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Rank bounded Hibi subrings for planar distributive lattices
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Abstract. Let L be a distributive lattice and R[L] the associated Hibi ring. We show
that if L is planar, then any bounded Hibi subring of R[L] has a quadratic Gröbner basis.
We characterize all planar distributive lattices L for which any proper rank bounded Hibi
subring of R[L] has a linear resolution. Moreover, if R[L] is linearly related for a lattice L,
we find all rank bounded Hibi subrings of R[L] which are linearly related, too.
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1. Introduction

Hibi rings and their defining ideals are attached in a natural way to finite distributive
lattices. They were introduced by Hibi in [13].

Let L be a finite distributive lattice and P a subposet of L which consists of the
join-irreducible elements of L. Then, by a famous theorem of Birkhoff [3], it follows
that L is isomorphic to the lattice I(P ) of the poset ideals of P. We recall that an
element a ∈ L is called join-irreducible if a is not the minimal element of L and if
a = b ∨ c, where b, c ∈ L, then a = b or a = c; in other words, a does not admit a
proper decomposition as a join of elements of L. Let us also recall the definition of
a poset ideal. A subset α ⊆ P is called a poset ideal if it has the following property:
for any a ∈ α and b ∈ P, if b ≤ a, then b ∈ α. For a comprehensive study of finite
lattices we refer to [3, 18].

Let us assume that P consists of n elements, say P = {p1, . . . , pn}. Let A =
K[t, x1, . . . , xn] be a polynomial ring in n+1 variables over a field K. The Hibi ring
of L = I(P ) is the K–subalgebra R[L] of A generated over K by the monomials
uα = t

∏
pi∈α xi, with α ∈ L. In [13], Hibi showed that R[L] is an algebra with

straightening laws on L over K (ASL, in brief). For an extensive survey on ASL,
we refer the reader to [4]. Let B = K[{xα : α ∈ L}] be a polynomial ring in the
indeterminates indexed by the elements of L. Then, the defining ideal IL ⊂ B of the
toric ring R[L] is generated by the straightening relations, namely

IL = (xαxβ − xα∩βxα∪β : α, β ∈ L, α, β incomparable).
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IL is called the Hibi ideal or the join-meet ideal of L.
In the same paper [13], Hibi showed that R[L] is a Cohen-Macaulay normal

domain of dimR[L] = |P |+ 1. In the last decades, many authors have investigated
various properties and invariants of Hibi rings; see, for example, [1, 7, 8, 9, 11, 12, 17].
Generalizations of Hibi rings are studied in papers [2, 10].

Much less is known about the so-called rank bounded Hibi subrings introduced
in [1].

Let L be a finite distributive lattice and let p, q be integers such that 0 ≤ p <

q ≤ rankL. The rank bounded Hibi subring R[p, q;L] ⊆ R[L] is the K–subalgebra
of R[L] generated over K by all the monomials uα = t

∏
pi∈α xi, with α ∈ L and

p ≤ rankα ≤ q. In [1], it was shown that if a Hibi ring R[L] possesses a quadratic
Gröbner basis with respect to a rank lexicographic order, then all the rank bounded
Hibi subrings have the same property.

In this paper, we study rank bounded Hibi subrings for planar distributive lat-
tices. The paper is organized as follows. In Section 2, we show that any rank bounded
Hibi subring ofR[L], where L is a planar distributive lattice, has a quadratic Gröbner
basis. In order to prove this theorem, we interpret R[p, q;L] as an edge ring of a
suitable bipartite graph which has only cycles of length 4. As a consequence, we
derive that R[p, q;L] is a Cohen-Macaulay normal domain.

In Section 3, we study several homological properties of rank bounded Hibi sub-
rings. In Theorem 2, we characterize the planar distributive lattices L with the
property that every proper rank bounded Hibi subring of R[L] has a linear resolu-
tion. In particular, we see that if R[L] has a linear resolution, and then every rank
bounded Hibi subring of R[L] has a linear resolution. As it follows from Example 2,
if R[L] is linearly related, then it does not necessarily follow that any rank bounded
Hibi subring of R[L] inherits the same property. However, given a lattice L such
that R[L] is linearly related, we may find all rank bounded Hibi subrings of R[L]
which are linearly related too; see Theorem 5.

2. The Gröbner basis

Let N
2 be a infinite distributive lattice with the partial order defined as follows:

(i, j) ≤ (k, ℓ) if i ≤ k and j ≤ ℓ. A planar distributive lattice L is a finite sublattice
of N2 which contains (0, 0) and has the following property: if (i, j), (k, ℓ) ∈ L and
(i, j) < (k, ℓ), then there exists a chain of elements in L :

(i, j) = (i0, j0) < (i1, j1) < · · · < (it, jt) = (k, ℓ)

such that is+1 + js+1 = is + js +1 for all 0 ≤ s ≤ t− 1. If a, b ∈ N
2 with a ≤ b, then

the set [a, b] = {c ∈ N
2| a ≤ c ≤ b} is an interval of N2. The interval C = [a, b] with

b = a + (1, 1) is called a cell of N2. Any planar distributive lattice may be viewed
as a convex polyomino, as observed in [7]. For more information about polyominoes
and their ideals we refer to [16, 7].

In what follows, we consider only simple planar distributive lattices, that is,
lattices L with the property that, for any 0 < ℓ < rankL, there exist at least two
elements of L of rank ℓ.



Rank bounded Hibi subrings for planar distributive lattices 213

Definition 1. Let L be a planar distributive lattice and let p, q be integers such that
0 ≤ p < q ≤ rankL. The K–subalgebra R[p, q;L] of R[L] generated by all monomials
uα with p ≤ rankα ≤ q is called a rank bounded Hibi subring of R[L].

If p = 0, we call R[p, q;L] a rank upper-bounded Hibi subring. Similarly, if
q = rankL, we call R[p, q;L] a rank lower-bounded Hibi subring.

In this section, we show that any rank bounded Hibi subring has a quadratic
Gröbner basis.

Let L be a planar distributive lattice. The elements of L are lattice points (i, j)
in the plane with 0 ≤ i ≤ m and 0 ≤ j ≤ n for some positive integers m,n with
m + n = rankL. Then, the Hibi ring R[L] may be viewed as the edge ring of a
bipartite graph GL which admits the vertex bipartition {s1, . . . , sm} ∪ {t1, . . . , tn}
and whose edge set is E(GL) = {{si, tj} : (i, j) ∈ L}. Note that the generator sitj
of the edge ring corresponds to an element in L whose rank is i+ j. Let 0 ≤ p < q ≤
rankL and R[p, q;L] a rank bounded Hibi subring of R[L]. Then R[p, q;L] coincides
with the subring of the edge ring K[{sitj : 0 ≤ i ≤ m, 0 ≤ j ≤ n}] generated by all
monomials sitj with p ≤ i+ j ≤ q.

Example 1. In Figure 1, we have a lattice of rank 5 + 4 = 9 whose elements are
the lattice points contained in the polygon bounded by the fat polygonal line. The fat
points in the figure correspond to the generators of the subring of R[L] bounded by
p = 3 and q = 7. The bounded subring of R[L] has 14 generators as an algebra over
K.
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(0, 0)

(0, 4)

(5, 0)

(5, 4)

Figure 1: Representation of a rank bounded Hibi subring

Theorem 1. Let L be a planar distributive lattice and p, q integers with 0 ≤ p < q ≤
rankL. The defining ideal of the rank bounded Hibi subring R[p, q;L] has a quadratic
Gröbner basis.

Proof. As we have already observed, R[p, q;L] may be identified with the subring
K[{sitj : (i, j) ∈ L, p ≤ i + j ≤ q}] of the edge ring R[L] = K[{sitj : (i, j) ∈ L}]. In
[15], it was shown that an edge ring of a bipartite graph G has a quadratic Gröbner
basis (with respect to a suitable monomial order) if and only if every cycle of G of
length > 4 has a chord. We follow the ideas of the proof of [7, Theorem 2.1]. Let
G be a bipartite graph with edges {si, tj}, where p ≤ i + j ≤ q. An even cycle of
length 2r in G is a sequence of edges of G which correspond to a sequence of lattice
points in the plane, say a1, . . . , a2r, with a2k−1 = (ik, jk) and a2k = (ik+1, jk) for
k = 1, . . . , r, where ir+1 = i1, ik 6= iℓ and jk 6= jℓ for k 6= ℓ, k, ℓ ≤ r. By [7, Lemma
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2.2], it follows that there exist integers c, d with 1 ≤ c, d ≤ r, d 6= c, c+ 1 such that
either ic < id < ic+1 or ic+1 < id < ic. Let us choose ic < id < ic+1. The other case
may be discussed similarly. Since a2c−1 = (ic, jc) and a2c = (ic+1, jc) correspond to
edges of G, we have: p ≤ ic + jc < ic+1 + jc ≤ q. As ic < id < ic+1, it follows that
p ≤ id + jc ≤ q which implies that (id, jc) corresponds to a chord in our cycle of
G.

3. Properties of rank bounded Hibi subrings

Theorem 1 and its proof have important consequences. In fact, in view of the
theorem proved in [15], the proof of Theorem 1 shows that the binomials of the
quadratic Gröbner basis of the defining ideal of R[p, q;L] are differences of squarefree
monomials of degree 2. This immediately implies the following.

Corollary 1. Let L be a planar distributive lattice and p, q integers with 0 ≤ p <

q ≤ rankL. Then R[p, q;L] is a normal Cohen-Macaulay domain.

Proof. By a theorem of Sturmfels [19], since the defining ideal of R[p, q;L] has a
squarefree initial ideal, it follows that R[p, q;L] is a normal domain. The Cohen-
Macaulay property follows from a classical theorem of Hochster [14].

Remark 1. In [1, Section 2], it was shown that if L is a chain ladder, then R[L]
and any bounded subring of R[L] have a lexicographic quadratic Gröbner basis. Our
Theorem 1 does not impose any additional condition on the planar distributive lattice
L to derive that any rank bounded subring of R[L] has a quadratic Gröbner basis.

Remark 2. Let L be a planar distributive lattice, p, q integers with 0 ≤ p < q ≤
rankL, and T = K[{yij : (i, j) ∈ L, p ≤ i + j ≤ q}] the polynomial ring over
K. By the proof of Theorem 1, the defining ideal of R[p, q;L] is the binomial ideal
of T generated by the quadratic binomials yijykℓ − yiℓykj , where (i, j), (k, ℓ) ∈ L,
p ≤ i+ j, k + ℓ ≤ q and p ≤ i+ ℓ, j + k ≤ q.

On the other hand, let us observe that one may consider the collection P of
all the cells [a, a + (1, 1)] ⊂ L with a = (i, j) ∈ L, a + (1, 1) ∈ L, and such that
p ≤ i + j < i + j + 2 ≤ q. This is obviously a convex polyomino. Indeed, P
is row convex and column convex. We give only the argument for row convexity
since column convexity works similarly. Let [a, a + (1, 1)], [b, b + (1, 1)] ∈ P , where
a = (i, j), b = (k, j), i < k. Then, if [c, c+ (1, 1)] ∈ N

2 is a cell with c = (ℓ, j) where
i ≤ ℓ ≤ k, then we have

p ≤ i + j ≤ ℓ+ j < ℓ+ j + 2 ≤ k + j + 2 ≤ q.

This shows that [c, c+ (1, 1)] ∈ P .

Let T ′ ⊂ T be a polynomial ring in the variables yij, where (i, j) is a vertex of P .

Then, according to the proof of [7, Theorem 2.1], the polyomino ideal IP is generated
by the quadratic binomials yijykℓ− yiℓykj, where (i, j), (k, ℓ) ∈ L, p ≤ i+ j, k+ ℓ ≤ q

and p ≤ i+ ℓ, j+k ≤ q. Thus, the defining ideal of R[p, q;L] is nothing else but IPT.
This simple observation will be very useful in our further study.

Theorem 1 has another obvious consequence.
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Corollary 2. Let L be a planar distributive lattice and p, q integers with 0 ≤ p <

q ≤ rankL. Then R[p, q;L] is Koszul.

Proof. It is a classical result that a standard graded K–algebra is Koszul if its
defining ideal has a quadratic Gröbner basis. For a proof we refer to [6, Theorem
6.7].

Remark 3. Let P be the collection of all cells [a, a + (1, 1)] ⊂ L with a = (i, j) ∈
L, a+ (1, 1) ∈ L, and such that p ≤ i+ j < i+ j + 2 ≤ q. Then

dimR[p, q;L] = (the number of vertices (i, j) in L such that p ≤ i+ j ≤ q)

− the number of cells in P .

This fact is a direct consequence of [16, Corollary 2.3].

In what follows, we are interested in relating some homological properties of rank
bounded Hibi subrings to the corresponding properties of the Hibi ring.

Let L be a planar distributive lattice and let IL ⊂ K[{yij : (i, j) ∈ L}] be
the defining ideal of R[L]. For any rank bounded Hibi subring R[p, q;L] of R[L],
we denote by I

p,q
L the defining ideal of R[p, q;L] contained in the polynomial ring

K[{yij : (i, j) ∈ L, p ≤ i+ j ≤ q}].

Theorem 2. Let L be a planar distributive lattice. Then the defining ideal of any
proper rank bounded Hibi subring of R[L] has a linear resolution if and only if one
of the following conditions holds:

(i) IL has a linear resolution, that is, L = I(P ), where P is the direct sum of a
chain and an isolated element.

(ii) L = I(P ), where P is the poset p1 < p2, q1 < q2, q1 < p2.

(iii) L = I(P ), where P is the poset p1 < p2, q1 < q2, p1 < q2.

Proof. Let L be a planar distributive lattice. Suppose that the defining ideal of
any proper rank bounded Hibi subring of R[L] has a linear resolution. In Remark
3.3, it is shown that the defining ideal of any rank bounded Hibi subring is nothing
else but the ideal IP , where P is a convex polyomino. We employ here [7, Theorem
4.1] which states that, for a convex polyomino P , IP has a linear resolution if and
only if P consists of either a row of cells or a column of cells, that is, P is of one of
the forms displayed in Figure 2:

Figure 2: IP linearly related

Let r = rank L, q = r − 1 and p = 0; then the upper bounded Hibi subring
R[p, q;L] has the defining ideal determined by a polyomino of one of the forms given
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in Figure 2. Without loss of generality, we may assume that I0,r−1

L = IP , where P is
the polyomino consisting of the cells [a, a+ (1, 1)], where a ∈ {(0, 0), (1, 0), . . . , (s−
1, 0)} for some s ≥ 2. Since rank L = q + 1, L contains exactly one of the cells
α = [(s, 0), (s, 0) + (1, 1)] and β = [(s − 1, 1), (s − 1, 1) + (1, 1)]. If L contains the
cell α, then L is of the form (i). Otherwise, L contains the cell β. If s > 2, then we
may choose the Hibi subring R[1, rank L;L] which does not have a linear resolution
by [7, Theorem 4.1]. Hence s = 2 and L = I(P ) is of one of the forms (ii) and (iii).

The converse is obvious.

The above theorem shows that if IL has a linear resolution, then I
p,q
L has a

linear resolution as well for any 0 ≤ p < q ≤ rankL. We are now interested to see
whether the property of IL of being linearly related is inherited by all Ip,qL . The
following example shows that this is not the case. Before discussing this, let us
recall some facts. The ideal IL is linearly related if its relation module, Syz1(IL) is
generated only in degree 3. The planar lattices L whose ideal IL is linearly related
are characterized in [5, Theorem 3.12]:

Theorem 3 (see [5]). Let L be a planar distributive lattice, L ⊆ [(0, 0), (m,n)] with
m,n ≥ 2. The ideal IL is linearly related if and only if the following conditions hold:

(i) At most one of the vertices (m, 0) and (0, n) does not belong to L.

(ii) The vertices (1, n− 1) and (m− 1, 1) belong to L.

In [7, Theorem 3.1], the polyominoes whose associated binomial ideals are linearly
related are characterized. We include here the complete statement for the conve-
nience of the reader. Theorem 4 refers to Figure 3. We assume that [(0, 0), (m,n)]
is the smallest interval with the property that V (P) ⊆ [(0, 0), (m,n)]. Here V (P)
denotes the set of all vertices of P . The elements (0, 0), (m, 0), (0, n) and (m,n)
are the corners of P . The corners (0, 0), (m,n) i.e., (m, 0), (0, n) are called opposite
corners.

(1, 1) (m− 1, 1)

(1, n− 1) (m− 1, n− 1)

•

• •

•

i1 i2

i3 i4

j1

j2

j4

j3

Figure 3: Possible shapes for a linearly related polyomino

In Figure 3, the number i1 is also allowed to be 0, in which case also j1 = 0. In
this case, the polyomino contains the corner (0, 0). A similar convention applies to
other corners. In Figure 3, all four corners (0, 0), (0, n), (m, 0) and (m,n) are missing
from the polyomino.
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Theorem 4 (see [7]). Let P be a convex polyomino. The following conditions are
equivalent:

(a) P is linearly related;

(b) IP admits no Koszul relation pairs;

(c) Let, as we may assume, [(0, 0), (m,n)] be the smallest interval with the property
that V (P) ⊆ [(0, 0), (m,n)]. Then P has the shape as displayed in Figure 3,
and one of the following conditions holds:

(i) at most one of the corners does not belong to V (P);

(ii) two of the corners do not belong to V (P), but they are not opposite to
each other. In other words, the missing corners are not the corners
(0, 0), (m,n) or the corners (m, 0), (0, n).

(iii) three of the corners do not belong to V (P). If the missing corners are
(m, 0), (0, n) and (m,n) (which one may assume without loss of general-
ity), then referring to Figure 3, the following conditions must be satisfied:
either i2 = m− 1 and j4 ≤ j2, or j2 = n− 1 and i4 ≤ i2.

With all these tools at hand, we can move on to our study.

Example 2. Let L be a planar distributive lattice whose poset of join-irreducible
elements consists of two disjoint chains of lengths m and n, respectively. Then, as
a planar lattice, L consists of all lattice points (i, j) with 0 ≤ i ≤ m and 0 ≤ j ≤ n.

In Figure 4, we displayed such a lattice for m = 5 and n = 4.

Figure 4: Bounded subrings which are not linearly related

If m,n ≥ 2, then the defining ideal of any rank bounded Hibi subring R[p, q;L]
with 0 < p < q < rankL = m+n is not linearly related. This is due to the fact that,
for 0 < p < q < rankL, the ideal Ip,qL is actually the ideal of a polyomino P whose
opposite corners are missing, thus P does not satisfy the conditions of Theorem 4.

On the other hand, if one considers the upper-bounded subring R[0, q;L] with
q = m+n−1, its defining ideal is linearly related since the corresponding polyomino
satisfies condition (i) in Theorem 4.

The next theorem refers to Figure 5. In this figure, the number i2 is allowed to
be m, in which case also j2 = 0. In this case, the polyomino contains the corner
(m, 0). A similar convention applies to the corner(0, n).

Theorem 5. Let m,n ≥ 2 and L ⊆ [(0, 0), (m,n)] be a planar distributive lattice
with the property that IL is linearly related. Let p, q be integers such that 0 ≤ p <

q ≤ rankL. Then I
p,q
L is linearly related as well if and only if one of the following

conditions is satisfied:
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(0, 0)
(m− 1, 1)

(1, n− 1)
(m, n)

•

•

•

•

i2

i1

j1

j2

Figure 5:

(a) Both of the corners (0, n) and (m, 0) belong to L. In this case, (p, q) may be
any pair in the following set:

{(0,m+ n− 2), (0,m+ n− 1), (0,m+ n), (1,m+ n), (2,m+ n)}

(b) Exactly one of the corners (0, n) and (m, 0) does not belong to L. If the missing
corner is (0, n) (we can state conditions analogy to this when the other corner
is missing), then referring to Figure 5, (p, q) may be any pair in the following
sets:

(1) {(0,m+ n)}

(2) {(1,m+ n), (2,m+ n), (0,m+ n− 1), (0,m+ n− 2)}

(3) {(1,m+n−1) if j1 = n−1 or i1 = 1}∪{(1,m+n−1), (1,m+n−2) if j1 <

n− 1} ∪ {(1,m+ n− 1), (2,m+ n− 1) if i1 > 1}

Proof. Let L be a planar distributive lattice such that IL is linearly related; then
L is one of the following forms:

•

•

Figure 6:

Let P be the convex polyomino such that IP is the polyomino ideal which cor-
responds to the defining ideal Ip,qL of the rank bounded Hibi subring R[p, q;L]. As
Theorem 4 states all possible shapes of linearly related polyominoes, we can derive
conditions for p and q by making use of this theorem. We know that P should
contain all vertices (1, 1), (m − 1, 1), (m − 1, n − 1) and (1, n − 1) if IP is linearly
related.

Let L be a lattice of the form as displayed on the left-hand side of Figure 6.
Then we do not have the choice to miss both of the corners (0, 0) and (m,n) at the
same time because they are opposite corners. If we miss (0, 0), then q = m+ n and
we can take 0 < p ≤ 2 and if we miss (m,n), then we have p = 0 and can take
m+ n− 2 ≤ q < m+ n.
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Let L be a lattice of the form as displayed in the middle of Figure 6, Then we
have a few choices of the corners of P :

Case (1). We miss none of the corners (0, 0) and (m,n). In this case, p = 0 and
q = m+ n.

Case (2). We miss exactly one of the corners (0, 0) and (m,n). If the missing
corner is (0, 0), then q = m+n and we have two choices for p, either p = 1 or p = 2.
We can not take p > 2 because then (1, 1) will no longer be a vertex of P . In a
similar way, if we miss only (m,n), then p = 0 and we have two choices for q, either
q = m+n− 2 or q = m+n− 1. Again, we can not take q < m+n− 2 because then
P will miss the vertex (m− 1, n− 1) as well.

Case (3). We can miss even both of the corners (0, 0) and (m,n). But in this
case, we must put some extra conditions. The first choice is to fix p = 1. Then
referring to Figure 5, if j1 = n − 1, then we can take q = m + n − 1 only. And if
j1 < n−1, then we have again two choices for q, either q = m+n−1 or q = m+n−2
in order to assure that j1 ≤ q − m and that (m − 1, n − 1) belongs to V (P). The
other choice is to fix q = m + n − 1. Then in a similar way, if i1 = 1, we can take
p = 1 only. And if i1 > 1, then we have two choices for p, either p = 1 or p = 2 in
order to assure that i1 ≥ p and that (1, 1) is a vertex of P .
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