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Research Article

Forecasting residential building
costs in New Zealand using
a univariate approach

Linlin Zhao1 , Jasper Mbachu2 and Huirong Zhang1

Abstract
Construction cost index has been widely used to prepare cost estimates, budgets, and bids for construction
projects. It can also be regarded as an indicator of cost level, which makes it valuable to public authorities for
understanding the conditions in the construction industry. Accurate forecasting of future construction cost
index is essential for construction industry at both micro- and macro-level. To improve the accuracy of the cost
forecasting, time series modeling techniques are adopted in this study. The performance of the exponential
smoothing models and seasonal autoregressive integrated moving average (ARIMA) models for forecasting the
building cost of five categories of residential building (one-story house, two-story house, town house, apartment,
and retirement village building) in New Zealand is compared. Exponential smoothing models can produce more
accurate forecasts for cost series of the one-story house and two-story house in New Zealand, while seasonal
ARIMA models outperform exponential smoothing models across the cost series for town house, apartment,
and retirement village building. This study contributes toward the development of the current state of knowl-
edge in the area of cost index forecasting for New Zealand and provides insights that should be valuable from
the practitioner perspectives.
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Introduction

Construction cost index has been widely used in construc-

tion cost estimate preparation, bid and budget preparation,

and cost control and risk management.1–4 Accurate cost

estimates can lead to more reliable bids and help to achieve

goals since reliable and reasonable cost forecasting can

improve business strategy. Over the past few decades,

many projects have suffered huge losses due to the consid-

erable difference between the final project cost and the

initial cost estimate.5 Several studies found that changes

in construction cost is one of the most critical risks that

affect the project budget and profit.6–8 Moreover, contrac-

tors may suffer high cost variation, insufficient cash flow,

and delayed progress associated with the high variation of

cost index. Although cost index increases in the long term,

it has short-term variations, which makes it difficult to

obtain accurate cost estimates.

The construction industry is essential to New Zealand’s

economy, contributing significantly to business, GDP, and

employment.9 The construction industry is highly inte-

grated across the economy and uses outputs from a number
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of key industries across New Zealand.9 This integration

means that the construction industry can significantly influ-

ence other industries of New Zealand’s economy. It is an

important sector and its economic performance and produc-

tivity plays an important role in the overall health of the

economy.10 Economic growth is reliant on contributions

from the construction industry. However, the construction

industry is a resource-based sector. If the sector consumes

an excessive amount of unrecoverable natural resources,

they will cost more in the future. Monitoring the construc-

tion industry and proper allocation of resources are essen-

tial to long-term economic development. Given the

importance of this industry to the overall economy, proper

monitoring of the industry is essential to policy makers and

strategy developers at the industry and national levels.11

However, identifying an appropriate indicator for monitor-

ing the construction industry is difficult. Some studies sug-

gest that productivity may be a qualified indicator of the

construction industry. However, according to Harrison12

and Rojas and Aramvareekul,13 productivity is an inaccu-

rate indicator of the construction industry since errors exist

in the measurements and calculations. Also, Sui14 used

quality to measure the construction industry; however,

quality is a qualitative indicator that needs other quantified

factors to measure it.

Cost index is an effective tool for capturing trends and

provides insight into understanding complex and dynamic

environments.15 Cost index reflects the unit price of basic

materials, which is a good indicator for comparing the input

and output. Moreover, compared with economic indicators

that only reflect the economic activities in the construction

industry,11 construction cost index also incorporates other

factors such as the relationship between demand and sup-

ply. Cost index forecasts can help the government to plan

its investment in order to smooth the boom–bust cycle

inherent to the construction industry. For example, counter-

cyclical investment by the government may reduce volati-

lity in the industry and reduce the magnitude of busts.

Better planning can guarantee certainty of work and better

resource planning in the industry, improving industry per-

formance and productivity.

Given the utmost importance of cost forecasting and the

important role of predicting it accurately, this study tends to

use time series modeling techniques to forecast the building

cost of five categories of residential building (one-story

house, two-story house, town house, apartment, and retire-

ment village building) in New Zealand. Building costs time

series usually exhibit strong trends presenting challenges in

developing useful models. How to effectively model build-

ing cost series and how to enhance forecasting performance

are still outstanding questions. There are two most widely

used time series forecasting methods: exponential smooth-

ing and autoregressive integrated moving average

(ARIMA). The performance of the two forecasting tech-

niques was evaluated in terms of error measures.

Exponential smoothing method was originally intro-

duced by Holt,16 Brown,17 and Winters18 for short-term

sales forecasting in support of supply chain management

and production planning. The widespread usage of this

method is mainly due to the fact that it is a relatively

simple forecasting method requiring a small-sized sample

and having a comprehensible statistical framework and

model parameters. Exponential smoothing models devel-

oped are based on the trend and seasonality in time series,

while ARIMA models are supposed to describe the

autocorrelations in the time series. A framework for expo-

nential smoothing methods was developed based on state-

space models.19

ARIMA approach is a renowned and widely used linear

method.20 It carries more flexibility by representing various

components of time series including autoregressive (AR),

moving average (MA), and combined AR and MA.

ARIMA can model the underlying changes in cost data to

make structural forecasts.21 It is the most efficient approach

for short-term forecasting with rapid changes. ARIMA

models can also predict the future based on modeling the

behavior of the serial correlation between the observations

of the time series. The future predictions based on ARIMA

models can be explained by previous or lagged values and

the terms of the stochastic errors.22

Time series forecasting techniques such as exponential

smoothing models and the ARIMA models have not yet

been examined for residential building cost forecasting in

New Zealand. Therefore, the study as original contribution

to the existing literature is for the first time to evaluate the

forecasting performance of these models for residential

building cost in New Zealand. Moreover, based on the

comparison of the forecasting techniques, industry practi-

tioners can obtain a general understanding of forecasting

techniques for building cost, and thereby improve forecast-

ing accuracy.

The rest of this study is organized as follows. The sec-

ond section presents the previous related works about fore-

casting methods for construction cost index. The third

section illustrates exponential smoothing method and

ARIMA models in detail. Both exponential smoothening

and ARIMA models for the cost series of New Zealand are

shown in the fourth section. In the fifth section, forecasting

performance of the proposed models is compared based on

error measures. Discussion of the results is presented in the

sixth section. In the final section, conclusion is presented.

Research background

Two of the most widely used forecasting models for con-

struction cost index were published in previous works: the

causal method and the time series method.5,21,23 Causal

methods usually adopt regression models to estimate con-

struction costs. Trost and Oberlender24 introduced a math-

ematical model for investigating the accuracy of early cost

estimates by using principal component analysis and
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regression analysis. Ng et al.25 introduced an integrated

regression analysis and ARIMA techniques to predict a

tender price index for Hong Kong building projects. More-

over, Hwang26 used dynamic model that includes past val-

ues of cost index and explanatory variables to forecast

construction cost index of the United States. Hwang and

Liu27 addressed a dynamic regression model to examine the

relationship between the economic conditions in the market

and construction cost. Although these methods are effec-

tive by incorporating the explanatory variables to obtain

accurate cost estimates, they are difficult to deal with as

time-varying variables and reflect the time lag effects.

Since much time-related variables have an autocorrela-

tion,28 time-related techniques can be adopted to overcome

these limitations.

In an attempt to solve time-related problems in the meth-

ods, time series techniques, which estimate future values

of a certain variable according to past values of itself and

random shock factors, have been adapted to cost forecast-

ing in construction projects. For example, Fellows29 used

time series models to provide reliable forecasts of build-

ing costs, tender prices, and the impacts of economic

inflation on building projects. According to Wong

et al.,30 it is possible to make accurate predications based

on historical patterns. Several studies have been con-

ducted using the time series method. For example, Ashuri

and Lu21 illustrated a time series method that estimates

future values according to past values and corresponding

random errors and produces a reliable prediction of con-

struction cost. These time series techniques provide sys-

tematic and time-related models to forecast future values.

Hwang2 used a time series model to estimate the construc-

tion cost index. Xu and Moon4 employed a vector model

to forecast construction cost trends.

Certain artificial intelligence (AI) methods were used to

forecast the construction cost index. For example, Wil-

liams31 explained a way of applying neutral networks to

forecast changes in the construction cost index. Kim et al.32

used three forecasting methods to estimate construction

cost index including multiple regression analysis, neutral

networks, and case-based reasoning. Cheng et al.33 devel-

oped a hybrid model, the evolutionary least square support

vector machine, to forecast the Taiwanese construction cost

index. The results indicated that an AI method can be used

as an effective method for forecasting the Taiwanese con-

struction cost index. Also, Cao et al.34 used a hybrid com-

putation model that included multivariate adaptive

regression splines, a radial basis function neutral network,

and an artificial bee colony to forecast the Taiwanese con-

struction cost index.

The forecasting methods described above generate

accurate forecasts of the construction cost index. How-

ever, there are no studies that provide an effective tool

for forecasting the construction cost index of New Zeal-

and. This study provides time series models that can

model the characteristics of the construction cost index

of New Zealand and generate accurate cost forecast.

Although many factors can impact the construction cost,35

one of the main contributors to cost fluctuation is the

prices changes in construction resources such as materi-

als, labor, and equipment.4,36–38

Research methods

Data

The building cost index is useful for construction profes-

sionals to quantify cost variations.39 The index can provide

information of cost changes caused by a combination of

changes in material, labor, and equipment.27 Hence, the

cost index has been used widely in the industry for cost

estimation.3 The cost index provided by QV costbuilder has

been accepted in the Architectural, Engineering and Con-

struction (AEC) industry in New Zealand. Since 2000, QV

has published construction cost index for four major cities

of New Zealand. For more information about the construc-

tion cost index, readers can refer to the QV website.40 The

construction cost index includes costs among a wide range

of materials and buildings. QV costbuilder carried out var-

ious surveys on construction economics including con-

struction material, labor, and equipment costs to provide

comprehensive statistical information. As for many other

industries and sectors, QV costbuilder compiles historical

data to guide construction organizations and industry pro-

fessionals and to identify cost fluctuations in the construc-

tion industry.

This study uses quarterly CCI for the period of first

quarter 2001 to the fourth quarter 2018. The available data

set consists of quarterly cost data over a period of 18 years

(72 observations) for five categories of residential build-

ings in New Zealand. It is usual to separate the data into

two sections: in-sample data and out-of-sample data. The

in-sample data are used for model fitting and the out-of-

sample data aim to evaluate the forecasting performance of

the model.41 The data (72 observations) were split into two

parts: the training part for model fitting and the testing part

for evaluating forecasting performance by comparing fore-

casts with observations.42 There is no clear rule for this

dividing; in this study, about 72% of the data (2001: Q1–

2013: Q4) were used for model fitting and the remaining

28% (2014: Q1–2018: Q4) were used for out-of-sample

forecasts evaluation. The quarterly average building cost

for the five categories of residential building in New Zeal-

and from 2001: Q1 to 2018: Q4 are depicted in Figure 1.

Exponential smoothing model

Exponential smoothing is one of the most effective fore-

casting methods when a time series has a trend that has

changed over time, for example, since the 1950s.43 It

unequally weights the observed time series values. More

recently observed values are weighted more heavily than

Zhao et al. 3



more remote observations. The weights for the observed

time series values decrease exponentially as one moves

further into the remote. A smoothing constant can deter-

mine the rate at which the weights of older observed values

decrease. Exponential smoothing techniques include sim-

ple exponential smoothing, linear trend corrected exponen-

tial smoothing, Holt–Winters methods, and damped trend

exponential smoothing.43

According to Hyndman et al.,44 exponential smoothing

models have been widely used in many research fields and

industry practices due to their relative simplicity and good

overall forecasting performance as well as considering

trends, seasonality, and other features of the data. A large

number of existing research and studies also indicated their

extensive industrial applications.45,46 In this study, Holt–

Winters exponential smoothing method was adopted.

Holt–Winters method. Holt–Winters method can be applied

to time series data displaying trend and seasonality; it has

level and trend smoothing parameters (a and b) in addition

to a seasonal parameter (g). Although there is no strong

evidence for seasonality in the time series of the residential

building costs in New Zealand, Holt–Winters method is

used to evaluate whether the involvement of a seasonal

parameter can improve the model. Holt–Winters methods

are designed for time series that exhibit linear trend and

seasonal variation, which include additive Holt–Winters

method and multiplicative Holt–Winters methods.43 An

advantage of these methods is that they can model data

seasonality directly instead of stationary transforming for

the data. If a time series has a linear trend and additive

seasonal pattern, the additive Holt–Winters method is

appropriate. Then the time series can be described in equa-

tion (1)

Y t ¼ ðb0 þ b1tÞ þ St þ Et ð1Þ

where b1 is growth rate, St is a seasonal pattern, and Et is

error term.

For such time series, the mean, the growth rate, and the

seasonal variation may be changing over time. A state-

space model for these changing components can be found

in equations (2) to (5)

lt ¼ lt�1 þ bt�1 þ a½Y t � ðlt�1 þ bt�1 þ St�LÞ� ð2Þ

bt ¼ bt�1 þ bt�1 þ ag½Y t � ðlt�1 þ bt�1 þ St�LÞ� ð3Þ

St ¼ St�L þ ð1� aÞd½Y t � ðlt�1 þ bt�1 þ St�LÞ� ð4Þ

Ŷ t ¼ lt�1 þ bt�1 þ St�L ð5Þ

To begin the estimation, the initial values for level,

growth rate, and seasonal variation should be estimated.

Hence, first, a least squares regression model should be

generated based on available data. The regression model

can be expressed in equation (6). The initial values l0, b0

were also obtained from the model

Ŷ t ¼ l0 þ b0t ð6Þ

Obtain estimated values for each time period based on

the above regression model. The initial seasonal factor in

each of L seasons can be calculated in equation (7)

SLi ¼
ðyi � ŷiÞ þ ðyiþL � ŷiþLÞ þ ðyiþ2L � ŷiþ2LÞ þ � � � þ ðyiþnL � ŷiþnLÞ

L
ð7Þ

Figure 1. Building cost time series for five categories of residential building in New Zealand.
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where SLi are seasonal factors, L is the number of sea-

sons in a year, and i is the number of time periods in

each season.

After finding the values for the seasonal factors,

the state-space models are employed to obtain

model parameters that minimize the sum of

the squared errors. Future values of the time

series are predicted by the state-space model in

equation (5).

Multiplicative Holt–Winters method. If a time series has a

linear trend with multiplicative seasonal variations, the

multiplicative Holt–Winters is appropriate to be used. The

state-space models for this method can be described in

equations (8) to (11)

lt ¼ lt�1 þ bt�1 þ a
½Y t � ðlt�1 þ bt�1ÞSt�L�

St�L

ð8Þ

bt ¼ bt�1 þ ag
½Y t � ðlt�1 þ bt�1ÞSt�L�

St�L

ð9Þ

St ¼ St�L þ ð1� aÞd ½Y t � ðlt�1 þ bt�1ÞSt�L�
lt

ð10Þ

Y t ¼ ðlt�1 þ bt�1ÞSt�L ð11Þ

And the seasonal factors can be computed in the

following equation (12)

SLi ¼
ðyi=ŷiÞ þ ðyiþL=ŷiþLÞ þ ðyiþ2L=ŷiþ2LÞ þ � � � þ ðyiþnL=ŷiþnLÞ

L
ð12Þ

ARIMA model

There are four steps to select an appropriate model for the

time series data in the Box–Jenkins approach.47 The devel-

opment process of an ARIMA model is shown in Figure 2.

ARIMA models are flexible and adaptive since they can

forecast data values of a time series by a linear combination

of its past values, past errors (in terms of univariate analysis),

and past and present values of other time series (in terms of

multivariate analysis). Besides, in univariate time series

analysis, the development process of ARIMA model pro-

vides a comprehensive set of tools for model identification,

parameters estimation, diagnosis checking, and forecasting.

Taking into account the seasonality of the time series, a

seasonal ARIMA model denoted as ARIMA(p, d, q)(P, D,

Q)L is introduced, where P represents seasonal AR orders, D

indicates seasonal differencing orders, Q represents seasonal

MA orders, and L indicates the number of seasons.

Figure 2. ARIMA model development process. ARIMA: autoregressive integrated moving average.
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Seasonality implies that a pattern repeats itself over a

fixed time interval.48 In this study, the quarterly data pres-

ent a seasonal period of four quarters. The autocorrelation

function (ACF) and partial autocorrelation function

(PACF) were employed to determine the stationarity in the

data set. The seasonal difference was used to transform

the nonstationary seasonal data into stationary by taking

the difference between the current observation and the cor-

responding observation from the previous year. A seasonal

ARIMA model can be shown in equation (13)

:pðBÞϕ PðBLÞrD
Lrdyt ¼ dþ yqðBÞWQðBLÞat ð13Þ

where

:pðBÞ ¼ ð1�:1B�:2B2 � � � � �:pBpÞ ð14Þ

ϕ PðBLÞ ¼ ð1� ϕ 1;LBL � ϕ 2;LB2L � � � � � ϕ P;LBPLÞ ð15Þ

rD
Lrdyt ¼ ð1� BLÞDð1� BÞdyt ð16Þ

yqðBÞ ¼ ð1� y1B� y2B2 � � � � � yqBqÞ ð17Þ

WQðBLÞ ¼ ð1� W1;LBL � W2;LB2L � � � � � WQ;LBPLÞ ð18Þ

where B is backshift operator; L is the number of seasons in

a year (L ¼ 4 for quarterly data and L ¼ 12 for monthly

data); d is a constant term; at; at�1; � � � are random shocks;

:1; :2; � � � ; :p are nonseasonal AR parameters;

ϕ 1;L; ϕ 2;L; � � � ; ϕ P;L are seasonal AR parameters;

y1; y2; � � � ; yq are nonseasonal MA parameters; and

W1;L; W2;L; � � � ; WQ;L are seasonal MA parameters.

Stationary checking. Classical ARIMA models are usually

used to describe stationary time series. Thus, in order to

identify an appropriate ARIMA model, the stationary of the

times series should be determined at first. If the time series

is not stationary, the transformation of the time series to

stationary should be undertaken. A stationary time series

can be described as the statistical properties (e.g. the mean

and the variance) of it are essentially constant over time.43

The differences of the time series values are shown in

equation (16).

The parameters are usually estimated by the least square

method. The least square estimation method means that the

model parameters minimize the sum of the squared errors.

The sum of the squared errors can be computed by using

equation (19)

SSE ¼
Xn

t¼1

ðyt � ŷtÞ2 ð19Þ

where yt is the real value of the time series and ŷt is the

value estimated by the tentative model.

Diagnostic checking. The obtained models should be checked

for whether the ARIMA assumptions are satisfied. As a

more accurate test, the Ljung–Box test is usually under-

taken to examine whether the autocorrelation of the resi-

duals are statistically different from an expected white

noise process. If the p value is greater than 0.05, indicating

no significant autocorrelation in residuals, in turn, the

model is adequate.49

Forecasting error measure. Error measures are widely used

for examining the accuracy of a forecasting model, which

have many forms, including root mean square error

(RMSE),50 mean squared error (MSE),51 and mean abso-

lute percentage error (MAPE).52 This study evaluated the

accuracy of the forecasts by MAPE between the actual and

predicted values of building cost. The lower the values are,

the better the forecasting performance of the proposed

model. Denote the real observations for the time series by

yi and the forecasting values for the same series by ŷi.

MAPE can be computed in equation (20)

MAPE ¼

Xn

i¼1

����
yi � ŷi

yi

����

n
� 100% ð20Þ

Models for cost series

Holt–Winters models for building cost

Both additive Holt–Winters and multiplicative Holt–Win-

ters models were applied to the five cost series. Following

the methods outlined in the third section, the model para-

meters were estimated. The results of the exponential

smoothing models for the cost of the five categories of the

residential building are displayed in Table 1. The p value of

the model parameters is less than 0.05, indicating that the

parameters are significant and that they can remain in the

model. Moreover, the model fit R2 and error measures

including RMSE, MAPE, and mean absolute error (MAE)

were also generated. In addition, the model parsimony

measure Bayesian information criterion (BIC) was also

obtained. The results are shown in Table 3. As the results

show, the values of BIC for the exponential smoothing

models are similar, which indicate the models are parsimo-

nious. The error measures indicate Holt–Winters models

can fit the cost series fairly well.

Seasonal ARIMA models

Model selection. Box et al.20 suggested that to properly

implement the ARIMA method a time series with at least

30 observations is required. In this study, for each cost

series, a total of 52 observations from 2001: Q1 to 2013:

Q4 were used to obtain the proposed models. For the sta-

tionary analysis of the five cost series, ACF and PACF

were used; results are shown in Figure 3. On investigating

the graphs of ACF and PACF for the five building cost

series, it can be observed that the ACFs decay very slowly

at both nonseasonal and seasonal lags. For each cost series,

the appropriate number of differencing should be deter-

mined. Hence, it is reasonable to transform to a stationary

6 International Journal of Engineering Business Management



series by taking four quarter differencing of data to remove

seasonality and regular differencing to remove trends for

the four cost series, except the cost series for the two-story

house in New Zealand. The cost series has only made a

regular differencing to transform the data into stationary.

After the differencing, the results of ACFs and PACFs for

the five cost series are shown in Figure 4. The seasonal

ARIMA models for the five cost series are shown in

Table 2.

Based on the approach provided by Box et al.,47 the

model parameters, model fit, and error measures were esti-

mated for the five cost series. In order to select proper sea-

sonal ARIMA models, different models with various

combinations of regular orders (p and q) and seasonal orders

(P and Q) were evaluated. The model parameters of the five

cost series are presented in Table 2. Furthermore, the model

fit and error measures of the ARIMA models are provided in

Table 3. As seen from Table 3, the values of R2 indicate the

ARIMA models fit the cost data fairly well.

Model validation. The Ljung–Box Q test was employed to

examine the autocorrelation of model residuals. If the p

value is greater than the value of 0.05, the null hypothesis

that the data are not correlated should be accepted.20 To

examine the normality of the residuals, the analysis applied

the Shapiro–Wilk test. If the p value of the test is greater

than the value of 0.05, it indicates that there is no evidence

to reject the null hypothesis that the data follow a normal

distribution.53 As seen from Table 3, the residuals of all the

models pass the tests, indicating the proposed models are

adequate.

Comparisons of the models in the out-of-
sample period

Although a model can fit the data fairly well, it does not

indicate that the model can produce better forecasts.54 The

forecasting accuracy of a model is affected by many fac-

tors, such as the number of observations in the time series,

the number of forecast time origins examined, and the

number of forecast lead times regarded.55 The forecasting

performance of the univariate methods was evaluated by

MAPE statistics. The AR1 results presented in Table 4

suggest that the exponential smoothing models generate

better results in comparison to seasonal ARIMA models.

In particular, the additive Holt–Winters model produces

Table 1. Estimated parameter values with significant test for exponential smoothing models.

Series Exponential smoothing model Parameter Estimate SE p Value

AR1 ES (AHW) a 0.370 0.116 0.002
b 0.634 0.287 0.032**
g 0 0.112 0.993

ES (MHW) a 0.379 0.112 0.001**
b 0.537 0.251 0.037**
g 0.528 0.171 0.003**

AR2 ES (AHW) a 0.899 0.150 ***
b 0 0.047 1
g 0 0.696 1

ES (MHW) a 0.846 0.145 ***
b 0.001 0.045 0.983
g 0.028 0.298 0.925

AR3 ES (AHW) a 0.683 0.135 ***
b 0.218 0.113 0.059*
g 0.001 0.171 0.995

ES (MHW) a 0.578 0.128 ***
b 0.269 0.128 0.042**
g 0.020 0.091 0.830

AR4 ES (AHW) a 0.200 0.079 0.014**
b 1.000 0.467 0.037**
g 0 0.091 1

ES (MHW) a 0.198 0.083 0.021**
b 1.000 0.503 0.052*
g 0.040 0.062 0.524

AR5 ES (AHW) a 0.469 0.118 ***
b 0.441 0.194 0.027**
g 0.014 0.096 0.883

ES (MHW) a 0.361 0.096 ***
b 0.511 0.225 0.028**
g 0.479 0.151 0.003**

AHW: additive Holt–Winters; MHW: multiplicative Holt–Winters.
***p < 0.01; **p < 0.05; *p < 0.1.
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better forecasts based on MAPE measurement. When ana-

lyzing the AR2 results, the additive Holt–Winters model

outperforms other models based on MAPE measurement.

The results regarding AR3, the ARIMA model has the best

forecasting performance among the proposed four models.

For AR4 suggest that ARIMA(0,1,1)(0,1,0)4 is the best

forecasting model. For AR5, ARIMA(0,1,0)(0,1,1)4 pro-

duced the best forecasts among the proposed models.

Figure 3. Sample ACF (left panels) and sample PACF (right panels). ACF: autocorrelation function; PACF: partial autocorrelation
function.
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Therefore, these results suggest that the ARIMA approach

is better than the exponential smoothing method for build-

ing cost of the town house, apartments, and retirement

village in New Zealand. The results show that seasonal

ARIMA models perform better for predicting building cost

for town house, apartments, and retirement village in New

Zealand, while exponential smooth models are superior

in cost forecasting for both the one-story house and the

Figure 4. ACFs (left panels) and PACFs (right panels) of the differenced data series. ACF: autocorrelation function; PACF: partial
autocorrelation function.
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two-story house in New Zealand. This outcome may be due

to the relative stability of the cost series for the one-story

house and the two-story house.

From the above results, it can be seen that both the

exponential smoothing method and the ARIMA approach

can produce good forecasts for residential building cost in

New Zealand. Which method is better, depends on the

characteristics of the data. For example, the ARIMA

approach can produce better forecasts for building costs

of town house, apartment, and retirement village, which

indicates that these costs have a random walk characteris-

tic. The MAPE of the proposed models for all the five cost

series are presented in Table 4. Bold type is utilized to

identify the lowest values of MAPE for the proposed mod-

els of each cost series. As the results show, no single fore-

casting method is better for all data series. This confirms

the generally acceptable idea that no individual forecasting

approach can describe all the situations.56

Results and discussion

During 2001: Q1–2018: Q4, residential building cost has

had an increasing trend. Exponential smoothing approach

and ARIMA technique are both effective time series

Table 2. Estimated parameter values for seasonal ARIMA models.

Series Model AR MA SAR SMA

AR1 ARIMA(0,1,3)(0,1,1)L MA(l) ¼ 0.34 l
MA(2) ¼ �0.l0 l
MA(3) ¼ �0.295

SMA(l) ¼ 0.447

ARIMA(0,1,1)(0,1,1)L MA(l) ¼ 0.3l7 SMA(l) ¼ 0.290
AR2 ARIMA(0,1,0)(2,0,0)L SAR(1) ¼ 0.038

SAR(2) ¼ 0.348
ARIMA(0,1,0)(0,0,2)L SMA(l) ¼ �0.005

SMA(2) ¼ �0.368
AR3 ARIMA(0,1,0)(1,0,0)L SAR(l) ¼ 0.562

ARIMA(0,1,0)(0,1,0)L

AR4 ARIMA(1,1,0)(0,1,0)L AR(l) ¼ �0.4l9
ARIMA(0,1,1)(0,1,0)L MA(l) ¼ 0.404

AR5 ARIMA(0,1,0)(0,1,1)L SMA(l) ¼ 0.554
ARIMA(0,1,0)(0,1,0)L

ARIMA: autoregressive integrated moving average; AR: autoregressive; MA: moving average; SAR: seasonal autoregressive; SMA: seasonal moving
average.

Table 3. Model fit statistics and residual statistics.

Series Model R2 RMSE MAPE MAE BIC Ljung–Box Shapiro–Wilk

AR1 ARIMA(0,1,3)(0,1,1)L 0.959 37.234 1.716 25.866 7.644 0.873 0.461
ARIMA(0,1,1)(0,1,1)L 0.953 38.665 1.856 27.895 7.556 0.519 0.158
ES (AHW) 0.976 33.205 1.655 24.52 7.233 0.238 0.203
ES (MHW) 0.974 34.311 1.581 23.722 7.299 0.805 0.102

AR2 ARIMA(0,1,0)(2,0,0)L 0.942 63.899 2.221 38.057 8.546 0.877 0.184
ARIMA(0,1,0)(0,0,2)L 0.942 63.865 2.256 38.766 8.545 0.898 0.136
ES (AHW) 0.947 62.506 2.066 35.292 8.498 0.891 0.153
ES (MHW) 0.943 64.989 2.159 37.134 8.576 0.904 0.133

AR3 ARIMA(0,1,0)(0,1,0)L 0.944 54.277 1.913 35.836 8.07 0.855 0.153
ARIMA(0,1,0)(4,1,0)L 0.95 53.423 1.823 33.945 8.366 0.956 0.122
ES (AHW) 0.964 52.405 1.953 36.27 8.146 0.13 0.103
ES (MHW) 0.959 55.473 2.054 38.568 8.26 0.106 0.173

AR4 ARIMA(1,1,0)(0,1,0)L 0.981 51.468 1.53 37.383 8.046 0.657 0.391
ARIMA(0,1,1)(0,1,0)L 0.981 51.889 1.505 36.868 8.062 0.628 0.24
ES (AHW) 0.989 45.577 1.32 31.825 7.867 0.593 0.127
ES (MHW) 0.988 47.836 1.385 34.24 7.964 0.333 0.104

AR5 ARIMA(0,1,0)(0,1,1)L 0.986 40.162 1.325 27.306 7.55 0.489 0.127
ARIMA(0,1,0)(0,1,0)L 0.983 43.299 1.52 31.335 7.618 0.141 0.103
ES (AHW) 0.991 36.083 1.312 27.824 7.4 0.477 0.393
ES (MHW) 0.989 39.374 1.356 28.715 7.574 0.415 0.647

ARIMA: autoregressive integrated moving average; RMSE: root mean square error; MAPE: mean absolute percentage error; AHW: additive Holt–
Winters; MHW: multiplicative Holt–Winters.
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forecasting methods as they both can fairly well describe

trend movement in the time series, but they have both

strengths and weaknesses. For example, the ARIMA

approach is more readily expanded to model interventions,

outliers, variations, and variance changes in time series; but

it is a relatively sophisticated technique. Due to different

data patterns and limited sample size, it is unjust to attempt

to determine whether one time series forecasting method is

better than the other. Therefore, either the exponential

smoothing method or the ARIMA approach should be

given a chance to demonstrate its maximum potential in

any empirical case study.

While exponential smoothing method is based on

describing the trend and seasonality in the time series,

ARIMA approach is focused on a description of the auto-

correlation in the data. There is an idea that ARIMA

approach is more advanced than exponential smoothing

method since the former has fewer parameters to be esti-

mated. Although ARIMA models are more general, expo-

nential smoothing models can provide framework that is

sufficient to capture the dynamics in the data series.

ARIMA models are excellent for short-term forecasting.

When they are used for long-term forecasting, the models

need to be remodeled based on updated data incorporated

into the model training process. exponential smoothing

method can be very competitive by automatically incorpor-

ating updated information into the model, and then produc-

ing better forecasts for long-term forecasting. An

advantage of ARIMA technique is that only several

parameters need to be estimated for generating good fore-

casting results. However, extreme values in the data set are

difficult to be estimated by ARIMA models due to the

univariate nature of the model and the lack of a specific

ability to simulate unexpected events.

In this study, exponential smoothing method is an effec-

tive tool for forecasting future values of building cost for

one-story house and two-story house, while seasonal

ARIMA models can produce more accurate forecasts for

the building cost series of the town house, apartment, and

retirement village in New Zealand. In practice, the fluctua-

tions in building costs for the five categories of residential

building in New Zealand differ. For example, building cost

series for the one-story house and two-story house show a

very consistent repetitive pattern, while the current obser-

vations of the cost series for town house, apartment, and

retirement village in New Zealand would be affected by the

previous observations.

Conclusions

In this study, quarterly building costs data (over an 18-year

range from 2001: Q1 to 2018: Q4) for five categories of

residential building (one-story house, two-story house,

town house, apartment, and retirement village building)

in New Zealand were analyzed and the major characteris-

tics of these data were explored. It was found that time

series data of residential building costs are nonstationary

and autocorrelated and do not display a very strong seaso-

nal pattern. Based on the identified characteristics, two

time series forecasting techniques, exponential smoothing

method and ARIMA approach, were adopted to take into

account variations of residential building costs in predict-

ing their future trends. It was concluded that both methods

can produce reliable forecasts. The analysis of model resi-

duals explored that the underlying modeling assumptions

hold true. For a given data set, it is almost impossible to

know in advance which forecasting method will perform

better than others. This is supported by a generally accepted

principle that no forecasting approach is better for all situa-

tions under all circumstances. From this point of view, the

empirical findings of this study suggest that exponential

smoothing models can be confidently used to forecast

building cost for one-story and two-story houses in New

Zealand, while seasonal ARIMA models can produce more

accurate cost forecasts for town house, apartment, and

retirement village building in New Zealand.

The findings of this study can help construction profes-

sionals prepare more accurate cost estimates, improve proj-

ect cost management, and reduce the risk of cost variations

in residential building projects. Residential projects of all

types can benefit from the proposed models that improve

the accuracy of cost estimates. The study also benefits

stakeholders and organizations by improving their under-

standing of cost management. Moreover, the results also

play an important role in guiding policy makers to

Table 4. Forecast values for building cost of one-story house in
New Zealand.

Series Model MAPE

AR1 ARIMA(0,1,3)(0,1,1)L 1.813
ARIMA(0,1,1)(0,1,1)L 1.651
ES (AHW) 1.260
ES (MHW) 1.556

AR2 ARIMA(0,1,0)(2,0,0)L 0.922
ARIMA(0,1,0)(0,0,2)L 0.794
ES (AHW) 0.395
ES (MHW) 0.650

AR3 ARIMA(0,1,0)(0,1,0)L 1.020
ARIMA(0,1,0)(4,1,0)L 2.318
ES (AHW) 1.211
ES (MHW) 1.130

AR4 ARIMA(1,1,0)(0,1,0)L 0.501
ARIMA(0,1,1)(0,1,0)L 0.446
ES (AHW) 0.748
ES (MHW) 0.809

AR5 ARIMA(0,1,0)(0,1,1)L 0.853
ARIMA(0,1,0)(0,1,0)L 1.213
ES (AHW) 0.917
ES (MHW) 0.949

ARIMA: autoregressive integrated moving average; MAPE: mean absolute
percentage error; AHW: additive Holt–Winters; MHW: multiplicative
Holt–Winters. The bold-faced values indicate the minimal MAPE of the
four models for each cost series.
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formulate strategic planning by providing an effective

monitoring indicator of construction industry. Addition-

ally, the forecasting model provides an initial foundation

for cost index estimates in New Zealand, which may pro-

vide a basis for researchers to forecast other cost indices in

New Zealand.

It is important to emphasize that residential building costs

in New Zealand are difficult to forecast due to many factors

which impose pressures on them. Future work may consist of

an analysis of the predictors affecting building cost specifi-

cally in New Zealand, the application of these forecasting

techniques to other building cost such as commercial build-

ings and industrial buildings, and an analysis of the evolution

of building cost by economic sectors. To investigate whether

combined forecasting methods and multivariate methods can

improve accuracy of cost forecasting. Although this study

used the QV’s residential building cost index, the proposed

methods can be used for similar data sets in other cities as

well as globally. Moreover, although the model can provide

accurate cost forecasts, specific features of a construction

project should be thoroughly examined in order to generate

accurate cost estimates.
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