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a b s t r a c t

Progress towards a more circular phosphorus economy necessitates development of innovative water
treatment systems which can reversibly remove inorganic phosphate (Pi) to ultra-low levels
(<100 mg L�1), and subsequently recover the Pi for reuse. In this study, a novel approach using the high-
affinity E. coli phosphate binding protein (PBP) as a reusable Pi bio-adsorbent was investigated. PBP was
expressed, extracted, purified and immobilized on NHS-activated Sepharose beads. The resultant PBP
beads were saturated with Pi and exposed to varying pH (pH 4.7 to 12.5) and temperatures (25e45 �C) to
induce Pi release. Increase in temperature from 25 to 45 �C and pH conditions between 4.7 and 8.5
released less than 20% of adsorbed Pi. However, 62% and 86% of the adsorbed Pi was released at pH 11.4
and 12.5, respectively. Kinetic experiments showed that Pi desorption occurred nearly instantaneously
(<5min), regardless of pH conditions, which is advantageous for Pi recovery. Additionally, no loss in Pi
adsorption or desorption capacity was observed when the PBP beads were exposed to 10 repeated cycles
of adsorption/desorption using neutral and high pH (�12.5) washes, respectively. The highest average Pi
adsorption using the PBP beads was 83± 5%, with 89± 4.1% average desorption using pH 12.5 washes
over 10 wash cycles at room temperature. Thermal shift assay of the PBP showed that the protein was
structurally stable after 10 cycles, with statistically similar melting temperatures between pH 4 and 12.5.
These results indicate that immobilized high-affinity PBP has the potential to be an effective and
reversible bio-adsorbent suitable for Pi recovery from water/wastewater.
© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The economic and ecological losses associated with eutrophi-
cation caused by excess inorganic phosphate (Pi), have inspired
increasingly lower effluent phosphorus water quality guidelines for
many municipal and industrial wastewater treatment facilities
around the world (Amery and Schoumans, 2014; USEPA, 1995,
1986). Apart from limiting Pi loadings inwastewater effluents, there
is also strong impetus to secure renewable Pi resources for use as
agricultural fertilizer, i.e., via Pi recovery from wastewater. This
approach stimulates the circular phosphorus economy, which is
vital since in addition to being a pollutant, Pi is a geographically
limited nonrenewable resource that is essential to sustain global
food production (Cordell et al., 2009; Cordell and White, 2014;

Mayer et al., 2016; Rittmann et al., 2011). This removal/recovery
paradigm drives development of innovative water treatment sys-
temswhich can effectively remove Pi to ultra-low levels (<100 mg/L)
and release Pi under controlled conditions suitable for subsequent
Pi reuse (Mayer et al., 2013; Rittmann et al., 2011).

A novel strategy utilizing high-affinity phosphate binding pro-
teins (PBP) as a reusable bio-adsorbent to reversibly capture Pi was
investigated in this study. The phosphate-specific transporter (Pst)
system in bacteria is specifically evolved to import Pi when Pi is
present at low levels, which demands efficient, selective, and high-
affinity binding and transport of Pi to meet the cell's metabolic
demands (Blank, 2012; Luecke and Quiocho, 1990; Santos-Beneit
et al., 2008). The Pst protein complex comprises four subunits, an
ATP-binding protein (pstB), two transmembrane proteins (pstA and
pstC), and a periplasmic PBP (pstS) (Luecke and Quiocho, 1990;
Santos-Beneit et al., 2008). The periplasmic pstS PBP has recently
attracted interest as a potential high-affinity, phosphate-specific Pi* Corresponding author. 1637 W. Wisconsin Ave, USA.
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adsorbent (Kuroda et al., 2000; Li et al., 2009; Yang et al., 2016,
2017).

Removal of Pi to ultra-low concentrations has been demon-
strated using PBP expressed in bacterial cells' periplasmic space,
expressed on the cells' surface, or immobilized on Sepharose beads
(Choi et al., 2013; Kuroda et al., 2000; Li et al., 2009; Yang et al.,
2016). For example, Choi et al. (2013) showed that recombinant
E. coli expressing PBP in the periplasmic space can remove �97% Pi
from water within 6 h (initial concentration of 0.2e0.5mg-Pi/L).
Kuroda et al. (2000) demonstrated Pi removal to below the detec-
tion limit (9.5 ng-Pi/L) using PBP immobilized on Sepharose beads
to treat an influent concentration of 15 mg-Pi/L. To better support
the circular phosphorus economy via the waste-to-resource para-
digm, recovery of the captured Pi is essential. To assess Pi recovery,
Yang et al. (2016) investigated the effect of varying temperature,
pH, and ionic strength on Pi release from PBP over-expressed in the
periplasmic space of E. coli cells. However, a maximum of only
1.4e2% of the adsorbed Pi was recovered after exposing the re-
combinant E. coli cells to low pH (pH 3.8), high temperature (35 �C),
or high ionic strength (100mM KCl) for 3 h (Yang et al., 2016). On
the other hand, Kuroda et al. (2000) reported >90% recovery of the
adsorbed Pi from PBP immobilized on Sepharose beads at pH 3.
Although the data was not shown, Kuroda et al. (2000) stated that
the immobilized PBP could be reused after neutralizing the pH.
Thus, additional investigation of the removal and controlled release
of Pi from immobilized PBP at varying pH and temperature, and the
performance of PBP over multiple cycles of Pi removal and recovery
is needed. Effective reusability of the PBP is a crucial aspect of the
viability of this bio-adsorbent for Pi removal and recovery from
water.

The objective of this study was to investigate the adsorption and
desorption of Pi using PBP immobilized on an inert surface as a
function of pH and temperature. In comparison to periplasmic PBP,
extracellular immobilized PBPmay bemore effective as a reversible
bio-adsorbent as it may be more conducive to both removal and
controlled recovery through regulation of environmental parame-
ters such pH and temperature. Reusability of the PBP was also
investigated to assess the impact of the recovery conditions on PBP
structure and Pi recovery potential over multiple cycles of Pi
adsorption/desorption.

2. Materials and methods

2.1. Expression and purification of PBP

The pstS PBP used in this study was a single-cysteine mutant
variant (A197C) of the mature E. coli PBP developed by Solscheid
et al. (2015) for use as a phosphate biosensor. The pstS gene
(A197C) overexpression plasmid (plasmid # 78198, Addgene,
Cambridge, MA, USA) was transformed into BL21(DE3) E. coli
competent cells, and cultured for protein expression and purifica-
tion, as previously described (Solscheid et al., 2015). Briefly, a 5mL
overnight culture of the transformed BL21(DE3) cells was grown in
LB media supplemented with 100 mg/mL ampicillin at 37 �C. This
culture was diluted by transferring 2mL of the overnight culture
into 1 L fresh LB growth media in baffled glass flasks. The flasks
were incubated at 37 �C with vigorous shaking, and the culture
was allowed to grow to an OD 600 of approximately 0.8 before
inducing protein expression using 500 mM isopropyl-b-D-thio-
galactopytanoside (IPTG). After 4-h induction at 37 �C, cells were
centrifuged for 15min at 4000�g and 4 �C. All further protein pu-
rification steps were carried out at 4 �C.

To purify the proteins, the pellets were re-suspended in 100mL
of resuspension buffer (10mM Tris-HCl, 1mM MgCl2, pH 8.0) and
sonicated 4 times for 30 s at 200Wwith a 5 s on/off pulse cycle. The

lysate supernatant was collected following centrifugation at
6000�g for 45min. The lysate was passed through a 100 mLBV
(settled and drained bead volume, where BV¼ bed volume) Q-
Sepharose column (GE Healthcare Bio-Sciences, Pittsburg, PA, USA),
equilibrated with resuspension buffer. The protein was eluted in a
100mL gradient of 0e200mM NaCl in the resuspension buffer. The
presence of the protein was verified in the eluted fractions using
SDS-PAGE. Fractions containing pstS were pooled and concentrated
using a 10 kDa cutoff spin concentrator (Vivaspin® 20, GE Health-
care Bio-Sciences) in cases when higher protein concentrations
were required. The concentration of the purified PBP was
221± 0.6 mM (average± standard deviation), as quantified at
280 nm using a spectrophotometer (Agilent Technologies, Santa
Clara, CA, USA), assuming an extinction coefficient of 17.8 cm�1

(Brune et al., 1994).

2.2. Immobilization of PBP

The purified pstS PBPwas dialyzed using a Spectra/Por 2 Dialysis
Membrane (MWCO12e14 kDa, Spectrum Laboratories, Inc., Rancho
Dominguez, CA, USA). Dialysis was conducted for 16 h at 4 �C and
included 6 exchanges of 0.2M NaHCO3, 0.5M NaCl pH 8.3 buffer.
The dialyzed PBP was immobilized on NHS-activated Sepharose 4
Fast Flow beads in accordance with the manufacturer's instructions
(GE Healthcare Bio-Sciences). Since NHS-activated Sepharose in-
terferes with the signal from the spectrophotometer at 280 nm, we
used the Quick Start™ Bradford Protein Assay (Bio-Rad Labora-
tories Inc., Hercules, CA, USA) to determine the concentration of
PBP for further experiments. The concentration of the dialyzed PBP
was measured as 202± 2 mM using the Bradford assay.

Fresh NHS beads (stored in 100% isopropanol) were transferred
into a 100mL Econo-Column (Bio-Rad Laboratories Inc.) and
washed with 10 bed volumes of 1mM HCl solution at 4 �C. For the
coupling reaction, 20mL of dialyzed PBP (202 mM) was added to
20mL of washed NHS beads (drained volume) andmixed at 30 rpm
on a Roto-Torque Variable Speed end-over-end rotator (Cole
Parmer, IL, USA) for 16 h at 4 �C. The supernatant was collected and
the concentration of the unbound PBP was quantified using the
Bradford assay. Of the initial PBP loaded onto the column (20mL of
202± 2 mM), 98± 0.6% was immobilized onto the NHS beads,
providing a coupling density of 197± 0.2 nmol-PBP/mLBV NHS
beads (mLBV¼ drained NHS bead volume). This non-optimized
coupling density was much lower than the theoretical maximum
of 16e23 mmol/mLBV for NHS beads reported by GE Healthcare Bio-
Sciences. However, 197± 0.2 nmol-PBP/mLBV was sufficient for the
adsorption/desorption assessments in this study. Based on 1mol of
PBP adsorbing 1mol of Pi (Brune et al., 1998, 1994; Solscheid et al.,
2015), the theoretical Pi adsorption capacity of the NHS beads was
197± 0.2 nmol/mLBV. The NHS beads conjugated with PBP (hereon
referred to as PBP beads) were sequentially washed with 1BV of
0.1M Tris-HCl pH 8.5 followed by washing with 1BV of buffer con-
taining 0.1M sodium acetate, 0.5M NaCl pH 4.5. This cycle was
repeated three times followed by five washes with 1BV of buffer
containing 10mM Tris-HCl, 1mM MgCl2 pH 7.1.

To remove the legacy Pi already adsorbed on the PBP during the
expression, purification, and immobilization process, the PBP beads
were mopped using 0.1 unit/mL purine nucleoside phosphorylase
(PNPase) and 300 mM 7-methylguanosine (7-MEG) (Brune et al.,
1998, 1994). To facilitate mixing, 20mL of 10mM Tris-HCl, 1mM
MgCl2 pH 7.1 buffer was added to 20mLBV PBP beads. Next, 0.1 unit/
mL PNPase enzyme and 300 mM7-MEGwas added to the 40mL PBP
bead solution (50% suspension). The mopping reaction was per-
formed overnight at 4 �C at 30 rpm using a rotary shaker. After 16 h,
the PBP beads were washed with 5 x 1BV 10mM Tris-HCl, 1mM
MgCl2 pH 7.1 buffer to remove the Pi-mop. Upon completion of this
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PBP immobilization procedure, the beads were either used imme-
diately or stored at 4 �C for up to 48 h prior to use.

A control set of beads was prepared using 20 mLBV of fresh NHS
beads following the same procedure used for the PBP beads, except
without PBP addition.

2.3. Adsorption of Pi by immobilized PBP

Triplicate Pi adsorption experiments were conducted in batch
tests in 2mL centrifuge tubes containing 0.25 mLBV PBP beads. In all
tests, 1mL reaction buffer (10mM Tris-HCl, 1mM MgCl2) pH 7.1,
25 �C containing excess Pi (60 mM) was initially added (60 nmol Pi)
versus the theoretical capacity of the PBP beads (49 nmol/0.25
mLBV) to ensure Pi saturation of the PBP beads. After gentle mixing
by hand and 10min for bead settling, the supernatant was collected
and analyzed for Pi. Previous studies showed that Pi binding is
nearly instantaneous (Brune et al., 1998, 1994; Solscheid et al.,
2015), such that 10min was sufficient to achieve equilibrium. The
pH in the centrifuge tubes was measured using a micro pH probe
(Orion™ 9810BN, Thermo Scientific™, Waltham, MA, USA). No
change in pH was observed over the course of the 10min adsorp-
tion period.

2.4. Recovery of Pi from immobilized PBP as a function of
temperature and pH

Following adsorption, desorption experiments were initiated by
washing the beads 3 times using 1mL reaction buffer pH 7.1 to
remove unbound Pi. Each tube was then loaded with 1mL of re-
action buffer solution. In separate experiments, the influence of
temperature was evaluated by adjusting the reaction buffer tem-
perature to 25 �C, 35 �C, or 45 �C before addition to the tubes (pH
7.1). The tubes were maintained at the target temperature for the
duration of the desorption experiment using an incubator (VWR
1524 digital incubator). Additional tests were performed to eval-
uate the influence of pH by adjusting the pH of reaction buffer to
final values of 4.7, 6.5, 7.1, 8.5, 9.2, 11.4, and 12.5 using 1M HCl or
NaOHwhilemaintaining a constant temperature of 25 �C. The pH in
the microfuge tubes was measured using a micro pH probe
(Orion™ 9810BN, Thermo Scientific™, Waltham, MA, USA), and did
not change over the duration of the experiment. In both tempera-
ture and pH tests, gentle mixing was applied initially by inverting
the microfuge tubes three times by hand. The beads were then
allowed to settle for 10min and a 1mL aliquot of the settled su-
pernatant was analyzed for Pi using the ascorbic acid method
(APHA, 2012). For each condition tested, NHS beads with no PBP
(control beads) were tested in parallel to isolate the impact of the
NHS beads on Pi adsorption/desorption.

2.5. Kinetics of Pi recovery from immobilized PBP

The extent of Pi release from PBP beads was assessed as a
function of time for four different pH conditions (following previ-
ous experiments showing efficient release using elevated pH).
Triplicate experiments were conducted for both PBP beads and
control beads, as described in Sections 2.3 and 2.4. An initial Pi
adsorption cycle was performed by adding 1mL of 60 mM Pi solu-
tion in 25 �C reaction buffer at pH 7.1 to 0.25 mLBV PBP beads. After
gentle mixing by hand and 10min bead settling, the supernatant
was collected and analyzed for Pi. For subsequent desorption, the
PBP beads were washed 3 times with 1mL reaction buffer at pH 7.1
to remove unattached Pi from solution. Next, the PBP beads were
washed with 1.5mL of reaction buffer, yielding final pH values in
the tubes of 7.1, 10.8, 11.9 and 12.5. Aliquots of 0.1mL were collected
for Pi analysis after 5, 10, 20, 30, 40, and 50min of reaction.

2.6. Reusability of immobilized PBP

The ability of the PBP beads to adsorb and desorb Pi over 10
cycles of sequential high and neutral pH conditions (promoting
desorption and adsorption, respectively) was investigated. Tests
were conducted in batch mode using 10mL disposable Poly-Prep®

reactors (Bio-Rad Laboratories Inc., Hercules, CA, USA) with 0.25
mLBV beads. Based on results of previous pH tests, 3 different high
pH conditions, 11.5, 12, and 12.5, were tested in independent trip-
licate experiments using PBP beads or control beads.

Fig. 1 illustrates the experimental approach. The first step in
these experiments was to release Pi adsorbed on Pi-saturated PBP
beads by washing them with 1.75mL of reaction buffer at pH 11.5,
12, or 12.5 (25 �C) for 10min before decanting the supernatant.
Immediately following,1.75mL reaction buffer at pH 7.1 (25 �C) was
added to adjust the beads to near-neutral pH for 10min, before
decanting the supernatant in preparation for the subsequent Pi
adsorption cycle. The pH in the tubes was verified using a micro pH
probe (Orion™ 9810BN, Thermo Scientific™, Waltham, MA, USA).
The buffer solution decanted after each step was analyzed for Pi
desorbed during the initial Cycle 0.

Following the initial Pi release cycle, 10 sequential cycles of Pi
adsorption/desorption were performed. The first Pi adsorption step
in each cycle consisted of adding 1mL reaction buffer at pH 7.1,
25 �C containing 60 mM Pi. After gentle mixing and 10min bead
settling, the supernatant was decanted and analyzed for Pi. In the
second Pi desorption step, Pi was desorbed using 1.75mL of reac-
tion buffer at 25 �C and pH 11.5, 12, or 12.5 for 10min, followed by
decanting the supernatant. In the third rinse step, 1.75mL reaction
buffer at pH 7.1 and 25 �C was added for 10min to wash away any
remaining high pH buffer. The buffer solutions decanted after the
second and third steps were analyzed for Pi desorbed in each cycle.

2.7. Thermal shift assay

Stability of the PBP structure was analyzed in triplicate at
varying pH and temperature using the thermal shift assay, as
described previously (Huynh and Partch, 2015). Purified suspended
PBP (non-immobilized) was diluted to 7.5 mM in 10mM Tris, 1mM
MgCl2 buffer with a final pH of 4.0, 6.6, 7.5, 9.2, 10.9, 11.9, or 12.3,
similar to the pH range investigated in the Pi recovery experiment.
A 20-mL aliquot of each PBP solution (7.5 mM) was mixed with 10 mL
of 15X Sypro Orange (Invitrogen) for the analysis, with a resultant
protein concentration of 5 mM. The mixture was dispensed into a
96-well PCR plate, sealed with an optical seal and gently shaken to
remove air bubbles. A thermal scan from 25 �C to 95 �C at an in-
cremental rate of 1 �C/minwas performed on the plate using a real-
time PCR instrument (Stratagene Mx3005P). The protein denatur-
ation curve (fluorescence vs. temperature) was truncated to 2 �C
past the maximum fluorescence and then fitted to a non-linear
Boltzmann sigmoidal curve (R statistical package - min-
pack.lm::nlsLM). All raw data analysis (data truncation, non-linear
curve fitting and melting temperature calculation) was conducted
in RStudio (version 0.98.1091) using custom scripts.

2.8. Data analysis

All PBP bead Pi concentration data was normalized to the cor-
responding control bead test. The normalized data was also
compared to the theoretical Pi adsorption capacity (49 nmol/0.25
mLBV) of the PBP beads, to obtain percent Pi adsorbed and desorbed
data. Normal data distributionwas assessed using the Shapiro-Wilk
test (a¼ 0.05). The statistical differences in Pi concentrations be-
tween different conditions were performed using one-way ANOVA
(a¼ 0.05) with Tukey post hoc analysis (a¼ 0.05). They were

K. Venkiteshwaran et al. / Water Research X 1 (2018) 100003 3



conducted using Excel 2010 (Version 14.3.2 Microsoft, USA) with an
added statistical software package XLStat Pro 2014 (Addinsoft,
USA).

3. Results and discussion

3.1. Pi removal from immobilized PBP

An initial adsorption test was performed to assess Pi removal by
exposing the PBP beads to excess Pi. Higher levels of Pi than the
theoretical capacity of the PBP beads (49 nmoles of Pi for 0.25mL of
PBP beads) were mixed with the beads for 10min. However, the
PBP beads only adsorbed 11.8± 4 nmoles Pi (n¼ 39), or 24± 8% of
the theoretical capacity. The low degree of initial Pi adsorption
suggested that not all of the PBP was available for Pi removal,
possibly due to the presence of legacy Pi that bound to the PBPs'
active sites during protein preparation. To address the pre-
adsorption presence of Pi in the system, an initial Pi desorption
wash step with a reaction buffer pH 12.5 was adopted in this study
to remove legacy Pi bound to the PBP. The initial high pH wash step
substantially increased the Pi adsorption capacity of the PBP beads
to 41± 2 nmoles/mLBV, or 83± 2.1% of the theoretical capacity.

3.2. Recovery of Pi as a function of temperature and pH

The results from the Pi recovery experiments using varying
buffer pH and temperature conditions are summarized in Fig. 2.
Increases in temperature from 25 to 45 �C and pH conditions be-
tween 4.7 and 8.5 released less than 20% of adsorbed Pi (all % Pi
desorbed calculations were performed using data normalized to
the theoretical Pi capacity, 49 nmoles/0.25 mLBV). Only at higher
buffer pH conditions was a substantial proportion of the bound Pi
released from the PBP beads. At pH 11.4 and 12.5, the total Pi
recovered from the PBP beads was 30.2± 3.9 nmoles Pi (62%) and
42.2± 5.5 nmoles Pi (86%), respectively. These results demonstrated
that pH� 11.4 (25 �C, 10min reaction time) provided the best
conditions for recovery.

Higher Pi recovery was achieved using the immobilized PBP in
this study (86% Pi recovery at pH 12.5) in comparison to that
observed using PBP over-expressed in the periplasmic space of
recombinant E. coli (2.1% Pi recovery at pH 3.8) (Yang et al., 2016).
Alternately, the recovery achieved in this study was similar to
Kuroda et al.'s (2000) report using immobilized PBP from
P. aeruginosa (>90% Pi recovery at pH 3). Accordingly, the immo-
bilized PBP with direct exposure to the water matrix demonstrated
greater pH dependency compared to intracellular proteins. Of note,

however, Kuroda et al. (2000) observed no Pi desorption above pH
5, but did not investigate pH� 10, whereas the lowest pH investi-
gated in this study was pH 4.7, which provided the lowest extent of
Pi desorption. Thus, greater understanding of the response to a
wide range of pH conditions is needed in future studies of immo-
bilized PBP.

3.3. Kinetics of Pi recovery from immobilized PBP

Desorption of Pi occurred nearly instantaneously (<5min),
regardless of pH conditions, which is advantageous for operation of
a phosphorus recovery process. This is illustrated in Fig. 3, which
shows that the amount of Pi released did not change between 5 and
50min (p value< 0.05, n¼ 6). However, as described in Section 3.1,
pH significantly influenced Pi desorption. Average Pi desorption
within 5min of reaction time was 2± 9.6% (pH 7.1), 35± 4.4% (pH
10.8), 79± 13% (pH 11.9), and 97± 9.4% (pH 12.5). This indicates
that high pH condition, not exposure time, was the critical factor
determining Pi release.

3.4. Reusability of immobilized PBP

The viability of the immobilized PBP system for Pi removal and
recovery hinges on PBP's adsorption/desorption efficiency over
repeated cycles. In this study, performance over 10 cycles (plus an

Fig. 1. Illustration of the PBP bead adsorption/desorption reusability experimental approach. Batch experiments were conducted in triplicate Poly-Prep® reactors with 0.25 mLBV of
PBP or control beads. Cycle 0 included two steps: 1) Pi desorption wash and 2) Neutral pH wash. Cycles 1 through 10 included three steps repeated 10 times: 1) Pi adsorption, 2) Pi
desorption wash, and 3) Neutral pH wash. After each step, the buffer was decanted and analyzed for Pi.

Fig. 2. Pi recovery from PBP beads at varying pH and temperature showing that
elevated pH (�11.4) facilitated desorption. The bars represent means, while error bars
show ±1 standard deviation of triplicate experiments.

K. Venkiteshwaran et al. / Water Research X 1 (2018) 1000034



initial desorption wash to remove legacy Pi) was evaluated. In the
initial Pi desorptionwash (Cycle 0), the average percent Pi desorbed
at pH 11.5, 12, and 12.5 was 46± 0.6%, 59± 1.2%, and 77± 1.2%,
respectively (Fig. 4). This agrees with our earlier observations,
wherein Pi desorption increases with increased pH. Poor initial Pi
desorption can also explain the lower 10 cycle-average Pi adsorp-
tion observed compared to desorption for pH 11.5 and 12 (63± 8.8%
and 64.6± 6.2%, respectively) compared to pH 12.5 (83± 5%).
Incomplete removal of Pi negatively affects subsequent Pi adsorp-
tion due to fewer available PBP-Pi binding sites in subsequent
adsorption cycles.

As pH 12.5 buffer yielded the most complete desorption, it also
demonstrated the most consistent and effective function during
reuse of the immobilized PBP over 10 cycles. Specifically, pH 12.5
provided the highest 10 cycle-average desorption, 89± 4.1%,
compared to 71± 6.8% using pH 11.5 and 70.7± 5.0% using pH 12.
Additionally, this level of desorptionwas achieved consistently over
all 10 cycles (p value> 0.05, n¼ 60), whereas when desorption was
conducted at 11.5 or 12, lower sorption was observed in the initial
cycles, followed by improvements in successive cycles. For
example, percent Pi adsorption and desorption during Cycles 1
through 4 remained relatively low when desorbing with pH 11.5
(average of 58.7± 10.3% and 66.5± 8.1%, respectively) and 12
(average of 60.3± 1.3% and 66.7± 3.4%, respectively) (Fig. 4). As
shown, desorption at pH 11.5 was significantly greater than
adsorption (p< 0.05) in Cycles 1e4, whereas adsorption was
generally equivalent to desorption in Cycles 5e10, indicating that
incomplete desorption initially hampered adsorption. Improve-
ments in sorption owing to incrementally more complete desorp-
tion are evident in the consistently higher (p value> 0.05, n¼ 18)
average percent Pi adsorption and desorption observed in Cycles
5e10 for both pH 11.5 (66.1± 6.2% adsorption and 72.6± 5.1%
desorption) and 12 (67.5± 6.5% adsorption and 73.4± 3.9%
desorption).

These results demonstrate that pH 12.5 buffer provided the
highest average Pi adsorption and desorption using PBP beads at
room temperature. Additionally, the extent of adsorption and

desorption observed was consistent over 10 cycles, which is crucial
for the PBP bead's viability as a reusable adsorbent. As the average
Pi desorbed was either statistically higher or similar to Pi adsorbed,
it is reasonable to conclude that all adsorbed Pi (including some Pi
not desorbed during Cycle 0) was recovered. Accordingly, these
results demonstrate that extracellular immobilized PBP can suc-
cessfully remove and recover Pi for at least 10 sequential cycles.

3.5. Influence of pH and temperature on PBP structural stability and
PBP-Pi interaction

To further assess the system's potential, the mechanisms of Pi
adsorption and desorption were explored. The release of adsorbed
Pi triggered by elevated pH may derive from changes in overall
conformation of PBP, local changes in the coordination of Pi in the
active site, or a combination of these phenomena. Since the activity
of PBP was retained over multiple cycles, we probed potential
changes in PBP structure under the varying conditions using a
fluorescent thermal shift assay. In this experiment, PBP is unfolded
as a function of temperature in the presence of a non-specific hy-
drophobic protein-binding SYPRO orange fluorophore. Upon pro-
tein unfolding, the dye binds and generates a change in
fluorescence, which was quantified by the Q-PCR instrument.
Structural changes under a particular condition (e.g., changes in pH)
would result in a shift in the thermal stability (i.e., melting tem-
perature). As shown in Fig. 5, the thermal shift analysis showed that
buffer pH conditions did not influence the melting temperature
(TM) of the PBP (p value> 0.05, n¼ 21). This indicates that there
were no conformational changes to the structure of PBP. Thus,
desorption of Pi from PBP at high pH conditions (>10) was not
caused by changes in the structure of the protein.

Since there were no observable global changes in the structure
of PBP as a function of the pH range tested, changes in the coor-
dination of Pi in the active site likely accounted for Pi dissociation.
To test this hypothesis, we analyzed the coordination of Pi in the
high resolution crystal structure of PBP (PDB ID: 1IXh, www.rcsb.
org) on the molecular visualization software PyMOL (Version 2.0

Fig. 3. Kinetics of Pi recovery from PBP beads at varying pH showing near instantaneous desorption (<5min). The percent Pi desorbed was calculated based on the theoretical Pi
capacity (49 nmoles/0.25 mLBV). All tests were conducted in 25 �C reaction buffer (10mM Tris-HCl, 1mM MgCl2). The data points represent means, while error bars show ±1
standard deviation of triplicate experiments.
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Schr€odinger, LLC, USA). The structure of PBP bound to Pi reveals that
the 7 different amino acid residues form 12 strong hydrogen bonds
with Pi (Fig. 6). The Pi interacts with the peptide backbone of Thr10,
Phe11, Ser38, Thr141, and Gly140. Side chain interactions with the
amino group of Arg135 and the hydroxyl groups of Ser38, Ser139,
Thr10, and Thr141 were observed. Finally, the carboxylate group of
the Asp56 side chain also stabilizes Pi (Fig. 6) (Luecke and Quiocho,
1990). The pKa values of the 7 different amino acid acid residues
that interact with Pi in the active site range from pH 9.04 to 9.6. At
pH> 10, these amino acid residues are primarily deprotonated,
thereby inhibiting the formation of hydrogen bonds between Pi and

the PBP active site. We propose that the deprotonation at elevated
pH explains Pi desorption at high pH, and subsequent Pi re-
adsorption as the residues are protonated during the wash with
the neutral pH buffer.

In summary, the results from the thermal shift analysis and the
PBP bead reusability experiment indicated that the Pi adsorption/
desorption capacity of the extracellular immobilized PBP will not
be impacted by repetitive cycles of neutral and high pH to promote
adsorption and desorption, respectively. Thus, reuse of the immo-
bilized PBP is possible, lending credence to its application in water/
wastewater treatment settings.

Fig. 4. Summary of PBP bead reusability experiment showing 10 sequential cycles of Pi adsorption at pH 7.1 and Pi desorption at (A) pH 11.5, (B) pH 12, and (C) pH 12.5. The percent
Pi adsorbed and desorbed was calculated with respect to the theoretical adsorption capacity (49 nmoles/0.25 mLBV¼ 100%). Cycle 0 represents the initial Pi desorption wash, while
Cycles 1e10 consisted of 10 subsequent Pi adsorption and desorption cycles. The bars represent means, while error bars show ±1 standard deviation of triplicate experiments.
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3.6. Pi removal and recovery: evaluation of PBP in comparison to
other adsorbents

The global importance of Pi removal and recovery has encour-
aged the development and implementation of a variety of different
adsorbent materials characterized by a range of capacities, selec-
tivities, reversibility, and affinities (some of which are summarized
in reviews such as De-Bashan and Bashan (2004), Mayer et al.
(2013), Mehta et al. (2015), and Rittmann et al. (2011)). Accord-
ingly, evaluation of PBP's potential for Pi removal and recovery
applications relative to other systems is prudent.

One existing Pi recovery approach that has attracted consider-
able interest is ion exchange using synthetic iron-based resins
(Mayer et al., 2013). Commercially-available hybrid anion ion ex-
change (HAIX) resins with hydrated ferric oxides (e.g., ArsenX,
SolmeteX, PhosX, etc.) have demonstrated effectiveness as a
reversible Pi adsorbents that can remove Pi to ultra-low levels
(<100 mg/L) (Blaney et al., 2007; Mayer et al., 2013; Pan et al., 2009;
Sarkar et al., 2007; SenGupta and Cumbal, 2007). Approximately
95% of the Pi adsorbed by HAIX can be released using a
NaOHþNaCl regenerant solution (Blaney et al., 2007). In this study,
we observed similar levels of controlled Pi desorption from

immobilized PBP (approximately 86e97%) using a basic solution.
With similar desorption performance, PBP may offer a viable
alternative for Pi recovery. However, the advantages and disad-
vantages of alternative adsorbents must be weighed in each
application, and future optimization and evaluation of the PBP
system are needed to facilitate direct comparisons.

The Pi adsorption selectivity of immobilized PBP may match, or
even surpass, existing iron-based adsorbents, e.g., HAIX. The
mutant variant of E. coli PBP (A197C) used in this study was origi-
nally developed as a Pi sensor and was extensively characterized for
its Pi affinity and selectivity (Brune et al., 1998, 1994; Solscheid
et al., 2015). Brune et al. (1994) demonstrated rapid Pi adsorption
using E. coli PBP (A197C) (kon¼ 1.36� 108M�1 s�1), with adsorp-
tion limited only by diffusion (Zhou et al., 1983). Moreover, E. coli
PBP can adsorb Pi to ultra-low levels (<100 mg/L) (Brune et al.,
1994). A similar result was reported by Kuroda et al. (2000) using
immobilized PBP from P. aeruginosa.

With respect to competition, E. coli PBP does not adsorb anions
such as sulfate, vanadate, chloride, and fluoride (Brune et al., 1994;
Luecke and Quiocho, 1990). Similarly, HAIX resins are unaffected by
the presence of competing ions such as sulfate, carbonate, fluoride,
and chloride (Acelas et al., 2015; Blaney et al., 2007; Martin et al.,
2009; Pan et al., 2009; Sarkar et al., 2007; You et al., 2016). The
only significant competitor for Pi adsorption using HAIX or other
iron-based adsorbents is arsenate. Although PBP can adsorb arse-
nate, E. coli PBP (A197C) offers 50 to 100 times higher Pi binding
affinity than arsenate (dissociation constant, kd,¼ 0.03e0.07 mM
for Pi and 3 mM for arsenate) (Brune et al., 1994). The PBPs from
other microorganisms such as P. fluorescens, Halmonas sp. GFAJ-1,
and K. variicola are also able to discriminate Pi from arsenate, even
when arsenate is present at concentrations in excess of
3000e4000-fold higher than Pi (Elias et al., 2012). Therefore, PBP
has the potential to provide a distinct Pi adsorption advantage over
existing iron-based ion exchange resins with respect to selectivity
of Pi over arsenate.

Although previous studies show promising results for PBP's
selectivity, affinity, and kinetics of adsorption, PBP systems are still
in the very early stages of development, and future advances are
needed to overcome significant limitations in order for PBP to be a
cost-effective alternative to existing adsorbents such as HAIX.
Improving the adsorption capacity and reusability of immobilized
PBP is critical for improving the technical and economic feasibility
of Pi removal and recovery. Commercially available HAIX resins are
robust (high reusability) with high adsorption capacities ranging
from 20 to 40mg-Pi/g resin in real wastewater conditions (Acelas
et al., 2015; Blaney et al., 2007; Pan et al., 2009; You et al., 2016).
In comparison, the NHS activated Sepharose beads used in this

Fig. 5. Thermal shift analysis of PBP stability showing the truncated denaturation
curve data from a typical 96-well screen of a range of buffer pH conditions used to test
Pi desorption efficacy. The PBP melting temperatures (TM) associated with different pH
values are shown on the figure. Changes in buffer pH conditions did not significantly
influence the PBP TM values (p value > 0.05, n¼ 3).

Fig. 6. Crystal structure of PBP showing (A) Pi bound to the active site and (B) the network of hydrogen bonds coordinating Pi in the protein's active site. The coordination file of PBP
(PDB ID: 1IXh) was acquired from www.rcsb.org, and the crystal structure was analyzed using PyMOL (Molecular visualization software, Version 2.0, Schr€odinger LLC, USA).
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study have the potential to immobilize 16-23 mM-PBP/mL of bead
(GE Healthcare Bio-Sciences), providing a potential Pi adsorption
capacity of approximately 1.5e2mg-Pi/mL bead, which is roughly
an order of magnitude lower than HAIX resins. Additionally, the
effects of real water/wastewater constituents on PBP-Pi adsorption/
desorption and long-term reusability of the immobilized PBP sys-
tem is yet to be investigated. In comparison to inorganic HAIX
resins, PBP is biodegradable and may be negatively affected by the
presence of natural organic matter, microorganisms, and enzymes
(e.g., protease), which can severely hamper adsorption capacity and
reusability in real water/wastewater conditions. Therefore, in order
to further develop PBP as a highly selective alternative to current
iron-based Pi adsorbents, future studies should focus on optimizing
Pi adsorption capacity (e.g., optimized protein coupling density)
and investigating the reusability of immobilized PBP in actual wa-
ter/wastewater matrices.

4. Conclusions

Harnessing the selective, sensitive Pi adsorption abilities of the
high-affinity PBP offers an opportunity to engineer an innovative
water treatment system which can effectively remove Pi to ultra-
low levels (<100 mg/L) and release Pi under controlled conditions
suitable for subsequent Pi reuse. Previous studies have established
PBP's capability as an effective Pi adsorbent; however, conditions
for controlled Pi release have not yet been conclusively established.

This study investigated the ideal pH and temperature conditions
for Pi release from extracellular PBP immobilized on an inert sur-
face. The results showed that Pi adsorbed using immobilized PBP
can be recovered nearly instantaneously using a high pH (�12.5)
wash. The immobilized PBP maintained consistent Pi adsorption
capacity after 10 high pH wash cycles, supporting its reusability. As
PBP structure is highly stable from pH 4 to 12.5, the Pi release at
high pH ismost likely due to reversible deprotonation of amino acid
residues at the active binding site.

The structural stability of PBP and consistent Pi adsorption ca-
pacity after 10 high pH wash cycles also suggest that extracellular
immobilized PBP could endure more than 10 repetitive cycles of
neutral and high pH to promote adsorption and desorption,
respectively. Accordingly, immobilized PBP appears to provide a
strong foundation for an effective and reusable Pi removal/recovery
adsorption system providing high-affinity, ultra-low, and ultra-fast
Pi binding. Future investigations targeting optimization of the
immobilized PBP system, e.g., improvements in capacity linked to
higher protein/bead coupling efficiency and protein stability in
actual water matrices, are needed to further improve reusability
and capacity and establish PBP as a viable Pi recovery alternative.
Additionally, the application of immobilized PBP for Pi recovery
from real water/wastewater (and the specific influence of constit-
uents such as natural organic matter, microorganisms, and en-
zymes) must be directly assessed.
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