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Abstract 

 
The cationic Ru–H complex was found to be an effective catalyst for the dehydrative C–H coupling of phenols 
with ketones to form the trisubstituted olefin products. The coupling of phenol with linear ketones led to highly 
stereoselective formation of the (Z)-olefin products. The dehydrative coupling of phenol with enones and diones 
efficiently formed the benzopyrene and related oxacyclic derivatives. The reaction of 3,5-dimethoxyphenol with 
cyclohexanone-2,2,6,6-d4 showed a significant H/D exchange to both vinyl and α-CH2 positions on the olefin 
product (72–75% D). A significant carbon isotope effect was observed on the ortho-arene carbon of the olefin 
product. The free energies of intermediate species for the entire catalytic cycle were successfully computed by 
using the DFT method. The DFT study revealed that the E/Z stereoselectivity is a result of the energy difference 
in the insertion step of ortho-metalated phenol to an enol form of the ketone substrate (ΔΔE = 9.6 kcal/mol). 
The coupling method provides a direct catalytic C–H olefination method for ketones to form trisubstituted 
olefins without employing any reactive reagents or forming any wasteful byproducts. 

Introduction 
Carbonyl olefination methods have long been considered as one of the most versatile C–C coupling protocols for 
the synthesis of complex organic molecules.(1) Traditionally, phosphorus ylide and related main group reagents 
have been widely used for the Wittig type of coupling reactions, but early transition metal reagents were also 
employed for McMurry(2) and Tebbe-Petasis(3) olefination reactions. Peterson olefination and related 
nucleophilic addition–elimination methods for aldehydes and ketones have also been successfully developed to 
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form substituted olefins.(1b,4) From the viewpoint of sustainable synthesis, these classical carbonyl olefination 
methods pose inherent drawbacks in that the usage of a stoichiometric amount of ylide or transition metal 
reagents results in the formation of a copious amount of toxic and wasteful byproducts. To overcome 
shortcomings associated with classical olefination methods, a concerted research effort in recent decades has 
been devoted to the development of strategies for catalytic carbonyl olefination. In a seminal work, Pd-
catalyzed Negishi couplings of carbonyl derivatives with organozinc reagents have been extensively used for the 
synthesis of highly functionalized olefins and related molecules.(5) More recently, the Schindler group devised a 
remarkably effective intramolecular carbonyl-to-olefin metathesis reaction by using FeCl3 as a 
catalyst.(6) Milstein and co-workers utilized pincer-ligated Ru catalysts to promote a selective carbonyl 
olefination via the coupling of alcohols with alkylsulfonates.(7) Zhou and co-workers cleverly designed a Ni-
catalyzed olefination method from the coupling of arylketones with organoboron reagents.(8) Li recently 
reported a Ru-catalyzed carbonyl olefination method via hydrazine promoted reductive coupling of carbonyl 
compounds.(9) Despite such remarkable advances in designing catalytic olefination methods, these coupling 
methods still require reactive boron and sulfur reagents, which lead to the formation of salt byproducts. 
Additionally, they exhibit tendencies of undergoing undesired side reactions such as dehydrogenation and aldol-
type condensation reactions. Catalytic C–H coupling methods have emerged as a step-efficient and direct 
olefination protocol for arenes,(10) although their synthetic utility has yet to be fully exploited in carbonyl 
olefination reactions. 

One of the pertinent issues in carbonyl olefination methods has been concerned with controlling the 
stereochemistry of olefin products. In particular, designing (Z)-selective olefination methods has been 
considered the most challenging, since classical olefination methods generally favor the formation of (E)-olefins. 
In this regard, Peterson(4) and Horner–Wadsworth–Emmons(11) olefination methods have been extensively 
used for the synthesis of (Z)-olefin products, but the major issues on employing stoichiometric reagents and the 
formation of toxic byproducts have not been resolved for these methods. In terms of catalytic olefination 
methods, both Grubbs and Schrock-type metal-carbene catalysts have been successfully designed and utilized 
for a ring-closing metathesis reaction in forming biologically active (Z)-selective macrocyclic olefin 
products.(12) Pd-catalyzed Negishi-type coupling methods have also been successfully employed for the 
synthesis of (Z)-selective trisubstituted olefins.(5a) 

We previously discovered that the cationic ruthenium hydride complex [(C6H6)(PCy3)(CO)RuH]+BF4
– (1) is a highly 

effective catalyst precursor for a number of dehydrative C–H coupling reactions of alkenes and arenes with 
alcohols.(13) Since these coupling reactions are driven by the formation of water, we reasoned that the 
analogous dehydrative C–H coupling reactions with carbonyl compounds might be feasible in achieving carbonyl 
olefination reactions. Herein, we report the scope and mechanistic study of ruthenium-catalyzed dehydrative 
coupling reaction of phenols with ketones, which leads to a highly (Z)-selective synthesis of trisubstituted olefin 
products. We combined experimental and computational analyses to establish a detailed mechanism as well as 
to elucidate the origin of stereoselectivity for the olefination reaction. The catalytic method features a direct 
catalytic C–H olefination method of ketones with phenols without employing any reactive reagents or forming 
any wasteful byproducts, while tolerating a number of common organic functional groups. 
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Results and Discussion 
Reaction Scope 
In an effort to extend the scope of dehydrative C–H coupling method of arenes,(13) we initially probed the 
feasibility of the coupling reaction of phenols with simple ketones by using the Ru–H catalyst. Thus, the 
treatment of 3,5-dimethoxyphenol (0.5 mmol) with propiophenone (1.0 mmol) in the presence of 1 (3 mol %) in 
1,2-dichloroethane (2 mL) led to the formation of the alkenylated product (Z)-2a (eq 1). Among the screened 
catalysts, the Ru–H complex 1 exhibited distinctively high activity in forming the coupling product, as analyzed 
by both GC and NMR spectroscopic methods (Table S1, Supporting Information (SI)). Moreover, a highly 
stereoselective formation of (Z)-2a was observed, and its structure was unambiguously established by NMR 
spectroscopy (vide infra). 

 

The substrate scope of the olefination reaction was explored using the catalyst 1, as summarized in Table1. An 
electron-rich 3,5-dimethoxyphenol was found to be a suitable substrate for the coupling with aryl-substituted 
linear ketones to form ortho-alkenylated phenol products 2a–2n (entries 1–14). For these aryl-substituted 
ketones, highly (Z)-selective olefin products 2a–2i were formed in the crude mixture, as analyzed by GC-MS 
(entries 1–9). In contrast, the coupling with aliphatic linear ketones resulted in a mixture of (E)/(Z)-olefins, with 
the (Z)-isomer being the major products for 2k–2n (entries 11–14). The analogous treatment of 3,5-
dimethoxyphenol with cyclic ketones led to the clean formation of 2q–2s (entries 17–19), while the coupling 
with 2-indanone yielded the indenyl-substituted product 2t (entry 20). The coupling of 1-naphthol with linear 
and cyclic ketones led to the formation of the coupling products 2o and 2v, respectively (entries 15 and 22). The 
coupling reaction of phenols with an electron-withdrawing group was quite sluggish leading to low olefin 
product yields. 

Table 1. Dehydrative C–H Olefination of Phenols with Ketonesa 
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aReaction conditions: phenol (0.5 mmol), ketone (1.0 mmol), 1,2-dichloroethane (2 mL), 1 (3 mol %), 125 °C, 16 h. 
b1.5 mmol of ketone was used. 
 

To further demonstrate its synthetic utility, we next surveyed the substrate scope of the catalytic carbonyl 
olefination method by employing a number of biologically active ketone substrates (Table2). Thus, the coupling 
of 3,5-dimethoxyphenol with 4-hydroxycoumarin yielded the coupling product 2w, while the reaction with (+)-
nootkatone led to the alkenylated product 2x in a single step. Treatment with an anti-inflammatory agent 
nabumetone also readily afforded a 5:1 Z/E mixture of alkenylated product 2y. Treatment with (+)-4-cholesten-
3-one and adrenosterone predictively yielded the corresponding diene products 2z and 2aa, respectively. 

Table 2. Dehydrative Coupling of 3,5-Dimethoxyphenol with Functionalized Ketonesa 

 

aReaction conditions: phenol (0.5 mmol), ketone (1.0 mmol), 1,2-dichloroethane (2 mL), 1 (3 mol %). 

https://pubs.acs.org/doi/10.1021/jacs.8b05875#tbl2
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The (Z)-stereochemistry of these olefin products was established by NMR spectroscopic methods. One of the 
most diagnostic features of the (Z)-olefin products is that allylic CH2 protons of (Z)-2 exhibited an ABX type of 
second-order pattern in the 1H NMR spectrum due to a diastereotopic environment resulted from restricted 
rotation of the phenol group. In contrast, allylic CH2 protons of (E)-2 showed a simple first-order pattern. The 
stereochemistry of (Z)-2a was also definitively established by X-ray crystallography (Figure S3, SI). From both 
synthetic and environmental points of view, the salient features of the catalytic method are that it facilitates a 
direct C–H coupling of readily available phenol and ketone substrates in a highly regio- and stereoselective 
fashion and that it forms synthetically valuable trisubstituted olefin products 2 without using any reactive 
reagents or forming wasteful byproducts. 

Computational Study 
Inspired by related ruthenium-catalyzed dehydrative C–H coupling reactions, we initially compiled a plausible 
mechanistic pathway for the olefination reaction, which involves an initial ortho-C–H metalation of phenol, 
migratory insertion of the ketone substrate, and the subsequent dehydration and elimination steps (Scheme 
1).(13a) However, despite our best efforts, we have not been able to detect or trap any catalytically relevant 
intermediate species, which made it difficult to establish a detailed mechanism of the coupling reaction 
experimentally. Thus, to attain deeper insights into the reaction mechanism and to elucidate the origin of (E)/(Z) 
selectivity, we turned to the DFT calculations. We have successfully computed the entire catalytic cycle for the 
coupling reaction of 3,5-dimethoxyphenol with 1,2-diphenylethanone substrates, and the free energy profile 
diagram has been constructed, as shown in Figure 1. The catalytic cycle begins with the Ru–H complex 1 forming 
a loosely bound transient adduct 4 with the phenol substrate, which can readily extrude the originally η6-bound 
benzene ligand and proceed with the ortho-C–H metalation mediated by the phenolic OH directing group. 
The ortho-metalation step is associated with a barrier of 23.7 kcal/mol to generate the key intermediate 
complex 5, which is only 5.1 kcal/mol uphill energetically, driven by the release of hydrogen gas (Figure S5, SI). 
As supporting experimental evidence for the benzene ligand dissociation, we previously observed a facile arene 
exchange reaction and the formation of free benzene from the coupling reactions mediated by the Ru–H 
catalyst 1.(14) 
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Scheme 1. Proposed Catalytic Cycle for the Coupling of 3,5-Dimethoxyphenol with 1,2-Diphenylethanone 

 

Figure 1. Free energy profile for the formation of (E)-2b′ (red) and (Z)-2b (black) with water as the 
byproduct. 

The intermediate 5 initiates the catalytic cycle by binding (E)- and (Z)-enol form of the ketone substrate to form 
the adducts 6 and 6′, respectively. Interestingly, the adduct 6′ made by coordinating the (Z)-enol substrate is 
lower in energy by ∼7 kcal/mol than the analogue formed from (E)-enol substrate 6. Subsequent migratory 
insertion affords intermediate 7′ and 7 traversing via the transition state 6′-TS and 6-TS, where the relative 
energy between two stereoisomers is inverted during the migratory insertion step. At the transition state, the 6-
TS formed from the (E)-enol substrate is nearly 3.5 kcal/mol lower in energy than 6′-TS, which contains the (Z)-
enol substrate. This energy difference is notably diminished to ∼1.5 kcal/mol, but the relative ordering is 
maintained in the transient, high-energy intermediate 7 and 7′. Rotation around the C–C bond leads to the much 
more stable intermediates 8 and 8′, where the alkoxide group is appropriately positioned to act as a Lewis base 
and coordinated to the metal. The two diastereoisomers are predicted to be nearly isoenergetic at this 
intermediate state. To push the reaction forward, the hydroxyl group originating from the enol substrate must 
be eliminated via a dehydration step, as mentioned above. We explored several possible ways of accomplishing 
this task and found that the heterolytic cleavage of the C–OH bond accompanied by hydroxyl transfer to the Ru-
center and reconstitution of the olefinic double bond of the substrate is energetically the most favorable 
pathway to give complex 9 and 9′. Release of the product 2b or 2b′ and addition of a new equivalent of phenol 
gives the ruthenahydroxyl-complex 10, which can restart the catalytic cycle by activating the phenolic ortho-C–H 
bond and extruding an equivalent of water to generate intermediate 5. 

To understand the stereoselectivity described above, we performed a detailed fragment energy analysis on the 
migratory insertion step for both stereoisomers. In this analysis, we first fragment the intermediates 6/6′ and 
the transition states 6-TS/6′-TS into chemically meaningful fragments, namely, the olefin substrate marked in 
blue and the ruthenium fragment carrying the ligands “RuL” as shown in red in Figure 2. Then, the energies of 
these fragments are calculated independently, which allows for evaluating how much energy is required to 
distort each of the fragments to the geometry found in the transition state.(15)Figure 2 summarizes the 
fragment and interaction energies, which can be computed by subtracting the sum of fragment energies from 
the total molecular energy. Interestingly, the majority of the energy difference between the two transition 
states is caused by the RuL fragment distortions. The RuL fragments in 6 must invest 17.2 kcal/mol to reach the 
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structure found in 6-TS, whereas 24.7 kcal/mol must be invested to distort the structure of RuL in 6′ to what is 
found in 6′-TS. This difference of 7.5 kcal/mol is by far the largest contributor to the electronic transition state 
energy difference of 9.6 kcal/mol. The olefin fragments require 25.3 and 26.1 kcal/mol energy, which is mostly 
invested into lengthening the C–C double bond in preparation of the migratory insertion. These distorted 
fragments interact with each other allowing recovery of 15.2 and 13.9 kcal/mol to afford the final transition 
state energies of 27.3 and 37.0 kcal/mol, as illustrated in Figure 2. It is curious that the interaction energy in 6-
TS is 1.3 kcal/mol greater although the fragment distortions are more severe in 6′-TS. The degree of fragment 
distortion is generally related to the transition state being late, which means that both the bond breaking and 
bond forming processes should have progressed further. That is typically reflected in greater fragment 
distortion, but also in greater interaction energies. 

 

Figure 2. Fragment energy analysis of the migratory insertion step for the formation of (Z)-2b vs (E)-2b. 

Figure 3 illustrates the structural difference between 6-TS and 6′-TS, which offers an explanation for the 
aforementioned energy components. In order to promote the insertion, the double bond between C2 and C3 
must be broken, in conjunction with the formation of a new single bond between C1 and C2. The most relaxed 
geometry for this transition state features a square-planar metallacyclobutane-like structure. The 6-TS adopts a 
fairly planar structure with the dihedral angle ∠Ru–C1–C2–C3 being ∼5°, as shown in Figure 3a. In contrast, 6′-
TS has an unfavorable steric interaction between the phenyl group of the enol and the carbonyl group of the Ru-
catalyst, which leads to a significant departure from planarity with the ∠Ru–C1–C2–C3 dihedral angle of ∼26°, as 
illustrated in Figure 3b. The four bond lengths in the four-membered metallacycle directly report on how far the 
transition state has progressed away from the reactant state. The Ru–C1 bonds are 2.11 and 2.23 Å in 6-
TS and 6′-TS, respectively, which is consistent with 6′-TS being more distorted than 6-TS, as discussed above. The 
C1–C2 bond is much longer at 2.17 Å in 6-TS compared to 1.94 Å in 6′-TS, again consistent with 6-TS being an 
“earlier” transition state. The sterically induced deviation from planarity also explains why the interaction 
energy computed in the fragment energy analysis is notably diminished in 6′-TS. As the π-orbitals from the olefin 
substrates and the in-plane d-orbitals on Ru cannot be optimally arranged due to the steric demand of the enol 
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in 6′-TS, the interaction remains weak despite the larger structural distortion of each fragment, which is also a 
consequence of the steric clash between the carbonyl and the aromatic substituent on the enol. 

 

 

Figure 3. Optimized structures of the transition state (a) 6-TS and (b) 6′-TS. Oxygen atoms are shown in 
gray color. Nonessential atoms, such as the cyclohexyl groups on the phosphine ligand and 
nonessential hydrogen atoms, are not shown. Bond lengths are given in Å. 

Experimental Support for the Mechanism 
Several kinetic experiments were performed to assess the validity of the DFT computed mechanism. First, the 
H/D exchange pattern was examined from the reaction of 3,5-dimethoxyphenol with cyclohexanone-2,2,6,6-
d4 (93% D) (eq 2). The isolated product 2r-d showed a significant amount of H/D exchange to both vinyl and α-
CH2 positions (72–75% D) as well as to the arene positions (Figure S1, SI). This H/D exchange pattern indicates a 
facile keto–enol tautomerization of the substrate under the reaction conditions. The extensive H/D exchange on 
the arene positions can readily be explained via the chelate assisted ortho-arene C–H metalation process; such a 
process has been well-known to occur rapidly and reversibly in metal-mediated coupling reactions via arene C–H 
activation.(16) To confirm the facile nature of the arene C–H activation step, the reaction rate was measured 
separately from the reaction of 3,5-dimethoxyphenol with cyclohexanone and cyclohexanone-2,2,6,6-d4. A 
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negligibly small deuterium isotope effect of kH/kD = 1.1 ± 0.1 was obtained from the first-order rate plot (Figure 
S2, SI), again supporting the notion of a rapid and reversible arene C–H activation step for the coupling reaction. 

 

As discussed above, our DFT calculations indicate that the migratory insertion of ketone substrate is the most 
likely rate-determining step. To confirm this computational result, we measured the carbon isotope effect from 
the coupling reaction of 3,5-dimethoxyphenol with propiophenone by employing Singleton’s high-precision NMR 
technique (eq 3).(17) The most significant carbon isotope effect was observed on the ortho-arene carbon of the 
product (Z)-2a when the 13C ratio of the product from a high conversion was compared with the sample obtained 
from a low conversion (13C(avg 96% conversion)/13C(avg 19% conversion) at Cortho = 1.019; average of two runs) 
(Table S2, SI). No significant carbon isotope effect was observed on the carbonyl carbon, and this can be 
rationalized via an early asynchronous transition state of the multi-insertion steps as depicted 
in Figure 1.(18) Overall, the results are in good agreement with the calculated reaction energy profile as shown 
in Figure 1, further reinforcing that the C–C bond forming migratory insertion of the ketone substrate is the 
turnover-limiting step of the coupling reaction. 

Synthetic Applications 
These experimental and computational studies provided a new mechanistically driven rationale for designing 
stereoselective carbonyl olefination methods to construct biologically relevant structural motifs. In an effort to 
further extend its synthetic utility, we have begun to explore the dehydrative coupling method with enones and 
related carbonyl compounds (Scheme 2). For example, the coupling of 3,5-dimethoxyphenol with a linear enone 
4-phenyl-3-buten-3-one led to the direct formation of chromene core structure 11. In contrast, the coupling 
with a cyclic enone 2-cyclohexenone selectively yielded a bicyclic hemiketal product 12 with >95% 
diastereoselectivity. The molecular structure of 12 was definitively established by X-ray crystallography (Figure 
S4, SI). The couplings with 2-norbornanone and 2,5-hexanedione smoothly formed the bicyclic 
products 13 and 14, respectively. These exploratory examples clearly demonstrate the synthetic power of 
dehydrative C–H coupling strategy in constructing oxygen heterocycle core structures without using any reactive 
reagents or forming toxic byproducts. We are currently pursuing to establish the scope of the coupling reactions 
between electron-rich arene substrates with these carbonyl compounds, and the results will be published in a 
separate article. 

 

Scheme 2. Dehydrative Coupling of 3,5-Dimethoxyphenol with Ketones 
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Conclusions 
In summary, we have successfully developed a highly chemo- and stereoselective dehydrative C–H olefination 
method of phenols with ketones to form trisubstituted olefins. The well-defined cationic ruthenium hydride 
catalyst was found to exhibit uniquely high activity and selectivity for promoting (Z)-olefin products. The 
experimental and computational studies provide a detailed mechanistic picture for the catalytic cycle, which 
consists of the ortho-metalation of phenol, migratory insertion of the carbonyl substrate, and dehydration steps 
in forming the olefin products. The DFT computational analysis revealed that the stereoselective formation of 
(Z)-olefins results from an unfavorable steric interaction between the substrate substituents and the axial 
carbonyl ligand of the Ru-catalyst during the migratory insertion step. The analogous C–H coupling reactions of 
enones and diones directly led to the formation of synthetically useful benzo-fused oxacyclic derivatives. Studies 
toward expanding the arene substrate scope as well as for exploiting mechanistic insights to increase synthetic 
applicability for this catalytic method are underway in our laboratories. 

Experimental Section 
General Information 
All operations were carried out in a nitrogen-filled glovebox or by using standard high vacuum and Schlenk 
techniques unless otherwise noted. Solvents were freshly distilled over appropriate drying reagents. Benzene, 
toluene, and hexanes were distilled from purple solutions of sodium and benzophenone, and dichloromethane 
was dried over calcium hydride prior to use. All organic substrates were received from commercial sources and 
were used without further purification. Column chromatography was performed on Dynamic Absorbents silica 
gel 60A (32–63 μm particle size), and thin layer chromatography was performed on Agela TLC plates precoated 
with silica gel MF254. The NMR spectra were recorded on a Varian 300 or 400 MHz FT-NMR spectrometer, and 
the data are reported in parts per million (ppm) relative to TMS. Mass spectra were recorded from an Agilent 
6850 GC-MS spectrometer with an HP-5 (5% phenylmethylpolysiloxane) column (30 m, 0.32 mm, 0.25 μm). High-
resolution mass spectra (HRMS) were obtained at the Mass Spectrometry/ICP Lab, Department of Chemistry and 
Biochemistry, University of Wisconsin—Milwaukee, Milwaukee, WI. Elemental analyses were performed at the 
Midwest Microlab, Indianapolis, IN. 

General Procedure for the Coupling Reaction of Phenol with Ketone 
In a glovebox, a phenol (0.5 mmol), a ketone (1.0–1.5 mmol), and complex 1 (9 mg, 3 mol %) were dissolved in 
1,2-dichloroethane (2 mL) in a 25 mL Schlenk tube equipped with a Teflon stopcock and a magnetic stirring bar. 
The tube was brought out of the glovebox and was stirred in an oil bath preset at 125–140 °C for 16–72 h. The 
reaction tube was taken out of the oil bath and was cooled to room temperature. After the tube was open to air, 
the solution was filtered through a short silica gel column by eluting with CH2Cl2 (10 mL), and the filtrate was 
analyzed by GC-MS. Analytically pure product was isolated by column chromatography on silica gel (230–460 
mesh, hexanes/EtOAc). The product was completely characterized by NMR and GC-MS spectroscopic methods. 

Computational Details 
All calculations were carried out using DFT(19) as implemented in the Jaguar 9.1 suite(20) of ab initio quantum 
chemistry programs. Geometry optimizations were performed with the B3LYP(21) functional including Grimme’s 
D3 dispersion correction(22) and the 6-31G** basis set. Ruthenium was represented using the Los Alamos 
LACVP basis(23) that includes effective core potentials. The energies of the optimized structures were 
reevaluated by additional single-point calculations on each optimized geometry using Dunning’s correlation 
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consistent triple-ζ basis set cc-pVTZ(-f)(24) that includes a double set of polarization functions. For ruthenium, 
we used a modified version of LACVP, designated as LACV3P, in which the exponents were decontracted to 
match the effective core potential with triple-ζ quality. Solvation energies were evaluated by a self-consistent 
reaction field (SCRF)(25) approach based on accurate numerical solutions of the Poisson–Boltzmann equation. In 
the results reported, solvation calculations were carried out with the 6-31G**/LACVP basis at the optimized gas 
phase geometry employing the dielectric constant of ε = 10.36 for 1,2-dichloroethane. As is the case for all 
continuum models, the solvation energies are subject to empirical parametrization of the atomic radii that are 
used to generate the solute surface. We employed(26) the standard set of optimized radii in Jaguar for H (1.150 
Å), C (1.900 Å), N (1.600 Å), P (2.074 Å), and Ru (1.481 Å). Analytical vibrational frequencies within the harmonic 
approximation were computed with the 6-31G**/LACVP basis to confirm proper convergence to well-defined 
minima or saddle points on the potential energy surface. 

The energy components have been computed with the following protocol. The free energy in solution 
phase G(Sol) has been calculated as follows: 

𝐺𝐺(Sol) = 𝐺𝐺(gas) + 𝐺𝐺(solv) (4) 

𝐺𝐺(gas) = 𝐻𝐻(gas)− 𝑇𝑇𝑇𝑇(gas) (5) 

𝐻𝐻(gas) =  𝐸𝐸(SCF) + ZPE (6) 

Δ𝐸𝐸(SCF) = Σ𝐸𝐸(SCF) for products –  Σ𝐸𝐸(SCF) for reactants  (7) 

Δ𝐺𝐺(Sol) = Σ𝐺𝐺(Sol) for products –  Σ𝐺𝐺(Sol) for reactants (8) 

G(gas) is the free energy in gas phase; G(solv) is the free energy of solvation as computed using the continuum 
solvation model; H(gas) is the enthalpy in gas phase; T is the temperature (298.15 K); S(gas) is the entropy in gas 
phase; E(SCF) is the self-consistent field energy, i.e. “raw” electronic energy as computed from the SCF 
procedure; and ZPE is the zero-point energy. Note that by entropy here we refer specifically to the 
vibrational/rotational/translational entropy of the solute(s); the entropy of the solvent is incorporated implicitly 
in the continuum solvation model. 

To locate transition states, the potential energy surface was first explored approximately using the linear 
synchronous transit (LST)(27) method, followed by a quadratic synchronous transit (QST)(28) search using the 
LST geometry as an initial guess. 
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