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Abstract 
The frequency-response characteristics of avalanche photodiodes (APDs) with thin multiplication layers 
are investigated by means of a recurrence technique that incorporates the history dependence of 
ionization coefficients. In addition, to characterize the autocorrelation function of the impulse 
response, new recurrence equations are derived and solved using a parallel computer. The mean 
frequency response and the gain-bandwidth product are computed and a simple model for the 
dependence of the gain-bandwidth product on the multiplication-layer width is set forth for GaAs, InP, 
Al/sub 0.2/Ga/sub 0.8/As, and In/sub 0.52/Al/sub 0.48/As APDs. It is shown that the dead-space effect 
leads to a reduction (up to 30%) in the bandwidth from that predicted by the conventional 
multiplication theory. Notably, calculation of the power-spectral density of the photocurrent reveals 
that the presence of dead space also results in a reduction in the fluctuations in the frequency 
response. This result is the spectral generalization of the reduction in the excess noise factor in thin 
APDs and reveals an added advantage of using thin APDs in ultrafast receivers. 
 

SECTION I. 
Introduction 

With the increasing demand for high-speed optical communication, the need for ultrafast and low-noise 
photo detectors has become greater than ever. Among the semiconductor photo detectors that are 
commonly used in today's long-haul and metro-area fiber-optic systems, avalanche photodiodes (APDs) are 
often preferred over p-i-n photodiodes by virtue of their internal gain, which significantly improves receiver 
sensitivity and alleviates the need for optical preamplification. Indeed, recent advances in the design and 
fabrication of APDs (see for example [1]–[2][3]) have allowed these devices to achieve levels of gain-
bandwidth product that have made them the photodetectors of choice in many of the current 10-Gbps 
systems that operate in the silica-fiber window. 

Unfortunately, the very process of carrier impact ionization that produces the gain is inherently noisy and 
results in fluctuations not only in the gain but also in the time response. In particular, the APDs impulse 
response, which is the response to a single photo excitation event, is a stochastic process with random 
shape (whose total area is proportional to the random gain) and random duration [4]. Generally, the 
duration of the impulse response increases with increasing gain. This excess time in the response is often 
referred to as the avalanche buildup time. While gain uncertainty plays a major role in the performance of 
power-limited APD-based receivers, it is the avalanche buildup time that gives rise to intersymbol 
interference (ISI) that limits receiver performance in high-speed systems. 



It has been demonstrated that the excess noise factor (which is a measure of the gain fluctuations) and the 
avalanche buildup time can both be reduced by using thin multiplication layers [1]–[2][3], [5]–
[6][7][8][9][10][11][12][13][14][15][16][17]. The reduction of the avalanche buildup time in thin APDs is 
primarily due to the reduction in the carriers' transit time across the thin multiplication layer. In contrast, 
the reduction of the excess noise factor is now known to be primarily due to the effect of a carrier's past-
history on its ability to create a new carrier pair via impact ionization. Accounting for carrier history is 
important because newly born carriers are incapable of immediately causing impact ionizations: they must 
first travel a sufficient distance (called the dead space), in the course of which they gain enough energy 
from the field to permit them to cause an impact ionization. The conventional avalanche multiplication 
model, first developed by McIntyre [18], does not account for the dead-space effect and does not predict a 
reduction of the excess noise factor for thin APDs. The effect of dead space on the gain and excess noise 
factor has been extensively studied and multiplication models that take carrier history into account have 
been developed and tested against experimental measurements [7]–[8][9][10][11][12][13][14], [19]–
[20][21][22][23][24][25][26]. 

Just as accounting for dead space is essential for correctly predicting the excess noise factor in thin APDs, 
accurately predicting the bandwidth characteristics of thin APDs necessitates having a time-response 
analysis of the avalanche multiplication that includes the effect of dead space. The analytical model for the 
statistics of the impulse response for the history-dependent multiplication model was first developed by 
Hayat and Saleh [27] and was also recently revisited by the authors and by other groups as well [26], [28]–
[29][30]. It has been shown in [27], [30] that dead space tends to elongate the duration of the impulse 
response when compared with predictions of conventional models for the time response that do not 
account for dead space [31]–[32][33][34][35][36][37][38][39][40]. This effect therefore tends to reduce the 
expected transit-time-induced improvement in bandwidth as the multiplication region thickness is reduced. 
Moreover, knowing that the reduction in the multiplication-layer width is responsible for a reduction in the 
gain fluctuations (i.e., fluctuations in the area under the impulse response) raises the natural question of 
whether, more generally, the spectral fluctuations in the photo current are also reduced as a result of 
reducing the width. If the answer is in the affirmative, this would benefit the receiver bit-error rate (by 
reducing ISI) in the same way that the reduction in the excess noise factor improves the receiver SNR. 
Accurate modeling of the photo current and its fluctuations can provide the means for better estimating 
the contribution of ISI and the bit-error rate in high-speed systems. Such a model can therefore play a key 
role in device optimization in ultrafast receivers. 

To date, no theory characterizing the autocorrelation function (or the power spectral density) of APDs has 
been developed that incorporates the dead-space effect. In this paper, we extend the time-domain analysis 
of the dead-space multiplication model reported in [27] to compute the autocorrelation function of the 
APD impulse response under the assumption of a constant electric field. This extension involves developing 
six recurrence equations, which are derived according to the same renewal-theory rationale used in [27]. 
Application of the model to actual devices requires knowledge of the ionization coefficients of enabled 
carries that have traveled the dead space. These material-specific ionization coefficients, which are 
independent of the multiplication-layer width, have been reported by the authors for GaAs, Al0.2Ga0.8As, 
InP, and In0.52Al0.48As APDs [8], [9]. In this paper, we use the width-independent model for the ionization 
coefficients in conjunction with the theory developed here and in [27] to determine the effect of reducing 
the width of the multiplication region on the gain-bandwidth-product and the photo current spectral 
fluctuations. Since the excess noise factor is a measure of fluctuation of the dc component of the APDs 
frequency response, the results of this paper on the photocurrent spectral fluctuations in thin APDs are a 
generalization of the excess-noise-factor reduction in thin APDs to all operational frequencies. 



SECTION II. 
History-Dependent Impact Ionization Model 

We begin by recalling germane aspects of the dead-space ionization model used in this paper. According to 
the dead-space multiplication model [8], [10], [22], the probability density function (pdf) of the electron 
free-path distance Xe, which is the distance from the carrier's creation to the point where it impact ionizes, 
can be modeled by 

(1) 

ℎ𝑒𝑒(𝑥𝑥) = 𝛼𝛼𝑒𝑒−𝛼𝛼(𝑥𝑥−𝑑𝑑𝑒𝑒)𝑢𝑢(𝑥𝑥 − 𝑑𝑑𝑒𝑒) 
 
where de is the electron dead space, and u(x) is the unit step function. A similar expression exists for the 
hole. Assuming the absence of phonon scattering, the electron and hole dead spaces are computed from 
𝑑𝑑𝑒𝑒 = 𝐸𝐸𝑖𝑖𝑒𝑒/𝑞𝑞ℰ and 𝑑𝑑ℎ = 𝐸𝐸𝑖𝑖ℎ/𝑞𝑞ℰ, where Eie and Eih are the ionization threshold energies of the electron 
and hole, respectively, q is the electron charge, and E is the applied electric field in the multiplication layer. 
A model for the electron and hole impact ionization coefficients of enabled carriers has been recently 
developed by Saleh et al. [8], [10]. For the electrons, the model is given by 

(2) 
 

𝛼𝛼(ℰ) = Aexp �− �
ℰ𝑐𝑐
ℰ
�
𝑚𝑚

� . 

 
A similar formula exists for the holes. This model has been shown to correctly predict the excess noise 
factors independently of the width of the multiplication layer [8], [10]. The width-independent parameters 
A, Ec, and m for the electron and the hole are given in Table I of [8] and the threshold energies are also 
given in Table IV of [8]. Later in Section IV, we will compare the results of the dead-space model with the 
predictions of the conventional multiplication theory, for which the dead space is ignored and the 
ionization coefficients are those for bulk material, as reported by Bulman et al. [41] and Cook et al. [42] for 
GaAs and InP, respectively. 

In the theory developed in this paper, the form of the pdf of the carrier free-path distance is arbitrary, 
although we make use of the hard-threshold dead-space model [given by (1)] in our calculations. More 
realistic soft-threshold ionization models for which the newly created carriers gradually attain ionization 
capability can also be incorporated by simply modifying the forms of the pdf's of the free-path distance. 
The specific forms for soft-threshold dead-space ionization coefficients (e.g.,α(x), where x is the distance 
from birth location) are typically obtained by means of Monte-Carlo simulation and their use has recently 
been shown to improve the excess-noise predictions [43], [44]. In general, the pdf of the free-path distance 
can be obtained from the soft dead-space ionization rate using the simple formula ℎ𝑒𝑒(𝑥𝑥) =
𝛼𝛼(𝑥𝑥)exp {−∫ 𝛼𝛼(𝑦𝑦)𝑑𝑑𝑦𝑦𝑥𝑥

0 }. If, for example, α(x) is a step function, as is the case for a hard dead-space 
ionization coefficient, then the pdf given by (1) is generated. Unfortunately, however, Monte-Carlo-based 
calculations of the soft dead-space ionization coefficient have been carried out only for a few materials and 
are not currently available for all four materials considered in this paper. Nevertheless, it has been shown 
that with appropriate fine-tuning of the ionization threshold energies, the simple hard dead-space 
approximation can yield excellent agreement with experimental excess noise factors for thin APDs [8]. 

https://ieeexplore.ieee.org/document/#deqn1
https://ieeexplore.ieee.org/document/#deqn1


Finally, in our formulation of the dead-space model, we adopted the commonly accepted assumption that 
the dead space is deterministic. In actuality, the dead space should be modeled as a random variable to 
accommodate the fact that a carrier does not necessarily lose all of its kinetic energy after each impact 
ionization. This can be incorporated into the pdf of the carrier's path but requires knowledge of the 
probability distribution of the dead space, which is not fully characterized in the current state of our 
knowledge. In general, we expect that such stochastic dead space will not have a significant effect on mean 
quantities (e.g., the mean gain and bandwidth) since its presence tends to be averaged out. This effect 
should play a more prominent role in the second-order statistics (e.g., excess noise factor and the power 
spectral density), since the dead-space randomness will tend to add to the overall uncertainty, in 
accordance with basic statistical principles. 

SECTION III. 
Statistics of the Impulse Response 

Consider an electron-injected APD with a multiplication region of width w, with the uniform electric field 
pointing from x=w to x=0. Let Ze(t,x) be the total number of electrons resulting from an initial parent 
electron born at location x, at t units of time after its birth. Similarly, let Zh(t,x) be the total number of 
holes resulting from an initial parent electron, at location x at t units of time after its birth. To see how 
these quantities can be used in representing the impulse response, consider the case when a photo-
generated electron is injected into the edge of the multiplication region (atx=0) at time t=0. The value of 
the buildup-time-limited impulse response I(t) can be obtained by adding up the current contributions 
from all the offspring electrons and holes that are traveling in the multiplication region at time t. More 
precisely, if ve and vh are the saturation velocities of the electron and hole, respectively, then Ramo's 
Theorem gives 

(3) 

𝐼𝐼(𝑡𝑡) =
𝑞𝑞
𝑤𝑤 [𝑣𝑣𝑒𝑒𝑍𝑍𝑒𝑒(𝑡𝑡, 0) + 𝑣𝑣ℎ𝑍𝑍ℎ(𝑡𝑡, 0)]. 

The statistics of. I(t) can therefore be readily calculated from the joint statistics of Ze(t,0) and Zh(t,0), 
which will be discussed next. 
A. Rationale for Recurrence Relations 

We begin by recalling germane aspects of the recurrence technique developed in [27]. It turns out that it is 
necessary to first characterize the statistics of Ze(t,x) and Zh(t,x) for all x and then specialize the results to 
x=0. To do so, we also need to introduce additional quantities representing cases when a hole initiates the 
multiplication. In particular, let Ye(t,x) be the total number of electrons resulting from an parent hole born 
at location x, at t units of time after its birth, and let Yh(t,x) be defined similarly to Ye(t,x) but with the 
number of generated electrons replaced with the number of generated holes. 

The key idea that enables us to recursively characterize the statistics of the aforementioned random 
functions is based on a renewal argument that can be explained as follows. Consider the quantity Ze(t,x) 
and the parent electron associated with it (born at position x) that initiates the multiplication process. 
Suppose for the moment that this parent electron first impact ionizes at a certain location, say ξ, where 
x≤ξ≤w. In such an event, there will be two newly created electrons and a hole at location ξ. The two 



electrons and the hole will then independently induce an avalanche process at the new location. Let Δ =
(𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒be the transit time of an electron from x to ξ. Hence, under the earlier scenario, Ze(t,x) is 
precisely the sum of the electrons that each of the two offspring electrons and the offspring hole would 
generate at precisely (t−Δ) units of time after their births. Informally, we can express this observation as 
𝑍𝑍𝑒𝑒(𝑡𝑡, 𝑥𝑥|𝜉𝜉) = 2𝑍𝑍𝑒𝑒(𝑡𝑡 − Δ, 𝜉𝜉) + 𝑌𝑌𝑒𝑒(𝑡𝑡 − Δ, 𝜉𝜉), where the symbol “|ξ “ is used to denote “conditional on ξ. 
“We call the previous relation a conditional renewal relation. Similarly, we can examine Ye(t,x) (where we 
track a parent hole in this case) and obtain 𝑌𝑌𝑒𝑒(𝑡𝑡, 𝑥𝑥|𝜉𝜉) = 2𝑌𝑌𝑒𝑒(𝑡𝑡 − (𝑥𝑥/𝑣𝑣ℎ), 𝜉𝜉) + 𝑍𝑍𝑒𝑒(𝑡𝑡 − (𝑥𝑥/𝑣𝑣ℎ), 𝜉𝜉), 
where in this case 0≤ξ≤x. Similar conditional renewal expressions can be obtained for Zh(t,x) and Yh(t,x); 
these are: 𝑍𝑍ℎ(𝑡𝑡, 𝑥𝑥|𝜉𝜉) = 2𝑍𝑍ℎ(𝑡𝑡 − Δ, 𝜉𝜉) + 𝑌𝑌ℎ(𝑡𝑡 − Δ, 𝜉𝜉) and 𝑌𝑌ℎ(𝑡𝑡, 𝑥𝑥|𝜉𝜉) = 2𝑌𝑌ℎ(𝑡𝑡 − (𝑥𝑥/𝑣𝑣ℎ), 𝜉𝜉) +
𝑍𝑍ℎ(𝑡𝑡 − (𝑥𝑥/𝑣𝑣ℎ), 𝜉𝜉 ). 

In the next section, we will use the previously mentioned conditional renewal relations to derive integral 
(recurrence) equations for autocorrelations and crosscorrelations of the quantities Ze(t,x),Ye(t,x),Zh(t,x), 
and Yh(t,x), which will be used, in turn, to characterize the autocorrelation function of the impulse 
response I(t) Recurrence equations for the mean quantities ze(t,x),zh(t,x),ye(t,x), and yh(t,x), have been 
previously derived in [27] [(6), (10)–(12)]. When these mean quantities are computed, the mean impulse 

response function 𝑖𝑖(𝑡𝑡) =Δ  E[𝐼𝐼(𝑡𝑡)] can be determined as 

(4) 

𝑖𝑖(𝑡𝑡) =
𝑞𝑞
𝑤𝑤 [𝑣𝑣𝑒𝑒𝑧𝑧𝑒𝑒(𝑡𝑡, 0) + 𝑣𝑣ℎ𝑧𝑧ℎ(𝑡𝑡, 0)]. 

B. Autocorrelation Function of the Impulse Response 

Let𝑅𝑅(𝑡𝑡1, 𝑡𝑡2) =Δ  E[𝐼𝐼(𝑡𝑡1)𝐼𝐼(𝑡𝑡2)] be the autocorrelation function of the impulse response. By using (3), 
expanding terms, and taking averages, we obtain 

(5) 

𝑅𝑅(𝑡𝑡1, 𝑡𝑡2) = E[�
𝑞𝑞
𝑤𝑤
�
2

{𝑣𝑣𝑒𝑒𝑍𝑍𝑒𝑒(𝑡𝑡1, 0) + 𝑣𝑣ℎ𝑍𝑍ℎ(𝑡𝑡10)}

{𝑣𝑣𝑒𝑒𝑍𝑍𝑒𝑒(𝑡𝑡2, 0) + 𝑣𝑣ℎ𝑍𝑍ℎ(𝑡𝑡2, 0)}]

= �
𝑞𝑞
𝑤𝑤
�
2

{𝑣𝑣𝑒𝑒2𝐶𝐶𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑡𝑡2, 0)

+𝑣𝑣ℎ2𝐶𝐶𝑍𝑍ℎ , (𝑡𝑡1, 𝑡𝑡2, 0) + 𝑣𝑣𝑒𝑒𝑣𝑣ℎ𝐶𝐶𝑍𝑍(𝑡𝑡1, 𝑡𝑡2, 0)
+𝑣𝑣𝑒𝑒𝑣𝑣ℎ𝐶𝐶𝑍𝑍(𝑡𝑡2, 𝑡𝑡1, 0)}

 

 
where the count autocorrelations are defined as follows: 𝐶𝐶𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)] and 
𝐶𝐶𝑍𝑍ℎ(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = E[𝑍𝑍ℎ(𝑡𝑡1, 𝑥𝑥)𝑍𝑍ℎ(𝑡𝑡2, 𝑥𝑥)] and the count crosscorrelation is defined by 𝐶𝐶𝑍𝑍(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) =
E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍ℎ(𝑡𝑡2, 𝑥𝑥)]. Hence, R(t1,t2) can be readily computed once the above autocorrelations and 
crosscorrelations are characterized. However, characterizing the above correlations will involve additional 
correlations involving the variables Ye and Yh. These are: 𝐶𝐶𝑌𝑌𝑒𝑒(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) =

https://ieeexplore.ieee.org/document/#deqn6
https://ieeexplore.ieee.org/document/#deqn10
https://ieeexplore.ieee.org/document/#deqn11-12
https://ieeexplore.ieee.org/document/#deqn3


E[𝑌𝑌𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑌𝑌𝑒𝑒(𝑡𝑡2, 𝑥𝑥)],𝐶𝐶Y𝑓𝑓1(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = E[𝑌𝑌ℎ(𝑡𝑡1, 𝑥𝑥)𝑌𝑌ℎ(𝑡𝑡2, 𝑥𝑥)], and 𝐶𝐶𝑌𝑌(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) =
E⌈𝑌𝑌𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑌𝑌ℎ(𝑡𝑡2, 𝑥𝑥)⌉.  
 
We will now develop a pair of coupled recurrence relations for the autocorrelations CZe(t1,t2,x) and 
CYe(t1,t2,x). Other count auotocorrelations and crosscorrelations can be addressed similarly. Following the 
discussion in Section III -A, we will condition on the location of the first ionization and examine the events 
that transpire thereafter. We also observe that for any correlation times t1≤t2, there are three possibilities 
for the time of the first impact-ionization event. It could occur before t1, between t1 and t2 or after t2. In 
each case, we analyze the outcome events and use appropriate conditional renewal expressions from 
Section III-A to obtain a conditional renewal expression for CZe(t1,t2,x). 

(6) 

𝐶𝐶𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = 𝑢𝑢([𝑤𝑤−𝑥𝑥
𝑣𝑣𝑒𝑒

]− 𝑡𝑡2)[1 −𝐻𝐻𝑒𝑒(𝑣𝑣𝑒𝑒𝑡𝑡2)]

+ ∫ {2𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠)}ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡2,𝑤𝑤)
𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

+ � [2𝐶𝐶𝑍𝑍𝑒𝑒(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝐶𝐶𝑌𝑌𝑒𝑒(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠
𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

𝑥𝑥
+2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠) + 2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠)
2𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠){𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠)]
× ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠

In the Appendix, we average over all possible locations ξ for the first impact ionization [using the pdf (1)], 
while carefully considering the previously mentioned three possibilities for the time of the first electron 
ionization and derive the following recurrence relation: For t1≤t2, see (6), shown at the bottom of the page, 
where Δ1 = (𝑠𝑠 − 𝑥𝑥)/𝑣𝑣𝑒𝑒  and where 

(7) 

𝐻𝐻𝑒𝑒(𝑥𝑥) = � ℎ𝑒𝑒(𝑥𝑥′)𝑑𝑑𝑥𝑥′
𝑥𝑥

−∞
 

 
is the cumulative distribution function of the electron life-span random variable Xe. 

(8) 

𝐶𝐶𝑌𝑌𝑒𝑒(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = � {2𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠)}ℎℎ(𝑥𝑥 − 𝑠𝑠)𝑑𝑑𝑠𝑠
max(𝑥𝑥−𝑣𝑣ℎ𝑡𝑡1,0)

max(𝑥𝑥−𝑣𝑣ℎ𝑡𝑡2,0)

+� [2𝐶𝐶𝑌𝑌𝑒𝑒(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝐶𝐶𝑍𝑍𝑒𝑒(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠)
𝑥𝑥

min(𝑥𝑥−𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)
}

+2𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠) + 2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠)
+2𝑦𝑦𝑒𝑒(𝑡𝑡2 − Δ1, 𝑠𝑠)𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑧𝑧𝑒𝑒(𝑡𝑡2 − Δ2, 𝑠𝑠)]
× ℎℎ(𝑥𝑥 − 𝑠𝑠)𝑑𝑑𝑠𝑠

 

A similar analysis can be carried out to derive a recurrence relation for CYe(t1,t2,x): For t1≤t2, see (8), 
shown at the bottom of the page, where Δ2 = (𝑥𝑥 − 𝑠𝑠)/𝑣𝑣ℎand 
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(9) 

𝐻𝐻ℎ(𝑥𝑥) = � ℎℎ(𝑥𝑥′)𝑑𝑑𝑥𝑥′
𝑥𝑥

−∞
 

Note that the earlier pair of recurrence (6) and (8) are coupled and the mean functions ze(t,x) and ye(t,x) 
must be computed a priori according to [27]. We make the final note that when t1>t2, we must simply 
interchange t1 and t2 in (6) and (8). 

(10) 

𝐶𝐶𝑍𝑍ℎ(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = � {2𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝑦𝑦ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠)}ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠
𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡2,𝑤𝑤)

𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

+� [2𝐶𝐶𝑍𝑍ℎ(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝐶𝐶𝑌𝑌ℎ(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠)
𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

𝑥𝑥
+2𝑧𝑧ℎ(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠) + 2𝑧𝑧ℎ(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠)
+2𝑦𝑦ℎ(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝑦𝑦ℎ(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)]
× ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠

 

And 
(11) top 

(12) bottom 
𝐶𝐶𝑌𝑌ℎ(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = 𝑢𝑢([ 𝑥𝑥

𝑣𝑣ℎ
] − 𝑡𝑡2)[1 −𝐻𝐻ℎ(𝑣𝑣ℎ𝑡𝑡2)]

+∫ {2𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝑧𝑧ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)}ℎℎ(𝑥𝑥 − 𝑠𝑠)𝑑𝑑𝑠𝑠𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥−𝑣𝑣,ℎ𝑡𝑡1,0)
𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥−𝑣𝑣ℎ,𝑡𝑡2,0)

+� [2𝐶𝐶𝑌𝑌ℎ(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝐶𝐶𝑍𝑍ℎ(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠)
𝑥𝑥

𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥−𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

+2𝑦𝑦ℎ(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠) + 2𝑧𝑧ℎ(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)
+2𝑦𝑦ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝑧𝑧ℎ(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)]
× ℎℎ(𝑥𝑥 − 𝑠𝑠)𝑑𝑑𝑠𝑠

𝐶𝐶𝑍𝑍(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = ∫ {2𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝑦𝑦ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠)}ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡2,𝑤𝑤)
𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)

+∫ [2𝐶𝐶𝑍𝑍(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠) + 𝐶𝐶𝑌𝑌(𝑡𝑡1 − Δ1, 𝑡𝑡2 − Δ1, 𝑠𝑠)𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥+𝑣𝑣𝑒𝑒𝑡𝑡1,𝑤𝑤)
𝑥𝑥

+2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠){2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠
+2𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ1, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ1, 𝑠𝑠)]ℎ𝑒𝑒(𝑠𝑠 − 𝑥𝑥)𝑑𝑑𝑠𝑠

 

and 
(13) 

𝐶𝐶𝑌𝑌(𝑡𝑡1, 𝑡𝑡2, 𝑥𝑥) = � [2𝐶𝐶𝑌𝑌(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠) + 𝐶𝐶𝑍𝑍(𝑡𝑡1 − Δ2, 𝑡𝑡2 − Δ2, 𝑠𝑠)
𝑥𝑥

𝑚𝑚𝑚𝑚𝑥𝑥(𝑥𝑥−𝑣𝑣ℎ𝑡𝑡1,0)

+2𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠) + 2𝑧𝑧𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑦𝑦ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)
+2𝑦𝑦𝑒𝑒(𝑡𝑡1 − Δ2, 𝑠𝑠)𝑧𝑧ℎ(𝑡𝑡2 − Δ2, 𝑠𝑠)]ℎℎ(𝑥𝑥 − 𝑠𝑠)𝑑𝑑𝑠𝑠.

 

We now state, without proof, the recurrence equations for the remaining count autocorrelations and count 
crosscorrelations. For t1≤t2, the coupled recurrence relations for CZh(t1,t2,x) and CYh(t1,t2,x) are given as in 
(10)–(11), shown at the bottom of the next page. 
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Finally, the crosscorrelations CZ(t1,t2,x) and CY(t1,t2x) obey the following coupled recurrence equations: 
For t1≤t2, see (12)–(13), shown at the bottom of the next page. As before, when t1>t2, we simply 
interchange t1 and t2 in all the previous expressions. 

The preceding model can be easily modified to suit hole-injection APDs. This is done by simply 
interchanging the role of electrons and holes in all the recurrence equations (i.e., interchange the electron 
and hole ionization coefficients, saturation velocities and dead spaces). 

We conclude this section by considering the effects of time-varying and stochastic carrier velocities. For 
layers with high fields (> 400 kV/cm), carriers do not assume their saturation velocities immediately 
following impact ionization. Rather, as has been demonstrated by Monte-Carlo simulation [45], there is a 
velocity overshoot at short distances (up to several multiples of the saturation velocity) following each 
impact ionization, as well as a random spread in the velocity. The overshoot effect can be readily 
incorporated into the dead-space model considered above in a straightforward fashion. Moreover, 
capturing the velocity randomness is also possible with a slight added complexity to the recurrence 
equations. The details of these extensions will be reported elsewhere. 

Finally, with the statistics of the impulse response at hand, the statistics of the frequency response can be 
readily obtained. We define the stochastic frequency response as the Fourier transform of the random 
impulse response 

(14) 

ℐ(𝑓𝑓) =Δ � 𝐼𝐼(𝑡𝑡)
∞

−∞
𝑒𝑒−𝑗𝑗2𝜋𝜋𝜋𝜋𝑡𝑡𝑑𝑑𝑡𝑡. 

The mean frequency response, ℐ(𝑓𝑓) =Δ  E⌈ℐ(𝑓𝑓)⌉, is then the Fourier transform of the mean impulse 
response i(t), defined in (4), which can be computed by solving the recurrence equations (6), (10)–(12) in 
[27]. The 3-dB bandwidth is then determined from the I¯¯¯(f) curve. The APD power-spectral density, which 

is a measure of fluctuations in the frequency response, is defined by 𝑆𝑆(𝑓𝑓) =Δ  E[ℐ2(𝑓𝑓)] and can be 
related to the autocorrelation function by using (14)  

(15) 

𝑆𝑆(𝑓𝑓) = � � 𝑅𝑅(𝑡𝑡1, 𝑡𝑡2)𝑒𝑒−𝑗𝑗2𝜋𝜋(𝑡𝑡1+𝑡𝑡2)𝜋𝜋𝑑𝑑𝑡𝑡1𝑑𝑑𝑡𝑡2
∞

−∞

∞

−∞

.  

 

SECTION IV. 
Results 

We now proceed to use the theory developed above to investigate the effect of reducing the width of the 
multiplication region on two fundamental performance characteristics: 1) the APD gain-bandwidth product; 
and 2) the fluctuations in the APDs frequency response. These characteristics are studied for four 
multiplication-region materials: GaAs, Al0.2Ga0.8As, InP, and In0.52Al0.48As, which are used in APDs of various 
multiplication-region widths. Following Anselm et al. [17], we use the uniform saturation velocities 
ve=0.8×107cm/s and vh=0.6×107 cm/s for electrons and holes, respectively, in Al0.2Ga0.8As. For the other 
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materials, we use the saturation velocities ve=1.0×107 cm/s and vh=0.5×107 cm/s, for electrons and 
holes, respectively. Although these saturation velocities may vary according to the material, the previous 
values seem to serve well as a convenient approximation. All the devices considered operate on the basis of 
electron-injection, with the exception of InP, which is a hole-injection APD. Whenever needed, the mean 
gain is computed in accordance with the dead-space multiplication theory of the gain reported in [8], [10], 
[22]. 

A. Gain-Bandwidth Characteristics: Significance of Dead Space 

To demonstrate the effect of dead space on the bandwidth, we compute the mean impulse response of a 
thin GaAs APD with a 100-nm multiplication region and compare it to the prediction provided by 
conventional multiplication theory, as shown in Fig. 1. Note that the dead-space multiplication theory 
(DSMT) predicts an elongated tail in the mean impulse response, an attribute that is consistent with the our 
earlier work [27] and it arises because dead space tends, on average, to increase the time separation 
between consecutive impact ionizations. The predicted increase in the response time will, in turn, result in 
a bandwidth that is lower than that predicted by the conventional multiplication model, as can be seen 
from the frequency-response curves shown in Fig. 2. In this example, the conventional theory predicts a 
bandwidth of 37 GHz while the dead-space model predicts a value of 30 GHz, a reduction of 23%. 

As expected, the effect of dead space on the bandwidth becomes progressively more important as the 
multiplication-region thickness decreases and may be neglected for thick devices. This is a consequence of 
the well-known fact that dead-space occupies a larger fraction of the multiplication layer as the thickness of 
the multiplication layer is reduced. To see this effect, we have generated plots of the bandwidth as a 
function of the mean gain for devices with different multiplication-region thicknesses in the range 100–800 
nm. The results for GaAs and InP are depicted in Figs. 3 and 4, respectively. For example, it is seen from Fig. 
4 that the conventional multiplication model overestimates the gain-bandwidth product by as much as 29% 
for the 100-nm InP device at gain value of 30; however, the discrepancy between the DSMT and 
conventional model predictions is significantly less (approximately 8.7%) for the 582-nm InP APD. It is also 
seen that the role of dead space becomes more significant as the gain increases and the buildup time 
becomes longer. For example, it is seen from Fig. 4 that the conventional multiplication model 
overestimates the gain-bandwidth product by as much as 32% for the 100-nm InP device at the high gain 
value of 37. In contrast, we see a discrepancy of 9% at a gain of 5. 

In general, the presence of velocity overshoot (which we have neglected in our calculations) will tend to 
increase the bandwidth, which, in turn will serve to counteract the deleterious effect of the dead space on 
the bandwidth. We expect that the spread in the velocity will not have a significant effect on the mean 
impulse response and bandwidth (since its effect should be averaged out), but it is likely to have a 
noticeable effect on the power spectral density. A definitive analysis of the role of velocity overshoot and 
spread on the accuracy of the simple dead-space model is currently underway. 

To compare our calculations to measurements, we considered bandwidth measurements for a resonant-
cavity-enhanced (RCE) APD with 200-nm and 400-nm In0.52Al0.48As multiplication layers, reported by Lenox 
et al. [3]. These APDs were demonstrated to have gain-bandwidth products (at high gains) of 290 GHz and 
130 GHz, respectively. (The experimental unity-gain bandwidths were measured as 10 GHz and 24 GHz for 
the 400-nm and 200-nm multiplication layers, respectively.) The theoretical bandwidth predictions are 
strictly buildup-time limited and hence they deviate from the experimental bandwidths at low gains (< 10), 
where RC effects dominate the bandwidth. In general, the agreement with the experimental bandwidth vs. 
gain plots is good in the range of high gains (> 15) with an approximate average error of 10%. The predicted 



high-gain gain-bandwidth products are 253 GHz and 120 GHz for the 200-nm and 400-nm APDs, 
respectively. The larger error in the 200-nm device may be partially attributable to neglecting the velocity 
overshoot and/or to the nonuniform distribution of the electric field in the multiplication layer (as a result 
of background doping). This could further confine the location of impact ionizations, which would, in turn, 
cause a reduction in the buildup time in comparison with a uniform electric field. Part of the error could 
also be attributable to the inaccuracy of the assumed saturation electron and hole velocities in the model.  

 
 
Fig. 1.  

Mean impulse response of an APD with a 100-nm GaAs multiplication layer. The electric field was selected 
to be 6.7 ×105 v/cm, resulting in a mean gain of 9.4. Solid and dashed curves represents the predictions of 
the dead-space and the conventional models, respectively. 
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Fig. 2.  

Normalized frequency response of the impulse response shown in Fig. 1. Solid and dashed curves 
represents the predictions of the dead-space and the conventional models, respectively. The dead-space 
prediction of the 3-db bandwidth is approximately 30 GHz; the conventional-model prediction is 37 GHz. 
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Fig. 3.  

Bandwidth-versus-gain characteristics for GaAs APDs with various multiplication-layer widths. Solid and 
dashed curves represent the predictions of the dead-space model and the conventional model, 
respectively. Note that the conventional model overestimates the bandwidth and that the dead-space 
effect becomes more significant as the thickness is reduced. The range of the multiplication-layer electric 
field is 4 Â×105–7 ×105 v/cm for the 100-nm apd and 2.7 ×105–3.5 × 105 v/cm for the 800-nm device. 
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Fig. 4.  

Same as Fig. 3, but for InP multiplication layers. The range of the multiplication-layer electric field is 6 
×105–9 × 105 v/cm for the 100-nm APD and 4 ×105–5 ×105 v/cm for the 582-nm device. 

B. Modeling the Dependence of the Gain-Bandwidth Product on the Multiplication-Layer Width 

The dependence of the gain-bandwidth product on the multiplication-region width is shown in Figs. 5 and 6 
for GaAs and InP, respectively. Similar curves (not shown) were also generated for In0.52Al0.48As and 
Al0.2Ga0.8As. Note that for each material, the gain-bandwidth characteristic curves are almost independent 
of the operational gain. This is a very desirable feature from a device-engineering perspective, since it 
implies that a single characteristic gain-bandwidth-product (GB) model can be used for all operational 
gains. Indeed, we can infer from the graphs of Figs. 5 and 6 that for each material, there is a pair of 
parameters, c and κ, for which 

(16) 

GB = 𝑐𝑐𝑤𝑤−𝜅𝜅. 
These parameters, for each of the four materials, are provided in Table I.  
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Fig. 5.  

Gain-bandwidth product as a function of the multiplication-layer width for GaAs. Different curves 
correspond to different operational gains. Note that the curves are almost overlapping. 
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Fig. 6.  

Same as Fig. 5, but for inp multiplication layers. 

Table I Material-specific parameters for the model [given by (16)] describing the dependence of the gain-
bandwidth-product on the multiplication-layer width 

 
 

Parameter Units InP In0.52AI0.48As GaAs AI0.2G80.8As 
C GHz/nmk 14598.50 18844.21 16288.48 37639.44 
k  0.8234 0.8445 0.8690 1.0168 

 

To exhibit the validity of the model given in (16), we apply the model to devices whose gain-bandwidth 
product were recently measured. Kinsey et al. [2] recently reported a record 320-GHz measurement of the 
gain-bandwidth product for a waveguide InGaAs/InAlAs APD, with a 150-nm InAlAs multiplication region. 
The use of (16) and the parameters for In0.52Al0.48As from Table I yields a predicted gain-bandwidth product 
of 274 GHz. Again, we expect that the error (14%) is attributable to the combined effects of the nonuniform 
electric field, errors in the assumed saturation velocities and neglecting velocity overshoot.  
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Fig. 7.  

Mean frequency response (bold solid curve) and the square-root of the power spectral density (bold dash-
dot curve) for a 100-nm GaAs APD. Thin curves represent predictions provided by the conventional model. 
Note the reduction in the frequency-response fluctuations predicted by the dead-space model. 
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Fig. 8.  

Spectral SNR for three GaAs devices of different multiplication-layer widths. Note that the thinner devices 
produce higher SNRs. 

C. Reduced Fluctuations in the Frequency Response for Thin APDs 

The autocorrelation functions for the APDs considered in this paper have been computed by solving the 
recurrence equations (6), (8), (10)–(13). The numerical solutions are obtained using a simple iterative 
algorithm (as in [27]) which was implemented on a parallel computer. (The details of the computational 
aspects and the parallel computing will be reported elsewhere.) The two-dimensional (2-D) Fourier 
transform of the autocorrelation function was numerically computed and its diagonal values where 
obtained to yield the power-spectral density according to (15). Fig. 7 shows the power spectral density of 
the 100-nm GaAs (solid bold curve) overlayed with the mean frequency response (dashed bold curve). For 
comparison, the predictions of the mean frequency response and the power-spectral density corresponding 
to the conventional model are also shown in the same figure (shown as thin solid and dashed curves). 
Notably, the plots in Fig. 7 demonstrate that the spectral fluctuations in the APD frequency response are 
reduced as a result of the reduction in the multiplication-region width. This is a very promising result and it 
is the spectral generalization of the reduction of excess noise in thin APDs.  
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Fig. 9.  

Same as Fig. 8 but the predictions are obtained using the conventional model. Unlike the dead-space-model 
predictions, the spectral SNR is independent of the multiplication-layer width. 
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Fig. 10.  

Spectral SNR for three InP devices of different multiplication-layer widths. Note that thinner devices 
produce higher SNRs. The graph for each device is terminated at the corresponding bandwidth. 

To establish this spectral-noise reduction more definitively, we define the spectral SNR 

(17) 

𝜌𝜌(𝑓𝑓) =
ℐ(𝑓𝑓)

𝑆𝑆
1
2(𝑓𝑓)

 

which is a measure of the relative spectral fluctuations as a function of frequency. Fig. 8 shows the 
prediction of the spectral SNR for GaAs for devices with different multiplication-region widths. For 
comparison, the predictions by the conventional model are shown in Fig. 9. Note that the conventional 
multiplication theory gives almost the same ρ value regardless of the width of the device, just as it predicts 
the same excess-noise factor regardless of the width. In contrast, the dead-space model clearly shows an 
increase in the spectral SNR ρ as the multiplication-region width decreases. For example in the case of InP, 
as shown in Fig. 10, ρ varies from 0.37 to 0.6 as the thickness varies from 800-nm to 100-nm (the prediction 
by the conventional model for InP is approximately 0.4 for all widths). The significance of the reduction in 
spectral fluctuation is that as the device becomes thinner, the contribution of ISI noise may decrease. 
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Finally, in all cases studied it was observed that the spectral noise is reduced at frequencies beyond the 
bandwidth of the device, as can be seen in Fig. 8 for the 800-nm GaAs APD. Although operational 
frequencies beyond the bandwidth of the device may not be of interest in applications, it is interesting to 
understand why this seemingly strange behavior occurs. It can be attributed to the fact that the 
photocurrent at such high frequencies is very low and the avalanche mechanism, which is the very source 
of multiplication uncertainty, is weak. 

SECTION V. 
Conclusion 

In this paper, we investigated the effect of reducing the width of the multiplication region on the 
bandwidth, gain-bandwidth product and spectral SNR for thin III-V APDs. The theory developed for the time 
response specifically incorporates dead-space effects and extends the dead-space recurrence theory of 
Hayat and Saleh [27] to the autocorrelation function of the APDs impulse response. Our predictions showed 
that although the gain-bandwidth-product increases with the reduction of multiplication-region width, as a 
result of the reduction of the carrier transit time in the multiplication region, this increase is accompanied, 
to a less degree, by an excess buildup time resulting from the dead-space effect due to the inhibition (or 
dead time) between successive impact ionizations. The discrepancy between the bandwidth predictions of 
the conventional theory and the dead space-based theory can be high in certain thin APDs, depending on 
the gain and the width of the multiplication layer. As an example, for an InP APD with a 100-nm wide 
multiplication layer operating at a gain of 30, the discrepancy in bandwidth prediction is 29%. Our theory 
shows that the gain-bandwidth product characteristics of APDs can be represented by a simple hyperbolic-
type model that depends only on the material. Comparison of the theoretical results with experiments 
indicate that the theory underestimates the gain-bandwidth product in certain devices. We suspect that 
this error is due to factors such as nonuniformity of the electric field, inaccuracy in the saturation velocities 
and ignoring the carrier velocity overshoot. 

Analysis of the frequency-response fluctuations showed that the dead-space-induced excess buildup time is 
accompanied by an inherent benefit: the fluctuations in the frequency response, represented by the ratio 
of the mean frequency response to the power-spectral density, are reduced as a result of the dead-space 
effect. Hence, the reduction in photocurrent fluctuations is not limited to the dc component of the 
frequency response (i.e., the excess-noise factor) but generalizes to all operational frequencies within the 
device bandwidth. Because dead space tends to make the spectral characteristics of the output of thin-
APD-based receivers “less random,” there is the potential that equalization techniques may become more 
effective in combating intersymbol interference. 

APPENDIX Derivation Of The Renewal Equation For CZe(t,x) 

We provide the details of the analysis that yields the development of the recurrence equation given in (6). 
Consider a parent electron at x (born at time t = 0) and suppose that it first impact ionizes at position ξ>x. 
To this parent electron, we associate the random count Ze(t,x), as defined earlier. Now let the electron 

counts 𝑍𝑍𝑒𝑒′(𝑡𝑡1 − (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 , 𝜉𝜉) and 𝑍𝑍𝑒𝑒′′ �𝑡𝑡1 −
𝜉𝜉−𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉� correspond to the first and second offspring 

electrons, respectively, born at position ξ. Also, let 𝑌𝑌𝑒𝑒(𝑡𝑡1 − (𝜉𝜉 − 𝑥𝑥)/𝑣𝑣𝑒𝑒 , 𝜉𝜉) correspond to the offspring 
hole born at ξ. According to the discussion directly preceding (6), which described the three possibilities for 
the time of the first impact ionization, the events associated with these cases can be further analyzed as 
follows: 
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SECTION A. 
Case 1. The First Ionization Occurs Before t1 

In this case, the position of the first ionization ξ satisfies (ξ−x)/ve<t1 since the distance to the first 
ionization is ξ−x. Hence 

(18) TOP 

(19) BOTTOM 

𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥) = 𝑍𝑍𝑒𝑒′ (𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) + 𝑍𝑍𝑒𝑒′′(𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

𝜉𝜉)

+𝑌𝑌𝑒𝑒(𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

and

= 𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥) = 𝑍𝑍𝑒𝑒′(
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) + 𝑍𝑍𝑒𝑒′′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

+𝑌𝑌𝑒𝑒(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉).

 

In this case, the conditional correlation, given the knowledge of ξ, becomes the equation shown at the top 
of the next page. Note that the range of ξ for which this case occurs is x to min (x+vet1,w). Also note that 
the processes Z′e(⋅,⋅),Z′′e(⋅,⋅) and Ye(⋅,⋅) are mutually independent, as they are generated by the 
independently-acting two electrons and the hole. Moreover, Z′e(⋅,⋅) and Z′′e(⋅,⋅) are identically distributed. 

E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)|𝜉𝜉] = E[(𝑍𝑍𝑒𝑒′(𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) + 𝑍𝑍𝑒𝑒′′(𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

+𝑌𝑌𝑒𝑒(𝑡𝑡1 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)) × (𝑍𝑍𝑒𝑒′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

+𝑍𝑍𝑒𝑒′′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) + 𝑌𝑌𝑒𝑒(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

𝜉𝜉))].

 

 

SECTION B. 
Case 2. The First Ionization Occurs Between t1 and t2 

In this case, the position of the first ionization ξ satisfies t1≤(ξ−x)/ve<t2. Note that in this case Ze(t1,x)=1 
but 

 

 



(20) 

𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥) = 𝑍𝑍𝑒𝑒′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) +𝑍𝑍𝑒𝑒′′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

+𝑌𝑌𝑒𝑒(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉).
 

Hence 

E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)|𝜉𝜉] = E[(𝑍𝑍𝑒𝑒′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉)

+𝑍𝑍𝑒𝑒′′(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉) + 𝑌𝑌𝑒𝑒(𝑡𝑡2 −
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

, 𝜉𝜉))].
 

 
Note that the range of ξ for which this case occurs is min (x+vet1,w) to min (x+vet2,w). 
SECTION C. 

Case 3. The First Ionization Occurs After t2 

In this case, (ξ−x)/ve>t2 and hence necessarily Ze(t1,x)=Ze(t2,x)=1. Hence 

(21) 

E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)|𝜉𝜉] = 1, 𝑡𝑡2 <
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

 

 
and 

(22) 

E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)|𝜉𝜉] = 0, 𝑡𝑡2 ≥
𝜉𝜉 − 𝑥𝑥
𝑣𝑣𝑒𝑒

. 

Note that the probability that the first ionization occurs after t2 is 1 − 𝐻𝐻𝑒𝑒(𝑚𝑚𝑖𝑖𝑚𝑚{𝑤𝑤 − 𝑥𝑥, 𝑣𝑣𝑒𝑒𝑡𝑡2}). 

The final step is to average the conditional correlation E[𝑍𝑍𝑒𝑒(𝑡𝑡1, 𝑥𝑥)𝑍𝑍𝑒𝑒(𝑡𝑡2, 𝑥𝑥)|𝜉𝜉] over all possible ξ in the 
interval [𝑥𝑥,𝑚𝑚𝑖𝑖𝑚𝑚(𝑥𝑥 + 𝑣𝑣𝑒𝑒𝑡𝑡,𝑤𝑤)]with the careful consideration of the three cases mentioned earlier. This 
yields the recurrence relation given in (6). 
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