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Abstract 
Purpose 
To improve dose reporting of CT scans, patient-specific organ doses are highly desired. However, estimating the 
dose distribution in a fast and accurate manner remains challenging, despite advances in Monte Carlo methods. 
In this work, we present an alternative method that deterministically solves the linear Boltzmann transport 
equation (LBTE), which governs the behavior of x-ray photon transport through an object. 

Methods 
Our deterministic solver for CT dose (Acuros CTD) is based on the same approach used to estimate scatter in 
projection images of a CT scan (Acuros CTS). A deterministic method is used to compute photon fluence within 
the object, which is then converted to deposited energy by multiplying by known, material-specific conversion 
factors. 

To benchmark Acuros CTD, we used the AAPM Task Group 195 test for CT dose, which models an axial, fan beam 
scan (10 mm thick beam) and calculates energy deposited in each organ of an anthropomorphic phantom. We 
also validated our own Monte Carlo implementation of Geant4 to use as a reference to compare Acuros against 
for other common geometries like an axial, cone beam scan (160 mm thick beam) and a helical scan (40 mm 
thick beam with table motion for a pitch of 1). 

Results 
For the fan beam scan, Acuros CTD accurately estimated organ dose, with a maximum error of 2.7% and RMSE 
of 1.4% when excluding organs with <0.1% of the total energy deposited. The cone beam and helical scans 
yielded similar levels of accuracy compared to Geant4. Increasing the number of source positions beyond 18 or 
decreasing the voxel size below 5 × 5 × 5 mm3 provided marginal improvement to the accuracy for the cone 
beam scan but came at the expense of increased run time. Across the different scan geometries, run time of 
Acuros CTD ranged from 8 to 23 s. 

Conclusions 
In this digital phantom study, a deterministic LBTE solver was capable of fast and accurate organ dose estimates. 

1 Introduction 
While CT imaging provides numerous diagnostic benefits, it is the largest annual source of medical radiation 
exposure.1 Concerns about CT radiation risk2-4 and recent overdosing incidents5 have prompted national 
campaigns to raise awareness of CT radiation dose, reduce radiation levels, and mandate radiation dose 
reporting.6-9 These dose reporting efforts have had positive effects on protocol standardization.10 However, 
the dose metrics used in these reports were originally designed for scanner quality assurance and were not 
intended to represent patient dose.11, 12 

The radiation dose absorbed by patients undergoing CT scans cannot be directly measured but is instead 
estimated through phantom measurements or through simulations that model photon transport. Monte Carlo 
simulations, which stochastically model the transport of photons, are typically used to estimate the distribution 
of radiation dose deposited in an object. Dose deposition maps and organ doses estimated via Monte Carlo 
simulations have been widely used to quantify radiation dose,13-17 evaluate CT dose reduction techniques,18-
21 and to optimize CT scan parameters.22, 23 Monte Carlo simulations are traditionally slow, though recent 
advancements in acceleration and GPU implementation have greatly reduced run times.24-27 Rapid estimation 
of the deposited dose distribution may enable patient-specific CT dosimetry, which could facilitate more 
accurate dose reporting and patient-specific CT protocol optimization. 
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Monte Carlo methods use stochastic simulations to implicitly solve the linear Boltzmann Transport Equation 
(LBTE), which is the equation that governs the transport of particles through an object. Deterministically solving 
the LBTE is an alternative method for estimating radiation dose maps.28, 29 In radiation oncology, a 
deterministic BTE solver is commercially available for MV therapy30, 31 (Acuros® XB, Varian Medical Systems, 
Palo Alto, CA, USA) and brachytherapy planning (Acuros BV, Varian Medical Systems, Palo Alto, CA, 
USA),32, 33 and has been shown to produce similar accuracy to Monte Carlo with greatly reduced computation 
times. A recent study demonstrated a version of the deterministic algorithm for estimating scatter in kV 
projections (Acuros CTS, Varian Medical Systems, Palo Alto, CA, USA).34, 35 While the focus of this previous 
study was scatter estimation, the same underlying methods can be used to calculate maps of radiation dose 
deposition. 

Radiation dose simulation software must be validated prior to use.36 While versions of the Acuros software 
have been validated for the higher energies used in radiation therapy, additional validation is needed for 
diagnostic imaging due to the different energy range and simplifying assumptions like not modeling electron 
transport. The purpose of this study is to benchmark the radiation doses estimated by the Acuros CTD software 
using the CT test case and reference values provided in the AAPM Task Group 195 Report.36 The accuracy of the 
organ dose estimates is also compared to a Monte Carlo simulation (Geant4 v9.637) for three CT scanner 
geometries. 

2 Materials and methods 
2.A. Acuros CTD overview 
The steady state LBTE governs how photons behave as they propagate through an object. Previously reported 
work includes a complete description of the LBTE and our numerical methods for solving it,34 and other general 
references are found here: Ref. 38, 39. To summarize, the LBTE is written as: 

 

Ω� ∙ ∇⃡𝜙𝜙�𝑟𝑟,𝐸𝐸,Ω�� + 𝜇𝜇1(𝑟𝑟,𝐸𝐸)𝜙𝜙�𝑟𝑟,𝐸𝐸,Ω�� = 𝑆𝑆�𝑟𝑟,𝐸𝐸,Ω�� +

∫ 𝑑𝑑𝐸𝐸′𝐸𝐸0
0 ∫ 𝑑𝑑Ω′ 

4𝜋𝜋 �𝜇𝜇𝑠𝑠�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,Ω�′ → Ω��𝜙𝜙�𝑟𝑟, E′,Ω�′�� (1) 

where 

• -φ is the angular fluence, which quantifies the tracks of particles about position  with energy E traveling 
along the direction Ω� 

• - 𝑆𝑆 is a source of photons to the LBTE. The photon source describes the number of photons inserted into 
position 𝑟𝑟 with energy E traveling along direction Ω�. The maximum energy of all sources in the system 
is 𝐸𝐸0. 

• -𝜇𝜇𝑠𝑠�𝑟𝑟,𝐸𝐸′ → 𝐸𝐸,Ω�′ → Ω�� is the linear directional scatter coefficient that describes the fraction of photons 
having energy 𝐸𝐸′ traveling along direction Ω�′ that scatter into a new direction Ω� with a new 
energy E. 𝜇𝜇𝑠𝑠 is an intrinsic property of the material(s) being modeled and can be thought of as a total 
cross section that encompasses all Compton and Rayleigh scattering events. 

• -𝜇𝜇1 is the linear attenuation coefficient of the material(s) being modeled and accounts for all scattering 
and absorption events. 
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The solution of the LBTE, 𝜙𝜙(𝑟𝑟,𝐸𝐸,Ω), enables us to calculate the energy deposited at each location, 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟), as 
follows: 

 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑(𝑟𝑟) = 𝜌𝜌(𝑟𝑟)∫ 𝑑𝑑𝐸𝐸𝐸𝐸0
0 �𝜇𝜇𝑒𝑒𝑒𝑒

𝜌𝜌
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where 𝜌𝜌 is the mass density and 𝜇𝜇𝑒𝑒𝑒𝑒
𝜌𝜌

 is the mass energy-absorption coefficient, which is again an intrinsic 

property of the material(s) being modeled. The angular fluence is integrated over all directions, then multiplied 
by the mass energy-absorption coefficient and energy, integrated over all energies, and scaled by the mass 
density. For diagnostic imaging energies, electrons travel a negligible distance and deposit their energy locally so 
that kerma and absorbed dose are assumed to be equivalent.40 

Analytically solving the LBTE is only possible for a small set of simple problems. Therefore, we apply 
computational methods to solve the LBTE, by discretizing the problem in space, energy, and angle. Acuros CTD 
solves the LBTE using the same core algorithms as Acuros CTS. The spatial domain is divided into voxels indexed 
by 𝑖𝑖, the energy domain into energy groups g, and angular domain into directions m via the discrete ordinates 
method. The energy deposited in each voxel is then: 

 

𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 = 𝑣𝑣𝑖𝑖𝜌𝜌𝑖𝑖 ∑ 𝐾𝐾𝑖𝑖,𝑔𝑔𝑔𝑔 ∑ 𝑤𝑤𝑚𝑚𝑚𝑚 (𝜙𝜙𝑈𝑈𝑈𝑈 + 𝜙𝜙𝑈𝑈)𝑖𝑖,𝑔𝑔,𝑚𝑚 , (3) 

where  is the voxel volume, 𝜌𝜌𝑖𝑖 is the mass density of each voxel, 𝐾𝐾𝑖𝑖,𝑔𝑔 is a conversion factor (the energy-
weighted mass energy-absorption coefficient) for each voxel and energy group,  are quadrature weights 
associated with each direction, and 𝜙𝜙𝑖𝑖,𝑔𝑔,𝑚𝑚 is the discrete solution of the LBTE. Note that 𝜙𝜙 = 𝜙𝜙𝑈𝑈𝑈𝑈 + 𝜙𝜙𝑈𝑈 , where 
we have intentionally written the uncollided fluence 𝜙𝜙𝑈𝑈𝑈𝑈  and collided fluence 𝜙𝜙𝑈𝑈  separately since these may be 
calculated at different spatial resolutions. Primary dose is a result of the uncollided fluence, and secondary (or 
scattered) dose is a result of the collided fluence. As illustrated in Fig. 1, the uncollided fluence is calculated by 
ray tracing from the x-ray source (or sources, if there are multiple sources), whose intensity is described for each 
energy group and angular direction (i.e., to describe the spectral and spatial distribution). Since this is done 
analytically, it is an efficient operation and can be done at higher spatial resolution. However, the collided 
fluence must be solved numerically and is typically done at a lower spatial resolution. We first generate the first-
collision scattering source within the object, whose fluence is then propagated through the object. This process 
is iterated upon to obtain higher order collisions and the total collided fluence. Each external source contributes 
to the first-collision scattering source, so we ray trace the uncollided fluence from each external source into the 
object and accumulate the first scattering interaction. Since the LBTE is a linear system, the total collided fluence 
is the sum of the collided fluence from the individual source positions. Thus, solving the LBTE is only done once 
after generating the first-collision scattering source, regardless of the number of source positions. Although the 
fluence distribution is computed at a lower spatial resolution, we upsample it to the native spatial resolution of 
the volume using trilinear interpolation before applying the mass density and conversion factors. We refer to 
Acuros CTD simply as Acuros in the remainder of the manuscript. 

https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13305#mp13305-bib-0040
https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/mp.13305#mp13305-fig-0001


 

Figure 1 The uncollided fluence at each voxel is determined by ray tracing from the source. If there are multiple sources, it 
is the sum of all sources. The collided fluence is the solution of the LBTE and represents the secondary (scattered) fluence. 
[Color figure can be viewed at wileyonlinelibrary.com] 

2.B. Phantom study 
Our digital phantom study was based on the AAPM Task Group 195 (TG 195): Monte Carlo reference data for 
imaging research. In particular, Case 5 simulates the dose from a CT scan to a voxelized phantom, which is based 
on the XCAT phantom.41 The phantom is 320 × 500 × 260 mm3, where each 1 × 1 × 1 mm3 voxel is assigned to 
one of 20 labels, of which 17 are organs. Each label is assigned a material, whose composition and mass density 
are defined. 

The CT scanner geometry has a 600 mm source–isocenter distance, and the isotropic point source is collimated 
to a fan beam of width 500 mm and thickness t at isocenter. We reproduced the case of a continuous source 
distribution along a 360° circular path (axial scan) and the 120 kV spectrum given by TG 195 (Fig. 2). 

 

Figure 2 Overview of CT dose simulation with a voxelized phantom, as described in Ref. 36.Not drawn to scale. 

The energy deposited per source photon was scored in all voxels and summed for each organ. We used the 
mean of the four Monte Carlo packages evaluated by TG 195 as the reference value. 

2.B.1. Axial fan beam scan 
In the TG 195 study, the beam thickness was t = 10 mm and rotated in the Z = 0 mm plane with no table motion, 
so we refer to this as an axial fan beam scan. By modern standards, this is a relatively thin fan beam. Therefore, 
we explored two additional geometries, as described next. 

2.B.2. Axial cone beam scan 
We enlarged the beam to t = 160 mm to model an axial cone beam CT (CBCT) geometry, again with rotation in 
the Z = 0 mm plane and no table motion. In addition to CBCT systems, such large geometries are increasingly 
common in diagnostic CT as scanners move toward larger volumetric coverage. All other aspects of the 
simulation were kept the same. 

2.B.3. Helical scan 
To model a helical scan, the beam thickness was set to t = 40 mm, and the source was translated 
from Z = −80 mm to Z = +80 mm, while completing four rotations starting and ending at the zero-degree 
position. This simulated a CT acquisition with linear table motion for a helical pitch of 1. All other aspects of the 
simulation were kept the same. 
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2.C. Geant4 implementation 
We sought to validate our own implementation of Monte Carlo dose calculation against the TG 195 fan beam 
results. Once validated, our Monte Carlo results could serve as the reference for the cone beam and helical 
geometries. We used Geant4 (v9.6)37 to randomly sample the spectrum and ray angle for each launched photon 
and track the energy deposited, using the Livermore physics model, a range cut of 0.1 mm, and the original 
phantom materials and resolution (1 × 1 × 1 mm3). The fan beam and cone beam simulations used 
1 × 1010 photons and the helical simulation used 4 × 1010 photons to obtain results with low statistical 
uncertainty (<1% uncertainty in energy deposited in all organs, and ≪ 1% in organs other than the adrenals and 
thyroid 36). Geant4 simulations were conducted with an in-house distributed network of computers (HTCondor, 
University of Wisconsin, Madison, WI, USA) without any acceleration or variance reduction. 

2.D. Acuros implementation 
The phantom was cropped laterally by 30 mm on each side to 320 × 440 × 260 mm3 to reduce the volume size, 
which resulted in a minor amount of truncation in the shoulders. The nonbone materials were decomposed into 
representative amounts of adipose (ICRP 1975)42 and water that best matched the attenuation properties of 
the original materials. Bone was added as a third material. Like the original XCAT description, all bone regions 
are represented by a dense, homogeneous, cortical bone-like material. This simplified the implementation by 
reducing the number of unique materials to three. As adipose has a lower effective atomic number (Zeff) and 
water has a higher Zeff than most of the nonbone materials, we felt that this approach was supported by the 
same theory supporting dual-energy imaging.43, 44 

For the fan beam simulation, we used 8 × 8 × 1 mm3 voxels. The 1 mm longitudinal dimension was used to 
capture the narrow fan beam, while the larger 8 × 8 mm2 in-plane dimension reduced the number of voxels. The 
volume was evenly divided by this downsampling factor to 40 × 55 × 260 voxels, and each downsampled voxel 
was assigned the average material content of its region. 

For the cone beam and helical simulations, we used isotropic 5 × 5 × 5 mm3 voxels since the beam was much 
thicker. This resulted in 64 × 88 × 52 voxels. Unless otherwise stated, we maintained the same voxel size for the 
uncollided and collided fluences, which allowed the uncollided fluence to seed the first-scattering source of the 
collided fluence. 

Acuros requires discrete source positions, so we used 18 uniformly spaced source positions per rotation or every 
20°. For the helical scan, this resulted in 4 × 18 + 1 = 73 source positions, with the extra one due to having one at 
the start and stop positions. We also separately studied the impact of the number of source positions and voxel 
size selection for the cone beam simulation. 

Acuros was run on a standard workstation, with the core algorithms written in the CUDA programming language 
(CUDA 8.0, Nvidia, Santa Clara, CA, USA) and run on a single GPU (GeForce GTX 1080, Nvidia, Santa Clara, CA, 
USA). 

3 Results 
3.A. Axial fan beam scan 
The spatial distribution of energy deposited for the axial fan-beam scan is shown in Fig. 3, where the Geant4 and 
Acuros results are visually identical. In the axial view, the energy distribution is roughly radially symmetric due to 
the continuous, circular source path, with the exception of the patient posterior shielded by the couch. The 
narrow fan beam is evident in the coronal and sagittal views, and the secondary dose deposited throughout the 
volume appears faintly. The difference image shows some disagreement, particularly at the interface between 
air/tissue and tissue/bone. Acuros tends to underestimate the energy deposited on the entrance side of these 
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interfaces since the calculated fluence is done with relatively large voxels (8 × 8 mm2 in the axial plane) and does 
not fully resolve the distinct gradient in fluence. 

 

Figure 3 Energy deposited in axial fan beam scan simulation. The top row shows Geant4 results, the middle row shows 
Acuros, and the bottom row shows the difference. From left to right, the central axial, coronal, and sagittal slices are 
shown. The jet colormap spans [0 0.05] eV/mm3/photon for the first two rows and [−0.025 0.025] eV/mm3/photon for the 
last row. [Color figure can be viewed at wileyonlinelibrary.com] 
 

Figure 4 compares the energy deposited in each organ, as reported by TG 195, and as determined from our 
Geant4 and Acuros simulations. The “soft tissue” and “cortical bone” regions absorb the most energy, in part 
due to their large size. For bone, this is additionally due to its higher density and higher Zeff. Organs such as the 
heart, lung, and skin are within the primary beam, while the liver and stomach are not but are large enough to 
absorb a fair amount of secondary dose. Distant and small organs, such as the adrenals, absorb many orders of 
magnitude less energy than those in the primary beam. Compared to the TG 195 results, our Geant4 
implementation had a max error of 1.4% and root-mean-squared error (RMSE) of 0.7% across all organs. Our 
Acuros solution yielded a max error of 4.8% and RMSE of 2.2% across all organs. However, if we exclude organs 
that absorb <0.1% of the total energy absorbed, the maximum error decreased to 2.7% and RMSE decreased to 
1.4%. The Geant4 results show excellent agreement with TG 195, validating our implementation and enabling us 
to apply it as the gold standard for other simulations. The good agreement of Acuros across all nonbone organs 
suggests that the adipose/water material representation was reasonable. Although the Acuros errors were 
slightly higher than Geant4 due to discretization, the solution was computed in only 15 s. Conversely, the 
Geant4 results took 687 CPU-hours to run 1 × 1010 photons. 

 

Figure 4 Energy deposited in each organ for the axial fan beam scan simulation. The Geant4 and Acuros results are 
superimposed on the TG 195 results. Note the log scale of the y-axis. Organs below the dashed line absorb <0.1% of the 
total energy absorbed. [Color figure can be viewed at wileyonlinelibrary.com] 
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3.B. Axial cone beam scan 
The Geant4 and Acuros energy deposition maps are shown in Fig. 5 and again exhibit good qualitative 
agreement. The large cone beam is evident in the coronal and sagittal slices, with secondary dose outside of the 
beam evident as well. Some stochastic noise can be seen in the Geant4 solution, whereas the Acuros solution 
does not have any noise. In the sagittal view, there are small visual differences in the spine, which may be due to 
the challenging combination of thick cortical bone (entire spine is composed of cortical bone, which has higher 
mass density and Zeff than soft tissue) and discretization effects. The difference image shows good agreement in 
the soft tissue but some disagreement in the bone, with Acuros slightly overestimating in the ribs and 
underestimating in the vertebral bodies. The difference at the air/tissue and tissue/bone interfaces is not as 
distinct as in the fan beam scan, likely due to the smaller voxel size in the axial plane (5 × 5 mm2). 

 

Figure 5 Energy deposited in axial cone beam scan simulation. The jet colormap spans [0 0.005] eV/mm3/photon for the top 
two rows and [−0.0025 0.0025] eV/mm3/photon for the bottom row. [Color figure can be viewed at wileyonlinelibrary.com] 
 

Nonetheless, using the Geant4 solution as the reference, the Acuros energy deposited per organ (excluding 
organs with <0.1% of the total energy) had a max error of 2.2% and RMSE of 1.2% (Fig. 6). The adrenals had the 
largest relative error at 35.9%, likely due to being a small organ far away from the primary beam. However, the 
error on an absolute scale was 0.066 eV/photon, which is more than five orders of magnitude below the total 
energy deposited (2.127 × 104 eV/photon). With the isotropic 5 mm voxels, there were fewer voxels overall than 
the fan beam computation, resulting in a run time of 8 s. 

 

Figure 6 Energy deposited in each organ for the axial cone beam scan simulation. Note the log scale of the y-axis. Organs 
below the dashed line absorb <0.1% of the total energy absorbed. [Color figure can be viewed at wileyonlinelibrary.com] 
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The impact of parameter selection on run time and RMSE is shown in Fig. 7. In Fig. 7(a), the number of uniformly 
spaced source angles was varied while keeping the voxel size fixed (5 mm isotropic). The run time increased 
linearly with the number of sources due to the linear increase in ray tracing effort for the uncollided fluence. The 
RMSE dropped dramatically after five sources and leveled off after around 12 sources. Therefore, 18 sources 
appeared to be a reasonable selection. In Fig. 7(b), the number of sources was fixed at 18, while voxel size 
varied. Run time decreased as the voxel size increased (and the number of voxels decreased), while the RMSE 
increased nearly linearly after 4 mm voxel size. The upper limit on the number of voxels (and the lower limit of 
voxel size) was constrained by memory requirements, with a 4 mm minimum isotropic voxel size for the collided 
fluence. Thus, the uncollided fluence for 2 mm isotropic voxels was computed separately. We also kept the 
longitudinal voxel size to a maximum of 5 mm. Overall, 2–5 mm isotropic voxels appear to be a reasonable 
selection, depending on the desired run time and accuracy, and subject to memory constraints. 

 

Figure 7 Impact of parameter selection on run time and RMSE. (a) Number of uniformly spaced source angles, using 5 mm 
isotropic voxels. (b) In-plane voxel size, using 18 sources. The longitudinal voxel size was kept to a maximum of 5 mm. 
[Color figure can be viewed at wileyonlinelibrary.com] 
 

3.C. Helical scan 
The energy deposited in the phantom by the helical scan is shown in Fig. 8, with excellent agreement between 
Geant4 and Acuros. The large pitch of the helical pattern and nonuniform dose distribution within the scan 
range is evident. The difference image shows small disagreement in the soft tissue, for example, some residual 
helical pattern is evident in the coronal slice due to discretization of the edge of the 40 mm thick beam. The 
energy deposited in the ribs tends to be overestimated, while it is underestimated in the vertebral bodies. 
Overall, the quantitative agreement was similar to the cone-beam scan comparison. Compared to Geant4, 
Acuros had a max error of 2.3% and RMSE of 1.5%, again excluding organs with <0.1% total energy (Fig. 9). 
Acuros did take a longer computation time of 23 s due to the increased ray tracing from the 4× increase in the 
number of sources modeled. 

 

Figure 8 Energy deposited in helical scan simulation. The jet colormap spans [0 0.005] eV/mm3/photon for the top two rows 
and [−0.0025 0.0025] eV/mm3/photon for the bottom row. [Color figure can be viewed at wileyonlinelibrary.com] 
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Figure 9 Energy deposited in each organ for the helical scan simulation. Note the log scale of the y-axis. Organs below the 
dashed line absorb <0.1% of the total energy absorbed. [Color figure can be viewed at wileyonlinelibrary.com] 

4 Discussion 
Using a deterministic solver of the LBTE, such as Acuros, is a new approach to calculating CT dose and potential 
alternative to Monte Carlo methods. The work in Ref. 29 describes a similar deterministic approach to estimate 
dose in a uniform CTDI phantom in 21 min. Our work has demonstrated that organ dose calculation in a 
complex, heterogenous phantom is possible on the order of tens of seconds. 

AAPM TG 195 provided a useful benchmark for validating our Geant4 implementation, and although it was 
designed for Monte Carlo testing, was invaluable for understanding performance of our deterministic method. 
The fan beam geometry used in TG 195 is a challenging case for Acuros since it required very thin voxels to 
model the narrow fan beam, leading to a large number of voxels in the longitudinal direction to model the entire 
volume. The implementation in Acuros CTD uses the same voxel size across the entire volume, but an 
implementation with adaptive voxel sizes, such as in Acuros XB, could reduce the total number of voxels by 
using smaller voxels where the fluence is rapidly changing and larger voxels where the fluence is gradually 
changing. 

We observed small voxel-specific differences near high-contrast interfaces (i.e., air/tissue or tissue/bone) or 
within dense, highly attenuating objects (i.e., inside large regions of cortical bone). However, when reporting the 
total organ energy, some of these differences averaged out, leading to errors less than a few percent. Our 
analysis mostly excluded small, distant organs (threshold set as <0.1% total energy deposited), where the 
relative errors tended to be larger even though the absolute errors were small. Should these organs or voxel-
level accuracy be important, the results could be improved by using smaller voxels or finer discretization in other 
domains. Unlike Monte Carlo, there is no stochastic noise in the solution. 

Representation of the phantom materials by a mixture of adipose, water, and bone in our Acuros simulations led 
to good overall agreement in this study. However, such a representation should be validated against real human 
tissues or tissue-equivalent materials in a complex, heterogeneous object. Additionally, patient scans often have 
contrast media (e.g., iodine, barium) or metal implants, which should be accounted for by using additional 
materials in Acuros. 

We also examined cone beam and helical geometries that are more representative of modern scanners than the 
TG 195 fan beam geometry. With the larger beams and larger volumetric coverage, we found that 18 source 
positions per rotation and isotropic 5 mm voxels gave good results for Acuros. The computation time increases 
with the number of source positions but remains low overall due to the GPU implementation and scales well 
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with the number of sources since the collided fluence is only solved once. Although TG 195 uses an isotropic 
source collimated to the detector that is uniformly distributed around the object, our Acuros implementation 
allows each source to be described individually. This enables the modeling of spatial variation (e.g., bowtie or 
heel effect), variation in intensity between positions (e.g., tube current modulation), and variation in shape 
between positions (e.g., dynamic collimation). We plan to model these more realistic aspects of scanner 
behavior and perform validation against physical measurements of a scanned object (e.g., measured dose in a 
phantom) in future work. 

Although we reported run times for our Monte Carlo simulations, these were used to establish reference values 
with low uncertainty rather than optimized for run time and are not intended for direct comparison with our 
Acuros run times. Further studies are needed to investigate potential applications of this rapid dose estimation 
software, as well as to investigate whether there are benefits compared to state-of-the-art Monte Carlo 
approaches, such as in run time or precision. We plan future work to combine the rapid dose maps generated by 
Acuros CTD with autosegmentation software to produce automated patient-specific dose reports.45 

5 Conclusion 
This study benchmarked the Acuros CTD software for CT organ dose estimation using TG 195. Acuros produced 
organ dose estimates with maximum error of 2.7% and RMSE below 1.5%, with run time on the order of tens of 
seconds. 
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