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Abstract 
A dilute Al-0.07Zr-0.02Sc-0.005Er-0.06Si (at.%) alloy was microalloyed with 0.08 at.% Nb or Ta. Atom-
probe tomography reveals that, upon aging, Nb and Ta partition to the coherent L12-Al3(Zr,Sc,Er) 
nanoprecipitates (with average concentrations of 0.2 and 0.08 at.%, respectively), with both segregating at the 
matrix/nanoprecipitate heterophase interface. This is consistent with the Nb- and Ta-modified alloys exhibiting, 
as compared to the unmodified alloy: (i) higher peak microhardness, from a higher nanoprecipitate volume 
fraction and/or lattice parameter mismatch; and (ii) improved aging resistance, from slower 
nanoprecipitate coarsening due to the small diffusivities of niobium and tantalum in aluminum. Analogous 
results were previously reported for a V-modified alloy. 

Keywords 
Aluminum alloys, Precipitation strengthening, Coarsening, Microhardness, Atom-probe tomography 

1. Introduction 
Within the last few decades, much research has focused on aluminum micro-alloyed with scandium, which can 
be aged to create coherent, L12-ordered tri-aluminide nanoprecipitates (Al3Sc), which are coarsening-resistant 
up to 300 °C and which interact efficiently with matrix dislocations, thereby increasing the ambient strength and 
creep resistance of the alloys [[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]]. 

Recent research has focused on identifying additional alloying elements, which can partially (or fully) replace the 
rather expensive scandium, while maintaining the L12 structure of the nanoprecipitates and also: (i) increasing 
creep resistance, by increasing the lattice parameter mismatch between the nanoprecipitates and matrix 
(e.g. lanthanides [[12], [13], [14], [15], [16], [17], [18], [19], [20], [21]]) and thus increase the resistance by 
nanoprecipitates to the movement of the matrix's dislocations; and/or (ii) improving the 
precipitate coarsening resistance through their small diffusivities in the matrix (e.g., transition 
metals [[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33]]), so these alloys can be used well above 
300 °C. Ideally, an alloying addition would satisfy both these conditions. However, an element increasing the 
precipitate lattice parameter mismatch, while improving creep resistance of the alloy, may also increase the 
driving force for coarsening. Therefore, a compromise between creep and coarsening resistance is often 
necessary, and two (or more) elements can be used, one increasing lattice parameter mismatch and the other 
displaying small diffusivity in the aluminum matrix. To date the elements erbium and zirconium have produced 
the best results as additions to Al-Sc alloys, because they very effectively: (i) increase the number density of 
nanoprecipitates and increase the lattice parameter mismatch and thereby the creep resistance (for Er); and (ii) 
significantly reduce the nanoprecipitate coarsening kinetics (for Zr), thus allowing the use of these alloys at 
higher temperatures [17,34]. Furthermore, additions of silicon, which act as inoculants, result in Al-Sc-Zr-Er-Si 
alloys that have high microhardness values upon peak-aging and are coarsening- and creep-resistant at 
temperatures up to 400 °C [35]. 

To further increase coarsening resistance, Zr and Sc can be partially replaced by transition metals with even 
smaller diffusivities in Al [24]. Earlier research [23] showed that Group 5 transition elements (G5 = V, Nb or Ta), 
all of which have much smaller diffusivities in aluminum than Zr and Sc, partition to the L12 Al3(Sc,G5) 
nanoprecipitates in small concentrations (<3 at.%). In our previous work [36], we studied the effects 
of vanadium on coarsening- and creep-resistance of a castable Al-Er-Sc-Zr-Si alloy labeled Q2 (Table 1); V 
additions increased the coarsening resistance of the alloy, while the creep resistance remained unaffected. In a 
recent study [37], the three Group 5 (G5) transition metals (V, Nb and Ta) were added individually into arc-
melted Al-Er-Sc-Zr alloys; these alloys were Sc-rich and Zr-poor, unlike the alloys Q2, Q4 and Q5 (with V, Nb and 
Ta, Table 1) studied herein, which are Zr-rich and Sc-poor. That study [37] revealed that vanadium decreased the 

https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/atom-probe
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/atom-probe
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/tomography
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/microhardness
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/lattice-parameters
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/coarsening
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/diffusivity
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/niobium
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/tantalum
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/scandium
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0005
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0010
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0015
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0020
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0025
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0030
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0035
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0040
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0045
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0050
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0055
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/alloying
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/lattice-parameters
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/rare-earth-elements
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0060
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0065
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0070
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0075
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0080
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0085
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0090
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0095
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0100
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0105
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/coarsening
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/diffusivity
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/transition-metals
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/materials-science/transition-metals
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0110
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0115
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0120
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0125
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0130
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0135
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0140
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0145
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0150
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0155
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0160
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0165
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/erbium
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/zirconium
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0085
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0170
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/microhardness
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0175
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0120
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0115
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0180
https://0-www-sciencedirect-com.libus.csd.mu.edu/topics/physics-and-astronomy/vanadium
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#t0005
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0185
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#t0005
https://0-www-sciencedirect-com.libus.csd.mu.edu/science/article/pii/S1044580317335829#bb0185


coarsening kinetics during isochronal aging, whereas niobium and tantalum had no noticeable effects. Atom-
probe tomography (APT) [38,39] results demonstrated that only V partitioned significantly to the precipitates 
(~2.75 at.%). 

Table 1. Average concentrations (at.%) of all atom-probe tomographic (APT) nanotips analyzed for this study, 
compared to concentrations measured by direct current plasma-atomic emission spectrometry (DCP-AES) on 
macroscopic volumes. Data for alloys Q1 and Q2 are from Ref. [36] (Nom = Nominal, ND = not detected).  

Er Sc Zr V Nb Ta Si L12 
Formers* 

Techni
que 

Q1-Nom 0.005 0.02 0.07 – – – 0.06 0.095 
 

Q1 0.005 0.019 0.068 – – – 0.06
6 

0.092 DCP-
AES 

Q2-Nom 0.005 0.02 0.07 0.08 – – 0.06 0.175 
 

Q2 0.007 0.013 0.071 0.074 – – 0.05
4 

0.165 DCP-
AES 

Q4-Nom 0.005 0.02 0.07 – 0.08 – 0.06 0.175 
 

Q4 0.006 0.007 0.071 – 0.047 – 0.05
4 

0.131 DCP-
AES 

Q4-1 0.004 0.009 0.242 – 0.157 – 0.05
7 

0.412 APT 

Q4-2 0.006 0.014 0.355 – 0.024 – 0.05
3 

0.399 APT 

Q4-3 ND ND 0.205 – 0.176 – 0.06
4 

0.381 APT 

Q4-4 ND 0.018 0.117 – 0.083 – 0.07
7 

0.218 APT 

Q4-5 0.015 0.064 0.337 – 0.154 – 0.11
9 

0.570 APT 

Q4-6 0.001 0.002 0.100 – 0.020 – 0.07
5 

0.123 APT 

Q4-7 ND 0.002 0.108 – 0.210 – 0.05
5 

0.320 APT 

Q4-8 0.004 0.003 0.146 – 0.055 – 0.07
5 

0.208 APT 

Q4-Ave 0.006 ± 0
.005 

0.016 ± 0
.022 

0.201 ± 
0.102 

– 0.110 ±
 0.073 

– 0.07
2 ± 0.
021 

0.329 ± 0.
142 

 

Q5-Nom 0.005 0.02 0.07 – – 0.08 0.06 0.175 
 

Q5 0.006 0.009 0.074 – – 0.052 0.08
2 

0.141 DCP-
AES 

Q5-1 0.002 0.026 0.251 – – 0.063 0.07
3 

0.339 APT 

Q5-2 ND 0.030 0.171 – – 0.065 0.07
7 

0.266 APT 

Q5-3 0.002 0.006 0.149 – – 0.077 0.08
0 

0.232 APT 

Q5-4 0.003 0.035 0.214 – – 0.031 0.07
3 

0.283 APT 

Q5-5 0.005 0.040 0.168 – – 0.083 0.09
2 

0.296 APT 
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Q5-Ave 0.003 ± 0
.001 

0.027 ± 0
.013 

0.191 ± 
0.041 

– – 0.064 ±
 0.020 

0.07
9 ± 0.
008 

0.283 ± 0.
039 

 

*Sum of Er, Sc, Zr and Group 5 elements. 

In the present study, we arc-melted two alloys with the target composition Al-0.005Er-0.02Sc-0.07Zr-0.06Si at.%, 
with additions of 0.08 at.% Nb (labeled Q4) or 0.08 at.% Ta (labeled Q5), matching those of Q1 (unmodified) and 
Q2 (with 0.08 at.% V additions) in our previous study [36]: all compositions are given in Table 1. Due to its very 
high cost, the amount of Sc is minimized. A recently published study [36] shows that higher amounts of Sc (by a 
factor of 2.5 as compared to the present alloy) did not result in significant improvements in creep resistance to 
justify the cost. The alloys were homogenized and subjected to a double isothermal aging treatment, while 
measuring micro-hardness to assess peak strengthening and coarsening resistance; overaged samples were 
analyzed utilizing APT to assess the extent of Nb and Ta partitioning to the nanoprecipitates. 

2. Experimental Procedure 
Two 10 g buttons (Q4 with Nb additions and Q5 with Ta additions) were arc-melted (flipped and re-melted five 
times) in a water-cooled copper hearth furnace, using 99.99 at.% pure Al, 99.9 at.% pure Nb, 99.9 at.% pure Ta, 
and master alloys consisting of Al–5.9 wt% Er, Al–2 wt% Sc, Al–8 wt% Zr, and Al–12.6 wt% Si. Each button was 
sectioned into 2 mm thick specimens using an abrasive blade. One 2 mm thick slice per alloy was chemically 
analyzed using direct current plasma-atomic emission spectrometry (DCP-AES). The remaining sections were 
subjected to a homogenization treatment at 640 °C for 4 h (the same conditions as alloys Q1 and Q2 [36]) and a 
subsequent double-aging treatment at 350 °C/16 h and (400 or 450 °C)/12–720 h. The microhardness of all 
mounted and polished specimens was measured as the average of at least ten indentations, using a Duramin 5 
microhardness tester (Struers) employing a 200 g load and a 5 s indentation time. Specimens double-aged at 
350 °C/16 h + 450 °C/200 h were analyzed using a LEAP4000X Si tomograph (Cameca, Madison, WI) at a pulse 
repetition rate of 250–500 kHz, an ultraviolet (UV) (wavelength = 355 nm) pulse energy of 50 pJ, and a sample 
temperature of −243 °C (30 K). The three-dimensional (3-D) tomographic data were subsequently analyzed 
utilizing Cameca's integrated visualization and analysis software (IVAS), version 3.6.8. APT specimens were 
prepared by cutting blanks with a diamond saw to ~0.5 × 0.5 × 10 mm3 and then 
subsequently electropolishing in two stages: (i) coarse electropolishing at 20–25 Vdc using a solution of 10 vol% 
perchloric acid in acetic acid to form a neck; and (ii) fine polishing at 15–18 Vdc using a solution of 2 vol% 
perchloric acid in butoxyethanol to dissolve the neck and obtain a nanotip [40,41]. 

3. Results and Discussion 
Scanning electron microscope (SEM) micrographs of polished cross-sections of the as-cast alloys displayed a very 
small number of Zr-rich particles (one example from alloy Q4 is shown in Fig. 1), about 5 μm in size, formed 
during solidification, which are most likely primary Al3Zr precipitates. In similar alloy systems, Er- and/or Zr-rich 
precipitates tend to form during solidification [34,35], and Er-rich precipitates dissolve during homogenization, 
while Zr-rich precipitates do not. This decreases the amount of Zr in solid-solution, which is available for 
subsequent precipitation during aging (thus decreasing the peak microhardness), and/or refines the grain 
structure, thereby decreasing the creep resistance. In our case it is, however, safe to assume that most of 
the alloying elements remain in solid-solution and are available to precipitate during aging, since the number 
density of primary precipitates is small. Our alloys also exhibit a dendritic microstructure, as anticipated based 
on prior studies [42,43]. All alloys are subjected to a homogenizing treatment at 640 °C for 4 h. This treatment 
dissolves primary Al3Er and Al3Sc (if present) precipitates. It doesn't, however, remove the interdendritic 
microstructure, particularly for the slow diffusers, which are Zr, Nb, and Ta. DCP-AES results display some 
discrepancies between the actual composition and the target compositions of both alloys. The Q4 and Q5 alloys 
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have verified compositions listed in Table 1. The Sc, Nb and Ta concentrations in alloys Q4 and Q5 are depleted 
by 35 to 50%, whereas the Er, Zr and Si concentrations are close to the target values. 

 
Fig. 1. (a) Scanning electron microscopy (SEM) image showing a primary Al3Zr precipitate in the as-cast alloy Q4. 
Energy dispersive X-ray spectroscopy (EDS) maps displaying the distributions of (b) Al and (c) Zr. 
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The goal of the double-aging treatment is to maximize the number density of nanoprecipitates at the lower 
aging temperature (350 °C) and then permit the slow-diffusing elements, Zr, Nb or Ta, to precipitate at a higher 
temperature (400 or 450 °C) [36]. Employing an isothermal aging treatment at a single high-temperature (400 or 
450 °C) is not ideal as nanoprecipitates consisting of the faster diffusing elements Er and Sc, would nucleate, 
grow, and coarsen rapidly before the slow-diffusing elements, particularly Zr, can form a shell around these 
nanoprecipitates to decelerate their coarsening kinetics. This would result in a small number density of 
nanoprecipitates and lower microhardness values and creep resistance. Alternatively, a single heat treatment at 
a lower temperature, while ensuring the formation of Er- and Sc-rich nanoprecipitates at a high number density, 
would not permit the slow-diffusing elements to precipitate from the solid-solution, at least for times relevant 
to industrial heat-treatments (a few days) or basic research (a few months). 

Fig. 2 displays the evolution of the microhardness in alloys Q4 and Q5 during the second-step of the double-
aging treatment, performed at 400 or 450 °C. Also presented for comparative purposes are the microhardness 
values for the two alloys, Q1 (no additions) and Q2 (with V-additions), previously published [36]. The Q1 and Q2 
alloys were solidified in graphite molds placed on ice-cooled copper platens and quenched into water after 
solidification [36]. They may therefore be less supersaturated than the present arc-melted alloys Q4 and Q5 in 
the as-cast state; all alloys were homogenized (640 °C/4 h) prior to aging. The difference between the dendrite 
sizes may have an effect on the reported microhardness values. At 400 °C (Fig. 2(a)), for 12 to 120 h of aging, 
alloys Q2, Q4 and Q5 display a constant microhardness of 58–60 HV (~575 MPa), derived from the initial aging 
treatments at 350 °C. For these aging times, all values are within error bars, but alloy Q5 displays a slightly 
higher average microhardness. Beyond 200 h, the microhardness of alloy Q2 decreases significantly, whereas 
alloys Q4 and Q5 display only a very small decrease in microhardness values up to 720 h, for the longest aging 
time employed. The unmodified control alloy Q1 softens rapidly upon aging at 400 or 450 °C, and it displays a 
microhardness value significantly lower than alloy Q5 (425 vs 540 MPa) after 720 h, which is the longest aging 
time at 400 °C. This result is consistent with the absence of a slow-diffusing Group 5 element in this alloy. As 
displayed in Table 1, alloys Q4 and Q5 have smaller Sc concentrations than the V-containing alloy Q2, and 
smaller concentrations of L12 formers, which is the sum of Er, Sc, Zr and a Group 5 element; they, however, have 
a somewhat better coarsening resistance, especially at 400 °C. Increasing the Sc concentrations of alloys Q4 and 
Q5 to the same level as alloy Q2 alloy may further increase the strength of alloys Q4 and Q5, as Sc (unlike Zr and 
the Group 5 elements) precipitates strongly from a solid-solution. At 450 °C (Fig. 2(b)), all modified alloys are 
within a single band of data points, which decrease immediately upon aging. Based on previous results obtained 
from similar alloys [[34], [35], [36], [37]], including alloy Q2 discussed in this article, it is safe to hypothesize that 
the continuous decrease in microhardness in all alloys is due to the coarsening of L12 ordered nano-precipitates. 
The unmodified Q1 alloy is mechanically weaker than the modified alloys, but the difference with the modified 
alloys is less than at 400 °C. At all aging times, the alloy Q5 is stronger than alloy Q1 (380 MPa vs 350 after 
720 h), while alloys Q2 and Q4 are intermediate in microhardness and very close to each other. The data show 
that the Sc concentrations in these alloys can be decreased from 0.013 at.% (Q2) to 0.007–0.009 at.% (Q4 and 
Q5), a factor of almost 2, without a reduction in coarsening resistance, making these alloys significantly less 
expensive. Alloys Q4 and Q5 must be retested after being conventionally cast, as alloys Q1 and Q2 were, to 
eliminate completely the possibility that differences in aging responses may be due to differences in the 
dendritic cast structures or to a higher supersaturation; the latter being unlikely, given the same 
homogenization conditions utilized. 
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Fig. 2. Vickers microhardness (MPa) plots versus secondary aging time (hours) displaying its evolution for alloys 
Q1 (unmodified), Q2 (V-modified), Q4 (Nb-modified), and Q5 (Ta-modified) during double-aging with a primary 
step at 350 °C for 16 h, followed by secondary steps at: (a) 400 °C; and (b) 450 °C for times between 12 and 
720 h. 
 

An APT study was performed on alloys Q4 and Q5, which were double-aged at 350 °C/16 h plus 450 °C/200 h. 
The long aging time, 200 h, was chosen as a compromise between excessive coarsening (observed in Fig. 2 by 
the microhardness decrease) and insufficient diffusion of Nb and Ta. The proximity histogram [44] displayed 
in Fig. 3 shows the elemental concentration distributions in the matrix and nanoprecipitates, obtained from two 
partial nanoprecipitates, for alloy Q4. An increased Nb concentration is detected in the outer shell of the 
nanoprecipitate, near the interface with the matrix, indicated by a vertical dashed line, with a peak value of 
~1.2 at.% or ~8 times the matrix's Nb concentration. This suggests that Nb partitions to the tri-aluminide 
nanoprecipitates and is consistent with the improved coarsening resistance when compared to unmodified alloy 
Q1. Also visible from this proximity histogram is the uniform concentrations of Er, Sc, and Zr within the 
nanoprecipitates. In similar alloy systems, including alloy Q2, a core-shell nanoprecipitate microstructure is 
observed, where an Er- and Sc-rich core is surrounded by a Zr-rich shell. Specifically, for alloy Q4 aged for 200 h 
(compared to 24 h for alloy Q2) the Zr-rich shell is also enriched in Nb, whose concentration reaches locally 
0.3 at.%. Table 2 displays the matrix's and nanoprecipitates' average concentrations as determined by APT. It is 
evident that this particular nanotip is enriched in Zr and Nb, by factors of ~3.5 and ~4, respectively, as compared 
to the average values obtained utilizing DCP-AES. This indicates that this particular nanotip was most likely 
located in a dendritic core, as the peritectic-forming elements Zr and Nb are anticipated to segregate at the 
dendrite cores, whereas the eutectic-forming elements Er and Sc segregate in the inter-dendritic channels. The 
Zr concentration is higher than the average concentration measured using DCP-AES which supports the 
assumption that the nanotip volume sampled corresponds to the dendritic core. The compositional data also 
demonstrate that most of the Er, Sc, and Zr partitioned to the nanoprecipitates, as anticipated from prior studies 
[36,45]. While there is a significant amount of Nb partitioning to the nanoprecipitates, most of the Nb remains in 
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the matrix. The nanotip volume displayed in Fig. 3 contains 0.16 at.% Nb, which is almost four times the solid-
solubility limit reported for the Al-Nb system at 450 °C (0.045 at.%), which can provide solid-solution 
strengthening [46]. 

 
Fig. 3. Proximity histograms of two partial nanoprecipitates in alloy Q4-1 in the double-aged condition 
(350 °C/16 h plus 450 °C/200 h), indicating Nb partitioning to the nanoprecipitates. The vertical dashed line 
indicates the position of the matrix/nanoprecipitate interface. It is defined by the inflection point in the Al 
concentration profile. Dashed curves in both proximity histograms show the detection limit (plotted on the right 
ordinate), which represents a single ion detected in a bin. 
 

Table 2. Matrix and precipitate concentrations (at.%) for alloys Q4 and Q5 nanotips analyzed utilizing atom-
probe tomography (APT), for nanotips listed in Table 1, which contain nanoprecipitates. Data obtained from 
volumes with partial nanoprecipitates are less accurate than those with full nanoprecipitates (ND = not 
detected).  

Volume Er Sc Zr Nb Ta Si L12 
Formers* 

Tip 
volume 
(nm3) 

Number of 
precipitates 

Q4-
1 

Matrix 
Precipitate 

ND 
0.96 

0.002 
1.54 

0.131 
24.84 

0.157 
0.26 

– 
– 

0.118 
0.17 

0.290 
27.60 

3 × 105 2 partial 

Q4-
2 

Matrix 
Precipitate 

0.005 
0.16 

0.005 
1.43 

0.225 
21.14 

0.024 
0.01 

– 
– 

0.053 
0.06 

0.259 
22.74 

1 × 105 1 partial 

Q4-
6 

Matrix 
Precipitate 

ND 
ND 

0.002 
1.12 

0.093 
23.58 

0.019 
0.3 

– 
– 

0.075 
0.14 

0.134 
25.0 

2 × 106 2 partial 

Q4-
7 

Matrix 
Precipitate 

ND 
0.29 

0.008 
8.65 

0.104 
16.24 

0.210 
0.24 

– 
– 

0.139 
0.12 

0.322 
25.42 

4 × 105 1 partial 

Q5-
1 

Matrix 
Precipitate 

0.002 
0.76 

0.016 
4.84 

0.216 
18.21 

– 
– 

0.063 
0.10 

0.073 
0.12 

0.297 
23.33 

2 × 105 1 full 

Q5-
4 

Matrix 
Precipitate 

0.002 
0.49 

0.024 
6.19 

0.184 
16.85 

– 
– 

0.031 
ND 

0.073 
0.05 

0.238 
23.66 

3 × 105 1 partial 
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Q5-
5 

Matrix 
Precipitate 

0.001 
1.15 

0.009 
9.97 

0.130 
12.54 

– 
– 

0.083 
0.13 

0.091 
0.36 

0.223 
23.79 

8 × 105 2 partial 

 

Fig. 4 displays a proximity histogram obtained from alloy Q5, containing one full-nanoprecipitate, which exhibits 
an increase in Ta concentration as compared to the matrix composition (by a factor 1.6, Table 2), without 
localized interfacial segregation. This result indicates that Ta, like Nb in alloy Q4 (Fig. 3) and V in alloy Q2 [36], 
partitions to the tri-aluminide nanoprecipitates, consistent with enhanced coarsening resistance, Fig. 2. Unlike 
Nb and V, Ta (Fig. 4) is not segregated at the heterophase interface, but rather is present throughout the 
nanoprecipitates. Further comparisons between the APT results for these three alloys are difficult, as the 
analyzed volumes are depleted and enriched with alloying elements differently, due to dendritic segregation. 
The absolute concentrations of Group 5 elements in the nanoprecipitates may vary from nanotip-to-nanotip. 
Thus, comparing the matrix/nanoprecipitate partitioning coefficients, ratio of the concentration in a 
nanoprecipitate to that of the matrix, for the respective Group 5 elements is more informative. For alloys Q2 
[36], Q4 (Fig. 3) and Q5 (Fig. 4), the partitioning coefficients are 2 for V, 1.6 for Nb and 1.6 for Ta, respectively. 
This indicates that the three Group 5 elements (V, Nb, and Ta) have approximately similar partitioning 
behaviors; their effects on the matrix/nanoprecipitate lattice parameter mismatch, affecting creep resistance, 
may be different as are their diffusivities in the aluminum matrix, which affects the coarsening resistance of the 
nanoprecipitates. The results presented herein reveal that Ta additions result in stronger and more coarsening 
resistant alloys; additional research, especially based on TEM imaging, is required, however, to definitely 
establish this point. 

 
Fig. 4. Proximity histograms of one full nanoprecipitate in alloy Q5-1 in the double-aged condition (350 °C/16 h 
plus 450 °C/200 h), showing Ta partitioning to the nanoprecipitate. The vertical dashed-line indicates the 
position of the matrix/nanoprecipitate interface. It is defined by the inflection point in the Al concentration 
profile. Dashed curves in both proximity histograms show the detection limit (plotted on the right ordinate), 
which represents a single ion detected in a bin. 
 

Due to the small number density of nanoprecipitates, there were at most two nanoprecipitates present in each 
of the nanotips analyzed. Although more nanotips were analyzed (listed in Table 1, Table 2), only one full 
nanoprecipitate was detected in the small volumes (listed in Table 2), which is consistent with a significant 
amount of coarsening at 450 °C. Thus, statistically-relevant values for the mean nanoprecipitate radius, volume 
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fraction and number density are not reported. Based on the nanotips analyzed, we expect the mean 
nanoprecipitate radius to be ~8 nm and the number density to be approximately 1021 m−3, which is close to the 
values obtained for alloy Q2 (6 nm and 6.8 × 10−21 m−3, respectively). Table 1 also displays the compositional 
variations among nanotips, which is a direct effect of the dendritic microstructure and elemental macro-
segregation. The Er and Sc concentrations are anticipated to be under-determined, due to the lack of full 
nanoprecipitates in the volumes analyzed because these elements tend to partition to the nanoprecipitates's 
cores. The analyzed volumes must include multiple full nanoprecipitates for accurate results. Also, it is noted 
that, due to dendritic macro-segregation, the composition of one nanotip to another can vary significantly (as 
indicated by the relatively large error values given in Table 1). Hence, it is difficult to draw further conclusions 
without analyzing a larger number of nanotips, which is expensive. 

4. Conclusions 
The effects of Nb and Ta on the microstructural and microhardness evolution of arc-melted Al-Er-Sc-Zr-Si alloys 
are investigated. The following conclusions are reached as a result of this study: 

1. As-cast alloys contain a small number density of Zr-rich primary precipitates, which were previously 
observed in similar alloys, but they do not have any significant negative effects on the alloys. 

2. Double-aging studies are performed at a primary aging treatment at 350 °C for 16 h, which is followed 
by a secondary aging treatment at 400 or 450 °C for times up to 720 h. Both the Nb- and Ta-
containing alloys (Q4 and Q5) displayed improved coarsening resistance at 400 °C compared to the 
base alloy Q1 and V-modified alloy Q2. This effect is not as significant at 450 °C. Alloys Q4 and Q5 
are, however, still considerably stronger than alloys Q1 and Q2. 

3. Atom-probe tomography results reveal increased concentrations of Nb and Ta at the 
matrix/nanoprecipitate heterophase interface in over-aged (350 °C/16 h plus 450 °C/200 h) alloys 
Q4 and Q5, respectively. This is similar to our prior results obtained from alloy Q2, where an 
increased V concentration at the matrix/nanoprecipitate heterophase interface was observed. 

4. Due to the small number of nanoprecipitates observed in the analyzed atom-probe tomographic 
volumes, no definitive conclusions could be reached regarding the number density and volume 
fraction of said nanoprecipitates. 
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