 0.09
7 2–8 0 25 61 85 103 493 0 1453 3088 3213 4804 9581 0.08
8 1–4,6–9 0 27 61 82 96 424 0 1481 3414 3458 4813 11634 0.20
9 1–9 1 29 61 80 96 362 0 1703 3448 3510 4867 11012 0.22

Total volume, m3 4 1,3,7,9 2.7 123 203 276 400 1039 25 456 1061 1165 1675 3831 0.64
4 2,4,6,8 11 144 260 279 384 821 3 481 977 1178 1724 3573 0.79
4 3,4,6,7 4.2 140 263 299 396 990 21 491 1061 1243 1851 3622 0.69
5 1,3,5,7,9 2.7 137 254 321 450 1073 25 481 1256 1376 1994 4845 0.72
5 3–7 6.4 172 289 350 493 1203 21 557 1325 1509 2311 4310 0.73
6 1,2,4,6,8,9 11 168 347 376 530 1288 3 617 1531 1620 2374 5332 0.77
6 2-4,6-8 6.4 204 344 396 510 1207 8 685 1502 1699 2546 5025 0.80
7 2–8 6.4 232 387 443 592 1428 8 840 1653 1943 3141 5713 0.82
8 1–4,6–9 10 206 428 488 662 1556 18 818 1855 2081 3128 7005 0.81
9 1–9 10 249 460 535 715 1894 18 866 1996 2323 3586 7708 0.84

Total pine volume,
m3

4 1,3,7,9 2.7 72 145 173 250 661 2 229 588 635 910 2037 0.64
4 2,4,6,8 5.6 84 159 176 262 525 0 254 571 648 955 1908 0.63
4 3,4,6,7 4.2 83 183 199 275 650 12 218 646 682 1019 2056 0.65
5 1,3,5,7,9 2.7 74 166 198 283 721 12 236 647 742 1119 2680 0.71
5 3–7 5.6 98 210 228 309 686 12 318 740 818 1201 2525 0.70
6 1,2,4,6,8,9 10 100 212 234 345 672 0 333 795 884 1372 2695 0.69
6 2-4,6-8 5.6 100 239 250 345 808 8 321 854 936 1382 2774 0.74
7 2–8 5.6 121 264 279 389 844 8 357 953 1061 1600 3242 0.77
8 1-4,6-9 10 127 274 301 439 910 12 343 1045 1139 1779 3458 0.78
9 1–9 10 130 297 327 487 946 12 433 1163 1264 2066 3926 0.81

Total spruce volume,
m3

4 1,3,7,9 2.6 23 50 86 95 574 0 40 168 243 354 983 0.33
4 2,4,6,8 2.8 19 48 76 112 351 0 54 154 240 351 1009 0.57
4 3,4,6,7 2.6 19 56 89 117 734 0 50 180 248 379 1070 0.47
5 1,3,5,7,9 2.6 24 52 91 91 769 0 56 209 278 414 1162 0.39
5 3–7 2.6 18 57 95 124 742 0 73 204 293 461 1141 0.49
6 1,2,4,6,8,9 2.8 31 64 97 139 672 0 70 256 337 518 1675 0.52
6 2–4,6–8 2.8 23 60 103 157 737 0 71 255 343 472 1368 0.58
7 2–8 2.8 23 60 110 160 745 0 101 286 385 579 1419 0.60
8 1–4,6–9 2.8 37 85 127 174 770 0 77 312 429 658 1992 0.55
9 1–9 2.8 37 90 134 176 974 0 96 336 471 723 2085 0.58

Total broadleaf
volume, m3

4 1,3,7,9 0 0 13 43 63 443 0 67 223 287 422 1770 0.47
4 2,4,6,8 0 0 5 41 58 297 0 67 206 291 443 1174 0.56
4 3,4,6,7 0 0 4 39 55 418 0 66 223 314 455 1512 0.54
5 1,3,5,7,9 0 0 19 53 80 443 0 88 272 356 523 2327 0.54
5 3–7 0 0 10 52 89 429 0 95 295 398 559 2069 0.59
6 1,2,4,6,8,9 0 0 21 61 96 476 0 93 284 399 630 2022 0.64
6 2–4,6–8 0 0 13 57 76 519 0 114 285 419 632 2096 0.62
7 2–8 0 0 22 69 107 519 0 140 357 497 740 2653 0.64
8 1–4,6–9 0 0 33 76 116 645 0 115 396 513 789 2944 0.65
9 1–9 0 0 40 87 128 645 0 140 457 588 910 3501 0.68

Appendix Table 2. Population parameters estimated for the cluster configurations.

Cluster configuration

Forested land, % Total volume, m3

Mean volumes, m3/ha

Size Sample plots Pi Spr BL All

4 1, 3, 7, 9 64.6 10.1E + 06 75.8 27.9 24.3 127.9
4 2, 4, 6, 8 60.7 9.0E + 06 71.7 24.5 24.8 121.0
4 3, 4, 6, 7 61.6 9.4E + 06 76.1 26.0 22.0 124.1
5 1, 3, 5, 7, 9 64.8 9.9E + 06 72.6 26.2 25.3 124.1
5 3–7 62.4 9.3E + 06 72.7 24.7 23.5 120.9
6 1, 2, 4, 6, 8, 9 62.6 9.5E + 06 72.8 25.1 25.7 123.6
6 2–7 62.6 9.4E + 06 72.2 25.6 24.4 122.3
6 2–4, 6–8 61.4 9.3E + 06 73.4 26.2 23.6 123.2
6 3–8 61.7 9.1E + 06 71.6 24.4 23.7 119.7
7 2–8 62.0 9.2E + 06 71.3 25.2 24.4 121.0
8 1-4, 6–9 62.6 9.6E + 06 73.8 26.2 24.5 124.6
9 1–9 62.9 9.5E + 06 72.2 25.5 25.1 122.7
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