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Abstract

Standard economic models of tort deterrence assume that a tortfeasor’s pre-
caution set is convex– usually the non-negative real numbers, interpreted as the
set of feasible levels of spending on safety. In reality, however, the precaution
set is often discrete. A good example is the problem of complex product design
(e.g., the Boeing 737 MAX airplane), where the problem is less about how much
one spends on safety and more about which combination of safety measures one
selects from a large but discrete set of alternatives. I show that in cases where
the precaution set is discrete, the problem faced by a tortfeasor under strict
liability and negligence is computationally intractable, frustrating their static
deterrence effects. I then argue that negligence has a dynamic advantage over
strict liability in that negligence can move a tortfeasor’s behavior in the direc-
tion of socially optimal care over time more rapidly than strict liability.
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1 Introduction

In many ways the economic approach to law embraces Oliver Wendell Holmes’"bad

man" theory of the law (Holmes 1897). Holmes argued that if "you want to know

the law and nothing else, you must look at it as a bad man," to whom the notion of

legal duty means "a prophecy that if he does certain things he will be subjected to

disagreeable consequences by way of imprisonment or compulsory payment of money"

(Holmes 1897, pp. 459 & 461). In other words, if you want to understand the law,

you must focus on the deterrence effects of legal rules.

Nowhere is the focus on the deterrence effects of legal rules more prominent than

in the economic analysis of tort law. The economic model of tort deterrence posits

that the tortfeasor, known as the injurer, chooses safety precautions, or care, when

engaging in a risky activity to minimize his expected liability plus his cost of care

(see, e.g., Shavell 1987, ch. 2). Under the economic model, a liability rule is optimal

if the solution to the injurer’s care-taking problem under that rule is socially optimal.

Standard formulations of the economic model of tort deterrence constitute the

injurer as the unboundedly rational bad man. Unbounded rationality implies that

the injurer can compute the solution to his care-taking problem. This in turn implies

than an optimal liability rule can achieve socially optimal deterrence, for it can induce

the injurer to take socially optimal care (see, e.g., Cooter and Ulen 2012, ch. 7).

Beginning with Simon (1955, 1957), economists have questioned the assumption of

unbounded rationality and explored the implications of bounded rationality for stan-

dard economic analysis. Legal economists have followed suit (see, e.g., Jolls, Sunstein,

and Thaler 1998; Korobkin and Ulen 2000). An important aspect of bounded ratio-

nality is limited computational capacity. This aspect of bounded rationality refers

not only to humans’ limited cognitive ability or skill with respect to computation,

but also to the theoretical and practical limits of computability even when aided by

machines (see, e.g., Simon 1976, 1990). While the former limit is the subject of be-

havioral economics and psychology, the latter limits are the subjects of computability

theory and computational complexity theory, respectively.

In this paper, I examine the computational complexity of the injurer’s care-taking

problem under strict liability and negligence, the two basic liability rules of Anglo-

American tort law, and explore the implications thereof for the deterrence effects of

these rules. I start by defining several concepts from computational complexity theory,
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including what it means for a problem to be computationally tractable. Informally,

a problem is computationally tractable if it can be solved in a reasonable amount of

time even as the scale of the problem becomes large.

In the heart of the paper, I analyze the static deterrence effects of strict liability

and negligence using the unilateral care model with fixed activity level.1 I probe the

standard assumption that the injurer’s precaution set is convex– usually the non-

negative real numbers, interpreted as the set of feasible levels of spending on safety. In

reality, the precaution set is often discrete. A good example is the problem of complex

product design (e.g., the Boeing 737 MAX airplane), where the problem is less about

how much one spends on safety and more about which combination of safety measures

one selects from a large but discrete set of alternatives.2 Nevertheless, the assumption

of "convex care" seems innocuous enough. "All models are approximations," after

all; their assumptions "are never exactly true" (Box, Luceño, and Paniagua-Quiñones

2009, p. 61). At the same time, however, because "all models are wrong the scientist

must be alert to what is importantly wrong" (Box 1976, p. 792). I show that (i) the

assumption of convex care is instrumental to ensuring that the injurer’s care-taking

problem under strict liability and negligence is computationally tractable, and that

(ii) if the precaution set is discrete and large, the injurer’s care-taking problem is

computationally intractable. In other words, I show that the convex care assumption

underwrites the unbounded rationality assumption, and that relaxing this assumption

frustrates the static deterrence effects of strict liability and negligence.

The basic intuition behind these results is the following. Under the standard,

convex care version of the model, the injurer’s care-taking problem is a convex op-

timization problem– the minimization of a convex function over a convex set. By

contrast, the discrete analog of the injurer’s problem entails the minimization of a

supermodular set function over a discrete set. There are known methods for solving

convex optimization problems in a reasonable amount of time even when the feasible

set is large. This is not the case for the problem of minimizing a supermodular set

function over a discrete set. The only known method for solving this problem is the

1The unilateral care model with fixed activity level is the foundational model upon which other
economic models of tort deterrence are built. In cases of unilateral care, the injurer, but not the
victim, can take care to reduce the expected loss to the victim from the injurer’s activity. In cases
of unilateral care with fixed activity level, the injurer can reduce the expected loss only by taking
care and not by modulating his activity level.

2Other examples include many important medical care investments; see Arlen (2010, p. 993 n. 97).
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brute-force method– i.e., evaluating the function at every subset of the feasible set–

which takes an unreasonable amount of time when the feasible set is large because

the number of subsets grows exponentially with the size of the feasible set.

Lastly, I consider the dynamic deterrence effects of strict liability and negligence

in the case of discrete care. I argue that, notwithstanding their static ineffectiveness,

the injurer’s behavior under both rules moves in the direction of socially optimal

care over time through a learning-by-experimentation process. I then argue that

negligence, due to its information-generating property (see, e.g., Schäfer and Müller-

Langer 2009, § 1.6),3 accelerates the injurer’s learning process relative to strict liabil-

ity, giving negligence a dynamic advantage over strict liability in the case of discrete

care. I conclude that negligence is more robust than strict liability to computational

complexity and the reality of limited computational capacity (bounded rationality).

This paper contributes to two strands of the law and economics literature. The

first is the strand that focuses on the question of whether strict liability or negligence

is superior in terms of tort deterrence. The pioneers of this strand include Calabresi

(1961, 1970), Posner (1972a,b), Brown (1973), Diamond (1974a,b), Green (1976),

Landes and Posner (1980, 1987) and Shavell (1980, 1987). Surveys of this strand are

provided by Shavell (2007), Schäfer and Müller-Langer (2009), and Arlen (2017).

The second is the behavioral strand that explores the implications of bounded

rationality for the standard economic analysis of tort deterrence. Jolls, Sunstein,

and Thaler (1998) and Korobkin and Ulen (2000) were among the early calls for the

modification of standard law and economics models to reflect bounded rationality.

Zamir and Teichman (2018) provide a textbook treatment of the emergent field of

behavioral law and economics, which includes a chapter on the behavioral analysis of

tort law. Faure (2010), Halbersberg and Guttel (2014), and Luppi and Parisi (2018)

provide surveys of behavioral models of tort law.

To my knowledge, this is the first paper in the law and economics literature to

explore how computational complexity impacts tort deterrence. Legal economists

have long recognized that "people’s decision-making capabilities are relevant to the

design of tort law" (Zamir and Teichman 2018, p. 330). In their early paper on strict

liability, for instance, Guido Calabresi and Jon Hirschoff argue that the choice among

tort liability rules should depend not on the theoretical ability of injurers and victims

3See also Ott and Schäfer (1997), Feess and Wohlschlegel (2006), and Chakravarty, Kelsey, and
Teitelbaum (2019).
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to optimize, but rather on their actual abilities taking into account the "psychological

or other impediments" to optimizing (Calabresi and Hirschoff 1972, p. 1059; see also

Faure 2008).4 Subsequently, legal economists have studied the implications for tort

law of various aspects of bounded rationality, including ambiguity (Teitelbaum 2007;

Chakravarty and Kelsey 2017; Franzoni 2017) and unawareness (Chakravarty, Kelsey,

and Teitelbaum 2019). As far as I am aware, however, no other paper in the literature

has studied the implications of computational complexity for tort law.

This paper also contributes to the literature on legal complexity (see, e.g., Ehrlich

and Posner 1974; Schuck 1992; Kaplow 1995; Ruhl and Katz 2015). Papers in this

literature study various kinds of legal complexity, including the intricacy of legal

rules and the legal system. To my knowledge, the only other paper in this literature

that studies computational complexity is Kades (1997). In contrast to this paper,

Kades does not focus on the tractability of compliance problems arising under tort

law. Rather, he focuses on the tractability of adjudication problems in selected cases

arising under bankruptcy law, commercial law, contract law, corporate law, criminal

law, property law, and tax law. He also invokes computational complexity to explain

judges’aversion to multiparty disputes and the existence of private property.5

The remainder of this paper is organized as follows. Section 2 is a primer on

computational complexity theory. Sections 3 and 4 present the static and dynamic

analysis of tort deterrence, respectively. Section 5 offers concluding remarks.

2 Computational Complexity

Computational complexity theory is a subfield of computer science that studies the

tractability of computational problems, including decision problems (i.e., yes-no prob-

lems) and optimization problems. In this section, I semi-rigorously define several con-

cepts from computational complexity theory that are relevant for the tort deterrence

4Legal economists have also long recognized that people’s limited computational capacity is rel-
evant to contracts. In his oft-cited paper on the transaction cost approach to the study of economic
organization, for example, Oliver Williamson argues that "incomplete contracting is the best that
can be achieved" because "organizational man," unlike "economic man," is "boundedly rational" and
subject to "limits in formulating and solving complex problems" (Williamson 1981, pp. 553-554).

5There are a number of papers in the economics and computer science literatures that study
the computational complexity of economic models, including, for instance, papers that study the
tractability of computing Nash equilibria in games (Daskalakis 2009; Roughgarden 2010) and of
the consumer’s utility maximization problem (Gilboa, Postlewaite, and Schmeidler 2010, 2015;
Echenique, Golovin, and Wierman 2011).
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Table 1: Polynomial Time versus Exponential Time
Running time

Input size Polynomial-time algorithm Exponential-time algorithm
(n) (n2 steps) (2n steps)
50 Less than a second Less than a second
75 Less than a second Less than a year
80 Less than a second More than a decade
85 Less than a second More than three centuries
90 Less than a second More than 10,000 years
95 Less than a second More than 350,000 years
100 Less than a second More than 12 million years

Note: Assumes one calculation per step and 200,000 trillion calculations per second.

analysis in Sections 3 and 4. For a more rigorous introduction to these concepts, see,

e.g., Garey and Johnson (1979), Schrijver (2003), or Kleinberg and Tardos (2006).

2.1 Algorithms and Effi ciency

An algorithm is a step-by-step procedure for solving a computational problem. The

time complexity function of an algorithm, denoted by τ(n), gives the maximum num-

ber of elementary steps that the algorithm requires to produce its output, expressed

as a function of the size of its input, denoted by n. Algorithms are classified according

to the rate at which τ(n) grows with n. Algorithms for which τ(n) grows with n at

a polynomial rate (or slower) are said to run in polynomial time. Polynomial-time

algorithms are considered to be fast or effi cient. Algorithms for which τ(n) grows

with n at a faster rate (e.g., exponential) are considered to be ineffi cient.

The effi ciency of polynomial-time algorithms is manifested by a comparison with

exponential-time algorithms. Table 1 displays the running times for selected in-

put sizes n ≤ 100 of a polynomial-time algorithm that requires n2 steps and an

exponential-time algorithm that requires 2n steps, assuming one calculation per step

and 200,000 trillion calculations per second (the peak speed of the world’s fastest

supercomputer). The polynomial-time algorithm runs in less than a second for all

input sizes n ≤ 100 (and, indeed, for all n ≤ 447, 213, 595). By contrast, the running
time of the exponential-time algorithm increases from less than a second for n = 50

to more than 12 million years for n = 100.
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2.2 Problems and Tractability

In light of the effi ciency of polynomial-time algorithms, problems that can be solved

in polynomial time are considered to be easy or computationally tractable. In what

follows, I describe the concept of NP-hardess, which is the defining property of
problems that are considered to be computationally intractable.

I begin with two classes of decision problems known as P and NP. P is the class
of decision problems that can be solved in polynomial time (i.e., effi ciently solved).

NP is the class of decision problems for which it can be verified in polynomial time
whether a proposed solution is correct (i.e., effi ciently verified). Every problem in P
is necessarily also in NP (i.e., P ⊆ NP), for if a problem can be effi ciently solved

that effi ciently verifies whether a proposed solution correct. Whether P = NP (i.e.,
whether every decision problem that can be effi ciently verified can also be effi ciently

solved) is an open question– indeed, it is a Millennium Prize Problem (Jaffe 2000).

It is conjectured and presumed that P 6= NP.
A decision problem is NP-complete if it is in NP and every other problem in NP

is reducible to it. One problem is reducible to a second problem if the existence of

an effi cient solution to the second problem would imply the existence of an effi cient

solution to the first problem. In this sense, an NP-complete problem is at least as

hard as every other problem in NP. It follows that an NP-complete problem can

be effi ciently solved if and only if P = NP. However, because an NP-complete
problem is in NP, it can be effi ciently verified whether a proposed solution to an
NP-complete problem is correct, whether or not P = NP.
I now come to the concept of NP-hardness. A computational problem (not nec-

essarily a decision problem) is NP-hard if every problem in NP is reducible to it.
By definition, every NP-complete problem is NP-hard, but not every NP-hard
problem is NP-complete.6 Moreover, because every problem in NP is reducible to
an NP-hard problem, an NP-hard problem is at least as hard as every problem in

NP, including all NP-complete problems, which are the hardest problems in NP. It
follows that an NP-hard problem can be effi ciently solved only if P = NP, or, equiv-
alently, that no NP-hard problem can be effi ciently solved unless P = NP.7 Because

6Indeed, another way to define an NP-complete problem is an NP-hard problem that is in NP.
7Even if P = NP, this would imply only that some, but not necessarily all, NP-hard problems

can be effi ciently solved.
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Figure 1: Relationship between P, NP, NP-complete, and NP-hard.

it is conjectured and presumed that P 6= NP, all NP-hard problems, including all
NP-complete problems, are considered to be computationally intractable.
Figure 1 depicts the relationship between the classes P, NP, NP-complete, and

NP-hard under the consensus presumption that P 6= NP.

2.3 Optimization Problems and Decision Problems

In Sections 3 and 4, I analyze the tractability of two types of computational problems:

optimization problems and decision problems. An optimization problem has the fol-

lowing form: Given a set of feasible alternatives and an objective function defined

on the feasible set, find a subset of the feasible set that minimizes (or maximizes)

the value of the objective function. Every optimization problem has a corresponding

decision problem of the following form: Given a set of feasible alternatives, an objec-

tive function defined on the feasible set, and a given value of the objective function,

determine whether there is a subset of the feasible set such that the value of the

objective function is not greater than (or not less than) the given value.

The following are two well-known examples of optimization problems.
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Problem 1 (Traveling Salesman) Let C = {1, . . . , n} be a finite set of cities and
let d(i, j) ∈ Z+ denote the distance between two cities i, j ∈ C.8 In addition, let

Sn denote the set of all permutations of the elements of C, representing the set of
feasible routes that visit each city once. Find a route π = (π(1), . . . , π(n)) ∈ Sn
that minimizes the the total distance of the round trip defined by the route, given by

f(π) =
[∑n−1

i=1 d(π(i), π(i+ 1)
]
+ d(π(n), π(1)).

Problem 2 (Maximum Directed Cut) Let G = (V , E) be a directed graph, where
V is the set of vertices and E is the set of directed edges (i.e., ordered pairs of vertices),
and let c(e) ∈ Z+ denote the capacity of an edge e ∈ E.9 For every subset of vertices
A ⊆ V, let δ(A) = {e = (u, v) ∈ E|u ∈ A, v ∈ V\A} denote the set of edges that cross
the cut {A,V\A}. Find a subset A ⊆ V that maximizes the total capacity of the edges
that cross the cut {A,V\A}, given by f(A) =

∑
e∈δ(A) c(e).

The decision problems that correspond to these optimization problems are:

1. Given b ∈ Z++, is there a route π ∈ Sn such that f(π) ≤ b?

2. Given b ∈ Z++, is there a subset A ⊆ V such that f(A) ≥ b?

These decision problems are both known to be NP-complete (see, e.g., Garey and
Johnson 1979).10 This implies that the corresponding optimization problems areNP-
hard. Indeed, any optimization problem is NP-hard if the corresponding decision
problem is NP-complete. This follows from the fact that the corresponding decision

problem is reducible to the optimization problem. More generally, two common ways

of establishing that an optimization problem is NP-hard are: (i) show that the

corresponding decision problem is NP-complete or (ii) show that the optimization
problem generalizes a known NP-hard optimization problem (which implies that the
latter is reducible to the former).

2.4 Approximation Algorithms

If an optimization problem is NP-hard, implying that it cannot be effi ciently solved
(assuming P 6= NP), there nevertheless may exist an effi cient algorithm that ap-

proximates the problem within some constant factor. Such an algorithm is called an
8It is assumed that d(i, j) can be evaluated in polynomial time for all i, j ∈ C.
9It is assumed that c(e) can be evaluated in polynomial time for all e ∈ E .
10In fact, the Minimum Cut decision problem, the undirected version of Minimum Directed Cut

decision problem, was one of the 21 problems that Karp (1972) famously proved are NP-complete.
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α-approximation algorithm, where α denotes the factor within which the algorithm

is guaranteed to approximate the optimal value of the problem. For example, the

Traveling Salesman optimization problem, in the instance where d satisfies the tri-

angle inequality, is known to have a 3
2
-approximation algorithm (Christofides 1976);

that is, there exists a polynomial-time algorithm that outputs a route π̃ such that

f(π∗) ≤ f(π̃) ≤ 3
2
f(π∗), where π∗ denotes an optimal route (i.e., a route that mini-

mizes the total distance of the round trip).11

More generally, if x∗ is a solution to an optimization problem with objective func-

tion f , an α-approximation algorithm for the problem is a polynomial-time algorithm

whose output x̃ satisfies (i) f(x∗) ≤ f(x̃) ≤ αf(x∗) for some α ≥ 1, in the case of a
minimization problem, or (ii) αf(x∗) ≤ f(x̃) ≤ f(x∗) for some 0 ≤ α ≤ 1, in the case
of a maximization problem. If there exists an α-approximation algorithm for an op-

timization problem, we say that the problem can be effi ciently approximated within

a factor of α. If, in addition, the factor α is "reasonable" (a subjective judgment

that depends on the specific instance of the problem), we say that the problem is

reasonably approximable. If, however, an optimization problem cannot be effi ciently

approximated within a factor of α (assuming P 6= NP), we say that it is NP-hard
to approximate the problem within a factor of α.

3 Tort Deterrence

I analyze tort deterrence using the unilateral care model with fixed activity level. As

noted above, the unilateral care model with fixed activity level is the foundational

model upon which other economic models of tort deterrence are built. Although the

analysis could be extended to richer models that contemplate, for example, bilateral

care or variable activity level, it would not change the main takeaways of the analysis.

There are two agents: an injurer and a victim. Both are risk neutral expected

utility maximizers. The agents are strangers and not in any contractual relationship.

Transaction costs are suffi ciently high to preclude Coasian bargaining.

The injurer engages in a risky activity. In the event of an accident, the victim in-

curs a loss. The injurer, but not the victim, can take precautions against an accident.

The injurer’s set of feasible precautions is the precaution set.

11The distance d satisfies that triangle inequality if d(i, k) ≤ d(i, j) + d(j, k) for all i, j, k ∈ C.

9



The governing liability rule determines whether the injurer is liable to the victim

for her loss in the event of an accident. I consider the two basic liability rules of

tort law: negligence and strict liability. Under negligence, the injurer is liable to the

victim if the injurer failed to exercise due care (a legal standard set by the court)

when engaging in his activity. Under strict liability, the injurer is liable to the victim

whether or not the injurer exercised due care when engaging in his activity.

A liability rule is optimal if the solution to the injurer’s problem under that rule

is socially optimal. A liability rule is effective if the injurer’s problem under that rule

is computationally tractable or reasonably approximable. After all, if the injurer’s

problem cannot be effi ciently solved or approximated within a reasonable factor, the

rule cannot effectively regulate the injurer’s behavior. Only a liability rule that is

both optimal and effective can achieve socially optimal deterrence.

3.1 Convex Care

The standard "convex care" version of the model makes the following assumptions

(cf. Shavell 1987).

(C1) The precaution set is convex– usually R+, interpreted as the set of feasible
levels of spending on safety.12

(C2) The injurer chooses a level of care x ∈ R+ having cost c(x) ≥ 0, where the cost
of care function c : R+ → R+ is monotone increasing and convex.

• Monotone increasing: c(x) ≤ c(y) for all x ≤ y in R+.

• Convex: c(x+z)−x(x) ≤ c(y+z)−c(y) for all x ≤ y in R+ and z ∈ R+.13

In other words, the injurer’s cost of care increases with additional care at an

increasing rate, reflecting increasing marginal cost of care.

(C3) The victim’s expected loss (i.e., the probability of an accident multiplied by the

amount of the victim’s loss in the event of an accident) is `(x) ≥ 0, where the
expected loss function ` : R+ → R+ is monotone decreasing and convex.

12A set X ⊆ Rn is convex if every convex combination of every pair of elements of X lies in X,
i.e., if λx+ (1− λ)y ∈ X for all x, y ∈ X and λ ∈ [0, 1] (see, e.g., Boyd and Vandenberghe 2004).
13This definition, which characterizes convexity in terms of increasing differences, follows from the

standard definition that a function c : R+ → R+ is convex if c(λx+ (1− λ)y) ≤ λc(x) + (1− λ)c(y)
for all x, y ∈ R+ and λ ∈ [0, 1]. See, e.g., Simchi-Levi, Bramel, and Chen (2005, prop. 2.2.6).
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• Monotone decreasing: `(x) ≥ `(y) for all x ≤ y in R+.

• Convex: `(x+ z)− `(x) ≤ `(y + z)− `(y) for all x ≤ y in R+ and z ∈ R+.

In other words, the victim’s expected loss decreases with additional care at a

decreasing rate, reflecting decreasing marginal benefit of care (i.e., diminishing

marginal returns to care).

(C4) Both c and ` can be evaluated in polynomial time at all x ∈ R+. This is an
unstated assumption in prior expositions of the standard model.

In addition, the cost of care and expected loss functions are usually assumed to be

twice differentiable. If c and ` are twice differentiable, then assumption (C2) implies

that c′(x) ≥ 0 and c′′(x) ≤ 0 at all x ∈ R+, and assumption (C3) implies that
`′(x) ≤ 0 and `′′(x) ≥ 0 at all x ∈ R+.

3.1.1 The Social Problem

The social problem is to find a level of care x ∈ R+ that minimizes the total cost of
the injurer’s activity (the injurer’s cost of care plus the victim’s expected loss):

minimize
x∈R+

c(x) + `(x).

I assume that the social problem has a unique interior solution. By definition, the

level of care x∗ ∈ R+ that solves the social problem is socially optimal.

Given assumptions (C1)—(C4), the social problem is a standard convex optimiza-

tion problem– it entails the minimization of a convex function over a convex set.14 It

follows that the social problem is computationally tractable, for it can be effi ciently

solved using known polynomial-time algorithms for convex optimization problems.

For instance, it can be effi ciently solved using subgradient methods if the total cost

function, s(x) ≡ c(x)+`(x), is non-differentiable (see, e.g., Bertsekas 2016) or interior-

point methods if the total cost function is differentiable (see, e.g., Boyd and Vanden-

berghe 2004). In the non-differentiable case, x∗ satisfies the condition 0 ∈ ∂s(x∗),

where ∂s(x) is the subdifferential of s at x.15 In the differentiable case, x∗ satisfies

14Observe that c(x) + `(x) is convex because the sum of two convex functions is convex.
15Intuitively, the subdifferential of s at x is the set of "derivatives" of s at x (i.e., the set of slopes

of the lines that intersect s only at x). If s is differentiable at x then ∂s(x) = s′(x). Otherwise ∂s(x)
is an interval. For example, suppose s(x) = |x|. Note that s is differentiable at all x ∈ R except
x = 0. Then ∂s(x) = −1 for all x < 0, ∂s(x) = 1 for all x > 0, and ∂s(x) = [−1, 1] at x = 0.
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the condition 0 = s′(x∗). In both cases, x∗ is the level of care at which the marginal

cost of care equals the marginal benefit of care (i.e., the marginal reduction in ex-

pected loss). This can be readily seen in the differentiable case, where the condition

0 = s′(x∗) is equivalent to the condition c′(x∗) = −`′(x∗).

3.1.2 The Injurer’s Problem

Under strict liability, the injurer’s problem is

minimize
x∈R+

c(x) + `(x).

This problem is identical to the social problem, because strict liability forces the

injurer to internalize the total cost of his activity. Under strict liability, therefore,

the solution to injurer’s problem is socially optimal and the injurer’s problem is

computationally tractable. Hence, strict liability is both optimal and effective.

Under negligence, the injurer effectively faces strict liability if he chooses a level

of care x < x, where x ∈ R+ is the due care standard set by the court, and he faces
no liability if he chooses x ≥ x. Accordingly, the injurer’s problem under negligence

has two stages. The first is

1. minimize
x∈[0,x]

c(x) + `(x).

Let x̂ ∈ R+ denote the solution, which I assume is unique. The second stage is

2. choose

{
x = x̂ if c(x̂) + `(x̂) < c(x)

x = x if c(x̂) + `(x̂) ≥ c(x)
.

That is, the injurer chooses x = x̂ if it is better (i.e., cheaper in expectation) to take

x̂ and face potential liability for an accident than to take due care and avoid potential

liability; otherwise he chooses to take due care, x = x.

If the court sets the due care standard equal to the socially optimal level of care,

x = x∗, then negligence is also optimal and effective. Negligence with x = x∗ is

optimal because x∗ is the solution to the injurer’s problem under this rule. To see this,

observe that if x = x∗ then x̂ = x∗ and thus c(x̂)+`(x̂) = c(x∗)+`(x∗) < c(x∗) = c(x),

12



which implies that the injurer chooses x = x∗.16 Negligence with x = x∗ (or, for that

matter, any x ∈ R+) is effective because both stages of the injurer’s problem are

computationally tractable: the first stage is a standard convex optimization problem,

which can be effi ciently solved, and the second stage amounts to verifying whether x̂

is a solution to the decision problem, "Given c(x) ∈ R+, is there a level of care x ⊆ R+
such that c(x)+ `(x) < c(x)?," which can be effi ciently verified per assumption (C4).

Because strict liability and negligence with x = x∗ are both optimal and effective,

both liability rules can achieve socially optimal deterrence. The following theorem

recaps the preceding results.

Theorem 1 In the case of convex care, strict liability and negligence with x = x∗

are both optimal and effective. Hence, both strict liability and negligence can achieve

socially optimal deterrence.

3.2 Discrete Care

In the standard model, the assumption that the precaution set is convex is instru-

mental to ensuring that the injurer’s problem is computationally tractable. In reality,

however, the precaution set is often discrete. In what follows, I re-examine tort de-

terrence using a "discrete care" version of the unilateral accident model with fixed

activity level.

The discrete care version of the model makes the following assumptions.

(D1) The precaution set is discrete– denoted N , interpreted as the set of feasible
safety measures. I assume that N is finite but "large," to rule out trivial cases

and to make the discrete case as comparable as possible to the convex case

(where the precaution set is uncountably infinite).

(D2) The injurer chooses a subset of care X ⊆ N having cost c(X) ≥ 0, where the
cost of care function c : 2N → R+ is monotone increasing and supermodular.17

• Monotone increasing: c(X) ≤ c(Y ) for all X ⊆ Y ⊆ N .
16Negligence with x < x∗ is never optimal (because the solution to the injurer’s problem under

this rule is x = x < x∗). Negligence with x > x∗ may be optimal for some c and `, but only
negligence with x = x∗ is optimal for all c and `.
17Note that 2N denotes the set of all subsets of N .
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• Supermodular: c(X ∪{i})− c(X) ≤ c(Y ∪{i})− c(Y ) for all X ⊆ Y ⊆ N
and i ∈ N\Y .18

In other words, the injurer’s cost of care increases with additional care at

an increasing rate, reflecting increasing marginal cost of care. In this sense,

a monotone increasing supermodular set function is the discrete analog of a

monotone increasing convex function.

(D3) The victim’s expected loss is `(X) ≥ 0, where the expected loss function ` :

2N → R+ is monotone decreasing and supermodular.

• Monotone decreasing: `(X) ≥ `(Y ) for all X ⊆ Y ⊆ N .

• Supermodular: `(X ∪ {i})− `(X) ≤ `(Y ∪ {i})− `(Y ) for all X ⊆ Y ⊆ N
and i ∈ N\Y .

In other words, the victim’s expected loss decreases with additional care at a

decreasing rate, reflecting decreasing marginal benefit of care (i.e., diminishing

marginal returns to care). In this sense, a monotone decreasing supermodular

set function is the discrete analog of a monotone decreasing convex function.

(D4) Both c and ` can be evaluated in polynomial time at all X ⊆ N .

3.2.1 The Injurer’s Problem

As before, the injurer’s problem under strict liability coincides with the social problem–

minimize the total cost of the injurer’s activity:

minimize
X⊆N

c(X) + `(X).

Like before, I assume this problem has a unique interior solution. Because the subset

of care X∗ ⊆ N that solves this problem is socially optimal, strict liability is optimal.

The injurer’s problem under negligence is

1. minimize
X⊆X

c(X) + `(X);

2. choose

{
X = X̂ if c(X̂) + `(X̂) < c(X)

X = X if c(X̂) + `(X̂) ≥ c(X)
,

18See, e.g., Bach (2013).
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where X ⊆ N is the due care standard set by the court and X̂ ⊆ N is the unique

solution to the first-stage minimization problem. If the court sets X = X∗, then X∗ is

the solution to the injurer’s problem under negligence. The logic here is analogous to

the logic in the case of convex care. Hence, negligence with X = X∗ is also optimal.19

In general, however, neither strict liability nor negligence is effective in the case of

discrete care. I reach this conclusion on the basis of the following two propositions.

Proposition 1 In the case of discrete care, it is NP-hard to approximate the in-
jurer’s problem, whether under strict liability or negligence, within any constant factor.

Proof. The proof is by reduction from Maximum Directed Cut. Let f : 2V →
R+ denote the cut capacity function in the Maximum Directed Cut optimization

problem defined in Section 2. It is known that f is submodular, non-negative, and

not necessarily monotone or symmetric (see, e.g., Feige, Mirronki, and Vondrák 2011).

In addition, let C =
∑

e∈E c(e) denote the total capacity of all edges in the graph.

For every subset of vertices A ⊆ V, let g(A) = C − f(A) + η, where η > 0.

Observe that g : 2V → R+ is a supermodular set function.20 Note further that g is
non-negative and not necessarily monotone or symmetric.

It is known that it is NP-hard to approximate the Maximum Directed Cut op-

timization problem within a factor greater than 12
13
(Håstad 2001, thm. 8.3). This

implies that it isNP-hard to distinguish between the following two mutually exclusive
instances of the Maximum Directed Cut decision problem:

1. There exists a susbset A ⊆ V such that f(A) = C.

2. There does not exist a subset A ⊆ V such that f(A) > 12
13
C.

Note that in the first instance the minimum value of g is η, while in the second

instance the minimum value of g exceeds 1
13
C.

Suppose there exists an α-approximation algorithm for the injurer’s problem– the

minimization of a real-valued supermodular set function over a discrete set where the

objective function is non-negative and not necessarily monotone or symmetric. Then

we could apply this algorithm to the problem maxA⊆V g(A). In the first instance, the

19As before, negligence with X ⊂ X∗ is never optimal, negligence with X ⊃ X∗ may be optimal
for some c and `, but only negligence with X = X∗ is optimal for all c and `.
20If f is a submodular set function then −f is supermodular. Moreover, the sum of a supermodular

set function and a constant is supermodular. Note that C + η is a constant.
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algorithm would return a subset Â such that g(Â) ≤ αη. In the second instance, it

would return a subset Â such that g(Â) > 1
13
C. Because η is arbitrary, it can be

chosen so that αη < 1
13
C. This would make it possible to distinguish between the two

instances of Maximum Directed Cut, because in the first instance the algorithm would

yield g(Â) ≤ αη < 1
13
C, while in the second instance it would yield αη < 1

13
C < g(Â).

This, however, contradicts the fact that it is NP-hard to distinguish between the
two instances. It follows, therefore, that there does not exist an α-approximation

algorithm for the injurer’s problem, which is equivalent to the statement that it is

NP-hard to approximate the injurer’s problem within any constant factor.

Remark. Mittal and Schulz (2013, thm. 8) prove a similar result for the minimization
of an integer-valued supermodular set function. Their proof is by reduction from the

E4-Set Splitting optimization problem.21 The proof of Proposition 1, which is by

reduction from the Maximum Directed Cut optimization problem, generalizes their

result to a real-valued supermodular set function.

Proposition 2 In the case of discrete care, the injurer’s problem, whether under
strict liability or negligence, is NP-hard.

Proof. The result follows immediately from Proposition 1. If it is NP-hard to
approximate the injurer’s problem within any constant factor, then it is NP-hard
to approximate the injurer’s problem within a factor of 1, which is equivalent to the

statement that the injurer’s problem is NP-hard.

Remark. The foregoing results on the hardness of supermodular minimization stand
in contrast to the fact that submodular minimization is easy (Grötschel, Lovász, and

Schrijver 1981). The basic reason is that the convex closure of a submodular set

function has a closed form that is easy to compute, while this generally is not the case

for supermodular set functions (see, e.g., Bach 2013).22 Conequently, one can easily

solve a submodular minimization problem by leveraging the fact that the minimum of

a set function is equivalent to the minimum of its convex closure, while this generally

is not the case for a supermodular minimization problem.

21For a statement of the E4-Set Splitting optimization problem, see, e.g., Håstad (2001, def. 2.9).
22The convex closure of a real-valued set function f on N is the greatest real-valued convex

function on R|N | that everywhere lowerbounds f . The convex closure of a real-valued submodular
set function is known as the Lovasz extension (Lovász 1983).
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Propositions 1 and 2 establish that the injurer’s problem, whether under strict

liability or negligence, is neither computationally tractable nor reasonably approx-

imable. Hence, neither strict liability nor negligence is effective in the case of discrete

care. The following theorem recaps the preceding results.

Theorem 2 In the case of discrete care, although both strict liability and negligence
with X = X∗are optimal, neither liability rule is effective. Hence, neither strict

liability nor negligence can achieve socially optimal deterrence.

4 Dynamics of Tort Deterrence

The main takeaway of the previous section– that neither strict liability nor negligence

can achieve socially optimal deterrence in the case of discrete care– is based on a

static analysis. In this section, I consider the dynamics of tort deterrence in the

case of discrete care. I argue that (i) the injurer’s behavior, under either liability

rule, moves in the direction of socially optimal care over time through a learning-by-

experimentation process, but that (ii) negligence has a dynamic advantage over strict

liability in that negligence accelerates the injurer’s learning process.

The starting point is the observation that the decision problems corresponding to

the injurer’s problem under strict liability and negligence are in NP.

Proposition 3 In the case of discrete care, the decision problem that corresponds to

the injurer’s problem, whether under strict liability or negligence, is in NP.

Proof. The decision problem that corresponds to the injurer’s problem under strict

liability is: Given b ∈ R+, is there a subset of care X ⊆ N such that c(X)+`(X) ≤ b?

The decision problem that corresponds to the injurer’s problem under negligence is:

Given c(X) ∈ R+, is there a subset of care X ⊆ X such that c(X) + `(X) ≤ c(X)?

Take either decision problem and suppose we are given a proposed solution Y ⊆
N . Per assumption (D4), it can be effi ciently verified whether c(Y ) + `(Y ) ≤ b or

c(Y ) + `(Y ) ≤ c(X), as the case may be. Hence, each decision problem is in NP.

Now, consider how the injurer’s behavior evolves over time as he repeatedly en-

gages in his risky activity, periodically causing an accident. Let t = 0 denote the time

before the injurer first engages in his activity, let t = 1 denote the time after the first
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accident but before the injurer next engages in his activity, let t = 2 denote the time

after the second accident but before the injurer next engages in his activity, and so

forth. In addition, assume that: (i) each time there is an accident, the circumstances

of the accident suggest a subset of care Yt ⊆ N that would have prevented the ac-

cident; (ii) each time there is an accident, the victim brings suit against the injurer

before the court; and (iii) the injurer, the victim, and the court all have access to the

same computational methods.

Suppose first that the governing liability rule is strict liability. At t = 0, the injurer

chooses a subset of care X0 ⊆ N . However, because the injurer’s problem is neither

computationally tractable nor reasonably approximable, it is likely that X0 6= X∗.

At t = 1, the injurer can effi ciently verify whether c(Y1)+ `(Y1) ≤ c(X0)+ `(X0), i.e.,

whether Y1 is superior to X0. This follows from Proposition 3. If Y1 is superior to

X0, the injurer adopts X1 = Y1; otherwise he stands pat at X1 = X0. At t = 2, the

injurer can effi ciently verify whether Y2 is superior to X1. If it is, the injurer adopts

X2 = Y2; otherwise he stands pat at X2 = X1. And so forth. In this way, as t→∞,
the injurer’s behavior moves in the direction of socially optimal care X∗.

Suppose next that the governing liability rule is negligence, with due care standard

X0 at t = 0. Note that because the social problem is neither computationally tractable

nor reasonably approximable, it is likely that X0 6= X∗. Note further that because

the injurer and the court have access to the same computational methods, the injurer

always chooses to take due care: Xt = X t at all t. Thus, we need only consider the

evolution of the due care standard. At t = 1, the court can effi ciently verify whether

Y1 is superior to X0. This follows from Proposition 3 and the fact that the social

problem is identical to the injurer’s problem under strict liability. If Y1 is superior

to X0, the court adopts X1 = Y1; otherwise it stands pat at X1 = X0. At t = 2,

the court can effi ciently verify whether Y2 is superior to X1. If it is, the court adopts

X2 = Y2; otherwise it stands pat at X2 = X1. And so forth. In this way, as t→∞,
the injurer’s behavior moves in the direction of socially optimal care X∗.

So far the analysis suggests that the evolution of the injurer’s behavior over time is

the same under strict liability and negligence. Each time there is an accident, nature

proposes a solution Yt and the injurer can effi ciently verify whether Yt is superior to

the status quo and adapt his behavior accordingly. It is a learning-by-experimentation

process, akin to the process of learning the probability distribution of an unfair coin

through repeated flips.
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The dynamic advantage of negligence emerges when we add other injurers to the

story who engage in the same risky activity but whose accidents are unobserved by

our injurer. We can illustrate the point by adding just one other such injurer. Suppose

that the other injurer’s accidents occur at periods t = 1
2
, t = 3

2
, and so forth, but

that the two injurers are otherwise identical (same precaution set, same cost of care

function, etc.). Return first to the case where strict liability is the governing liability

rule. Because our injurer does not observe the other injurer’s accidents, he does not

observe the sequence Y 1
2
, Y 3

2
, .... He therefore cannot learn from the other injurer’s

accidents, implying that his learning process is the same as before, with adaptations

in his behavior possible only at periods t = 1, 2, ....

Now return to the case where negligence is the governing liability rule. Although

our injurer does not observe the sequence Y 1
2
, Y 3

2
, ..., the court does. Consequently,

the court’s learning process is faster than before, with adaptations in the due care

standard possible at periods t = 1
2
, 1, 3

2
, 2, .... This accelerates our injurer’s learning

process, for he observes the sequence X 1
2
, X1, X 3

2
, X2, ..., making adaptations in his

behavior more frequent.23 In this way, negligence can move the injurer’s behavior in

the direction of socially optimal care more rapidly than strict liability.

5 Conclusion

Standard economic models of tort deterrence assume that an injurer’s precaution set

is convex. In reality, however, the precaution set is often discrete. I show that in

cases with discrete care, the injurer’s care-taking problem under strict liability and

negligence is computationally intractable, frustrating their static deterrence effects.

I then argue that while both liability rules can be effective in terms of dynamic

deterrence, negligence has a dynamic advantage over strict liability in that negligence,

due to its information-generating property, can move the injurer’s behavior in the

direction of socially optimal care over time more rapidly than strict liability.

My analysis leads me to two main conclusions. The first is that the standard

assumption of convex care, though seemingly innocuous, is pivotal to constituting the

injurer as Holmes’unboundedly rational "bad man"– homo law-and-economicus.24

Insofar as discrete care is more realistic, the injurer may be more like H.L.A. Hart’s

23Indeed, the more injurers we add to the story, the greater is the rate of this acceleration.
24The term homo law-and-economicus was coined by Gordon (1997, p. 1014).
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"puzzled man . . . who is willing to do what is required, if only he can be told what

it is" (Hart 1961, p. 40). The second conclusion is that negligence is more robust

than strict liability to the reality of bounded rationality and limited computational

capacity. While this does not imply that negligence is superior to strict liability in all

circumstances, it may help to explain why negligence is the general basis for accident

liability under modern Anglo-American tort law.
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