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Summary 

Sustainable yield increase is desperately needed for enhancing global food 

security, in particular, in Sub-Saharan Africa. There population growth and 

resulting land degradation accompany with extreme weather events. As a 

consequence, famines frequently occur. For planning result-oriented agricultural 

research for development (R4D) like in the Trans-Sec project (www.trans-sec.org), 

in which this thesis was embedded, local environmental, as well as social realities 

must be taken into account prior to any cropping experiment. Only this way, cost-

efficient and adapted solutions for local subsistence farmers, but also conclusive 

outcomes for researchers, can be obtained. For this purpose, methods that work 

quick and cost-efficient are a prerequisite. 

In this respect, gamma-ray spectrometry as rapid soil survey method is reviewed 

in the first part of this thesis. Soil or geological exploration are easily 

accomplishable, in either airborne (with helicopters, airplanes or drones) or 

proximal (stationary or on-the-go) surveys. Gamma decays of the naturally 

occurring isotopes 40-potassium (40K), 238-uranium (238U) and 232-thorium (232Th) 

that appear in sufficient amounts and decay energies for field measurements are 

counted per time. The counts are then transferred to the respective element 

contents. Water and soil organic matter attenuate gamma signals, on one hand 

hampering signal interpretation, on the other hand indirectly enabling soil water 

content and peat mappings. Gamma-ray signatures of soils depend on (1) mineral 

composition of the bedrock, as well as (2) weathering intensity and related soil 

forming processes, that, in turn, influence the environmental fate of 40K, 238U and 
232Th. Hence, due to soil formation heterogeneity at the landscape scale, resulting 

gamma signatures are locally specific and make soils readily distinguishable.  

In two villages in central Tanzania, participatory soil mapping in combination with 

gamma-ray spectrometry served as rapid and reliable approach to map local soils 

for later cropping experiments. Local farmers indicated major soil types on satellite 

images of the village area, which were the basis for further mapping steps. 

Fingerprint gamma-ray signatures of reference soil profiles were collected. 

Subsequent gamma-ray surveys on transect walks accelerated soil unit delineation 

for the final soil map. Challenges were misunderstandings related to language 

issues, variable soil knowledge of individual farmers and erosion leading to 

staggered soil profiles and non-distinctive signatures in some places. The 

combination of indigenous knowledge and gamma-ray spectrometry, nevertheless, 

led to a quick overview of the study area and made laboratory soil analyses largely 

redundant. 
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The gained gamma-ray signal information were further statistically evaluated. For 

this purpose, distinction of major local soil types via K/Th ratios were graphically 

and statistically tested. The results showed that gamma-ray spectrometry is a 

sound method to distinguish certain local clay illuviation soil types by their K/Th 

ratios. 

The last part of the thesis covers the Trans-SEC approach of testing innovations 

for sustainable agricultural yield increase. Pearl millet (Pennisetum glaucum (L.) 

R.Br.) as the typical staple food in the study region was used as example crop. The 

process was scientist-led but local farmers selected the innovations that they 

considered adequate to their needs. Tied ridging for enhancing the water storage 

and placed fertilizer for increasing fertilizer efficiency was offered for their choice. 

Transferability of results from on-station experiments and demonstration plots in 

the village to farmers’ plots and trans-disciplinary issues are discussed. The 

number of factors that influence the result, as well as data insecurity increased with 

every level of spatial aggregation (on-station, demonstration plot and on-farm plots 

in the village). Soil type, position of the plot in the landscape (lateral water flow, 

distance to homesteads and, hence, fertility status) were the major influencing 

factors. In particular, the data insecurity related to on-farm trials due to low control 

intensity suggests to only conduct such experiments if large numbers of replicates 

(large N-trials) are feasible in future approaches. 

In conlusion, the thesis shows, that local knowledge combined with modern 

science is beneficial for agricultural R4D projects. Shortcomings within the 

transdisciplinary experimental approaches are pointed out. In particular, with 

respect to knowledge gained from the linkage of local experience and scientific 

approaches, there is still high potential. For this purpose, social and applied natural 

sciences should both strive for more interdisciplinary collaboration. 
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Zusammenfassung 

Eine nachhaltige Steigerung der Erträge zur Verbesserung der globalen 

Ernährungssicherung ist dringend notwendig, insbesondere in Subsahara-Afrika. 

Dort gehen starkes Bevölkerungswachstum und daraus resultierende 

Bodendegradation mit extremen Wetterereignissen einher. Als Folge treten 

gehäuft Hungersnöte auf. Die Planung ergebnisorientierter landwirtschaftlicher 

Forschungsprojekte mit Entwicklungsansätzen wie beim Trans-SEC-Projekt 

(www.trans-sec.org), in das diese Arbeit eingebunden war, erfordert die 

Berücksichtigung lokaler Umweltbedingungen, aber auch soziokultureller 

Gegebenheiten vor dem Beginn jeglicher Feldversuche. Erst so ist man in der 

Lage, kostengünstige, adaptierte Lösungen für ansässige Subsistenzbauern, aber 

auch aussagefähige Ergebnisse für Forscher zu erzielen. Kostensparende 

wissenschaftliche Methoden, die zu schnellen und verlässlichen Ergebnissen 

führen, sind hierzu die Voraussetzung. 

Eine solche Methode zur raschen Bodenkartierung, die Gammaspektrometrie, wird 

im ersten Teil dieser Arbeit vorgestellt. Anwendbarkeit und Grenzen für die 

bodenkundliche Anwendung werden diskutiert. Bodenkundliche oder geologische 

Erkundungen sind mit dieser Methode entweder luftgestützt (mit Helikoptern, 

Flugzeugen oder Drohnen) oder bodengestützt (stationär oder in Bewegung) in 

kurzer Zeit durchführbar. Gammazerfälle der natürlich vorkommenden Isotope 40-

Kalium, 232-Thorium und 238-Uran (40K, 238U und 232Th), die mit ausreichender 

Zerfallsenergie und Menge zur Messung im Feld vorkommen, werden pro 

Zeiteinheit erfasst. Die spezifischen Zählraten werden dann in Elementgehalte 

umgerechnet. Wasser und organische Bodensubstanz schwächen das Signal, was 

einerseits Signalinterpretationen erschwert, andererseits indirekt Wassergehalts- 

und Torfkartierungen ermöglicht. Die Gammasignaturen von Böden hängen von 

(1) der mineralischen Zusammensetzung des Ausgangsgesteins, sowie (2) der 

Verwitterungsintensität und den damit verknüpften bodenbildenden Prozessen ab, 

die wiederum das Umweltverhalten von 40K, 238U und 232Th beeinflussen. Somit 

sind Gammasignaturen wegen der heterogenen Bodenbildung für lokale Umwelten 

spezifisch und machen Böden direkt unterscheidbar.  

Zur Bodenkartierung zweier Dörfer in Zentraltansania bewährte sich die 

Kombination aus partizipativer Bodenkartierung und Gammaspektrometrie. 

Ansässige Landwirte zeichneten die lokal vorkommenden Hauptbodengruppen als 

Basis für weitere Kartierungsschritte auf hochaufgelösten Satellitenbildern der 

Gegend ein. Die spezifischen Gammasignaturen von Referenzbodenprofilen 

wurden gemessen. Die Abgrenzung der Bodeneinheiten für die finale Bodenkarte 

erfolgte durch Transektkartierung unterstützt durch gammaspektrometrische 
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Messungen. Unterschiedliche Kenntnisse der ansässigen Landwirte zu den 

lokalen Böden, sprachliche Unklarheiten, sowie Bodenüberlagerungen aufgrund 

von Erosion und resultierende schlechter unterscheidbare Bodensignaturen 

erschwerten den Kartierungsprozess. Der Ansatz führte dennoch zu einem 

raschen Überblick über das Untersuchungsgebiet und machte aufwändige 

Laboranalysen der Bodenproben größtenteils überflüssig. 

Die gammaspektrometrisch gemessenen K/Th-Verhältnisse der lokal 

vorkommenden Hauptbodengruppen wurden grafisch und statistisch näher 

untersucht. Die Ergebnisse zeigten eine gute Unterscheidbarkeit einiger lokal 

vorkommender Tonverlagerungsböden aufgrund der herangezogenen K/Th-

Verhältnisse. 

Der letzte Teil der Arbeit behandelt den Trans-SEC Projektansatz zur nachhaltigen 

Ertragssteigerung. Perlhirse (Pennisetum glaucum (L.) R.Br.) wurde als typisches 

Grundnahrungsmittel im Untersuchungsgebiet für diese Untersuchungen genutzt. 

Wissenschaftler leiteten den Prozess, die ansässigen Landwirte wählten jedoch 

die zu testenden Innovationen bzgl. des Feldmanagements, angepasst an ihre 

Bedürfnisse aus. Als Optionen wurden „tied ridging“ als Maßnahme zur Erhöhung 

der Wasserspeicherung und „placed fertilizer“ zur Erhöhung der Düngereffizienz 

angeboten. Die Übertragbarkeit der Versuchsergebnisse einer Versuchsstation mit 

kontrollierten Bedingungen, auf Demonstrationsflächen im Dorf und 

Versuchsflächen „on-farm“ unter Aufsicht der Landwirte wird diskutiert. Es zeigte 

sich, dass die Anzahl der Faktoren, die einen Einfluss auf das Versuchsergebnis 

haben und die Datenunsicherheit mit jeder räumlichen Aggregierungsebene 

(Versuchsstation, Demonstrationsfelder und on-farm Felder im Dorf) ansteigen. 

Als wichtige Faktoren wurden Bodentyp und Position des Versuchsfeldes in der 

Landschaft (Zuflusswasser, Distanz zu Siedlungen und damit Trophie) identifiziert. 

Insbesondere die Datenunsicherheit on-farm aufgrund niedriger Kontrollintensität 

legt nahe, solche Versuche nur durchzuführen wenn große 

Wiederholungsanzahlen möglich sind (large-N-trials). 

Insgesamt zeigt die vorliegende Arbeit, dass die Kombination aus lokalem Wissen 

und moderner Forschung von Vorteil für landwirtschaftliche Entwicklungsprojekte 

ist. Schwächen innerhalb der transdisziplinären Versuchsansätze werden 

aufgezeigt. Gerade hinsichtlich des Wissensgewinns durch Verknüpfung lokalen 

Wissens mit wissenschaftlichen Ansätzen kann potenziell noch viel getan werden. 

Hierzu sollte - von beiden Seiten - mehr interdisziplinäre Zusammenarbeit der 

Sozial- und angewandten Naturwissenschaften angestrebt werden. 
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1. General Introduction 

1.1. Preamble 

Land degradation is incrementally threatening ecosystems. Sub-Saharan Africa’s 

(SSA) subsistence farmers particularly struggle with soil degradation initiated by 

erosion and nutrient deficiency. Food security, especially in SSA, is directly linked 

to the agricultural productivity of soils. Climate constraints are further hampering 

yield stability. To stop further degradation, actions for sustainably enhancing plant 

performance and yield increase with respect to site amelioration are urgently 

needed. Thereby, approaches that adapt to farmers’ reality and possibilities are 

indispensable.  

Soil properties variability related to soil type and landscape position is complicating 

the identification of adequate approaches. The World Reference Base for Soil 

Resources (WRB; IUSS Working Group, 2015), which serves as international soil 

classification system, already distinguishes 32 Reference Soil Groups according to 

morphogenetic soil formation. Further distinctions relate to over 120 additional 

qualifiers. Farmers in the whole world, as well, know very well about the diversity 

of soils, especially according to fertility and plant performance (Barrera-Bassols 

and Zinck, 2003).  

In consequence, agricultural research for development (R4D) must address 

specific site conditions, i.e. soil properties, adapted to socio-cultural circumstances. 

Gamma-ray spectrometry as rapid soil mapping method together with participatory 

involvement of local farmers revealed an improved approach for soil science in 

R4D.  

1.2. Thesis embedment in the project Trans-SEC 

The project Trans-SEC (Innovating strategies to safeguard food security using 

technology and knowledge transfer: a people-centred approach), in which this 

thesis was embedded, aimed at safeguarding food security by means of scientific 

and participatory approaches in two regions in rural Tanzania, i.e. the semi-arid 

Dodoma region and the sub-humid Morogoro region The project was funded by the 

initiative "Securing the Global Food Supply – GlobE" in the framework program 

"National Research Strategy BioEconomy 2030". The project approach was 

covering the whole food value chain, from primary production to consumption, and 

the involvement of local people for participatory research.  
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Figure 1-1 Study area (QGIS Lyon, Version 2.12; own photo) 

Addressed food value chain sectors were natural resources, food production, 

processing, waste management, markets and consumption. The project followed 

an action research approach involving the key stakeholders, i.e. farmers and 

farmers’ organizations, governmental and non-governmental organizations, 

research institutes, and dedicated researchers. Seven German research 

institutesa, five Tanzanian institutionsb and two CGIAR (Consultative Group on 

International Agricultural Research) centersc were involved.  

This thesis deals with the sector of natural resources in the semi-arid region (Figure 

1-1), in particular soils related to crop production. Data collection and field work 

were carried out in the dry seasons from 2013 to 2016.  
 

1.3. The history of land degradation and its prevention attempts in central 

Tanzania 

Land degradation is characterized by loss of soil-related ecosystem services. 

Origins of degrading soils are mainly anthropogenic, either indirectly due to climate 

change or with direct impact from overpopulation.  

a Leibniz-Centre for Agricultural Landscape Research (ZALF), University of Hohenheim, Leibniz 
University Hannover, Humboldt University Berlin, German Development Institute (DIE), Potsdam 
Institute for Climate Impact Research (PIK) and German Institute for Tropical and Subtropical 
Agriculture (DITSL) 
b Sokoine University of Agriculture (SUA), Agricultural Research Institutes (ARI), Tanzania 
Federation of Cooperatives (TFC), Agricultural Council of Tanzania (ACT) and a network of small-
scale farmers’ groups (MVIWATA)  
c International Food Policy Research Institute (IFPRI; USA) and the International Centre for 
Research in Agroforestry (ICRAF; Kenya) 
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First noted erosion measurements were carried out in 1933 in central Tanzania 

(Staples, 1934). Already those times, erosion cause was identified to be loss of 

vegetation cover by overgrazing which even got worse, when herd density per area 

increased along with population growth. Successively, decreasing arable land area 

along with decreasing yields due to land degradation and less water retention 

capacity of soils arose.  

During the colonial era during the 1940s, soil conservation measures like ridging, 

contouring, gully control, rotational grazing and reforestation were undertaken to 

prevent erosion (Kalineza et al., 1999). Unfortunately, the conserving measures 

were used for punishing the disobedience against chiefs and tax evasion, leading 

to negative associations with land conservation. Colonialists often did not accept 

existing local erosion prevention systems and forced people to adapt to the 

“imported” ones. This mainly contributed to their abandonment after Tanzania’s 

independence in 1961 (Mbegu and Mlenge, 1984, in Eriksson et al. 2000). From 

then on, soil conservation and erosion prevention was seen as “nasty colonial 

habit” and was no longer promoted by politicians until the 1970s (Holtland, 2007).  

Free grazing of cattle was regarded as a major reason for soil degradation. During 

the Hifadhi Ardhi Dodoma (HADO) program near Mvumi Mission, where this study 

was located, in 1986 (Lamboll, 2000), people were forced to evict their herds from 

village terrains. Holtland (2007) studied the background of HADO. He reported 

more than 100.000 cattle were banned from 2.000 km2 bearing over 100.000 

inhabitants. He described the HADO destocking as “traumatic experience” as the 

livelihood of the local people depended on livestock keeping. Loss of many cattle 

due to mismanagement and great distances between cattle and village area were 

throwing back farmers. Nevertheless, destocking resulted in regeneration of 

vegetation cover. HADO together with population pressure led to a higher share of 

cropping in the area.  

One solution for yield increase in agriculture that performed adequately in Asia and 

South America, the Green Revolution in the 1960s and 70s, bypassed Africa. The 

following aspects might account for its failure:   

- High yielding varieties, needing high fertilizer inputs and irrigation, are not 

adapted to the old, nutrient poor soils in most parts of Africa in contrast to rather 

fertile soils in e.g. Asia. 
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- Local farmers cannot afford the high inputs of mineral fertilizer, also due to 

the risk of losing everything related to droughts, weather events or pests, next to 

low accessibility of adequate fertilizer. 

- Soils in parts of Africa might not even respond to mineral fertilizing, e.g. due 

to high sand contents not being able to hold back nutrients. 

- Hybrid plants are not adapted to local circumstances and might react 

extremely sensitive. 

1.4. Actual situation of rural subsistence farmers in central Tanzania 

Despite shifting from herding to cropping, land degradation, nowadays, has 

remained enormous and is still going on. The pressure on natural resources is 

expected to further increase (FAO, 2009), especially in Africa, where, according to 

the United Nations (2017), 16% of the world’s population lives (1.2 billion). This 

number is expected to increase to over 50% until 2050.  

Still, overgrazing is a prominent issue. More people have more cattle – on the one 

hand for food, i.e. dairy products or meat, on the other hand as capital to safeguard 

their families in times of financial shortages. More animals need more fodder, the 

stocking rate gets too high for low-productive soils, and bare soil is the result 

making the land susceptible to wind and water erosion (Holtland, 2007). 

Besides, land clearing from deforestation occurs as more people require more 

food, and hence, expansion of agricultural land to feed the growing population is 

needed. Often the last forests to cut for adding cropland are located on steep 

slopes (Biamah, 2005). Erosion makes this “additional cropland” useless for 

agriculture within few years, if not even within months. Top soils including organic 

matter are either blown or washed away, fertility status of soils further decreases. 

As land resources run scarce, fallow periods of agricultural fields become shorter 

or are even omitted (Holtland, 2007) with the consequence of soil fertility decline 

(Osbahr and Allan, 2003). Input of organic matter and land regeneration drops out 

not only because of missing fallow, but also due to removing harvest residues, and 

hence, soil nutrient status as well as soil structure stability decreases. This, again, 

leads to increased erosion susceptibility (Blume et al., 2002). Decomposition rates 

of organic matter in the tropics and subtropics are accelerated by climatic 

conditions, further decreasing the soil organic matter stock. Consequently, cation 

exchange capacity declines, especially in sandy soils, and consequently, soil 

nutrients progressively leach.  
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Mineral fertilizer is expensive, especially in SSA. Crop failure due to droughts or 

crop pests is probable, and so is investment loss. In consequence, subsistence 

farmers cannot invest their rare financial capital in fertilizer. Next to un-affordability, 

fertilizer accessibility is bad due to inadequate market access and infrastructure in 

rural central Tanzania. 

1.5. Soil heterogeneity vs. blanket fertilizer recommendations 

For decades, fertilizer recommendations have been set as blanket and universal 

rates (Giller et al., 2011) for agro ecological zones, whole countries or vast areas 

with diverse soil conditions. These recommendations are disputable with regard to 

soil heterogeneity (IUSS working group, 2015) and related response to nutrient 

input (Blume et al., 2002). 

Next to natural soil heterogeneity due to parent material, relief, climate and 

vegetation, Zingore and Vanlauwe (2011) reported on soil heterogeneity between 

and even within plots in Sub-Saharan African (SSA) subsistence agriculture, due 

to diverse land use histories and distance from settlements. Fields near 

homesteads generally receive more nutrient inputs from household waste or 

manure than outlying field. This generates a gradient of soil fertility and yield 

potential with distance from homesteads (Zingore et al. 2007). 

Vanlauwe et al. (2016) highlighted non-responsive soils as special cases that often 

occur in high population density areas in SSA. Those soils develop from old soils, 

mismanagement practices like continuous cropping, or erosion. They are 

characterized by salinization, compaction or tremendous nutrient deficiencies, 

leading to missing crop response on fertilizer input. Their rehabilitation is elaborate. 

Best is to apply manure as organic matter input containing nutrients like nitrogen 

and phosphate (Zingore et al. 2007). For remote fields, however, this is nearly not 

feasible for local subsistence farmers. Up to 15% of Africa’s soils do not respond 

adequately to fertilizing due to degradation (Bossio, 2015; https://wle.cgiar.org) due 

to micro-nutrient deficiency, acid pH values or low organic matter content 

(Vanlauwe and Zingore, 2011). 

1.6. The linkage of research to development 

Agricultural R4D is defined by the European Initiative on Agricultural Research for 

Development (EIARD, 2008), as “a multi-dimensions research that addresses the 

agricultural development challenges of developing and emerging countries” and 
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“includes crop production and animal husbandry, agro-forestry, fisheries and 

aquaculture, agribusiness and related enterprises, animal and human health 

related issues, as well as the sustainable management of the natural sources on 

which farming depends and the socio-cultural and bio-diverse landscapes, food 

systems and ecologies in which it is embedded.”  

But how to combine science and development? Research in the development 

context must be based on local reality, knowledge and constraints. The sustainable 

improvement of agricultural productivity to make more efficient use of fragile natural 

resources is the focal point. Particularly, in subsistence agriculture, numerous 

individual factors are integrated in manifold combinations (Reinhardt et al., 2019). 

Control of factors or universality are absent. Reality on farms is highly complex 

and, hence, must be studied in detail to understand driving factors.  

For reliable and quick outcomes in agricultural R4D, modern scientific methods 

must be combined with existing knowledge. Giller et al. (2011) modeled a whole-

farm-approach with data from manifold countries of SSA resulting in tailored, “best 

fit” management options. They included internal and external drivers, used system 

analysis tools as well as experiments. Local knowledge from farmers together with 

agricultural education and knowledge of new technologies from extension workers 

could already result in efficient site-adapted farm management. Multilateral (local 

farmer, extension worker, and researcher) determination of key factors helped to 

find the best suited technology for major tasks, and not to be lost in details. Land, 

labor and cash were identified to be the main internal influences; major external 

influences are climate or population growth leading to the well-known hazards. 

For agricultural R4D, given pre-conditions must be captured ex ante, accepted and 

dealt with in research. For this purpose, it is first of all necessary to determine, what 

those pre-conditions are in a cost-efficient, quick and reliable way. Next step is to 

determine the actual tasks in agriculture on the ground, which have to be faced – 

as well at low cost and quick. The third step again requires to be achievable with 

low budget and, most important, with long term impact. This third step directly 

addresses the yield increase with locally feasible techniques and at the same time 

keeping the connection to local farmers, their habits, habitat, problems, 

opportunities, and real needs. Vanlauwe et al. (2016) issued the warning of missing 

transferability of innovative cropping methods from controlled conditions on 

experimental stations to farmers due to lacking match to the tasks and preferences 

of farmers.  
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Digital soil mapping is a promising discipline in soil science that can help to 

establish high resolution soil maps needed for successful agricultural R4D related 

to cropping. With improved computational power and increasing existence of 

spatial data via satellite images and geographical information systems (GIS), digital 

soil mapping has been incrementally used for soil science (Minasny and 

McBratney, 2015). Digital soil mapping sensors employ certain parts of the 

electromagnetic spectrum (Herrmann, 2015). Proximal or remote sensing of land 

surfaces can exhibit differences in lithology or soil type (e.g. gamma-ray sensors), 

water contents (e.g. radar sensors), natural vegetation via Normalized Difference 

Vegetation Index (infrared sensors) or visual exploration by satellite imagery (e.g. 

WorldView satellites). Its advantages are compelling: complete and non-invasive 

land surface overview, rapid data collection, investigations at low-cost, and the 

possibility to record several aspects during one survey by including different 

sensors. Drones have introduced the opportunity for smaller, less complicated 

surveys. Multiple investigations are now accomplishable with digital soil mapping, 

rather than with time-consuming and exhausting field trips.  

Gamma ray spectrometry is an especially promising and rapid technique for soil 

science to estimate soil properties or differentiate soil units (Reinhardt and 

Herrmann, 2018). The method relies on counting gamma decays of the naturally 

occurring isotopes 40-potassium (40K), 232-thorium (232Th) and 238-uranium 

(238U). Those count rates are then transferred to their element contents and result 

in specific signatures. A major advantage of the method is the recording of not only 

the land surface but several decimeters beyond, depending on the surface material 

(Beamish, 2014). Whereas visible (VIS) or infrared (IR) wavelength sensors are 

unable to produce results when vegetation or clouds are in place, gamma-rays are 

only attenuated by these (Herrmann, 2015). Especially in difficult to access terrain, 

the method is a sound auxiliary. This exactly meets the requirements of R4D 

approaches where a quick, low-cost and simple mapping approach is needed, e.g. 

for site-specific amelioration recommendations. 

1.7. Objectives of the thesis 

Main goals of the thesis were to establish soil maps of the study area in a rapid 

approach in order to evaluate innovative cropping experiments with regard to 

subsistence farmer opportunity adapted methods. For this purpose, gamma-ray 

spectrometry as non-invasive technique was applied together with participatory soil 

mapping.  
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The specific objectives were to:  

(1) Review gamma-ray spectrometry critically as a method to employ in 

mapping, identify its limitations and its applicability in soil science; 

(2) Generate two soil maps at village scale of the Trans-SEC intervention area 

with participative methods and gamma-ray spectrometry as rapid approach, 

involving local soil nominations as well as scientific soil classification; 

(3) Test gamma-ray spectrometry as tool to distinguish clay illuviation soil types 

in the intervention area; 

(4) Assess the concept of yield increasing management strategies on different 

research levels in the project context (researcher-controlled on-station and 

demonstration plot in the village, and farmer-managed on-farm trial). 

1.8. Outline of the thesis 

This dissertation is devised as a cumulative thesis. In Chapter 2, gamma-ray 

spectrometry application in soil science is introduced and reviewed. Chapter 3 

describes the soil mapping process in Tanzania, i.e. testing a method combination 

of participatory mapping with gamma spectrometry as rapid mapping approach. 

Chapter 4 gives a deeper insight into data analysis of gamma-ray spectrometric 

surveys by means of bivariate mixed models. Chapter 5 reviews the project-related 

procedure according to innovative yield increase strategies and related to soil type 

and landscape position. Besides, the concept of on-station experiments in relation 

to demonstration plot and farmer managed trials for agricultural R4D is discussed. 

Chapter 6 is a general and concluding discussion of thesis related topics. 
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2.1. Abstract  

Gamma-ray spectrometry is an established method in geo-sciences. This article 

gives an overview on fundamentals of gamma-ray spectrometry that are relevant 

to soil science including basic technical aspects, and discusses influencing factors, 

inconsistencies, limitations, and open questions related to the method. It relies on 

counting gamma quanta during radionuclide decay of 40K, 238U and 232Th, but 

secular equilibrium for the decay series of U and Th must be given as decays of 

their respective daughter radionuclides are used for determination. Secular 

equilibrium for U and Th decay series, however, is not always given leading to e.g. 

anomalies in U concentration measurements. For soil science, gamma-ray 

spectrometry is of specific value since it does not only detect a signal from the 

landscape surface, but integrates information over a certain volume. Besides, 

different spatial scales can be covered using either ground-based or airborne 

sensing techniques Together with other remote sensing methods, gamma 

signatures can provide completive information for understanding land forming 

processes and soil properties distributions. At first, signals depend on bedrock 

composition. The signals are in second order altered by weathering processes 

leading to more interpretation opportunities and challenges. Due to their physico-

chemical properties, radionuclides behave differently in soils and their properties 

can be distinguished via the resulting signatures. Hence, gamma signatures of 

soils are specific for local environments. Processes like soil erosion can 

superimpose gamma signals from in situ weathering. Soil mappings, available K 

and texture determination, or peat and soil erosion mapping are possible 

applications being discussed in this review. 

Key words: Digital soil mapping, soil sensing, radionuclide, 40K, thorium, uranium  
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2.2. Introduction 

During the decay of radionuclides, the resulting gamma signatures enable to 

determine the absolute concentrations of several elements. Among these, 

potassium (K), uranium (U), thorium (Th), and cesium (Cs) occur in soil in 

concentrations that allow their determination directly in the field. In consequence, 

in situ detection of their spatial distribution can be rapidly accomplished. Already in 

the late 1940s, gamma-ray spectrometry was used for U exploration (IAEA, 2003). 

Meanwhile, the method has undergone improvements regarding sensitivity, 

applicability as well as handiness. Gamma-ray spectrometry is a passive, ground-

based or airborne, non-invasive method capturing a certain measurement depth in 

half-space geometry of surface-near material, and is perfectly implementable for 

soil science. In contrast to other remote or proximal (within, on or less than 2 m 

above the soil body; Viscarra Rossel et al., 2010) sensing methods, soils can be 

inspected down to 1 m depth under certain conditions, even if vegetation cover is 

present (McBratney et al., 2003). Penetration depths of more than 1 m are 

achievable in peaty dry soils with high porosity, low bulk density and low gamma 

attenuation potential (Beamish, 2013). However, exact and reliable calculations 

and assumptions concerning measurement depths are disputable. 

Applicability of gamma-ray spectrometry to soil investigation works due to initial 

compositions of radionuclides in bedrock minerals (K, U, Th) or to human impacts 

(Cs). With natural weathering and soil erosion processes, this causes a different 

distribution of radionuclides over particle sizes and subsequent different 

environmental behavior leads to redistribution processes at various spatial scales. 

Gamma-ray measurements, thus, can help to differentiate between bedrock and 

soil, and detect weathering intensity, textural properties and nutrient status of the 

latter (Cook et al., 1996). Gamma-ray spectrometry has emerged as a helpful tool 

for rapid soil mapping (Schuler et al., 2011), soil map refinement (Reinhardt and 

Herrmann, 2017), soil characterization (Beamish, 2013), and precision farming 

(Van Egmond et al., 2011).  

Cesium-137 originates exclusively from anthropogenic activity and, consequently, 

can be applied for soil erosion and soil organic carbon (SOC) loss determination, 

equipment calibration or as contamination indicator after nuclear accidents. It was 

widely distributed through the atmosphere by nuclear bomb testing, power plants, 
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nuclear disasters or industry processing/accidents and has a half-life of 30.2 years 

(IAEA, 2003).  

Labour input as well as financial expenses can be reduced by the use of gamma-

ray spectrometry as laboratory analyses become partly redundant (Heggemann et 

al., 2017). Gamma-ray spectrometry can add soil information to other covariate 

data layers like parent rock or topography as used in digital soil mapping (Bierwirth, 

1996; Dickson and Scott, 1997; Taylor et al., 2002). Combination with other (3D-) 

methods like electromagnetic measurements (Hyvönen et al., 2005), but also 

participatory mapping (Reinhardt and Herrmann, 2017) make gamma-ray 

spectrometry even more expedient.  

Although gamma-ray spectrometry is increasingly applied in soil science, some 

important aspects need further discussion: (1) attenuation of gamma radiation by 

environmental compounds (e.g. soil water), (2) soil radiation models without 

inclusion of depth-depending property changes, having an influence of the 

detected soil volume, (3) unproven assumptions about the volume contributing to 

the radiation signal, as well as (4) the use of parameters that are reported in the 

literature based on theoretical assumptions but that have never been confirmed 

under field conditions. Having this in mind, the focus of this review will be on 

possibilities and limitations of gamma-ray spectrometry in soil science. 

2.3. Fundamentals 

2.3.1. Natural gamma radiation 

The naturally occurring radioelements 40K and daughter nuclides in the decay 

chains of 232Th and 238U (Pickup and Marks, 2000) emit sufficient gamma radiation 

for in situ detection in the environment, due to their abundant average content in 

the earth crust. Gamma radiation originates from excited nuclei sending out high-

energy gamma rays for de-excitation. Radioactive decay has a statistical character; 

every radionuclide disintegrates with a certain probability within unequal time 

intervals and independently from other decays. The gamma-ray emission is directly 

proportional to the amount of decaying radionuclides. Radiation is particle-free, 

isotropic, electromagnetic, travelling at the speed of light, with energies reflecting 

the respective characteristics of the parent nuclei. Table 2-1 gives an overview 

about half-lives (IAEA, 2003), natural  
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Table 2-1 Half-lives, natural crustal abundances (adapted from IAEA, 2003) and 
conversion factors to specific activities for 40K, 238U and 232Th (adapted from IAEA, 
1989) 

  Half-life  
[years] 

Natural crustal abundance 
[%] of element 

Conversion from concentration 
to specific activity 

40K 1.3×109 years 0.012 1%a in rock      ≙  313 Bq kg-1 

238U 4.46×109 years 99.27 1 ppma in rock ≙ 12.4 Bq kg-1 

232Th 1.39×1010 years 100 1 ppma in rock ≙   4.1 Bq kg-1 

aUsual denotation for 40K given in %, 238U and 232Th in ppm.  

crustal abundances of the radioisotopes (IAEA, 2003) and conversion factors from 

specific activity to concentrations (IAEA, 1989). 

Using this information, natural radioactivity data can be transformed into K, U and 

Th concentrations. Becquerel (Bq), an SI unit, describes the radioactive activity, 

i.e. decay counts of an isotope per second [s-1]. In geo-sciences, activity per mass 

is usually measured, i.e. the number of decays per second [Bq kg-1]. 

2.3.2. Gamma-ray spectrometry – technical aspects 

Detectors 

Different detector systems are available (Table 2-2); however, most spectrometers 

make use of thallium activated sodium iodide (NaI(Tl)), cesium iodide (CsI(Tl)) or 

high-purity germanium (HPGe) crystals. Measurement time depends on required 

measurement accuracy, detector type and crystal size (Hendriks et al., 2001). The 

longer the measurement period, the more accurate are the results (Gilmore, 2011). 

The so-called dead time is the preferably exiguous time a detector and the attached 

data acquisition system needs to process a single photon. For detailed information 

about detection of gamma-rays, please refer to Gilmore (2011), IAEA (1991; 2003), 

Syntfeld et al. (2006). NaI(Tl) (and CsI(Tl)) detectors are superior for field 

applications as they do not need cooling (Wilford and Minty, 2006). CsI detectors 

exhibit a greater absorption coefficient due to their higher density, are less brittle 

and less hygroscopic than NaI detectors (Gilmore, 2011). HPGe detectors have 

advantageous sharp peaks, i.e. high energy resolution. In former times, HPGe 

detectors could only be applied in laboratory measurements due to compulsory 

liquid nitrogen cooling. Today, the pulse tube cooling makes them also applicable 

in field surveys. The high efficiency scintillation Bismuth Germanate crystal (BGO) 

allows for lower counting times 



18 

Table 2-2 Commonly used detectors for gamma-ray spectrometry in soil science (IAEA, 1991 and 2003; Syntfeld et al., 2006; 

Van Egmond et al., 2010¸ Gilmore, 2011; Giaz et al., 2013) 

Detector 
substance 

Type Volume Field of use Efficiency Energy 
resolution 

Dead time Density 
[g cm-3] 

BGO Scintillator cm3 field surveys high poor n.a. 
7.13 

 

CsI(Tl) Scintillator cm3 to dm3 
field surveys and 

laboratory 
high poor 

10-9 s 
 

4.51 
 

HPGe 
Semi-

conductor 
cm3 

laboratory (vacuum, 
cooled to -196 °C) or 

field 

low  
(need long time) 

high n.a. 
5.32 

 

NaI(Tl) Scintillator cm3 to dm3 

field surveys and 
laboratory; commonly 

used for airborne 
surveys 

~100% for low energies, 
a bit lower for high 

energy gamma-rays 
poor 

10-7 s 
 

3.67 
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(Hendriks et al., 2001) but is more expensive than the NaI(Tl) detector. Recently, 

a lightweight cadmium zinc telluride detector has become available, e.g. for 

unmanned aerial vehicle (UAV) surveys (Martin et al., 2015). 

Gamma-ray spectra 

Gamma-ray spectra usually display energies between 0.04 and 3 MeV (Hyvönen 

et al., 2005). Potassium-40 decays in 10.55% to 40Ar without intermediate steps 

and is directly measured (rest decays via beta-decay to 40Ca). Thorium-232 and 

238U measurements rely on daughter radionuclide decay (Fig. 2-1) that emit 

sufficient gamma radiation for detection. Therefore, data are commonly denoted 

as eU and eTh (e for equivalent). These measurements are based on 214Bi to 214Po 

(eU) and 208Tl to 208Pb (eTh) decay rather at the end of the respective decay series. 

Hence, the prerequisite for a secular equilibrium that allows to transfer counts into 

element concentrations is hard to prove. 

The frequently reported total counts (TC) sum up counts usually for energies 

between 0.4 and 3 MeV. Window analysis and full spectrum analysis (FSA) are the 

two main methods regarding spectra interpretation for gamma-ray spectrometry in 

soil science, next to the summed spectra method (Xhixha, 2012) and moving 

window analysis (Brundson et al., 1996), which is not dealt with in this review.  

Most field spectrometers run by means of window analysis, i.e. they analyze pre-

defined regions of interest (ROIs) around the relevant peaks of the specific 

nuclides. The peaks follow a Gaussian distribution, their width is defined by full 

width at half maximum (FWHM) in relation to energy or channel number (Gilmore, 

2011). According to IAEA (1991) standards, the defined energy levels for the 

respective decays are 1.46 MeV for 40K (window: 1.370−1.570 MeV), 1.76 MeV for 

eU (window: 1.660−1.860 MeV) and 2.62 MeV for eTh (window: 2.410−2.810 

MeV). They slightly differ between studies, e.g. Carroll (1981) used 1.36 to 1.56 

MeV for 40K detection.  

Full spectrum analysis (FSA) as described by Hendriks et al. (2001) provides an 

expedient, cost-efficient method. In contrast to window analysis it uses almost the 

full spectrum to obtain more sensitive results (Hendriks et al., 2001). Standard 

spectra (1 Bq kg-1 spectrum for a radionuclide) are then applied for computing the 

concentration of any individual radionuclide of interest within the measured range  
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Figure 2-1 Gamma decay spectra of 40K (1.46 MeV), 238U (daughter nuclide 214Bi, 

1.76 MeV) and 232Th (daughter nuclide 208Tl, 2.62 MeV). Regions of interest (ROI) 
indicate the counts per second (cps) within the respective measurement window, 
total counts (TC) are measured over the indicated region (adapted from Hendriks 
et al., 2001; IAEA, 2003) 

(after background subtraction). The windows analysis is simpler but less accurate 

than the FSA, the latter creating more operating expense. Spectrum shapes 

depend on radioelement concentration and source geometry; their intensity, i.e. 

peak heights, depends on magnitude of attenuation by non-radioactive overburden 

(Minty, 1997). Stripping factors are applied to eliminate secondary radiation from 

other elements in energy windows. In particular, interfering radiation from 238U is 

removed from the 40K ROI, 232Th radiation from the ROIs of 40K and 238U. In 

contrast, influences from 40K or from 238U radiation on 232Th spectra are expected 

negligible (Killeen, 1979). In Figure 2-1, the super-imposed character of the 

different spectra is displayed.  

Stripping factors, but also respective concentrations as well as device sensitivity 

coefficients are determined by spectrometer calibration over calibration pads with 

defined 40K, 238U and 232Th contents. The IAEA (2003) standards for calibration 

are: identical pads with 1 m × 1 m × 0.3 m edge length, identical geometry for the 

measurement and a similar matrix composition.  
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2.3.3. Gamma radiation influencing factors 

Uranium-238 disequilibria and the radon influence on measurements 

Uranium-238 disequilibria are the most relevant for soil science as they change eU 

signals. After Killeen (1979), in theory, more than 8 times the longest half-life of the 

daughter nuclides are obligatory for the required secular equilibrium, i.e. 40 years 

for 232Th, and >1.5 million years for 238U. Hence, disequilibria inevitably occur 

(Dickson and Scott, 1997) due to dislocation of decay products via selective 

leaching (e.g. 226Ra), gaseous 222Rn diffusion from soils (Minty, 1997), or due to 

226Ra containing groundwater (Bierwirth, 1996). Wind (Bierwirth, 1996), diurnal 

differences of 222Rn in air (Grasty, 1979) as well as atmospheric pressure and 

temperature changes affect 222Rn gas diffusion in or from soils (Grasty, 1979; De 

Jong et al., 1994; Minty, 1997). Seasonal variations in gamma recordings arise 

from gradual soil warming (Grasty, 1997) and follow drying patterns. Darnley and 

Grasty (1970) detected an average contribution of 70% from 222Rn in air to the 

airborne eU signal. After rainfall events, measured eU ground concentrations can 

rise up to 2000% (Charbonneau and Darnley, 1970) via raindrops combing out 

222Rn and 218Po, 214Pb or 214Bi attached to aerosols (Minty, 1997). A precaution is 

to wait with measurements for at least 3 hours after a rain event (Minty, 1997) or 

until the soil has dried up as diffusion is lowered in wet soil (Grasty, 1997), i.e. best 

is dried soil until measurement depth.  

A further potential source of erroneous eU measurements are fertilized plots. 

Saueia and Mazzilli (2006) showed that the secular equilibrium of eU and eTh in 

phosphate fertilizers is disrupted due to harsh fertilizer production processes 

leading to an increase of up to 1158 Bq kg-1 238U and up to 521 Bq kg-1 232Th in the 

fertilizer. Whereas Saueia and Mazzilli (2006) do not consider fertilizer to raise U 

levels over security thresholds, there are several reports stating an increasing 

contamination risk due to enhanced U contents in mineral fertilizers and its 

accumulation in cropland soils (e.g. Schnug and Lottermoser, 2013). 

In conclusion, especially eU measurements are intrinsically defective and should 

be cautiously interpreted. Several authors (De Meijer and Donoghue, 1995; 

Rawlins et al., 2007; Schuler et al., 2011) judge 40K and eTh as reliably detectable. 

TC measurements give less information on element content, but can be used as 
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indicator where the signal intensity e.g. of 238U and 232Th is low (Hyvönen et al., 

2005). 

2.3.4.  Attenuation 

Theory 

In general, gamma-ray attenuation is assumed to follow the Lambert-Beer-law: 

I = I0×e-µl×x          (2.1) 

where I is the attenuated incident ray [eV], I0 the initial incident ray [eV], µl depicts 

the matter specific linear attenuation coefficient [length-1] and x the thickness of 

absorbing matter [length]. However, in the strict sense the Lambert-Beer-law in this 

form is only applicable to point radiation sources, non-radiating absorbers, and a 

measurement situation without constant background noise. All these conditions are 

not fulfilled during measurements in natural environments.  

Linear attenuation coefficients µl depend on bulk (or material) density, atomic 

number of the attenuating material and initial incident ray energy I0. Consequently, 

Cook et al. (1996) ordered the attenuation capacity of soil constituents as follows: 

soil (mineral and organic matter) > water >> air. The resulting linear bulk 

attenuation coefficient of soil, water and air together, µt can be expressed as: 

µt = µsoil + µwater + µair        (2.2) 

Mass attenuation coefficients µm [area×mass-1] are linear attenuation coefficients 

divided by the material or bulk density (ρ). In this way, attenuation factors become 

independent of ρ.  

The following processes induce gamma-ray attenuation (Fig. 2-2):  

(1) Compton scattering is the most frequent process at low to moderate energy 

levels, mostly in interaction with low atomic number elements, i.e. atomic numbers 

from 2 to 30; hydrogen is an exception (Grasty, 1979; Løvborg, 1984). It happens 

when a gamma quant collides with a loosely bound outer-shell orbital electron of 

an atom and partially transmits its energy to this electron. The gamma quant recoils 

from the electron in an altered scattering angle with lower wavelength, hence, with 

lower energy. Compton scattering within the detector creates the so-called 

Compton edge and the Compton continuum (Løvborg, 1984).  

(2) The photoelectric effect is the total absorption of a gamma quant by the 

outermost electron of the attenuating atom, and the accompanied emission of that  
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Figure 2-2 Attenuation effects according to energy ranges and typical behaviors 
of gamma-rays as to interaction with matter of different atomic numbers (adapted 
from Killeen, 1979) 

electron (Cook et al., 1996). It is dominant in lower energy ranges and usually 

relevant after a previous attenuation via Compton scattering. 

(3) Pair production at high energy levels occurs only with high atomic numbers 

at energies exceeding 1.02 MeV. Part of the energy generated during decay is 

used for the formation of an electron/positron pair, which is then emitted (Gilmore, 

2011). 

Under practical conditions in soil science, Compton scattering is the predominant 

process, and gamma radiation from soils is predominantly attenuated by water, soil 

and organic matter. 

Soil environment 

Specific aspects that need to be considered when applying gamma-ray 

spectrometry to soil are the radioactivity and attenuation of the soil material itself, 

but also the dynamic fluctuation of soil water content in space and time. Commonly 

used attenuation coefficients follow the work by Hubbell and Berger (1968) who 

calculated collimated beam attenuation coefficients of diverse materials, mainly 

based on theoretical considerations. Grasty pointed already in 1979 to the issue 

that gamma-rays in nature are not collimated but scattered. Zotimov (1971) carried 

out elaborate tests with regard to the attenuation potential of soil water. The article 

deals with an important approach; however, neither Grasty (1979) nor Zotimov 

(1971) attempted to verify the attenuation coefficients of Hubbell and Berger 
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(1968). For water, the following mass attenuation coefficients were established by 

Grasty (1979), based on Hubbell and Berger (1968): 40K 0.059 cm2 g-1, 238U 0.053 

cm2 g-1 and 232Th 0.043 cm2 g-1. Due to the energy dependence of attenuation 

coefficients, 40K radiation is more attenuated than those of 238U and 232Th. Cook et 

al. (1996) assumed that 1% soil water content lowers gamma signals by 

approximately 1%. This rule of thumb meanwhile serves as common practice (e.g. 

Minty, 1997; Priori et al. 2013).  

Still open questions are the radiative properties of soil air, soil water and soil 

organic matter (and their interaction), as well as experimental procedures for their 

proper determination. Normally, these soil constituents are thought to be 

composed of attenuating rather than radiating elements (except when 222Rn in soil 

air is present in relevant amounts). Accepting this hypothesis makes the 

determination of e.g. soil moisture or peat thickness by gamma radiation feasible 

(Keaney et al., 2013; Beamish, 2015). 

Measurement depth 

Various assumptions have been made with regard to the depth/volume that 

contributes to the gamma-ray signals at the soil surface. Assumed depths for signal 

contribution range from 30 to 100 cm (Grasty, 1975; Cook et al., 1996; Dickson 

and Scott, 1997; Taylor et al., 2002; Hyvönen et al., 2005; Wilford and Minty, 2006; 

Rawlins et al., 2007; Van Der Klooster et al., 2011). Following Grasty (1997), eTh 

radiation from mineral soils with a bulk density of 1.5 g cm-3 originates to 90% from 

a depth of 22 cm, to nearly 100% from a depth of 50 cm, following a saturation 

curve. 

The following equation (2.3) is given by Grasty (1997) to calculate the gamma 

radiation per time using the so-called King’s function (2.4) (King, 1912, in Grasty 

1997): 

N = nAµg × E2(µah)        (2.3) 

E2(µah) = ∫ (
∞

1
e-µ

a
hx/x2)dx        (2.4) 

with N being the number of unscattered photons detected per time, n primary 

photons per unit volume per time, A the cross-sectional area of the detector,  

photopeak efficiency, µg linear attenuation coefficient of the ground, µa linear 

attenuation coefficient of air and h height. E2 is the exponential integral of the 

second kind (equation 2.4) with x being thickness [cm]. This function is applicable 
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for homogenously distributed radioelements as radioactive sources. These 

conditions are, however, rare in particular in soils and sediments that are 

characterised by their stratification and inhomogeneity in space and time. 

Duval et al. (1971) stated bulk density had the biggest influence on the captured 

soil volume, as the higher soil bulk density, the higher is the attenuation, and the 

smaller the measured volume. Attenuation also increases with moisture content 

due to effective density increase. However, soil minerals in contrast to soil water 

also emit gamma radiation. Therefore, the concept of a bulk linear attenuation 

coefficient composed of the constituents solids, water and air has to be 

reassessed. 

In theory, soil moisture and soil bulk density do not affect the spectrum shape. De 

Groot et al. (2009) applied Monte-Carlo simulations and ascertained the influence 

of soil bulk density and water content changes onto the captured volume. Despite 

the great usefulness of these simulations, practical field checks should always 

proof theoretical findings. To our knowledge, this gap is still to be closed. 

Change of natural isotope ratios 

In practical work, gamma counts are transferred to total element content by 

calculations inter alia based on constants that represent the natural 

isotope/element ratios. Therefore, consistency of these ratios is a prerequisite. The 

40K fraction of total K (Kt), for instance, is considered to be 0.012% (IAEA, 2003). 

However, as known for isotopes of other elements (e.g. 16O, 18O) gravitational 

separation is possible. Consequently, we can assume that marine deposits like 

sylvine (KCl) have another nuclide composition than magmatic rocks. If these 

sediments are then applied to soils, e.g. as fertilizer, they might be able to alter the 

isotopic ratio over time and, thus, the measured signal at the soil surface. This has, 

however, to be tested in future studies. 

Fujiyoshi et al. (2014) screened the 40K/Kt ratio in forest soils in Japan and Slovenia 

comparing gamma-ray spectrometry and x-ray fluorescence data. Potassium-40/Kt 

values varied with depth in both, carbonaceous and siliceous soils. Equisetum 

hyemale L. plants in Sapporo showed significantly reduced 40K/Kt ratios of  

0.0042 (± 0.0001)%, its litter even showed ratios of 0.0059 (± 0.0002)%, leading to 

the assumption of 40K discrimination by certain plants. Determined soil 40K/Kt ratios 

were between 0.009 and 0.013% in the study of Fujiyoshi et al. (2014). For the 
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relation pH-40K/Kt -ratio, correlation coefficients of r = 0.9 were determined. 

Treatment of respective soil samples with 1 M hydrochloric acid led to further 

increased 40K/Kt ratios. Only few articles could be found regarding changes of 

40K/Kt ratios related to land use and soil formation. Wetterlind et al. (2012) observed 

different 40K/Kt, eU/total U and eTh/total Th ratios from airborne gamma data and 

soil chemical analyses (hydrofluoric and perchloric acids, and inductively coupled 

plasma mass spectroscopy (ICP-MS)) comparing forest and arable soils in France. 

Measured Th ratios did not significantly differ, but gamma counts for 40K and 238U 

increased in comparison to chemically determined contents in arable soils. The 

authors explained these trends by bulk density and water content differences but 

could not prove their hypotheses. Arable soils are - in contrast to forest soils - 

frequently fertilized. Type and location of mineral sources as well as fertilizer 

processing might lead to shifted 40K/Kt ratios. Chauhan et al. (2013) and Alharbi 

(2013) investigated several fertilizers. Their data indicated shifted 40K/Kt ratios in 

fertilizers via variable radiation for similar weight % of Kt. This was, however, not in 

the focus of their publications. For precise statements regarding 40K/Kt ratio shift, 

the method has to be refined. In unpublished studies in Thailand and SW-

Germany, the authors of this review found a correlation of plant available 

potassium with total potassium as measured by gamma-ray spectrometry in forest 

stands but not in fertilized land. If this finding is true, long-time heavily fertilized 

areas might need a correction factor for fertilizer input. To our knowledge, no 

specific studies concerning this topic exist. Shifted isotopic ratios in fertilizers and 

fertilized soils as well as in plants and litter should be of high interest for further 

investigations. 

Source-detector geometries 

Source-detector geometries highly influence measured count rates. Problems 

arise if geometries like in Figures 2-3c (<4, i.e. valleys) and d (>2, i.e. mountain 

ridges) occur, as no unique geometry conversion factor can be assigned (Fig. 2-3, 

Fig. 2-4). Terrain characteristics like hills, valleys, quarries or buildings can 

influence measured radioelement concentrations up to tens of per cent (IAEA, 

2003). Already during calibration procedures, measurement geometries need to be 

taken into account (Killeen, 1979). Recording the environment including landscape 

position is of absolute importance during airborne as well as ground-based gamma  
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Figure 2-3 a) 2 geometry (illustrates gamma-ray recordings in flat terrain), b) 3 

geometry (referring to e.g. recordings in incipient mountainous areas), c) < 4 

geometry (referring to recordings in valleys), d) < 2 geometry for ground-based 
measurements (referring to mountains; adapted from Killeen, 1979) 

 

 

 

Figure 2-4 Source-detector effects on airborne gamma-ray surveys: recordings in 

a) flat terrain, b) valleys, c) areas with depressions, d) undulating area. (adapted 
from Grasty, 1976) 
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spectrometric surveys. Usually, flat calibration pads in 2geometries are used, i.e. 

flat geometry (Fig. 2-3a, 2-4a). Borehole measurements, where the detector is 

surrounded by the source should experience 4 geometry calibration. 

Figure 2-4 is related to airborne survey source-detector geometries. Count rate 

changes occur due to the different landscape shapes. Depressions can increase 

(Fig. 2-4b) or decrease (Fig. 2-4c) signals. As well, during horizons-wise soil pit 

measurements (Herrmann et al., 2010), changing geometry with depth is biasing 

the results. Doig (1968, in Killeen, 1979) confirmed a signal increase of 50% 

changing from 2 to 3 geometry. Schwarz et al. (1992) calculated a decrease of 

10-30% in airborne count rates over mountains in the Swiss Alps. The authors 

examined signal adjustment opportunities with 2D and 3D models related to terrain 

geometry, i.e. gamma signals from rugged terrain are recalculated into signals that 

would derive from a 2 geometry. Fortin et al. (2017) reviewed airborne gamma-

ray spectrometry and discussed current methods of data acquisition in rugged 

terrain, e.g. the 3D inversion method by Minty and Brodie (2016), which 

incorporates topography, altitude of the detector and the directional sensitivity of 

rectangular detectors and calculates elemental concentrations. 

Ground-based and airborne data acquisition 

Gamma-ray surveys operate either ground-based or airborne. Common ground-

based surveys are conducted proximal, i.e. on or less than 2 m above the surface 

(Viscarra Rossel et al., 2010), either on-the-go - using backpacks, quads, cars or 

tractors - or stationary on the surface, in soil pits or boreholes. Airborne 

investigations run by means of airplanes, helicopters or, as latest achievement, 

with unmanned aerial vehicles (UAVs). 

Stationary ground-based surveys 

Stationary surveys serve as reliable method for point scale measurements. 

Transect measurements can broaden the scale but still yield detailed and small-

scale surveys, e.g. for soil mapping (Reinhardt and Herrmann, 2017). 

Advantageous is the accuracy due to a very small circle of investigation – or 

footprint - and minor influence of background radiation. In cases of low gamma 

radiation, stationary measurements result in more distinct spectra due to less 

statistical noise (Rouze et al., 2017). Stationary gamma-ray investigations can 
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serve as point validation of large-scale airborne surveys. However, the results are 

difficult to correct for continuously shifting measurement geometry (2-4) related to 

topographic variability in the landscape if the device is not completely shielded, 

which is normally not the case.  

During stationary investigations, the measurement device is usually placed directly 

onto the soil surface or in near proximity, up to approximately 1 m above the ground 

(e.g. Dierke and Werban, 2013; Reinhardt and Herrmann, 2017). Adequate 

counting times depend on signal intensity, detector type and crystal size. As an 

example, a 0.35 l NaI(Tl) detector needs 2 min for high and 6 min for low signal 

intensities from rocks with 10% error (IAEA, 2003). 

Borehole investigations for geological purposes, e.g. U exploration (Xhixha, 2012), 

record gamma radiation within the borehole. For this purpose, the testing probe is 

lowered into the ground. The advantage of the latter is that topographical effects 

are excluded. Captured measurement radius is assumed to be 0.1 to 0.3 m in rock 

(IAEA, 2003). Due to the mainly geological application, the borehole mode will not 

be discussed in detail in this review. 

Mobile surveys 

This section includes ground-based on-the-go investigations together with airborne 

gamma spectrometric surveys, because many conditions apply for both 

procedures. The detection frequency is commonly 1 Hz, sometimes higher 

frequencies are applied (Martin et al., 2016). Appropriate velocities depend on 

demanded resolution, next to signal intensity, detector, and crystal size. Rouze et 

al. (2017), for instance, chose 63 m s-1 for their airborne survey using a 50.3 dm3 

NaI detector crystal. Loonstra and van Egmond (2009) recommended a speed on 

the ground of 2.8 m s-1 for a 70 × 150 mm CsI crystal, Heggemann et al. (2017) 

went at 0.7-1.4 m s-1 with two 4 l NaI(Tl) detectors. Flying heights are, depending 

on vehicle and demanded accuracy, up to 30 m for UAVs (Martin et al., 2015) and 

the standardized 120 m for helicopters and aircrafts (IAEA, 1991).  

Minty (1997) gave an overview about airborne gamma-ray spectrometry and 

summed up total gamma counts as the radiation of 40K, eU and eTh nuclides, but 

also aircraft (or vehicle), cosmic and 222Rn derived background radiation, so-called 

noise. Hence, data have to be pre-processed for noise elimination. Cosmic 

radiation increases with altitude (Grasty, 1979) and is commonly determined via 
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survey flights in different altitudes over a large water expanse (Carroll, 1981). 

During the survey, the airplanes should not tilt but keep its position to carry out 

perpendicular measurements, i.e. keep the same geometry condition. 

Multi-temporal airborne surveys are an opportunity to eliminate blank areas on 

maps, observe variation measurements of the water budget, or of forest areas but 

surveys are costly. UAV surveys are a promising approach (van der Veeke et al., 

2017), also for precision agriculture.  

Aspects of spatial resolution 

Rawlins et al. (2007) deduced from their airborne gamma measurements in 

England that radiometric properties relating to thematic soil maps can produce map 

scales up to 1:50,000. Beckett (2007) concluded that airborne spectrometry can 

achieve a spatial resolution of 1:25,000 depending on height and velocity of the 

aircraft. Cost efficiency calculations resulted in an advantage of ground-based 

measurements below a limit of 500 line-km (that equals 1250 ha with 25 m line 

spacing). Ground-based surveys were able to generate map resolutions of 

1:10,000 with an accuracy of ± 7 m in Beckett’s study (2007). In areas with highly 

differing signatures between soil units, even resolutions up to 1:2,500 were 

achievable. Therefore, for precision agriculture, ground-based surveys are to 

prefer. Pracilio et al. (2006) concluded that gamma-ray spectrometry is precise 

enough to explore yield variations related to soil properties at farm scale. 

Circle of investigation 

The so-called “footprint” is the circle of investigation contributing to the detected 

radiation. It depends on sensor integration time and the velocity of the aircraft or 

vehicle, next to detector height above ground (Pickup and Marks, 2000). The IAEA 

(1991) described the footprint extent as an ellipse due to the movement during 

recording. As a rule of thumb, 66% of the counts originate from an area covering 

twice the altitude wide and twice the altitude plus the travelled distance long (Ward, 

1981, in Wong and Harper, 1999). Consequently, altitude is the most relevant 

factor for the footprint area, which is, next to ground conditions, determining the 

measured volume (Duval et al., 1971). Figure 2-5 gives an impression of altitude 

influence on the footprint and measured volume, i.e. infinite source yield. 
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Figure 2-5 Percentage of captured volume (infinite source yield) vs. circle of 

investigation (radius r) for different altitudes h (adapted from Duval et al., 1971) 

Signals in highly variable landscapes become blurred as the collected signals 

represent “pseudo-averages”. Wilford and Minty (2006) added flight-line spacing 

and time sample interval as precision determinants. They emphasized that 

appropriate detection heights and velocities had to be chosen according to 

expected spatial heterogeneity 

Airborne vs. ground-based data collection 

As long as factors of gamma signal generation in a terrain are not fully understood, 

ground-based methods should be preferred due to higher spatial accuracy (Wong 

and Harper, 1999). Ground validation is indispensable for airborne surveys, on one 

hand by proximal gamma-ray spectrometry, but as well by laboratory analyses 

(Keaney et al., 2013).  

Kock and Samuelsson (2011) found strong Pearson correlation for airborne vs. 

ground-based 40K and eTh (r2 > 0.9) but not for eU signals (r2 = 0.68) due to higher 

radiation in some spots that was smoothed out in airborne measurements. A 

comparison of an airborne with a conventionally produced soil map by Cook et al. 

(1996) showed consistent results in general.  
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Data processing 

In particular, airborne gamma data need to be processed and corrected due to 

additional factors. Interferences like geometric position and height of the detector 

above ground, cosmic and background radiation occur. It is impossible in rugged 

terrain to fly at a constant height (Schwarz et al., 1992). Other mentioned aspects 

are the footprint, anomalies for 222Rn, dead time of the signal processing unit, water 

vapor and gases between detector and ground depending on temperature and 

barometric pressure. Consequently, the airborne system needs, apart from the 

spectrometer, additional equipment (barometric and/or laser altimeter, GPS etc.). 

Information on the meteorological conditions during the flight as well as on land 

cover are indispensable. 

Complete data processing comprises the following steps: transformation of GPS 

information into the intended mapping coordinate system, determination of the 

detector height above ground and vegetation height, energy calibration, noise 

reduction, correction for background radiation, for atmospheric 222Rn radiation, for 

Compton scattering, for landscape geometry, to standard flight height, outlier 

analysis, spectral analysis, application of stripping factors, calculation of 

radionuclide content, correction for attenuation by vegetation, trend correction 

based on ground-based data, correction for soil water content and attenuating 

surface layers (e.g. O-horizons), spatial interpolation, pattern recognition, 

(thematic) map development and data storage (compare Minty, 1988, Viscarra 

Rossel et al., 2007). Not all of these can be dealt with here. We concentrate on 

those that pose problems and need further research. 

There are two main problems that reduce the interpretation abilities for airborne 

gamma data. These are (i) a number of assumptions instead of measured data for 

data correction, e.g. vegetation correction and soil moisture, and (ii) the missing 

process/factor-based correlation of aerial with ground-based data. These problems 

will be exemplified in the following: 

(1) Meteorological conditions: Apart from barometric pressure, hardly any 

meteorological data are collected during the flight. However, temperature and 

relative air humidity are relevant for calculating the attenuation between the ground 

and the vehicle. Instead of measurements, in most cases data from the nearest 

meteorological station are applied, which are not necessarily corresponding to the 
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situation in the intervention area, e.g. areas of local precipitation or fog 

accumulation in local depressions. Consequently, these information need to be 

observed during the flight. Inclusion into the data set and respective application for 

correction remains expert-based. 

(2) Radon-222 concentration in the air is subject to large fluctuations influenced by 

topography, barometric pressure differences and meteorological influences. 

Upward aligned detectors that separately measure cosmic and ground-based 

radiation can be used for correction (IAEA, 2003). However, due to weight reasons, 

large crystals used in airborne surveys are rarely shielded against e.g. lateral 

radiation biasing the correction procedure. In addition, the average 222Rn content 

during the flight is assumed to represent actual conditions, which is not the case 

during windy days. In order to check for potential 222Rn anomalies, it is 

recommendable to consult geological maps for the inspection of potential rock 

sources like magmatic rocks prior to the flight campaign. 

(3) Correction for vegetation influence: Vegetation cover plays a major role in 

attenuation of airborne gamma data. Kogan et al. (1971) calculated that  

50-100 kg m-2 organic material from a forest stand equals a 40-80 m thick air layer 

with respect to attenuation. However, vegetation also emits radiation. According to 

Kogan et al. (1971) the radiation of forest stands reaches 15% of soil signals for K, 

and 10% for U and Th. Ahl and Bieber (2010) established a correction procedure 

using a laser-altimeter for measuring the vegetation height as proxy for biomass 

during the flight. The authors selected lithological units that were large enough to 

compare forested and non-forested areas on the same unit. Linear biomass 

attenuation coefficients were derived that are, however, only valid for the studied 

coniferous forest (Tab. 2-3). 

(4) Correction for soil variables: Soil water content is the major influence on the 

interpretability of environmental gamma-ray data (Grasty, 1997). Available radar 

data (e.g. AVHRR) that regularly deliver soil water content information could be 

used for correction procedures, however, data are not available in the same spatial 

resolution. Choice of adequate climatic conditions for the survey are helpful, i.e. 

after extensive rains when soils in a given area are either saturated to field 

capacity, or droughts when soils dried down to the permanent wilting point. 

Developing correction algorithms for soil moisture content is one of the most urgent 

tasks for gamma-ray spectrometry research in the near future.   
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Table 2-3 Estimated attenuation of gamma radiation by different vegetation types 
as stated in different publications 

Authors 

Attenuation of gamma 
radiation by vegetation  

in % Vegetation type 

Pereira and Nordemann (1983) 40-60  Tropical rain forest 

Schwarz et al. (1997) 5-25  Forest 

Aspin and Bierwirth (1997) 13-22  "Vegetation” 

Ahl and Bieber (2010) 20-24  Coniferous forest 

Depending on the aim of the study, organic horizons demand correction, especially 

when wet. Since organic matter is a weak emitter (for potassium), it mainly acts as 

attenuator. Detection of these horizons needs inspection on the ground. Until now, 

correction algorithms for this feature have not been developed. 

(5) Other processing steps: Due to drifts of peaks during the survey, energy 

calibration is carried out first. Dead time corrections are of importance as next step, 

especially in areas with high radiation. For this purpose, the measured count rates 

are extrapolated to the measurement cycle of one second based on 

recommendations of the IAEA (2003): 

NR = nR×103/tL         (2.5) 

with NR being the corrected count rate, nR the measured count rate and tL the live 

time [ms]. 

Inappropriate signal/noise ratios require pre-processing for more distinct spectra. 

Principal component analysis (PCA) can be applied for this purpose. Procedures 

are the Noise-Adjusted Singular Value Decomposition as examined by Hovgaard 

and Grasty (1997) or Minty and McFadden (1998), and Minimum Noise Fraction 

for spectral smoothing. 

Another topic is spatial interpolation, since gamma data are recorded along 

flight/driving lines with constant distance. Brundson et al. (1996) applied 

geographically weighted regression, Hengl et al. (2004) regression kriging. 

Multivariate linear mixed models in combination with regression tree analysis were 

used by Pracilio et al. (2006). 

Besides, pattern recognition and explanation is necessary. Clustering or tree 

analysis represent helpful tools. Rawlins et al. (2009) significantly reduced the 

mean square errors for SOC prediction in an airborne survey in Northern Ireland 
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by clustering in mineral, organo-mineral and organic soil data. Inter alia Beckett 

(2007), Schuler et al. (2011) or Priori et al. (2014) used tree analysis to group soil-

derived gamma spectra. Without grouping in different parent materials Priori et al. 

(2014) underline the lack of reliability of a general regression model as it is the 

case in many other studies. Heggemann et al. (2017) successfully overcame the 

necessary grouping of parent material using Support Vector Machine models.  

In general, data processing bears the risk of loss of relation to reality in the field. 

Therefore, the IAEA (2003) recommends limiting spectral components to 8. 

Validation of airborne data with ground-based measurements of gamma radiation 

is essential. Models should always have more validation than calibration points; 

otherwise predictions are biased. Unfortunately, in most published studies, this 

relation is inverted (often 1:2). 

2.4. Applications in soil science 

In general, every process and resulting soil property can be inferred by gamma-ray 

spectrometry. The most basic application of this technology in soil science is to 

support parent rock determination via detection of the total element content. The 

influence of soil formation processes, like weathering, on element redistribution, 

allows to infer soil properties used for soil type classification, e.g. after the WRB 

(World Reference Base for Soil Resources; IUSS Working Group, 2015). Some 

soil components can be determined via their attenuation effects (e.g. soil water or 

soil organic matter), using a reference signal like dry soil in situ. Others show an 

indirect statistical relationship to gamma radiation (e.g. pH) due to their correlation 

to other soil properties (e.g. base saturation and the potassium component 

contributing to it). Finally, soil erosion mapping can be conducted, particularly 

based on undisturbed reference profiles of an anthropogenic radionuclide (i.e. 

137Cs). 

2.4.1. Parent rock characterization  

Dickson and Scott (1997) gave an overview of 40K, 232Th and 238U distribution in 

parent rocks of Australia. Parent material radionuclide content explains the major 

part of gamma signal variation at the land surface, they conclude. More 

quantitatively, Rawlins et al. (2012) reported from an airborne gamma-ray survey 

that parent material accounted for 52% of gamma radiation variability in the whole  
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Figure 2-6 Variation of average K, U and Th content in igneous rocks with 

increasing Si content (adapted from Dickson and Scott, 1997, investigated in 
Australia) 

of Northern Ireland (13,542 km²). Generally, the more felsic rocks are, the higher 

their K, U and Th content (Rawlins et al., 2007). Dickson and Scott (1997) 

concluded from their data that metamorphism does not change radionuclide 

content and sedimentary rocks mirror gamma signatures of the source rock. The 

authors reported calcrete to be low in radionuclide content relative to the parent 

material, and iron-rich pisoliths or ferricretes to accumulate U and Th but not K. 

Residual quartz and sand contain little radionuclides (Taylor et al., 2002). Figure 

2-6 (Dickson and Scott, 1997) shows K, U and Th contents in several rock types. 

Dickson and Scott (1997) emphasize large variations within rock classes, e.g. 

granites do not exhibit one unique fingerprint. Therefore, local rock (and soil) 

signature reference measurements are needed (Wilford and Minty, 2006). Table 2-

4 shows from a ground-based survey in Thailand that limestone, in particular 

freshwater limestone, silicate rocks and related soils can be distinguished via their 

element content as well as ratios. 
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Table 2-4 Element content sensed by gamma-ray spectrometry in rocks and 
derived soils in Northern Thailand (condensed from Herrmann et al., 2010) 

Rock/soil N 
K  

[mg g-1] 
eU  

[µg g-1] 
eTh  

[µg g-1] 

Limestone 21 2 ± 1 2.0 ± 0.9 4.0 ± 2.7 

Alisols 42 18 ± 9 4.5 ± 1.4 15.4 ± 4.1 

Acrisols 105 6 ± 2 7.1 ± 2.2 27.8 ± 5.1 

Ferralsols 27 4 ± 2 7.4 ± 1.9 25.2 ± 5.5 

Umbrisols 21 8 ± 2 6.4 ± 2.1 23.1 ± 4.2 

Freshwater 
limestone 

3 
1 ± 1 0.7 ± 0.4 1.4 ± 0.7 

Chernozems 39 7 ±  3 1.9 ± 1.0 5.0 ± 3.0 

Claystone 6 25 ± 2 3.8 ± 1.7 12.9 ± 1.2 

Luvisols 90 21 ± 5 4.0 ± 1.4 16.0 ± 2.5 

Alisols 258 22 ± 5 4.5 ± 1.7 16.4 ± 3.2 

Umbrisols 75 28 ± 7 4.7 ± 1.5 15.4 ± 4.1 

Latite 1 17 0.9 13.1 

Cambisols 19 21 ± 8 1.2 ± 0.6 3.4 ± 1.1 

Luvisols 30 16 ± 4 1.6 ± 0.7 3.9 ± 0.9 

2.4.2. Environmental behaviour of potassium, thorium and uranium 

Soil property detection via gamma-ray spectrometry is possible because the 

elements (and their sensed radionuclides) show a different environmental 

behaviour.  

Potassium is prevalent in primary mass minerals like alkali-feldspars and micas in 

felsic rocks whereas mafic and ultramafic rocks contain less, carbonate rocks 

hardly any. Main secondary minerals containing K (and therefore 40K) are illite, 

vermiculite, chlorite and smectite (Blume et al., 2016). Due to a lack of specific 

sorption places, K is rather mobile and tends to absolute loss over time in humid 

to sub-humid environments and silicate rocks (Dickson and Scott, 1997, Herrmann 

et al., 2013). 

Thorium-bearing minerals like zircon, monazite, allanite, xenotime, apatite and 

sphene (Wilford and Minty, 2006) are rare and show generally low dissolution 

rates. Th is rather immobile, but better soluble in acid solutions (Langmuir and 

Herman, 1980). Consequently, it does not move in carbonaceous soils. However, 

it can form phosphate, sulphate or carbonate anion complexes (Xhixha, 2012). 
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Together with organic compounds, Th appears soluble at neutral (Chopin, 1988, in 

IAEA, 2003) to basic pH values, where it totally adsorbs on clay particles (Von 

Gunten et al., 1996). However, higher affinity to humic organic solids than clays 

was reported from a ground-based study in Germany (Dierke and Werban, 2013). 

Bednar et al. (2004) indicated Th affinity to metal oxide fractions. This is supported 

by findings of Taylor et al. (2002) with respect to hematite, or Wilford and Minty 

(2006) with respect to aluminum oxides. Vertical leaching in soil profiles was 

assumed minimal. Herrmann (2015) reported from ground-based data for N-

Thailand soils increasing Th content with decreasing grain size (clay and silt > 

sand) and about one third stored in the free oxide fraction of silt and clay.  

Uranium is mainly found in a number of so called “heavy“ minerals that also contain 

Th (Wilford and Minty, 2006). Like Th, it is rather immobile and often associated 

with anions. One difference is its redox sensitivity. As it forms complexes with 

carbonates, sulfates or phosphates in the more soluble form U6+ (Uranyl, UO2
2+ as 

prominent form in soils), its mobility is enhanced relative to Th. Uranium-238 

complexes adsorb on hydrous iron oxides like hematite (Taylor et al., 2002), 

aluminum oxides (Wilford and Minty, 2006) as well as on clay minerals and colloids 

(Dickson and Scott, 1997).  

2.4.3. Soil texture mapping  

Soil textures often show reliable correlation with soil gamma radiation because 

radionuclides form part of the mineral structure (K in clay minerals), part of the 

adsorption complex (K, Th), or are occluded in oxide minerals (e.g. U in goethite). 

In order to understand the effects in detail, we need to differentiate between the 

clay size fraction (share of particles <2 µm in diameter) and clay minerals, often 

the major share of particles in the clay size fraction.  

Taylor et al. (2002) found a significant linear relationship (r² = 0.71, p<0.001) 

between clay content and TC for the top 10 cm in Western Australia during an 

airborne study due to the affinity of Th and U contents to the clay size fraction. In 

a ground-based study in the Netherlands (Van Egmond et al. 2011), 232Th was 

evaluated as the most predictive nuclide predicting the clay size fraction with a 

coefficient of determination of r² =0.78. 

In calcareous soils with vertic soil properties in Sicily, Italy, relevant Spearman 

correlation coefficients were observed for gamma radiation and clay content (Fig. 
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2-7) as well as for the sand, but not for the silt content during a ground-based 

investigation (Priori et al., 2013). In a follow-up study regarding clay and stone 

contents in diverse parent materials, the statistical challenge for Priori et al. (2014) 

was that parent material composition explains a higher share of the signal 

variability than clay content variation. In response, the authors did data pre-

grouping based on parent material with explorative PCA in (1) feldspatic sandstone 

with high TC, (2) calcareous flysch with very low TC and (3) other parent materials 

with low to medium TC values. Signature variability within these groups was then 

referable to clay content (r2 between 0.64 and 0.74). Stoniness prediction was 

worse (r2 between 0.49 and 0.58) and related to local conditions. Similar 

conclusions were drawn from the radiometric map for Tuscany for which gamma 

spectrometry was carried out in a laboratory (Callegari et al., 2013).  

Heggemann et al. (2017) tested the potential of ground-based stop-and-go 

gamma-ray spectrometry for site-independent texture prediction by means of non- 

linear Support Vector Machine models (including all ROIs as well as TC) on 10 

arable fields with varying parent rocks in Germany. The majority of prediction errors 

for soil texture was <5%. When the sand fraction contained a certain amount of  

 

Figure 2-7 Scatterplot matrix between gamma ray signals and soil data of 
experimental fields (N= 55) in Sicily, Italy. Rs: Spearman correlation coefficient for 
p < 0.01, only relevant correlations are indicated (adapted from Priori et al., 2013) 
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radionuclide-bearing feldspars and micas instead of non-radioactive quartz, 

difficulties arose due to extra counts instead of signal dilution by quartz. 

Higher Th affinity to non-swelling clays like illite or kaolinite was revealed in studies 

by Bierwirth et al. (1996) and Taylor et al. (2002). However, both pointed to the 

possibility of erroneous results due to outgassing daughter nuclides in the 232Th 

(e.g. 220Rn) and 238U decay chains through cracks in swelling clay soils. 

In conclusion, gamma radiation can be quite easily used to predict soil texture in 

areas with homogeneous parent rock. In areas of heterogeneous lithology, more 

sophisticated statistical processing for data grouping is necessary to derive textural 

information. In principle, it appears possible to indirectly infer other physical 

properties that depend on clay content and type, like water infiltration, waterlogging 

potential, water retention or repellence (Beckett, 2007) applying pedotransfer 

functions. 

2.4.4. Plant-available potassium 

The hypothesis behind detection of the plant-available K (paK) fraction of soils via 

gamma-ray spectrometry is an assumed equilibrium between Kt content, mainly 

stored in primary silicate minerals (e.g. mica), the liberation of K via chemical 

weathering, and plant uptake or leaching losses. However, this equilibrium might 

be askew in agricultural landscapes due to high input of mobile K via fertilizers. It 

appears reasonable that processed fertilizer show different isotopic ratios, as 

indicated in Chauhan et al. (2013) and Alharbi (2013) in laboratory studies. In own 

investigations (unpublished) in Thailand and Germany, no relation between paK 

and the gamma signal could be established for fertilized soils in contrast to non-

fertilized soils, leading to the assumption of shifted 40K/Kt ratios. This, however, has 

to be investigated in detail.  

Wong and Harper (1999) found a strong log-linear correlation (r2 = 0.94) between 

Kt and the 40K gamma signal in a ground-based survey on 5,000 ha cultivated land 

in Australia. In addition, a high linear correlation (r2 = 0.93) between paK as 

extracted by the Colwell procedure (sodium bicarbonate extraction), and the 40K 

gamma signal was detected. Therefore, the authors state that, for the study area, 

gamma-ray spectrometry based determination of paK is a promising, rapid and 

cost-efficient application in (precision) agriculture. Yet, they did not mention any 
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fertilization influences, and the question of 40K/Kt ratios remains unsettled. With 

respect to the observation that below 100 mg kg-1 paK correlation disappeared  

(r² = 0.05), the authors did not give an explanation for this. The generally high 

correlations from this study might depend on dry conditions during the survey (i.e. 

no signal variability induced by water content) and an intervention area that was 

not heavily fertilized. 

Dierke and Werban (2013) investigated the same topic with ground-based 

measurements at field scale in Germany. Particle size distribution was 

homogenous, but their site was continuously fertilized. In contrast to Wong and 

Harper (1999), Dierke and Werban (2013) did not find any correlation between paK 

content and 40K (Pearson’s correlation coefficients for 4 sub-fields between -0.08 

and 0.14). Values were for the most part above the mentioned value of  

100 mg paK kg-1, which Wong and Harper (1999) set.  

In conclusion, paK is allocable by gamma-ray spectrometry in mineral soils under 

quasi-natural land use (no mineral K fertilization, forest, grassland). On arable land, 

the applicability has to be tested, for two reasons: (1) potential shift in the 40K/Kt 

ratio, and (2) shift in the paK/Kt ratio. 

2.4.5. Soil pH 

It is difficult to establish a general hypothesis, how soil pH and gamma radiation 

are coupled - although it is related to parent material constituents as well as soil 

development - since pH is a rather labile value and can be influenced in agricultural 

landscapes by a number of management measures.  

In the long term, base leaching is causing acidification depending on mineralogy 

and age of the land surface, i.e. pH value determination with gamma-ray 

spectrometry is an indirect effect (Bierwirth et al., 1996). If leaching of K and other 

neutral cations (mainly Ca, Mg) is congruent, the 40K signal is an indicator for pH. 

However, this is only true in non-carbonaceous systems. On marl or carbonate 

rocks, the K-signal is first increasing and the pH decreasing during soil 

development due to residual enrichment of silicate minerals, while carbonate is 

leached from the system (Herrmann et al., 2013). 

In the airborne study of Bierwirth et al. (1996) in Australia, a relationship between 

pH (in CaCl2) and 40K [%] in A horizons could be established following a data 

grouping based on geomorphological units: (1) piedmont terraces/sloping plains, 
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(2) lower footslopes of metasediments, (3) granites and (4) inactive alluvial areas. 

However, inspecting the data in detail shows that this relationship mainly works for 

the unit piedmont terraces/sloping plains but not for the lower footslopes of 

metasediments. Geochemical variability of the parent material might be the reason 

for the latter fact. 

Wong and Harper (1999) assumed ground-based gamma K counts to be log-

linearly correlated to pH values (r² = 0.69) for deeply weathered soils from granite 

in Western Australia. The detected spatial gradients were explained by decreasing 

eolian cover sheets consisting of parna (carbonate-rich, similar to loess, but 

particles are small clay mineral agglomerates), leading to decreasing K and 

carbonate contents with distance from the source. Hence, 40K radiation might be 

applicable for topsoil pH-prediction, but only in petrographically homogeneous 

areas and without regular pH-influencing measures like liming. 

2.4.6. Soil organic carbon and peat mapping 

Some studies evaluate SOC through gamma-ray spectrometry. In theory, this is 

possible, given the overall attenuating effect. However, the gamma-ray signal does 

not respond very sensitively to solely SOC concentration changes due to the 

relative high signal/noise ratio. However, it is not only the SOC attenuation effect 

but other related changes in soil organisation (pore volume  water content  

detected soil volume; exchange places for K) that impact on the global effect of 

SOC on the gamma-ray signal. Martz and De Jong (1990) found a positive 

correlation between organic carbon and radiometric data, but only because organic 

carbon was strongly bound to clay-humus-complexes, and clay was the real 

emitter. 

The anthropogenic radionuclide 137Cs can efficiently indicate SOC in soils. After its 

deposition, 137Cs readily adsorbs onto clay particles and taken up by vegetation 

due to its similar properties to K (Van den Bygaart and Protz, 2001). The authors 

found 137Cs contents to be most prominent in the top 5 cm together with the organic 

matter and clay size fraction of the investigated sandy soil in Canada. Correlation 

coefficients (not indicated whether Pearson or Spearman) accounted for r = 0.73 

for clay and r = 0.68 for organic matter content (p = 0.05) as a whole in four soil 

profiles. Downward movement or distribution of the nuclide does not happen as 

solute but via e.g. bioturbation (Takahashi et al., 2015) or clay illuviation (Hao et 
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al. 2000). Van den Bygaart and Protz (2001) further highlighted the fact that 137Cs 

enters the nutrient cycling via litter. Specific transfer factors for soil-to-plant 

assimilation exist.  

Peat areas are generally low emitters with respect to gamma radiation. First of all, 

peat (and soil organic matter in general) contains low concentration of emitting 

elements. Second, peat areas are normally (if not drained) saturated by water, 

efficiently attenuating the potential emission from underlying mineral sediments. 

Gamma-ray spectrometry is, thus, suitable for mapping peat areas. Rawlins et al. 

(2009) improved prediction accuracy for SOC in an airborne study in Northern 

Ireland by using 40K radiation and altitude information as well as grouping soils into 

mineral, organo-mineral and organic soils. Misclassifications could be reduced by 

adding bulk density as data layer for better recognition of peat areas.  

Beamish (2013) calculated the radiation transmissibility of two soils in Ireland with 

different bulk densities and water contents, based on attenuation coefficients 

derived from Minty (1997) (Tab. 2-5). According to his calculations, in drained peat 

areas, the gamma signal can originate from more than 1 m depth. This is congruent 

with ground-based findings of Billen et al (2015). However, the transmissibility is 

proportional to the signal strength of the underlying material. Inhomogeneities with 

respect to the materials underlying the peat need also to be taken into account as 

possible source of error. 

With a rather coarse approach, Hyvönen et al (2005) detected peat reserves for 

industrial exploitation during an airborne survey in Finland. The latter indicated that 

with 90 vol.% water content up to 0.6 m peat thickness could be differentiated. In 

consequence, detected radiations close to zero indicate peat layers of greater 

thickness. Unfortunately, correlation coefficients between radiation and peat 

thickness are missing. 

Finally, the applicability of gamma-spectrometry to peat mapping depends on: (1) 

the signal strength of the underlying mineral material (the higher, the more peat 

thickness can be differentiated), (2) the uniformity of underlying sediments, and (3) 

a known drainage scheme (due to the major attenuating effect of water) that allows 

to apply different algorithms depending on drainage intensity. Best results can be 

expected either in completely undrained systems or in drained systems after a long 

dry period (own unpublished data). 
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Table 2-5 Half-space reach of gamma radiation in mineral soils and peat (bulk 
density 0.1 g cm-3) from Beamish (2013) 

 Mineral soil Peat 

 
Bulk density  

[g cm-3] 
Water content  

[%] 

 1.1 1.6 20%a 80%a 

90% gamma radiation 
from distance [m] 

0.6 0.4 >>1.0 0.6 

a No indication of either weight or volume % was given. 

2.4.7. Soil type mapping 

Weathering 

During weathering in a leaching environment (humid to sub-humid climate), the 

mobile K fraction diminishes over time relative to Th and U. This weathering 

behaviour was confirmed by a study of Carrier et al. (2006) who mapped chemical 

erosion processes and progressive K loss from unweathered micaschist to 

saprolite applying airborne gamma-ray spectrometry in France and cross-checked 

these data with laboratory results. Chemical erosion or weathering indicates 

disintegration of rocks or soils via chemical processes like hydrolysis or oxidation. 

In the sensed environment, the average chemical weathering rate of K was 

estimated to be 17 ± 2 kg km-2 a-1 and the total average net export to be  

422 ± 50 kg m-2 compared to unweathered micaschists, i.e. an estimation accuracy 

of 12% in both cases.  

The Th/K ratio of soil material in comparison to the parent rock commonly provides 

good information about the weathering status. On this basis, Wilford et al. (2007) 

developed a weathering index (WI) to refine existing soil/regolith maps for their 

1,600 km² study region in Australia: 

WI = 0.405443 + 0.007304×relief – 0.069814×Th/K + 0.017819×TC (2.6) 

Therein, the relief represents the relative elevation difference within 150 m 

distance. Based on the index, the authors separated their study area into three 

classes, which were slightly, moderately and highly weathered regolith. Low relief, 

low TCs, and high Th/K ratios indicated highly weathered regoliths. This was 

explained by low water erosional activity for soils in low relief; the effects of 

weathering in situ were, thus, predominant. Field checks resulted in an r2 of 0.89.  
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Soil type distinction 

The relative difference of gamma signatures allows to potentially classify soil types. 

It is not possible to globally relate one soil type to one quantitative signature since 

different combinations of factors and processes can lead to the same result. 

Nevertheless, in an area where different soil types are present and reference 

measurements of each soil type were done, soil type mapping with in situ gamma-

ray spectrometry is promising and efficient (Reinhardt and Herrmann, 2017).  

Beamish (2013) described soil type mapping with airborne gamma data in Northern 

Ireland. He used spectra shapes of TC to distinguish brown earth, mineral gley, 

and peat (soil classification following Gauld et al., 1984; Fig. 2-8). Organic layers 

on top of mineral soils exhibited spectra, which were comparable to peat regarding 

skewness. Additionally, he found that the investigated Brown Podzol spectra with 

organic surface layer showed bimodal distributions. The studied Podzols without 

organic surface layer exhibited high and low value TC peaks and a shoulder peak, 

 
Figure 2-8 Normalized distributions of TC data for 8 soil types from Northern 

Ireland: a) Mineral gley (G) + brown earth (BE) and mineral gley + organic (OA), b) 

groundwater humic gley (HG) and humic ranker (HR), c) brown podzol (BP) and 

podzol (POD) and d) ranker (R) and sand ranker (SR) (Beamish, 2013) 
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i.e. a different spectra shape (Fig. 2-8c). In conclusion, spectra shapes in addition 

to element content and element ratios can be used to map certain soil types. 

Martelet et al. (2014) worked on silty plateaus in central France. They found the 

following Reference Soil Groups in a toposequence: (Luvic) Cambisol, Haplic 

Luvisol, Albeluvisol, Luvic Planosol, Stagnosol-Gleysol, Haplic Planosol. While for 

the first three a similar airborne gamma signature was detected, the radiation was 

tremendously lower for the latter in all energy channels. The authors related this 

finding to weathering and judged gamma-ray spectrometry as suitable to explore 

weathering stages of those soil type sequences. The authors waited “several hours 

after rainfalls” to let the soil dry before their measurements. However, for soils with 

hardly permeable layers and stagnating water like Planosols and Stagnosols, the 

higher topsoil water contents might better explain the generally lower radiation in 

all channels. However, water content was not indicated in the publication by 

Martelet et al. (2014) – as it is in many articles but would help in interpreting the 

results. 

Van den Bygaart and Protz (2001) studied podzol profiles horizon-wise in Canada. 

Potassium-40 and 232Th gamma radiation was measured in the laboratory. The 

authors found lower Th abundance in relation to global averages and referred this 

fact to the coarse particle size (Megumi and Mamuro, 1977). Within the profile 40K 

and 232Th radionuclides were translocated in the course of the podzolization 

process and 232Th was adsorbed to the Fe and Al oxides in the Bf and Bfh horizons, 

where radiation levels were increased. 

WRB clay illuviation type soils, namely Luvisols, Lixisols, Alisols and Acrisols (IUSS 

Working Group, 2015) have formerly not been distinguishable in the field, due to 

their separation based on chemical criteria that need to be analysed in the 

laboratory. Schuler et al. (2011) introduced ground-based gamma-ray 

spectrometry in combination with conservative field pH measurements for an in situ 

distinction in Northern Thailand. While the Th/K ratio was used as surrogate for 

CECclay and, thus, clay mineral composition, the pH indicated the base saturation. 

Acrisols could be discriminated from Alisols by the Th/K ratio (Fig. 2-9) since 

Acrisols mainly contain K-free kaolinite whereas Alisols are characterised by K-

bearing illite in general.  
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Figure 2-9 Binary plot of K vs. Th in several soils in a catchment in Thailand 
(adapted from Herrmann et al., 2010) 

Schuler et al. (2011) could generally detect the difference from surface 

measurements but more accurate results were obtained by subsurface 

measurements.  

The published studies show that gamma data can be used in various ways: 

absolute data, relative changes with respect to the parent material, element ratios, 

spectral shapes etc. It is worthwhile to investigate in more detail, which approach 

is feasible under which environmental conditions.  

Soil erosion mapping 

Soil erosion and deposition influence soils and their radiation properties. In areas 

of soil translocation, soils do not necessarily reflect the radionuclide composition 

of the rock or in situ weathering, but topography and past landscape processes as 

well. In consequence, erosional truncation and sources of deposited soil material 

can potentially be traced by gamma radiation.  

Bierwirth et al. (1996) mapped an area in north-western Australia with airborne 

gamma-ray spectrometry. Figure 2-10 from their study shows that 40K signals 

depend on relative elevation, mountain ridges representing the highest values. This 

fact is explained by exposition of the parent material, while the weathered soil was 

deposited farther downslope.  
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Figure 2-10 Digital elevation model with radiometrically determined K 

concentrations. K concentrations range from 0.9% (blue) to 3% (red). Higher 
concentration is regularly related to high landscape positions and soil erosion, 
excavating bare rock and lowering soil burden depth (Bierwirth et al., 1996) 

Martz and De Jong (1990), who sampled their sites for analyses in the laboratory, 

and Pickup and Marks (2000) using airborne data showed rising 40K contents 

towards the valley floors. Downslope accumulations of finer fractions (mainly clay) 

that contain higher shares of 40K explain these findings. Pickup and Marks (2000) 

further differentiated depositional behaviour depending on rock type: Landscapes 

from basalt rocks showed topography related element gradients to a lesser extent 

than those from granite or metamorphosed sediments because soil material 

weathered from basalt shows a lower spread of grain sizes with a majority of 

particles from finer fractions that are less erodible in aggregated form. Martz and 

De Jong (1990) were able to differentiate between eolian and alluvial sediments, 

due to different effects of the transport processes on grain size sorting; eolian 

materials in their case being coarser and consequently lower in gamma radiation. 

Spatial distribution of 137Cs is used for soil erosion mapping as well. Cesium-137 

is predominantly found in the top 10 cm of soil (IAEA, 2003) in the northern 

hemisphere. General assumptions for soil erosion mapping with 137Cs are that the 

nuclide has been homogeneously distributed in an area and that it is hardly 

vertically reallocated in the soil profile by whatever process. However, both 

assumptions are in most cases not completely valid depending on size of the area 

(depositional patterns depend on rainfall patterns at the given time) and land use 
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(redistribution through surface flow). Pre-requisite for spatial soil erosion estimation 

is an undisturbed reference profile serving as comparison for truncated (lower 

137Cs signal) or depositional (higher 137Cs signal) sites. Reference profiles usually 

show an exponential decrease of 137Cs activity with depth (e.g. Schoorl et al., 

2004). Normally, only one sampling campaign is necessary to gain the needed 

samples. As a standard, analyses are carried out with a laboratory gamma-ray 

spectrometer in order to achieve sufficient counting rates (Walling, 1998). The 

quantification of SOC loss by soil erosion using 137Cs signature measurements is 

easily accomplishable due to the adsorption of both matters onto mineral particles 

and similar translocation processes (Ritchie and McCarty, 2003).  

Haering et al. (2014) applied this approach for the assessment of SOC loss via soil 

erosion after land use change in a mountainous region of Vietnam. However, Fang 

et al. (2012) studied “Black Soils” in China and could not detect any relationships 

between slope position and 137Cs signal. They explained this fact by tremendous 

gullies serving as major sediment carriers, interrupting the regular sediment 

redistribution along the slope. 

Advantages and limitations of 137Cs, 7Be and 210Pbex measurements for soil erosion 

assessments are given by Chappell (1999) and Mabit et al. (2008). A definite 

advantage is that a medium term average (50 years) soil erosion evaluation is 

enabled based on only one field visit for sampling. As limitations, the authors 

mention the problem of polluted areas caused by the Chernobyl accident, which 

complicates the spatial homogeneity assumption with regard to original deposition 

rates. In contrast, areas in the southern hemisphere often contain too little 137Cs 

for application of this method. For event-based soil erosion assessments, i.e. single 

storm or rainfall, 137Cs determination is not appropriate due to the needed 

assumption of spatial homogeneity. For this purpose, Mabit et al. (2008) 

recommend the use of the 7Be radionuclide, which is not dealt with in this review. 

2.5. Conclusions 

Gamma-ray spectrometry enables rapid and informative surveys but requires 

deliberate application, terrain knowledge and data interpretation. Optimal sensing 

conditions are dry soil, low standing biomass, stable weather and in situ developed 

soils at places with low geomorphic activity. Strong signals result in higher signal 

to noise ratio and more distinct spectra for better interpretability. Consequently, 
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higher spatially resolved data can better serve interpretation of weak signals from 

soils for mapping. Direct correlation of soil properties and gamma signatures can 

lead to wrong assumptions if effects of certain variables (e.g. water content) are 

not known. Element ratios can be interpreted with respect to weathering intensity. 

The TC spectrum can be used for soil type mapping. Single or multiple absolute 

and relative values can be related to a number of soil properties.  

In particular, airborne studies need ground validation and a sufficient number of 

checks by laboratory data. Number and choice of ground sampling points, their 

geographical matching with measurement data, sampling depth, stratification of 

the terrain, data processing or ratio of calibration to validation point numbers are 

essential.  

Advantageous for soil science applications is the depth-integrated signal of 

gamma-ray spectrometry capturing the plant main rooting depth. In contrast to 

other remote or proximal sensing methods (e.g. VIS-NIR) that only “see” the 

surface or some millimeters in depth, gamma-ray spectrometry can provide 

information down to 1 m in peaty soils, and 30 to 60 cm in mineral soils. Particularly, 

in difficult to access or fragile terrains like forests, nature reserves, planted 

agricultural fields and peat areas, airborne gamma-ray spectrometry (airplane or 

UAV) can provide valuable data sets.  

Airborne application has advantages as to costs and efficiency, but also higher 

inaccuracy potentially due to non-transparent or not properly processed correction 

algorithms and lower spatial resolution than ground-based surveys. In order to 

reduce spatial noise it is advisable to sample water content and bulk density at 

ground truthing sites at the same time. 

Next to classical soil science, potential applications are the investigation of sites 

contaminated by sewage sludge, mining waste or radioactive accidents. In the 

latter respect, drones and recently available light gamma detectors can be 

deployed. Also in precision agriculture, gamma-ray spectrometry is suitable for 

exploring soil texture, water logging, or spots with elevated radiation from e.g. 

fertilizers. Generally speaking, via airborne gamma-ray spectrometry, 

contaminated areas can be discovered and their dimensions defined without 

posing a human being at risk. 

It is essential that the researcher has a sound knowledge on the technical aspects 

influencing the gamma signal. This refers, in particular, to the assumptions made 

to convert gamma counts into element contents, to equilibrium aspects in the decay 

chains (e.g. 222Rn loss, secular equilibrium), to the major processes introducing 
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noise (e.g. soil water content, organic surface layers). In addition, the effect of soil 

(e.g. clay translocation) and landscape processes (e.g. soil erosion) on the surface 

signal should be known. Adequate data interpretation is often not possible without 

basic knowledge in petrography, mineralogy and geo-chemistry. 

There is still need for research. Experimental proof under field conditions (scattered 

radiation) of attenuation coefficients calculated from theoretical application of the 

Lambert-Beer law (collimated beam condition) is still missing. Neither in situ 

investigations concerning applicability of the calculated attenuation coefficients nor 

effective monitoring of volume contributing to the signal exist. In particular, the 

geometric correction of signals measured in non-2 geometries, i.e. rugged terrain, 

needs further inputs. Discrimination of 40K during plant uptake is of interest in order 

to enable correction algorithms for the vegetation in airborne studies. The nuclide 

composition of fertilizers (K-fertilizer, P-fertilizer for the associated U component) 

should be studied, too, in order to evaluate the potential effect of fertilization in 

agricultural landscapes on 40K/Kt ratios in respective soils. 
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3.1. Abstract 

Food shortages often threaten central Tanzania. Sustainable action adapted to 

local environmental conditions is desperately needed. In the framework of the 

Trans-SEC project, two food value chains in the Dodoma region of Tanzania were 

inspected in order to make propositions for improvement, spanning from soil 

preparation to product consumption. Therefore, soil mapping approaches were 

required to obtain rapid and reliable information. This would enable local farmers 

to participate in the development of upgrading strategies and extensionists to 

develop recommendations that take local soil conditions into account. In this study, 

a combination of participatory soil mapping and gamma ray spectrometry assisted 

transect mapping was applied to establish local soil maps of two villages in the 

Dodoma region. Participatory mapping included key informant interviews, group 

discussions and transect walks. Local farmers indicated reference profiles for local 

soil types. Their gamma radiation signatures delivered base information for further 

soil exploration and soil unit delineation in the field. Finally, high resolution satellite 

images were used to establish the village soil maps. This approach allows capture 

of the major soil differences within a village territory and reduction of the costs of 

chemical analyses. Challenges were soil unit separation with gamma ray 

spectrometry due to erosional redistribution processes at the surface, correct 

translation of specific terms from local tongues as well as variable individual soil 

knowledge of local participants. Ultimately, the combination of local soil knowledge 

with innovative scientific mapping yielded quick results with sufficient spatial 

resolution for extension work. 

Keywords: Local soil knowledge, participatory research, rapid soil mapping 

approach, soil radiative properties
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3.2. Introduction 

Central Tanzania frequently suffers from food shortages (Liwenga, 2013). In this 

region, low and unreliable rainfall, as well as degraded soils and poor agricultural 

practices, lead to unsatisfactory yields (Sledgers, 2008; Mwalyosi, 1992). As the 

population continues to grow (Central Intelligence Agency, 2014), it is necessary 

to invest in more agricultural research that delivers recommendations for site-

adapted cropping. This includes the necessity for soil information as well as the 

development of upgrading strategies that are adapted to the soil types and respect 

the socio-economic conditions of the local population (Norton et al., 1998). 

Plant performance in the widely distributed subsistence cropping systems found in 

the Dodoma region of Tanzania mainly depends on soil properties and their 

management (Blume et al., 2016; Letey, 1985). Therefore, soil information at a 

sufficient spatial resolution is required to enable extension staff to make sound 

proposals on where to apply specific management measures (AbdulRahim et al., 

2008). In addition, a soil map based on the relevant local soil units will allow the 

development of innovation-testing schemes that deliver sufficient information about 

where a certain management measure might be successful. This way, blanket 

recommendations, such as for fertilizer application, can be avoided. Unfortunately, 

soil mapping is a laborious and cost-intensive measure as Schuler et al. (2010) 

and van der Klooster et al. (2011) have pointed out. However, many approaches 

and methods have emerged in recent decades which facilitate mapping at village 

scale, which is the spatial scale of interest for development action. Methods such 

as digital soil mapping and remote sensing are promising approaches for the 

simplification of soil mapping (Werban et al., 2013.). Other proximal sensing 

methods (i.e. sensing in contact or close proximity to the soil surface) exist. These 

include infrared spectroscopy or ground based gamma spectrometry. In this study 

the combined use of two easy-to-apply methods, i.e. local soil knowledge and 

gamma ray spectrometry, to develop local soil maps in a development orientated 

environment, was examined. 

The incorporation of local knowledge on soils appears as part of an optimal 

research approach at village scale if participatory development action is planned. 

This approach has already been applied by many, including Clemens et al. (2010), 

Schuler et al. (2010) and Lippe et al. (2011). Evidently, local farmers know best 

about the terrain characteristics in their home region. Therefore, immediate 

overviews about soil units and their specific characteristics relevant to cropping 

can be easily collected from key informant interviews. In particular, plant growth 
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deficits as well as opportunities to enhance crop yields at given sites with related 

soil properties may be revealed (Barrios and Trejo, 2003; Cools et al., 2003). Often 

farming families live at a given site for generations. Consequently, they have 

developed and inherited strategies to deal with the constraints posed by the natural 

environment such as low soil fertility status or water scarcity (Oudwater and Martin, 

2003). Scientists and extensionists should explore this rich knowledge in their own 

interest, since it can speed up their own knowledge generation processes (Schuler 

et al., 2010). Nevertheless, individual knowledge cannot be directly generalized; 

farmer opinions and expressions need to be verified in the field using scientific 

methods. In consequence, a combination of approaches and methods promise 

rapid and reliable results. 

Gamma ray spectrometry is a rapid and easy application that immediately provides 

total element concentrations in the field that are indicative of nutrient stocks and 

weathering processes (Dierke and Werban, 2013;Wilford et al., 2007). Gamma 

spectrometry can be applied remotely or on the ground, and it is non-invasive. It 

measures the nuclear decay of 40K, 232Th and 238U radionuclides (IAEA 2003). The 

measured gamma quant counts per unit time are transferred into concentrations 

via calibration procedures. 40K decay can be directly measured. 232Th and 238U 

concentrations can only be determined via daughter nuclides that emit sufficient 

gamma quants. The 232Th and 238U concentrations are therefore commonly 

designated as eTh and eU. The e stands here for equivalent. The eU signal has to 

be interpreted with caution, since equilibrium conditions are seldom reached in 

soils. Therefore, Schuler et al. (2011) identified 40K and eTh concentrations as 

“most relevant to distinguish some Reference Soil Groups”. 

Rock-borne minerals containing 40K, 232Th and 238U are natural gamma ray 

emitters. Soil forming processes alter the inherited mineral composition. Thus, 

different soils result in specific gamma signatures (Herrmann et al., 2013). These 

can be used to map soil types (Herrmann et al., 2010; Wilford and Minty, 2006). 

Since several chemical and physical soil properties influence the gamma signal, 

they can be assessed using inverse calibration. Applications include estimation of 

soil water content (Caroll, 1981) or peat thickness (Beamish, 2013) from air-borne 

gamma spectrometry. Soil texture, plant available K, total P and organic C seem 

to be detectable via gamma spectrometry as well (Pracilio et al., 2006; Wong and 

Harper, 1999), offering plenty of applications in agriculture. These applications can 

help to reduce costly laboratory analysis and support the direct classification of 

soils in the field (Herrmann et al., 2013). 
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The present study was conducted within the framework of Trans-SEC (Innovating 

Strategies to Safeguard Food Security using Technology and Knowledge Transfer: 

A People centered Approach, www.trans-SEC.org), which is a research-for-

development project with a special focus on action research and sustainable food 

security in collaboration with local stakeholders (Graef et al., 2014). It concentrates 

on the participatory improvement of food value chains in the Dodoma and 

Morogoro regions of Tanzania. These regions serve as models for semi-arid and 

sub-humid environments, respectively. All case study sites (CSS) have a relief 

dependent soil-type distribution. The soil properties range from sandy to clayey 

and from acid to basic. Consequently, crop and soil management strategies will 

have different effects, depending on the site. For the Trans-SEC project to 

reasonably distribute on-farm trials in space and to stratify the results, a village soil 

map was a pre-requisite. To allow for better spatially-restricted recommendations 

within the project that are understandable by farmers, the intention was to use a 

local soil classification. The aim of this work was to establish soil maps for the two 

CSS in the Dodoma region by testing the combination of local soil knowledge and 

gamma radiation measurements as a soil mapping approach. 

3.3. Materials and Methods 

3.3.1. Study area 

The present survey was conducted in two villages, Ilolo and Idifu, in Chamwino 

district, Tanzania (E35°59´11″ S6°25′13″and E35°54′50″ S6°20′26″, respectively). 

The village areas are about 26 km2 for Ilolo and 90 km2 for Idifu. The local climate 

is semi-arid with an average annual precipitation of 594 mm and an average annual 

temperature of 23°C at Dodoma airport (1980 to 2010, TMA, 2013). The land is 

extensively used for herding and for rainfed crop agriculture. The natural vegetation 

is dry savanna. Cropping is feasible only during the rainy season from November 

to April. The most commonly cultivated crops are pearl millet (Pennisetum glaucum 

(L.) R.Br.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) as 

staples. Sunflower (Helianthus annuus L.), groundnut (Arachis hypogaea L.), 

bambara nut (Vigna subterranea (L.)Verdc.) and sesame (Sesamum indicum L.) 

are planted as cash crops but also for personal use (unpublished data from project 

household surveys; Institute for Environmental Economics and World Trade, 

Hannover, Germany). Sporadically, grape cultivation is done, including field 

preparation with deep furrows, filled with dung as fertilizer. This was more 

frequently observed in Idifu. Main agricultural constraints are the short cropping 
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period, spatially and temporally variable rainfall, as well as a high share of eroded 

soils and soils with low chemical fertility, in particular low amounts of plant-available 

P and low N. 

3.3.2. Topography, geology and soils 

Ilolo exhibits elevations between 1050 m and 1190 m above sea level (asl). The 

area is more undulating than the Idifu area (which has elevations from 990 m to 

1050 m asl). Soil surfaces are usually bare in the dry season. Thus, as in other 

semiarid areas (Herrmann et al., 1996), water- and wind-erosion play important 

roles. Geology is variable, reaching from unconsolidated sorted Quaternary 

sediments over Tertiary intermediary metamorphic rocks to felsic and intermediary 

Precambrian volcanic rocks (own observations). Geological maps from 1953 and 

1967 (Geological Survey of Tanzania, Dodoma) indicate so-called “contaminated 

granite” as the dominant rock type. However, the resolution of these maps is too 

low (1:100.000 and 1:125.000) to provide reliable baseline information. These 

maps declare that about 60% of the Ilolo area and nearly 80% of the Idifu area 

have “undifferentiated soils”. This information does not coincide with our own 

observations, which show clear topography-related sequences (catenas), including 

rocky hilltops, intermediate sandwashed plains and clayey depressions. 

Additionally the available geological maps were rated as not reliable as they 

assigned geological units as soils, partly with local soil names and in this way did 

not provide information about parent rocks.  

In quasi-endorheic basins, the accumulation of fine clastic material together with 

secondary solute-derived accumulations (e.g. carbonate) are found. These basins 

turn to swamps during the rainy season. Severe erosion is evident in most places 

arising from overgrazing and deforestation for firewood or additional agricultural 

land. Soils, except those from the basins, are mostly of low nutrient status and 

organic matter content. The United Nations Soil Survey Report (1983) specified 

inadequate moisture availability, low soil fertility status and soil erosion as the 

major soil-related constraints in the Dodoma region. 

3.3.3. Population and cropping 

The village people in the intervention area almost entirely belong to the Gogo tribe. 

They were resettled in village communities by the government in 1986 (Liwenga, 

2013) in order to decrease overgrazing and land degradation in the Dodoma 

Region (HADO program, 1973). Most farmers rely on subsistence agriculture, 
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having several fields spread widely over the village area. They remain agro-

pastoralists, but to a lesser extent than 50 years ago (Liwenga, 2013).  

Sorghum and pearl millet, as staple crops, are grown everywhere. Soil fertility is 

occasionally intentionally improved by fallowing, application of manure, crop 

rotation and/or intercropping. For intercropping, bambara nut, chickpea, groundnut 

or cowpea are planted together with sunflower, sorghum, millet or maize. Planting 

of staple crops together with legumes, sunflower or vegetables such as cucumber 

or pumpkin was frequently observed during data collection for this study. Mineral 

fertilizers are hardly used due to three reasons: i. limited access; ii. limited financial 

resources; iii. risk of financial loss due to insecure return on investment. Tillage is 

done with oxen and plough or by hand and hoe. In the latter case, only sowing 

holes are prepared at appropriate distances according to the grown crop. When 

available, farmers use oxen and plough. Sometimes oxen are rented. Cattle 

(mainly oxen or cows) or goats serve as resource capital for hard times. Only 

better-off households keep herds. The number of animals per farm varies from one 

up to 20 cows or oxen, or one up to 30 goats as was observed during data 

collection. 

3.3.4. Participatory approach 

In general, the participatory approach followed methods described in Chambers 

(1992). Field work was accomplished from November 2013 until March 2014 and 

during April and May 2015 in Ilolo. In Idifu, it was conducted from September until 

November 2014 and then in April to May 2015.  

First, focus group discussions with people considered to be knowledgeable about 

the physical village setting were carried out in both CSS for the elaboration of the 

local soil map. Focus group participants were chosen by the village head. In Ilolo, 

11 people including four women from the 11 sub-villages took part in the 

discussion; 16 participants including two women came from the 16 sub-villages in 

Idifu. Figure 3-1 displays the scheme used in the mapping process.  

In each village, three focus group discussions took place. The first one was 

dedicated to the introduction of local famers to the objectives of the joint effort and 

the compilation of known local soil types as well as their delineation on a satellite 

image. A high resolution (0.6 m * 0.6 m on the ground) satellite image of the village 

area (size DIN A1 corresponding to 84 cm × 119 cm), printed as a color image, 

was introduced to the focus groups as a spatial resource.  
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Figure 3-1 Scheme of the mapping process used in Chamwino, Tanzania, 
including participatory action, field work and map creation. Information on the 
stakeholder that assisted during the specific steps is in brackets 

The satellite images were taken with a Worldview-2 (WV-2) 4-band sensor for both 

areas. The recordings of Ilolo were taken on 23/9/2010 and 21/4/2012; those for 

Idifu on 18/8/2010 and 23/9/2010. To help the orientation of participants, known fix 

points such as mountains, streets or ephemeral riverbeds were located together 

on the printout. Guided discussions concerning soil properties and soil unit 

allocation were held. In this first meeting, the later key informants for assistance in 

the field and for queries outside of the focus groups were chosen. Selection was 

done based on observations about knowledge as well as respect from the other 

focus group members towards the person. During the following field survey with 

the key informants, the village terrain was overviewed and typical locations for the 

previously-described local soil types were assigned together with the key 

informants. A GPS device (GPSmap 62 s, Garmin) was used to record the 

geographical coordinates. The second group meeting was timed after the first 

general field survey with the key informants.  

It focused on a clarification of terminology as well as map refinement. Afterwards, 

the reference profiles of the local soil types, chosen with the key informants before, 

were described (Jahn et al., 2006) and sampled. For map validation and its further 

refinement, six transect walks with key informants were carried out in each CSS 

before a final group meeting. Farmers’ on-farm trial samplings were carried out 

concomitant with the transect sampling period. They were done without key 

informants but in collaboration with the owners of the fields.  
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Table 3-1 Overview of participatory soil mapping and sampling actions in 
Chamwino, Tanzania  

 aN Background Location Involved 

Soil profiles 5; 5 Discussions/satellite image, 
field visits 

Farmer-indicated spots for 
reference soils 

Focus group, key 
informants  
during visits 

Transects 82; 92 Participatory map/ satellite 
image 

After Graef (1999) and 
Milne (1935) 

Key informants 

On-farm trial sites 32; 58 Workshops with Trans-SEC 
involved farmers 

Farmers’ fields TransSEC farmers 

Random spots 10; 12 Field visits Randomly Key informants 

These point measurements were used for further refinement and validation of the 

map. Using information obtained during the transect walks with key informants, on-

farm trial sampling and consequent map adjustments, a last meeting was held with 

the focus group members for final agreement on the jointly-elaborated map.  

3.3.5. Soil sampling 

The reference profiles were described following FAO guidelines (Jahn et al., 2006) 

and classified after the World Reference Base of Soil Resources (IUSS Working 

Group WRB, 2015). Soil samples were analyzed in the laboratory (see section 

Laboratory analyses). Transect locations were chosen using the following rules: (i) 

they should lead through different map units, (ii) they should at best be located 

perpendicular to changes in soils and/or landscapes, and (iii) represent more or 

less straight lines (following Graef, 1999 and the catena concept in Milne, 1935). 

Additional to transects, soils at the on-farm trial sites of the TransSEC project were 

described and sampled from 0 to 20 cm and 21 to 60 cm depth. In Ilolo, 32 farmers’ 

field plots were sampled; in Idifu 58 plots. On the transects, augerings to depths of 

approximately 80 cm (depending on soil hardness to less than 80 cm) were done 

at sampling locations every 50, 100 or 150 m depending on terrain heterogeneity. 

Topsoils down to 30 cm were sampled. Soil texture was estimated in the field (Jahn 

et al., 2006), soil colors were determined using a Munsell soil color chart (Munsell, 

2009). The surrounding area was described in a 25 m circumference covering 

vegetation, elevation and surface characteristics. On-farm trial sites were 10 m X 

10 m. Samples were pooled from four augers within the plot. An overview of the 

participative soil sampling actions is given in Table 3-1. 

  

aN depicts the number of sampling points for Ilolo; Idifu 
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3.3.7. Gamma ray mapping 

Gamma ray signatures were measured vertically with the device placed on the bare 

soil surface using the ground based, handheld spectrometer Gamma Surveyor 

GRM-260 (Gf Instruments, s.r.o. Geophysical Equipment and Services, Czech 

Republic) containing a NaI-crystal  detector (4 cm3). It was calibrated over 

calibration pads following IAEA guidelines (IAEA 2003) by the producer. In contrast 

to airborne gamma ray spectrometry, background radiation does not play a 

significant role during ground-based measurements. The radiation of 40K  

(1.46 MeV), eU (1.76 MeV) and eTh (2.82 MeV) was determined at each point with 

a sampling time of three minutes and four repetitions. Gamma ray measurements 

were done for the reference soil profile spots, transect sampling points and on-farm 

trial sites. Random spots in the landscape were recorded with the spectrometer 

during field trips. Reference profile gamma measurements were conducted in a 

circumference not more than 50 cm away from the profile. During transect walks, 

the measurements were done at the sampling points described above. Gamma 

radiation measurements in farmers' testing sites were made in the middle of the 10 

m X 10 m plot. Soil moisture and organic matter attenuate gamma radiation but 

were not relevant in this study as measurements were carried out in the dry season 

and on soils typically showing very low organic matter contents. Differing soil bulk 

densities slightly influence captured soil volumes for gamma ray spectrometry (de 

Groot et al., 2009) but were not considered to be large as only top soils were 

captured during gamma ray measurements. 

3.3.8. Laboratory analyses 

For reference profile characterization, laboratory analyses concerning pH in water 

(Landon, 1984), electrical conductivity (Herrmann et al., 1996), total C and N 

(Elementar Macro, Heraeus, Germany), plant available P and K (Bray and Kurtz, 

1945), carbonate content (gasometric method after Scheibler, DIN 18129-G - ISO 

10693), cation exchange capacity and exchangeable base cations (Chabra et al., 

1975), bulk density (Blake and Hartge, 1986) and texture (pipette method after 

Köhn, DIN ISO 11277) were carried out in the laboratories of the University of 

Hohenheim in Germany. The resulting scientifically-revised participatory soil maps 

were generated with QuantumGIS Version Lyon 2.12. 
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3.5. Results and discussion 

3.5.1. Local soil map 

Initially focus group farmers had difficulties in orienting themselves on the “birds-

eye” perspective satellite image, since this was a new experience for them. 

However, due to the high resolution of the satellite image that allowed them to 

identify each single tree and farm house, participants quickly acquainted 

themselves. The delineation of the village boundaries caused lively discussions 

since these might be defined differently by village members and state authorities. 

Farmers in both villages pointed out that there have been reallocations of land over 

the years but could finally and commonly agree on village boundaries. These were 

mostly related to easily identifiable landmarks such as streets, ephemeral riverbeds 

or mountains. They were checked on later field trips and confirmed to be located 

in the expected places. 

The next intended step was to identify the existing soils and their properties. This 

was a delicate step since terms and concepts are not the same in all languages 

and translation might consequently alter the original statement (Herrmann, 2013). 

At a very early stage in the discussions, the Swahili word “udongo” (that literally 

means soil) and further expressions like “kichanga” /sand or “mfinyanzi” /clay 

appeared. This implied that the term and concept of soil also appears in the Gogo 

language of the participants and that translation did not lead to great mis-

representation of participant statements. The main criteria to distinguish local soil 

types were topsoil colour and texture, fertility, workability and water holding 

capacity, in that order. This finding corresponded with the experience reported by 

Barrera-Bassols and Zinck (2003) in their overview about ethno-pedology. Three 

of these terms describe intrinsic soil properties and one each relates to a soil 

function or cultivation practices, and as such are anthropocentric. Across the two 

villages, soil properties were conformably attributed to the local soil types. Table 

3-2 shows soil denominations and related property descriptions given by members 

of the focus groups as well as the corresponding WRB Reference Soil Groups (the 

latter based on analyses of reference profiles). 

Already during the first focus group meeting, farmers were able to delineate the 

borders of soil units within their particular village territory. In both CSS, key 

informants drew the soil units on the satellite images during an animated 

discussion. Color differences of the images served as major points of adjustment  
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Table 3-2 Local soil denomination of comparable soils and their respective 
properties in Ilolo and Idifu villages, Dodoma region, Tanzania, with corresponding 
WRB Reference Soil Groups 

Local soil denomination WRB classification Locally stated soil properties 

Ilolo Idifu (2014)  

Mbuga (swamp) Mbuga (swamp) Sodic Vertisol (hypereutric) Black, surface cracks and very hard 
when dry, very sticky when wet, fertile, 
hard to plough or cultivate, retains water 
for a long time, some areas salt affected 

Mfinyanzi (clay) Kichanga mwekundu 

(red sand) 

Chromic Lixisol 

(hypereutric)a 

Red, breaks into aggregates, sticky when 
wet, retains water if infiltration happens, 
high run off, fertility adequate, plough-
able with hoe or plough, fertility 
improvable with fertilizer 

Tifu tifu  
(dust) 

Kichanga mwekundu 
nyika 

(red mixed sand) 

Chromic Lixisol Reddish, dusty, fertility adequate, easy to 
plough or cultivate, low moisture 
retention 

Kichanga (sand) Kichanga mweupe 

(white sand) 

Haplic Acrisol White/reddish, sandy, loose, high 
infiltration rate, low moisture retention, 
least fertility 

Ikanganyika 
(mixed soil) 

- Cutanic Stagnic Luvisol 

(hypereutric) 

Grey, surface cracks, hard when dry, 
good fertility, similar to Sodic Vertisol 
(hypereutric) but easier to cultivate, water 
logging after rain 

- Kichanga nyika 

(mixed sand) 

Chromic Lixisol (loamic) Reddish, sandy, fertility adequate, similar 
to Chromic Lixisol above but coarser 
texture 

aThis soil was found as Chromic Lixisol (hypereutric, profondic) in Ilolo 

for delineation, but the group scrutinized nearly every line. Only swamp areas were 

identified without questioning due to a distinct dark grey topsoil colour, which was 

also clear on the printouts. The farmers in Ilolo quickly listed the main soil units. 

Only the spatially restricted Luvisol was mentioned after some time of further 

reflection and discussion. Participants from Idifu had more problems to recall the 

relevant soil units and their spatial distribution. There were some differences of 

opinion. Hilltop soils were not mentioned during the discussions in both CSS. On 

prompting, farmers offered no explicit denomination for these soil units. They 

stated that hilltop soils were not relevant for cropping and, therefore, they did not 

need a name for them. The resulting preliminary local soil maps of both villages 

are shown in Figure 3-2a (for Ilolo) and 3-2c (for Idifu).  

Two cases of language disorientation occurred during the focus group discussion 

in Ilolo, apparently because the translator had insufficient command of the local 

Gogo language, and was fully conversant only in Swahili and English. In the first 

case, group members used Swahili and Gogo words for the same soil unit. Hence, 

two soil units were noted. This misunderstanding was clarified later during the 
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delineation of the soil unit boundary. In the second case, the Gogo expression 

“nghuruhi” was misleadingly translated to “mfinyanzi”/red clay in the first focus 

group discussion. Because a reddish soil of different texture (“tifu tifu”/dust) was 

found during field trips, this misapprehension was noticed. In the second 

clarification meeting, the distinction between the soil units was discussed. The 

initial “nghuruhi” unit was finally divided into the “tifu tifu”/dust and the 

“mfyinyanzi”/clay unit. In Idifu, in part due to this experience, no such language 

confusion occurred. 

Follow-up field surveys were done to get a general idea of the soils in the study 

area and their distribution across the landscape. During the field survey, one soil 

unit was discovered in Ilolo which was not mentioned in the first group meeting. 

Subsequently, reference profile locations were defined in the field after inspection 

of the first draft map and consulting the key informant. 

During the field stay for data collection, it turned out that people are compelled to 

cover large distances to cultivate all their fields, leading to comprehensive 

knowledge about their land. Farmers plant crops related to their understanding of 

soil fertility or other attributes, e.g. groundnut in well-aerated shallow soils, and 

vegetables mainly in the seasonal swamps with available irrigation water at shallow 

depth and with high chemical soil fertility. It was striking that local farmers in Ilolo 

were more aware of the soil unit locations than were focus group farmers in Idifu. 

In Ilolo the recognized additional soil unit was discussed and then added to the 

local map. Since farmers in Idifu seemed to know less about soil locations, the 

second discussion was necessarily more detailed. Locations and dimensions of 

several soil units had to be changed, even though all the soil units found to occur 

in Idifu had been mentioned during the first discussion. Both local soil maps were 

improved afterwards using the knowledge gained from field surveys and extra 

discussions. 

Use of the reference profile classification, transect walks and on-farm trial visits 

revealed the need to correct the map unit delineations. No new soil types were 

discovered during the final mapping phase. In the third group meeting, all changes 

to the local maps were agreed on by the focus group members. Final corrections 

to the maps were based on the listed activities, soil analytical results and gamma 

signature measurements. Figure 3-2b (for Ilolo) and 3-2d (for idifu) represent the 

scientifically revised soil maps and include reference profile, on-farm-trial and 

transect locations. 
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Figure 3-2 Preliminary local soil maps of Ilolo and Idifu in Chamwino, Tanzania, on the left (a, c) and the final maps on the right 

side (b, d) after the field visits, reference profile, transect and on-farm trial assessment with gamma ray spectrometry 
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3.5.2. Soil characterization according to WRB 2014  

The main soil forming process observed in both CSS was clay illuviation. Lixisols 

on slopes and Acrisols in flat areas covered the major parts of the village territories. 

Typical catenas were Leptosol–Lixisol–Acrisol–Vertisol, especially distinct in the 

undulating landscape of Ilolo. The lower landscape positions appeared as 

depressions with restricted surface drainage. During heavy rainfall events, finer 

particles together with solutes are transported to these depressions. In 

consequence, Vertisols have developed from these clayey substrates. In the rainy 

season, the depressions transform to swamps. In the early dry season they allow 

for vegetable cropping under irrigation. The available geological maps (Geology 

Survey of Tanzania, sheet Dodoma and Mpwapwa, 1:100.000 and 1:125.000, 

1967 and 1953, respectively) depict a considerable area classified as Mbuga, 

which is the local soil name for the swamp area with its dark and heavy soils 

(Liwenga, 2013). However, the obtained mapping results did not spatially coincide 

with the geological map units. Instead, mainly Lixisols and Acrisols were detected. 

A particularity in Ilolo was the presence of a Cutanic Stagnic Luvisol (hypereutric). 

This is characterized by higher chemical fertility than the more common soils in the 

study area. The assumption, based on the gamma radiation measurements  

(Fig. 3-3), was that it developed from another parent material. However, this is not 

supported by the geological map (Geological Survey of Tanzania, sheet Dodoma, 

1:100.000, 1967 and sheet Mpwapwa, 1:125.000, 1953). Hilltop soils in both CSS 

were identified in the field as Leptosols. They were not investigated in detail since 

they are not relevant for cropping. According to farmers, substantial deforestation 

occurred between 2003 and 2005 to clear land for extra cropping areas. Severe 

water-based erosion, but also aeolian erosion was the consequence, and obvious 

signs of this were visible in the terrain. Gillman (1930) already identified erosion to 

be substantial in these areas from the beginning of the twentieth century. In the 

United Nations “Soil Survey Report of Dodoma Capital City District” (1983), erosion 

was noted to be a threat for agriculture in the study region, mainly as sheet erosion 

and splash erosion. In contrast, Eriksson and Christiansson (1997), who published 

several reports about erosion in central Tanzania, identified severe gully erosion. 

Both forms of erosion were observed in the study area. Several villagers reported 

that Idifu generally receives less rainfall than Ilolo. Project-compiled rainfall data of 

the last two seasons support this statement. Other weather data were not available. 

A mountain range located in the south east of Idifu prevents rain clouds from 
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passing over the village territory. In Ilolo, fatal gully erosion with depths of 10 m or 

more was monitored throughout over the village area. Eroded hilltop soil from a 

mountain range to the North, outside the village area, was transported to the 

northern area inside the village and covered the Chromic Lixisols (hypereutric, 

profondic) on the slopes (Fig. 3-2b). In Idifu, fewer gullies were found. 

Nevertheless, erosion processes were obvious even for Vertisol topsoil material, 

which was transferred by wind erosion (Fig.3-2b). Idifu exhibited a smaller relief 

gradient and, thus, planar dislocation was present to a higher extent. 

In general, across the two villages, the WRB Reference Soil Groups were similar 

with respect to classification and fertility, but noticeably different for texture. 

Generally, the sand content was higher in Idifu.  

3.5.3. Gamma ray spectrometry 

The first gamma ray measurements were made on the reference soil profiles. The 

collected signatures served as a reference for spatial and classificatory correlation. 

During transect walks, soil type transitions were recognized via signature changes. 

The 40K signal appeared as the best proxy to indicate changes in soil type in the 

study area. A pre-requisite here is the absence of mineral K fertilization, since the 

application of K fertilizer might change the gamma ray signature (Nisar et al., 2015). 

Figure 3-3 shows the change of 40K and 40K/eTh ratios along a slope in Ilolo. Both 

values decreased down the slope. The expected main reason for this is the 

redistribution of soil material through water erosion. Due to erosion, the fresh 

parent material was located closer to the surface on hill tops (high K concentration 

and high 40K/eTh ratio). In this case, the eroded sandier material was deposited 

downslope, covered the bedrock and thus suppressed its signal. Since the eroded 

material has experienced weathering, a share of the K was leached, leading to 

lower overall K concentration and, in consequence, lower 40K/eTh ratios. 

Decreasing 40K/eTh ratios down the slope were also observed in a study by Wilford 

and Minty (2006) near Cowra, New South Wales, Australia. These authors 

described the loss of K during weathering and its leaching in a soil profile. Thus, 

low 40K/ eTh ratios point to weathered soils. 

In Figure 3-3, section A refers to a Leptosol, section B to a Chromic Lixisol 

(hypereutric, profondic). Section C was identified as a Chromic Lixisol. In section 

D an exceptional soil for the study area (a Luvisol) was found; it occurred only at 

this location in Ilolo. The difference between a Lixisol and a Luvisol is the 

composition of clay minerals. These are dominated by so-called low-activity clays  
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Figure 3-3 Example of a transect cross-section through Ilolo with corresponding 

gamma ray 40K signature means ± standard deviations as well as 40K/eTh ratios. 
N depicts the number of samples. Sampling point distance was 50 m. Means and 
standard deviations were taken from specific points within one soil type. 
Continuous bars integrate all sampling points of one soil type. Dotted bars mark 
transitions between soil types. The dashed line stands for a slow transition from 
section C to D. A = Leptosol, B = Chromic Lixisol (hypereutric, profondic), C = 
Chromic Lixisol, D = Luvisol. 

in Lixisols (e.g. kaolinite) indicating advanced weathering status, whereas Luvisols 

are characterized by high activity clays (e.g. illite, smectite). The difference in clay 

mineral assemblage as well as the high K concentration at simultaneous low 

40K/eTh ratios indicated a change in parent material. Schuler et al. (2011) found a 

40K/eTh threshold for distinguishing high activity clays from low activity clays. 

Because in the study area nearly exclusively low activity clay soils were present, 

this threshold could not be proven. Nevertheless, similar findings with low K and 

relatively high Th concentrations in Acrisols were observed. In both of the studied 

villages, Acrisols and Chromic Lixisols (both containing low activity clays) were 

found to have low 40K/eTh ratios. In contrast, nearly un-weathered sediments from 

uphill locations exclusively shared 40K/eTh ratios greater than or equal to 0.27 

(upper quartile). Leptosols were also found to have 40K/eTh ratios from 0.25 

upwards, with one exception. The parent material of this exceptional Leptosol was 

highly-weathered saprolithic gneiss. 

3.5.4. Local versus scientific knowledge 

Since farmers consider other classification variables compared to those used by 

scientists, farmer soil classifications follow different rules. In particular, our farmers 

used observable topsoil properties, i.e. those in the first 15 cm. In Idifu, people also 

mentioned subsoil color and texture as separation criteria. This goes back to their 
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experience with grape cultivation that includes digging soils down to 50 cm depth 

for ridging. 

All farmers used topsoil colors to delineate soil units, but not exclusively. 

Additionally they were able to further differentiate soils according to their texture 

and fertility, based on their tillage and cropping practices. According to WRB, the 

soils in both villages were nearly identical by classification, whereas the local 

denominations differed. Local farmers used soil texture as a distinctive soil 

property. Ilolo farmers were able to distinguish the local soil types “kichanga”/sand, 

“tifu tifu”/dust and “myinyanzi”/clay, based on their soil texture. Idifu, in general, has 

sandier soils. This was proven by textural analysis. In consequence, the additional 

distinction of sandy soils by colour played a more important role, e.g. “kichanga 

mweupe”/white sand, and “kichanga mwekundu/red sand. For the Reference Soil 

Groups in question, the WRB classification does not consider absolute texture but 

instead relative textural changes within the vertical horizon sequence, except in the 

case of Vertisols. 

Soil texture and water holding capacity ratings were properly indicated by local 

farmers and scientifically comprehensible. Local farmers judged the chemical soil 

fertility status of their soils as unsatisfactory but still suitable for cropping. Plant 

available K was found to be high in all sampled locations (rated after Landon, 

1984). Deficits were determined for P and N contents. The higher P contents in 

Idifu arise from grape cultivation and associated field preparation with dung as 

fertilizer. Electrical conductivity, as well as pH values, were found unremarkable 

with the exception of high values for Vertisols. Vertisols were considered to be 

exceptionally fertile in farmer discussions as well as from interpretations of the soil 

analyses. 

However, the physical properties of Vertisols were identified to present problems 

in both participatory and analytical investigations since these soils are hardly  

Table 3-3 Means and standard deviations (SD) for major nutrients in on-farm trials 
in llolo and Idifu, Tanzania 

 Depth 

[cm] 

Nt 

[%] 

SD Ct 

[%] 

SD Bray P 

[mg kg-1] 

SD Bray K 

[mg kg-1] 

SD 

Ilolo 

(N = 32) 

0-20 0.04 0.01 0.37 0.07 6.0 4.2 195 50 

21-60 0.02 0.01 0.26 0.04 1.9 2.4 152 55 

Idifu 

(N = 58) 

0-20 0.03 0.01 0.41 0.07 12.9 6.9 216 70 

21-60 0.03 0.01 0.33 0.06 3.7 2.3 162 55 

N depicts number of samples, Nt total N, Ct total C, P and K plant available potassium. Outliers were 
eliminated using the Grubbs test (5%) (Microsoft xlsat, Version 2016.02.27913). (Since no carbonate 
was detected Ct equals Corg) 
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cultivable during the rainy season. Farmers described these soils as not possible 

to walk on after heavy rains. An overview of soil basic nutrient contents from on-

farm trial locations is given in Table 3-3. Lixisols, as a major soil group, are the 

most common soils in Ilolo. In focus group discussions, farmers indicated them to 

be adequately fertile and good to farm; accordingly many of the on-farm trials were 

located there. Acrisols were described to be the least fertile. These assessments 

are supported by scientific analysis.  

After finalizing actions in the field related to participatory mapping and the 

comparison of local and scientific findings, further refinements to the map were 

necessary in both CSS. Shorter distances within a smaller village area and, thus, 

less unfamiliar territory was one reason why the local soil map of the smaller village 

(Ilolo) was more coherent than the one from the bigger village area (Idifu). 

Moreover, eye-catching soils like red clay or black swamps were pinpointed most 

precisely in contrast to less characteristic soils and their boundaries such as the 

brighter Acrisols or Lixisols. Concurrently, the eye-catching soils were the more 

fertile soils in the region.  

Particular soils in areas with little agricultural activity had to be rearranged on the 

maps. In Ilolo, these were rather remote from the village centre. There, a map 

refinement gradient was observed from densely populated areas to less frequented 

regions like the north of Ilolo, which is a mountainous territory, unsuitable for 

agriculture. Consequently, farmers rarely visit their plots there, farmers commented 

in the final discussion. Many deep erosion gullies and only a few crop fields were 

found there. During the first discussion, farmers just assumed the soil types in this 

area since no focus group member was familiar with the area. Furthermore, the 

investigated “myfinyanzi”/clay in this area could easily be mixed up as deposits 

from hilltops made the topsoils dustier and brighter, similar to the “tifu tifu”/dust that 

was indicated in theparticipatory discussion. Gamma signatures, supported by 

supplemental laboratory results, showed the presence of “myfinyanzi”/clay. 

Furthermore, gamma spectrometry measurements indicated a larger extent of the 

participatorily identified “ikanganyika”/mixed soil area. Consequently, this was 

changed on the map. The big area of “kichanga”/sand was changed to “tifu 

tifu”/dust. The reason for the different indication could not be identified in the 

meeting but participants agreed that the renaming of the soil type was correct. In 

Idifu, the soils directly around the center of the village but outside the swamp-belt 

were less known by focus group members. Those were the less fertile soils within 

Idifu, whereas the relatively fertile “kichanga mwekundu”/red sand at the 
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northeastern border was well known. Sandier soils make roads more exhausting 

to move on. In consequence, people in Idifu visit their fields less frequently for 

management. 

3.5.5. Risks, strengths and weaknesses of the method 

Formation of the focus groups posed the first problem for the research team. In an 

unknown area and society, researchers do not have the experience to identify apt 

co-operators. Extension staff often change in such remote areas, so they do not 

either. The normal choice is therefore to consult the village head and let him choose 

experienced people from the study region. In our case, the only condition was to 

invite people from all sub-villages that were familiar with the village territory. As the 

village heads were elected by the local people, the latter respected and trusted the 

advice of the former to participate. To conclude, the village head was the only 

person who could find the right persons to elaborate the soil map.  

Women were present during the focus group discussions. With two exceptions, 

they appeared shy and not self-confident. In Ilolo, two of the four women were 

recognized to be active and highly respected during discussions. In Idifu, however, 

this was not the case; the two women who were sent as representatives for their 

husbands did not share their opinions. This led to the necessary map corrections 

in the southeastern part of Idifu later on. Females remain highly disadvantaged 

with education and capital although they take over a big share of agricultural 

activities (Osorio et al., 2014).  

Language barriers posed a further constraint. Cross-checks concerning 

denomination, completion of present soil units and delineation should always be 

carried out, and repeated. Translators that are versed with local tribal languages 

or group members having English skills are favorable. Researchers with local 

experience are of great advantage as people develop more trust and respect for 

them. Researchers living in the village gain experience of local livelihoods making 

mutual understanding easier. Especially in remote areas, local networks make it 

possible to get additional and more valuable information, e.g. about land use 

history from neighbors or other people. 

Choice of the translator and local field assistant is of greatest importance. Local 

language skills, knowledge of local terrain and high profile of the key informant help 

facilitate the work. During the first focus group discussion, it became recognizable 

who had a good overview about the territory and whose opinion was respected.  
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In both villages, people tired after a two-hour meeting which resulted in decreased 

concentration and participation. Group meetings should be limited in time and 

breaks included (NOAA Coastal Services Center, 2009). Main tasks like the 

allocation of village boundaries and soil unit boundary mapping should be 

completed at the beginning of the discussion; easier tasks like the description of 

soil properties at the end. Great advantages were the rapidness of the land 

overview via group discussions as well as the capacity to draw on decades of 

experience. A satellite image and discussions with local participants led to a draft 

map and created fast initial orientation in the area. Residents could pass their 

experience, including land changes influencing soil forming processes like 

resettlements or deforestation, to the scientists leading to a better and quicker 

understanding of the terrain. 

Gamma radiation approaches included weaknesses and strengths. Whereas the 

40K (on unfertilized plots) and eTh signal are stable and reliable, the eU signal 

should be used with caution for direct interpretation. Several interferences like 

222Rn disequilibria influence the eU signature and make interpretation barely 

feasible (IAEA 2003). Signals for eU have been reported to show diurnal patterns 

of emanation from the top soil (Schubert and Schulz, 2002). This was not verifiable 

as different soil locations were tested during the day. Schuler et al. (2011) carried 

out a classification tree analysis and underlined the use of 40K and eTh signals for 

further interpretation. For the interpretation of gamma signals, first it was necessary 

to record gamma radiation from the reference soil profiles to get an idea of specific 

signatures. Nevertheless, it was not possible to strictly follow these reference 

signatures. A unique fingerprint cannot always be identified with gamma signatures 

which profoundly depend on radionuclide composition, i.e. on soil weathering stage 

and parent material (van der Klooster et al., 2011). Texture (Petersen et al., 2012), 

bulk density (Taylor et al., 2002), water content (Hubbell and Berger, 1968), 

organic matter (Beamish, 2013) and additional radiation signals from large stones 

(IAEA, 2003) can all affect the local gamma signature. As organic matter content 

and soil moisture were very low, these did not play a role. Changes in radionuclide 

compositions were easy to determine in situ. Recognizing soil unit changes in the 

field was uncomplicated. The 40K/eTh ratio was able to give information about the 

relative age and leaching stage of the soil on the spot. Even so, different soil 

forming processes had to be considered before drawing conclusions. Eroded and 

colluvial domains manipulated the signatures from autochthonous undisturbed 

soils. Augerings showed deeper soil horizons sometimes to differ, creating 
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signatures other than those expected from topsoil appearance alone. This is why 

closer area monitoring was necessary. Diurnal top soil moisture differences can be 

excluded in this environment in the dry season. 

It is still not clear from which depths gamma rays are recorded in soils. Theoretical 

assumptions by Beamish (2013) suggest depths of about 40 cm. Wilford and Minty 

(2006) have worked with 35 cm depth, others with 30 cm (van der Klooster et al., 

2011). All these are based on a publication from Hubbell and Berger (1968) 

theoretically investigating rock without quant scattering (again reviewed by Grasty 

(1979)). In summary, soil signal depth assumptions are inexplicit. Under the 

conditions of this study, expectably, gamma ray measurements have delivered 

information from at least the top 40 cm, i.e. the active rooting zone. Thus, some of 

the soil units could not have been adequately related to map units if gamma 

radiation signatures were unavailable. Gamma ray spectrometry was found to be 

a good way to bypass complex mapping procedures or elaborate analyses. 
 

3.5.1. Application in the Trans-SEC project 

The following description of Ilolo soil sampling results serves as an example for 

both case study sites. Reference profile locations are pictured in Figure 3-2b and 

3-2d. Table 3-4 summarizes the importance of soil differentiation for extension 

using Ilolo reference profile data consisting of weighted averages of values for 

various soil properties from topsoil to 30 cm depth. Only Corg and Nt values were 

rated very low (Landon, 1984) throughout the sampled soils. Farmers remove plant 

residues from their fields for diverse reasons or let animals feed on them. These 

practices are widespread in the tropics (Bot and Benites, 2005). 

Table 3-4 Means for various soil properties of sampled reference profiles in Ilolo, 

Tanzania (weighted averages related to horizon thickness, number of observations 
per horizon N = 2)  

pH 
(H2O) 

EC 
[µS cm-1] 

Nt 
[%] 

CC 
[%] 

Corg  
[%] 

P Bray 
[mg kg-1] 

K Bray 
[mg kg-1] 

BS 
[%] 

Haplic Acrisol 5.0 71 0.06 n.d. 0.31 6.6 148 49 

Chromic Lixisol 5.5 84 0.05 n.d. 0.27 5.3 230 57 

Chromic Lixisol 

(hypereutric, 

profondic) 

6.5 92 0.06 n.d. 0.33 0.3 115 72 

Cutanic, Stagnic 

Luvisol 

(hypereutric) 

8.6 158 0.05 0.1 0.29 11.7 289 76 

Sodic Vertisol 

(hypereutric) 
8.7 1501 0.08 0.3 0.62 0.3 234 81 

EC was unremarkable, values are not shown here, Nt total N, CC carbonate C, Corg organic C, P Bray is plant 

available phosphate and K Bray plant available potassium. BS is base saturation. All means were calculated 

from weighted averages for the top 30 cm (n.d. = not detectable) 
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All other values were divergent among the soil types. pH plays an especially 

important role for nutrient availability. pH increased to critically alkaline values in 

the sampled Cutanic, Stagnic Luvisol (hypereutric) and Sodic Vertisol 

(hypereutric). Available K was rated medium for Haplic Acrisols and Chromic 

Lixisols (hypereutric, profondic) and high for all other soils (Landon, 1984). 

Phosphate contents differed but were all rated very low (Landon, 1984) except for 

the Cutanic, Stagnic Luvisol (hypereutric). Here, pH values must be included in site 

adapted cropping recommendations. Base saturation, and thus the amount of 

nutrients like K, Ca or Mg, serves as a good indication of differences in soil fertility. 

Why should it be reasonable to suggest only one universal soil amelioration 

strategy for different soil units with different properties then? The results show the 

need for recommendations that are adapted to variation in soil fertility. 

Extensionists should avoid general suggestions about fertilization strategies so as 

not to waste the limited capital of local farmers. Using local soil knowledge together 

with gamma spectrometry can help extensionists to carry out soil evaluation and 

hence give farmers recommendations that are adapted to individual soil units with 

local denomination. Overall, globally there is need for more local soil 

characterization to reduce land degradation and improve food security. 

3.6. Conclusion 

The applied soil map creation process described in this article, involving the 

combination of local soil knowledge investigation and gamma ray spectrometry, 

was rapid and simple. Satellite images served well as a start. Discussions with 

local farmers resulted in accelerated terrain orientation, an overview of soil diversity 

and map creation. Persons with a sound knowledge of properties of the physical 

terrain are essential for efficient progress. Focus group members, translators and 

key informants must be chosen carefully. Cross checks are, however, inevitable to 

avoid map inaccuracies. Despite the need for a considerable amount of 

circumspection and revision, the participatory action approach expedited field work 

and map creation. Together with gamma ray spectrometry as a facilitating method 

for the distinction of soils directly in the field, these methods can quickly establish 

soil maps at sufficient resolution for their use by extensionists in developing 

countries. Satellite image costs fall below expenditures for traditional scientific 

mapping approaches. Additionally, part of the laboratory work for the distinction of 

soil types became redundant. Thereby, map inaccuracies could be eliminated. 

Further development of gamma ray spectrometry will make it more useful for rapid 
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soil mapping by increasing signal interpretation abilities. Additional applications 

such as the mapping of soil nutrient deficiencies are imaginable. 

Gamma ray spectrometry will be especially useful in difficult-to-access terrains, 

where soil mapping in the traditional way might not be feasible. Airborne gamma 

ray spectrometry will deliver results for even larger areas in a faster way. 

Nevertheless, some ground validation will still be necessary where variable 

interferences like organic matter content, soil or air humidity are present as 

approaches to correct these are underdeveloped. Gamma ray spectrometry (both 

air-borne and in situ), is to be further tested for the description of soil properties. 
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4.1. Abstract 

There are indications that gamma-ray spectrometry can serve WRB Reference Soil 

Group (RSG) distinction - in particular for those which developed from clay 

illuviation as major soil forming process (i.e. Luvisols, Lixisols, Acrisols, Alisols). 

This case study used the 40K/eTh ratio to separate RSGs in two villages in central 

Tanzania. For this purpose, gamma-ray measurements of reference profiles, 

transects and randomly selected farmers’ plots were conducted. Bivariate mixed 

models were applied after graphical pre-analysis. They distinguished 47 out of 82 

soils correctly. Soils that were not distinguishable by 40K/eTh ratios were, however, 

easily discriminable in the field due to topographic location in the catena, and visual 

and haptic appearance. In conclusion, gamma-ray measurements can only be a 

supportive tool for soil mapping. Gamma-ray data alone do not provide sufficient 

information for consistent mapping. 

Key words: soil mapping, bivariate mixed model, gamma-ray spectrometry 

4.2. Introduction 

In developing countries, high resolution soil maps are generally lacking. In certain 

environments, map generation is difficult due to inaccessibility and lacking 

laboratory facilities. However, soil information is of high importance for different 

stakeholders like farmers, extension services, non-governmental organizations, 

researchers and even governments in order to recommend site-adapted 

amelioration strategies.  

Soils are usually heterogeneous within short distances, and different WRB 

Reference Soil Groups (RSG) intergrade into each other. In Sub-Saharan Africa 

countries, soil heterogeneity is, next to parent material, climate, relief and biota, 

specially connected to anthropogenic influences, i.e. fertilization with manure or 

household waste and irrigation near homesteads, particularly in subsistence 

farming environments (Zingore et al. 2007). Clay illuviation RSGs after WRB (IUSS 
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working group, 2015), i.e. Luvisols, Lixisols, Acrisols and Alisols are differently 

classified, only according to exchange capacity and base saturation. For instance, 

an Acrisol can change to a Lixisol by base saturation increasing nutrient input.  

Soil mapping is known as laborious task (Schuler et al., 2011). Laboratory analyses 

make it even more cost-intensive. Nowadays, modern scientific methods simplify 

soil mapping. Gamma-ray spectrometry, as such a method, was identified to have 

great potential for soil properties prediction and RSG allocation refinements 

(Bierwirth et al., 1998; Schuler et al., 2011; Wilford and Minty, 2006). It is a non-

invasive technology, determining the natural radionuclides 40-potassium (40K), 

232-thorium (232Th) and 238-uranium (238U), which are differing in dependence on 

(1) mineral composition of the parent material, and (2) soil forming processes 

(Rawlins et al., 2012). Current field gamma-ray spectrometers measure 40K, 232Th 

and 238U concentrations by counting gamma decays of a certain soil volume per 

time. Soil moisture or organic matter attenuate gamma radiation from soils. 

Potassium-40 directly decays to 40Ar, 232Th and 238U contents, however, require 

indirect determination via the decay of their daughter nuclides 214Bi to 210Tl 

(denoted as eU) and 208Tl to 208Pb (denoted as eTh). Secular equilibria within those 

decay series are, thus, of importance for reliable measurements, especially in the 

case of eU. 

So-called fingerprinting, i.e. connecting specific gamma signatures to local 

reference soils, helps to identify soil types in the landscape (Loonstra and Van 

Egmond, 2009). Gamma ray spectrometry can as well serve for map refinement 

(Schetselaar et al., 1999), weathering stage (Wilford, 2012) and erosion pattern 

determination (Martz and De Jong, 1990). Established measurement modes are 

(1) stationary in near proximity to the soil surface, (2) proximal and mobile attached 

to vehicles or in backpacks, and (3) airborne in airplanes, helicopters, or drones as 

remote sensing method.  

The present study was carried out in the framework of the Trans-SEC project 

(Innovating strategies to safeguard food security using technology and knowledge 

transfer: a people-centred approach). For this purpose, village soil maps were 

generated with participatory means and gamma-ray spectrometry (Reinhardt and  

Herrmann, 2017). In this case study, distinction of major clay illuviation RSGs in 

the intervention area by graphical and statistical analysis of 40K/232Th ratios is 

investigated in detail.  
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4.3. Material and Methods 

4.3.1. Study area 

The study area is located in central Tanzania, Chamwino district. Two villages were 

mapped and investigated: Ilolo (E35°59´11” S6°25´13”, approx. 26 km2,  

1050-1190 m above sea level) and Idifu (E35°54´50” S6°20´26”; approx. 90 km2, 

990-1050 m above sea level). Climate is semi-arid with annual average rainfall of 

594 mm and average temperature of 23°C at Dodoma airport weather station 

(1980 to 2010, TMA 2013). Next to herding, local farmers depend on rain fed 

agriculture. Cropping of pearl millet (Pennisetum glaucum (L.) R.Br.), sorghum 

(Sorghum bicolor (L.) Moench) and maize (Zea mays L.) as main staple crops, and 

sunflower (Helianthus annuus L.), groundnut (Arachis hypogaea L.), bambara nut 

(Vigna subterranea (L.)Verdc.) and sesame (Sesamum indicum L.) as cash crops 

and for self-consumption is common.  

Geology is diverse; on field surveys, unconsolidated sorted Quaternary sediments, 

Tertiary intermediary metamorphic rocks, as well as felsic and intermediary 

Precambrian volcanic rocks were identified. Typical soil units are Leptosols on 

eroded hill tops, Lixisols on slopes and Acrisols in lower landscape positions. In 

quasi-endorheic basins, Vertisols have developed. Aeolian and water erosion are 

widespread phenomena that are caused by high population pressure and 

overgrazing leading to uncovered soils. A more detailed area description is given 

in Reinhardt and Herrmann (2017). 

4.3.2. Gamma-ray surveys 

Soil mapping was carried out as described in Reinhardt and Herrmann (2017). A 

preliminary map was generated together with local farmers in focus group 

discussions using high resolution color print satellite images (0.6 m × 0.6 m 

resolution on the ground, size DIN A1 corresponding to 84 cm x 119 cm¸ 

Worldview-2 (WV-2) 4-band sensor) of the two village areas. Reference profiles of 

major soil types, five in each village, were described following the FAO guidelines 

(Jahn et al., 2006). The gamma fingerprints were measured using a handheld 

Gamma Surveyor GRM-260 (Gf Instruments, s.r.o. Geophysical Equipment and 

Services, Czech Republic) vertically on the surface, in near proximity to the soil 

profile (not exceeding 0.5 m distance). During transect walks, every 50 to 150 m – 

depending on terrain heterogeneity – auger samplings and gamma-ray 

measurements were carried out similar to reference profile measurements. From 
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those results, in agreement with local farmer information, a final soil map was 

generated (Reinhardt and Herrmann, 2017). 

Transect measurements served as calibration data sets. For validation, on-farm 

trial sites were measured which were chosen by participating farmers in the project 

for cropping experiments (Reinhardt et al, 2019). Those farmers provided self-

selected sites belonging to their land. The on-farm trials are therefore treated as 

randomly sampled. Gamma radiation measurements from transect walks and on-

farm trials were graphically and statistically analyzed. 

Due to the semi-arid environment and realization of the sampling during the dry 

season, gamma-ray attenuation by soil moisture is not expected to have disturbed 

signaling. Further, attenuation by soil organic material could be excluded due to 

very low contents of less than 0.5% organic carbon (Reinhardt and Herrmann, 

2017). 

4.3.3. Statistics 

The aim of the analysis was to develop decision rules using two variables (i.e. 40K 

and eTh) sensed by gamma-ray spectrometry data to predict the RSG of farmers’ 

fields. For this, the two datasets taken from transects and from a random sample 

of farmers’ fields were evaluated. For all observations of both datasets the two 

variables 40K and eTh were derived from the same gamma-ray measurement and 

therefore represent samples with paired observations. The RSG was determined 

independently from gamma-ray spectrometry data by personal inspection during 

soil sampling. Both datasets were limited to contain four different soils (Chromic 

Lixisol, Chromic Lixisol (loamic), Chromic Lixisol (hypereutric) and Haplic Acrisol) 

by dropping samples with rare RSGs (i.e. Sodic Vertisol (hypereutric) and Stagnic 

Luvisol (hypereutric)) before statistical analysis. Furthermore, missing data e.g. if 

sample points lay on a street or vineyard, were dropped. This reduced the number 

of observations taken from transects from 166 to 129 and the number of farmer 

fields from 89 to 82. As residuals for both variables increased with increasing 

variance, both variables were transformed logarithmically. 

In the transect dataset, 40K and eTh data as well as the respective soil 

characteristics were taken from 11 to 19 sample points of each of 12 transects 

located along gradients of RSG changes in two villages (Idifu and Ilolo, Tanzania). 

Taking data from more than one sample point per transect causes a covariance 

between these samples. Thus, a proper analysis has to account for both, 
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covariance between 40K and eTh measures of one sample and between samples 

of the same transect.  

The transect data set was taken from Ilolo and Idifu together for calibration, 

because soils were considered similar as described in Reinhardt and Herrmann 

(2017). The paired observations require that the analysis should account for 

covariances between 40K and eTh values. A bivariate model directly fits these 

covariances and therefore this approach for analyzing the transect dataset was 

chosen. In this model fixed effects for soil and random effects for location, transect 

within the location and a first order autocorrelation between sample points within a 

transect were assumed. The latter try to account for the covariances between 

samples taken from the same transect. The model for each single sample point 

can be described by: 

(
𝑦𝐾𝑖𝑗𝑘𝑙

𝑦𝐸𝑇𝐻𝑖𝑗𝑘𝑙
) = (

𝜇𝐾

𝜇𝐸𝑇𝐻
) + (

𝜏𝐾𝑙

𝜏𝐸𝑇𝐻𝑙
) + (

𝑙𝐾𝑖

𝑙𝐸𝑇𝐻𝑖

) + (
𝑡𝐾𝑖𝑗

𝑡𝐸𝑇𝐻𝑖𝑗

) + (
𝑒𝐾𝑖𝑗𝑘𝑙

𝑒𝐸𝑇𝐻𝑖𝑗𝑘𝑙
),  (4.1) 

where 𝑦𝐾𝑖𝑗𝑘𝑙
 and 𝑦𝐸𝑇𝐻𝑖𝑗𝑘𝑙

 are the values of 40K and eTh at sample point k in transect 

j of location i. 𝜇𝐾, and 𝜇𝐸𝑇𝐻 are fixed general effects. 𝜏𝐾𝑙
 and 𝜏𝐸𝑇𝐻𝑙

 are fixed effects 

of the lth soil. 𝑙𝐾𝑖
 and 𝑙𝐸𝑇𝐻𝑖

 are random location effects of the ith location. Thus, 

(
𝑙𝐾𝑖

𝑙𝐸𝑇𝐻𝑖

) had a 2× 2 variance-covariance structure which can be written as 

(
𝜎𝑙𝐾

2 𝜎𝑙𝑘 ,𝑙𝐸𝑇𝐻

𝜎𝑙𝑘,𝑙𝐸𝑇𝐻
𝜎𝑙𝐸𝑇𝐻

2 ), where 𝜎𝑙𝐾

2  and 𝜎𝑙𝐸𝑇𝐻

2  are the variances of locations for 

parameters 40K and eTh and 𝜎𝑙𝑘,𝑙𝐸𝑇𝐻
 is the covariance between location effects of 

the same location for different parameters, respectively. 𝑡𝐾𝑖𝑗
 and 𝑡𝐸𝑇𝐻𝑖𝑗

 are random 

transect effects of the jth transect in the ith location. Again,(
𝑡𝐾𝑖𝑗

𝑡𝐸𝑇𝐻𝑖𝑗

) had a 2 × 2 

variance-covariance structure which can be written as (
𝜎𝑡𝐾

2 𝜎𝑡𝑘,𝑡𝐸𝑇𝐻

𝜎𝑡𝑘 ,𝑡𝐸𝑇𝐻
𝜎𝑡𝐸𝑇𝐻

2 ), where 

𝜎𝑡𝐾

2 , 𝜎𝑡𝐸𝑇𝐻

2  and 𝜎𝑡𝑘 ,𝑡𝐸𝑇𝐻
 are the variances of and the covariance between transect 

effects of parameters 40K and eTh. 𝑒𝐾𝑖𝑗𝑘𝑙
 and 𝑒𝐸𝑇𝐻𝑖𝑗𝑘𝑙

 are the two error effects with 

a variance-covariance structure analogous to location and transect effects. The 

single sample point model was extended to all sample points by assuming 

independence between location effects und transect effects within a parameter. 

Furthermore, for each parameter a first order autoregressive variance-covariance 

structure was assumed between errors of sample points within one transect, while 

sample points from different transects were independent. To model such a 
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variance-covariance matrix for all error effects, a Kronecker product of the direct 

sum of 12 first-order variance covariance matrices and a 2 × 2 unstructured 

variance-covariance described above was used. With this model, mean vectors of 

means for 40K and eTh are estimated for each soil. 

These mean vectors were used afterwards to assign sample points from transect 

data or farmer field data to RSGs. To do so, for each sample point and each soil 

vector the Mahalanobis distance between gamma-ray spectrometry data of the 

sample point (vector 𝑝 with parameter values for 40K and eTh) and the soil mean 

vectors (𝑠) was calculated. The Mahalanobis distance is given as 

√(𝑝 − 𝑠)𝑇Σ−1(𝑝 − 𝑠) ,        (4.2) 

where Σ−1 is the inverse of the estimated error variance covariance matrix of 𝑝, 

thus it is the inverse of variance-covariance matrix of (
𝑒𝐾𝑖𝑗𝑘𝑙

𝑒𝐸𝑇𝐻𝑖𝑗𝑘𝑙
). 𝑠 and 𝑝 are 2 × 1 

vectors of 40K and eTh values. Predicted soils are chosen so that the Mahalanobis 

distance is minimized. To validate the decision rule developed from transects 

dataset, data (soil, 40K and eTh) from the second dataset, the 82 farmer fields 

located in the same two location, were used. Predicted soil from 40K and eTh values 

of farmer fields were compared to the soil determined by personal inspection 

including laboratory analysis in some cases of insecurity.  

To show the profit from accounting for correlations between sample points within a 

transect, a model analogous to the one described above was fitted, but 

independence between error effect of sample points within a transect was 

assumed. For both models, including or excluding the first order autoregressive 

variance-covariance structure, the AIC (Akaike Information Criteria; Wolfinger, 

1993) value was calculated and compared.  

4.4. Results 

4.4.1. Graphical analysis 

Gamma-ray spectrometry measured 40K concentrations were plotted against eTh 

signals (Figure 4-1; OriginPro 2018). Figure 4-1a shows Ilolo transect 

measurements, Figure 4-1b on-farm trial measurements; Figure 4-1c shows 

transect measurements and Figure 4-1d on-farm trial measurements in Idifu. 

In Ilolo, it was possible to separate Chromic Lixisols (hypereutric) from Haplic 

Acrisols and Chromic Lixisols using this approach (Figure 4-1a and b). Plotting of 

40K vs. eU resulted in similar patterns (data not shown). Idifu, in contrast, featured  
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Figure 4-1 40K vs. eTh scatterplots for a) Ilolo transect sampling points, b) Ilolo on-
farm trials, c) Idifu transect sampling points and d) Idifu on-farm trials 

different gamma-ray division patterns. (Figure 4-1c and d). Validation via on-farm 

trial sampling was less distinct. 

4.4.2. Statistical analysis 

The first order autocorrelation results in a much better model fit  

(ΔAIC = -46.9 – 7.3 = -54.2). The correlation between neighboring sample points 

within transect was 0.6339, while the correlation between error effects from both 

parameters within a sample point was 0.0878. 

The 𝜒²test of independence is significant (p<0.0001) for both datasets (calibration 

with transect data and validation with farmers´ fields), meaning that the predicted 

RSG is not independent from the correct soil. The correct soil is predicted in 72 out 

of 129 cases (56%) and 47 out of 82 cases (57%) for calibration and validation 

data, respectively. While the identification of Chromic Lixisol (hypereutric) and 

Haplic Acrisol works well (a proportion of 0.9375 and 0.7391 was correctly 

identified within the validation dataset), it is hard to statistically distinguish Chromic 

Lixisols and Haplic Acrisols. Most Chromic Lixisols (loamic) were predicted to be 

Chromic Lixisol (hypereutric), even in the calibration dataset. The prediction of the  

a) 

c) d) 

b) 
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Table 4-1 Soils, their number and share of correctly predicted RSGs. 

RSG 

Calibration Validation 

N 
Predicted as right 

soil 
N 

Predicted as right 
soil 

Haplic Acrisol 19 17 23 17 

Chromic Lixisol 25 6 34 14 
Chromic Lixisol 
(hypereutric) 

25 23 16 15 

Chromic Lixisol (loamic) 60 26 9 5 

present soils by 40K/eTh ratios by means of the bivariate mixed model results are 

shown in Table 4-1. 

4.5. Discussion 

From graphical analysis (Figure 4-1), a conflict related to 40K/eTh ratios of Chromic 

Lixisols (hypereutric) and Chromic Lixisols (loamic) was observed. In Ilolo, this did 

not play a role due to the absence of Chromic Lixisols (loamic). Nevertheless, the 

similarity in 40K/eTh ratios led to miss-prediction in Idifu: Chromic Lixisols (loamic) 

were predicted as Chromic Lixisols (hypereutric) in 5 of 9 observations. However, 

the two soils were found in completely different landscape positions and could thus 

be separated.  

Chromic Lixisols were predicted as Chromic Lixisols (hypereutric) in 50% of the 

cases, probably due to their neighbouring location in the catena, where uphill 

sediments from Chromic Lixisols (hypereutric) mixed to the topsoils of the below 

lying Chromic Lixisols. Here, as well, the soils were easily distinguishable in the 

field by visual and haptic appearance (i.e. soil colour and texture). 

Stagnic Luvisols (hypereutric) could not be distinguished from Chromic Lixisols 

(hypereutric) solely via gamma spectrometric signals (Figure 4-1). In the field, 

however, the Luvisols were easily identifiable due to their greyish color, cracked 

surface, finer texture as well as higher pH values than Lixisols. 

Chromic Lixisols and Haplic Acrisols were hardly discriminable in the field; both 

were dusty, color was sometimes similar, and they were situated next to each other 

in the landscape (catena). Here, topographic position did not differ as significant 

as between Chromic Lixisols vs. Chromic Lixisols (hypereutric); the latter 

developed on steep slopes, exclusively. Gamma-ray spectrometry served well as 

auxiliary and uncomplicated method for distinction via 40K/eTh ratios (Figure 4-1) 

also proven by statistical analysis.  

In Idifu, catenas were less distinct due to less undulation. Chromic Lixisols (loamic) 

were sometimes that similar to Chromic Lixisols from visual observations that even 

local farmers were hardly able to make the difference. Via gamma-ray 
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spectrometry and 40K/eTh ratios, this separation is possible as statistically proven. 

Chromic Lixisols (loamic) seemed less weathered which is reflected in the higher 

40K signal (Wilford, 2012).  

Several points, which did not fit into the division concept, were checked for 

anomalies: (1) Some areas within Chromic Lixisols (hypereutric) in Ilolo were 

exhibiting extraordinary low gamma-ray signals, already identified in the field as 

locations with extreme conditions, i.e. in areas with saprolithic, highly weathered 

spots. Wilford (2012) as well identified saprolithic areas as very low in radiometric 

signals due to leached minerals.  

(2) In the Idifu data set, several discrepancies appeared. In Figure 4-1d, two 

Chromic Lixisol (loamic) data points exhibited lower eTh signals than others. Their 

surficial texture was loamy sand which was the coarsest texture found in the 

studied villages. As 232Th shows higher affinity to the clay fraction (Bednar et al., 

2004), here the eTh signal was lower than in other locations.  

(3) The three Chromic Lixisols (loamic) with eTh signals below 4 ppm and 40K 

signals between 0.5 and 0.8% (Figure 4-1d), were measured in the same area 

where the soil was eroded resulting in less weathered top soils with different 

40K/eTh ratio (Wilford 2012). Genuine parent rock as well occurred.  

Generally, soils with higher clay contents, i.e. Chromic Lixisols (hypereutric) and 

Stagnic Luvisol (hypereutric), emitted higher eTh signals than soils with coarser 

texture, i.e. Haplic Acrisols and Chromic Lixisols (Figure 4-1), which confirms 

findings from Wilford et al. (2007). The authors described an accumulation of Th in 

soils which were more weathered with higher clay contents.  

During on-farm trial samplings the Sodic Vertisol (hypereutric) with pure clay 

texture showed the expected high signals. Here, despite findings from Bierwirth et 

al. (1996) and Taylor et al. (2002) who indicated outgassing of one daughter 

isotope (220Rn) within the 232Th decay series and a lower affinity of 232Th to swelling 

clays, the measured radiation was high. In contrast, during transect samplings in 

Ilolo, Sodic Vertisol (hypereutric) spots were found to exhibit low signals. Because 

of overburdens due to erosional processes, Chromic Lixisol sediments covered the 

finer textured Vertisol, which lied below in the catena, with sandy loam; the material 

on top diluted the gamma-ray signal. Gamma-ray spectrometers measure soil 

depths of up to 0.5 m in half-space geometry (Grasty, 1997). Thereby, upper layers 

contribute to a higher extent to the measured radiation due to (1) probability, i.e. 

the gamma quant with a shorter way will meet the detector with a higher probability, 
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also because (2) the general attenuation by soil. Hence, soils that are covered by 

different material are not properly definable by gamma-ray spectrometry alone.  

The soil map could be corrected by combining field observations and satellite 

images with gamma-ray spectrometry in several cases of misinterpretation. 

Signaling was influenced by surficial stones or sediments from other soils via 

erosion (aeoilian and water erosion).   

4.6. Conclusion 

With pre-knowledge of soils and terrain, and high resolution imagery, gamma-ray 

spectrometry is a useful and rapid technology for soil mapping, especially, 

combined with preliminary soil maps from local knowledge. The latter can be 

refined with regard to soil boundaries with little effort, particularly, hardly 

discriminable soils. Airborne gamma-ray spectrometry can even detect bigger 

terrains. However, not all gamma radiation signals are explicitly attributable to 

specific soils neither are they globally applicable. Reference soil calibration, i.e. 

fingerprinting, as well as ground truth are of paramountcy for reliable and exact 

maps. For better distinction in situ, e.g. pH measurements could be applied next to 

gamma-ray spectrometry.  
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5.1. Abstract 

This article deals with technology transfer from science to agriculture with pearl 

millet (Pennisetum glaucum (L.)R.Br.) in central Tanzania as example. The major 

question is which validity recommendations from different types of field 

experiments have and how geo-information (i.e. soil and landscape position) can 

lead to more site-specific recommendations. Tied ridging and reduced amounts of 

placed fertilizer during sowing were tested to increase yields on researcher-

managed plots on-station, demonstration plots in villages, and farmer-managed 

plots on-farm. While on-station trials provided potential yield effects, physical 

distance to the station and differing conditions led to a higher informational value 

of village plots that mirror the context of local farmers. The treatments often 

resulted in significant yield increase. Soil and relief information and distance to 

settlements (i.e. gradient of management intensity) are key factors for data 

variability in on-farm trials. Unexplained variability is introduced through leaving 

degrees of freedom with respect to management to the farmer. Apart from soil and 

physiographic information, the latter should be part of a detailed data collection 

procedure in agronomic large N-trials addressing Sub-Saharan smallholder 

farming. Balanced data sets with dispersed trials on crucial soil and relief units is 

essential for future research. 

Keywords: Placed fertilizer, tied ridging, landscape position  

http://suanet.ac.tz/
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5.2. Introductory statement 

In many developing countries, recommendations distributed by public agricultural 

extension are still assumed to apply for entire countries or agro-ecological zones. 

This concerns, in particular, fertilizer use, cultivar choice (often so-called improved 

varieties), and tillage practices. This extension approach contradicts the obvious 

variability of site conditions within landscapes, village territories and even individual 

farms or fields (Vanlauwe et al., 2016). Soil types and properties usually change 

along topographic position. Based on respective field observations in Tanzania, 

Milne (1935) developed the catena concept that is widely used in soil science. 

Surface and subsurface flows redistribute particulate as well as dissolved soil 

matter, e.g. nutrients. In consequence, notably subsistence agriculture that mainly 

depends on soil conditions as natural resource, and is limited by available area or 

labor, needs site-adapted recommendations considering environmental gradients. 

Further aspects to be considered in agricultural extension are climatic constraints 

(e.g. intra-seasonal droughts, spatial variability of rainfall), as well as limited access 

to inputs (e.g. fertilizer) and production risk. Multi-year experiments are, therefore, 

of highest importance to evaluate inter-annual influences on crop yield (Herrmann 

et al., 2013).  

In Tanzania, agricultural policy emphasized the need for extension services to 

primarily support subsistence farmers. The number of extension staff indeed 

increased over the last years (Elifadhili, 2013). However, extension services rather 

addressed livestock related problems than cropping (Elifadhili, 2013), even in 

regions, which suffer from high population pressure that results in soil degradation. 

Droughts leading to famines are still frequent threats for subsistence agriculture in 

central Tanzania. 

The Trans-SEC project (Innovating strategies to safeguard food security using 

technology and knowledge transfer: a people-centered approach) participatorily 

investigated the transfer and distribution of knowledge along whole food value 

chains in Tanzania in order to improve the different steps from land preparation to 

consumption. In the project framework, the need appeared to better integrate all 

stakeholders reaching from scientists and extension services over farmers' 

organizations to farmers. A crucial aspect was to include soil information as 

explanatory variable. For this purpose, three different types of field trials were 

conducted reaching from researcher managed on-station trials and researcher-

managed demonstration plots in the village to farmer managed on-farm trials on 

variable soil units.  
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Emphasis in this paper is put on the questions, (1) which type of experiments can 

support which kind of recommendation, (2) which explanatory power soil 

information has in this respect and (3) what other aspects need to be considered. 

This topic is discussed taking fertilizer and tillage experiments as examples.  

5.3. Materials and methods  

The research was conducted on a research station and in two villages in central 

Tanzania. With respect to the research, the traditional top-down approach was 

applied and combined with participatory methods, i.e. international and national 

scientists selected potential innovations based on previous experience and 

literature research and discussed with farmers in the intervention zones 

applicability and constraints. Based on these discussions, the scientists adapted 

chosen technologies to their best knowledge to local conditions.  

5.3.1. General description of the study area 

All field trials were conducted in the semi-arid Dodoma region of Tanzania. 

Average rainfall amounts to 594 mm and average temperature is 23°C at Dodoma 

airport (1980 to 2010; TMA, 2013). Evaporation reaches ca. 1,600 mm per year 

(Kahimba et al., 2014). The rainy season lasts from December to April. This is 

when subsistence farmers extensively grow rain-fed crops like pearl millet 

(Pennisetum glaucum (L.)R.Br.), sorghum (Sorghum bicolor (L.)Moench) and 

maize (Zea mays L.) as staples. Milne’s catena concept (1935) applies for the study 

area, reaching from rock outcrops and low pH at hilltops to fine grain sizes and 

alkaline conditions in valley bottoms. Rainfall scarcity and variations within short 

distances as well as water redistribution by lateral flow along slopes are common.  

Elevations in the study area range between 990 and 1190 m asl. On geological 

maps from 1953 and 1967, obtained from the Geological Survey of Tanzania in 

Dodoma, so-called “contaminated granite” (i.e. incorporation of foreign 

petrographic material) appears as major rock type. Due to low spatial resolution 

(1:100,000 and 1:125,000, respectively), and own field observations, those maps 

were not considered adequate. In fact, variable petrography was found during field 

trips, reaching from unconsolidated sorted Quaternary sediments over Tertiary 

intermediary metamorphic rocks to felsic and intermediary Precambrian volcanic 

rocks.  

Soils are variable reaching from highly weathered and nutrient deficient ones (e.g. 

Acrisol), over those degraded by overgrazing and erosion (e.g. Leptosol), to 
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temporally inundated Vertisols rich in nutrients. Soil surfaces have been observerd 

to be bare during the dry season.  

Most farmers practice subsistence agriculture, growing pearl millet, sorghum and 

maize as staple crops during the rainy season. As inter- and cash crops, peanuts 

(Arachis hypogaea L.), bambara nuts (Vigna subterranea (L.)Verdc.), pigeon peas 

(Cajanus cajan (L.)Millsp.) or cow peas (Vigna unguiculata (L.)Walp.) were found. 

On more fertile Vertisols, vegetables are grown. Either hand hoes, or, in better off 

households, ox-ploughs are used for tillage. If available, manure is applied, while 

hardly any mineral fertilizer is used. 

5.3.2. Study sites, soil mapping and information  

The research station of the Agricultural Research Institute (ARI) Makutupora 

(E35°46´7” S5°46´7”, ca. 1100 m a.s.l.), is located in Mjini district of Dodoma, 

approximately 20 km north of Dodoma. According to the World Reference Base for 

Soil Resources (WRB, IUSS working group, 2015) the soils of both fields were 

classified as Rhodic Luvisol (loamic, ochric) characterised by clay illuviation as 

major soil forming process. Previous soil surveys showed the following nutrient 

content for the top 0.15 m, evaluated after Landon (1984):  

Field A: 0.06% N – very low, 16.7 mg kg-1 P – medium, 414 mg kg-1 K - high 

Field B: 0.09% N – very low, 96.6 mg kg-1 P – high, 582 mg kg-1 K - high 

Soil mapping in the villages Ilolo (E35°59´11” S6°25´13”) and Idifu  

(E35°54´50” S6°20´26) approx. 45 km to the southeast of Dodoma followed a 

mixed approach, beginning with participatory mapping (including local 

denomination of major soil units) and adding information from transect mapping, 

gamma spectrometry and remote sensing. The mapping approach is detailed in 

Reinhardt and Herrmann (2017).  

In both villages similar Reference Soil Groups occurred. Leptosols were found on 

eroded hilltops, Chromic Lixisols (hypereutric) on middle slopes, Chromic Lixisol 

(loamic in Idifu) on foot slopes, Haplic Acrisols (loamic) in flat terrain, and Sodic 

Vertisols (hypereutric) in depressions. Cutanic Stagnic Luvisols (hypereutric) were 

solely found in a small area in Ilolo in the same topographic position as Chromic 

Lixisols. Chromic Lixisol (hypereutric) units were rare in Idifu. The dominating soils 

in both villages are those characterized by clay illuviation (Luvisol, Lixisol, Acrisol) 

representing a typical soil forming process in seasonal climates. The occurrence 

of the soils within the landscape is a function of the underlying rock (large variability 

of magmatic, metamorphic and volcanic parent materials) and the topographic 
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position. The latter is important due to lateral redistribution of soil materials mainly 

through water erosion. While the hilltops are strongly eroded (Leptosols), sand 

accumulation belts are found at the foot slopes (Acrisols) and finest material (clay) 

and solutes are accumulated in the endorheic depressions (Vertisols). Soil 

properties of reference soil pits are presented in Table 5-1.  

Texture spreads from loamy sand to pure clay. Organic matter content is generally 

low. The pH values show a wide spread from acidic to alkaline (pH 5.0 to 8.7 in 

Ilolo and 5.5 to 7.1 in Idifu). Electrical conductivity was unremarkable, except higher 

values for the Vertisol in Ilolo that are only relevant for sodium sensitive 

plants.Primary limiting nutrients are phosphorus and nitrogen. Plant available 

phosphate is rated low to very low (0.3-11.7 mg kg-1), nitrogen very low on nearly 

Table 5-1 Means for various soil properties of sampled reference profiles in a) Ilolo 
and b) Idifu. All means were calculated from weighted averages for the top 30 cm 
(n.d. = not detectable). EC: electrical conductivity; BS: base saturation, pa: plant 
available 

a) Ilolo 
pH 

(H2O) 

EC 

[µS cm-1] 

Nt 

[%] 

CO3
2- 

[%] 

Corg 

[%] 

paP 
[mg kg-1] 

paK 
[mg kg-1] 

BS 

[%] 

Tex-
ture 

Haplic Acrisol 
(loamic)  

5.0 71 0.06 n.d. 0.3 6.6 148 49 SL 

Chromic Lixisol 5.5 84 0.05 n.d. 0.3 5.3 230 57 SCL 

Chromic Lixisol 
(hypereutric, 
profondic) 

6.5 92 0.06 n.d. 0.3 0.3 115 72 SCL 

Cutanic, Stagnic 
Luvisol 
(hypereutric) 

8.6 158 0.05 0.5 0.3 11.7 289 76 SCL 

Sodic Vertisol 
(hypereutric) 

8.7 1501 0.08 1.5 0.6 0.3 234 81 C 

 

 

b) Idifu 
pH 

(H2O) 

EC 

[µS cm-1] 

Nt 

[%] 

CO3
2- 

[%] 

Corg 

[%] 

paP 
[mg kg-1] 

paK 
[mg kg-1] 

BS 

[%] 

Tex-
ture 

Haplic Acrisol 
(loamic)  

5.5 55 0.02 n.d. 0.3 3.6 63 37 LS 

Chromic Lixisol 5.9 134 0.04 n.d. 0.3 0.3 120 50 SL 

Chromic Lixisol 
(loamic)  

6.3 132 0.04 n.d. 0.4 3.4 112 53 SL 

Chromic Lixisol 
(hypereutric) 

7.1 174 0.06 n.d. 0.5 2.0 85 74 SL 

Sodic Vertisol 
(hypereutric) 

6.7 190 0.10 n.d. 1.0 3.5 348 77 C 
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all sampled plots. Vertisol sites are subject to seasonal inundation. Rated after 

Landon (1984), plant available potassium was high with few exceptions. 

Given this variability of soil conditions, it cannot be expected that crops on all sites 

respond to management measures in the same manner. This is particularly true for 

both tested innovations i.e. fertilization (given the spread of plant available P) and 

soil tillage (work load depending on texture). Vertisols were ex ante exempted from 

field trials due to their special character, i.e. good nutrient status and inundation 

risk. 

During focus group discussions, local farmers distinguished the major soil types 

due to colour, texture, water holding capacity and crop performance. Acrisols were 

designated suitable for plants with low nutrient demand like pearl millet, white 

sorghum, peanuts, cow peas or cassava (Manihot esculenta Crantz). On more 

fertile soils like Lixisols, sunflowers, grapes (vitis vinifera) or sesame (Sesamum 

indicum L.) were grown. Plants having higher nutrient requirements like vegetables 

or sugarcane were exclusively grown on Vertisols (and the Luvisol in Ilolo). 

5.3.3. Innovations tested in pearl millet cropping  

Tested innovations that deal with the actual production constraints water scarcity 

and soil nutrient status were tied ridging as tillage and water conservation practice, 

and placed fertilizer application in order to restrict fertilizer input and increase 

fertilizer efficiency at the same time.  

Tied ridges (TR) increase soil moisture by decreasing surface flow and enhancing 

infiltration (Kilasara et al., 2015). Ridges in combination with ties act as water 

erosion barriers, thus conserving fertile topsoil and rainwater. However, the 

establishment of TRs is work demanding in comparison to flat cultivation and 

requires about 266 labor hours per hectare (measurements in situ). General TR 

design recommendations were as follows: Ridge distance 0.75-0.80 m, ridge 

height 0.2 m, ties every 1.5 m and 0.15 m high, and fixed in a staggered way 

(Trans-SEC factsheet, 2016). 

Placed fertilizer (PF) application has multiple goals. It enhances fertilizer 

efficiency and leads, in consequence, to reduced nutrient losses, in the case of 

mobile K and N, and less fertilizer demand in comparison to broadcast application. 

This, in turn, results in lower investment, decreases the risk for loss of investment, 

while increasing the yield potential (Bielders and Gerard, 2015). However, as it is 

true for tied ridging, the workload is increased. Application was recommended as 

follows: a full screw cap from a water bottle, i.e. 2 g (resulting in 7.5 kg P ha-1) of 
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triple superphosphate (TSP) fertilizer was placed into each planting hole and 

covered with some soil before the seeds were sown right next to the fertilizer spot. 

Pearl millet (Pennisetum glaucum (L.)R.Br. cv. okoa) as test crop was chosen since 

it represents a major staple crop in the semi-arid areas of Tanzania. The average 

grain yield in Tanzania according to Kamhambwa (2014) is 0.77 t ha-1; in 

Chamwino district, however, it only reaches 0.36 t ha-1. Responsible for low crop 

performance is poor soil fertility and insufficient precipitation in combination with 

erosion and low soil water retention capacity (Kimenye, 2014).  

5.3.4. One dimensional testing: The on-station researcher- managed trial  

On-station field trials were conducted on two fields at ARI Makutupora from 

January to May in 2015 and 2016. In this context, we call these experimental 

conditions one-dimensional (1D), since only the treatments are expected to 

mainly influence the crop yield. Climate and soil conditions are regarded constant 

at this spatial level. The experiment was designed to reveal the maximum potential 

of TR. A researcher designed, supervised, and conducted the experiments in a 

controlled environment (i.e. on-station in randomized block design).  

A weather station (WS-GP1, Delta-T) was installed close to the experimental site 

on-station. The observed precipitation substantially differed between the two 

seasons (Table 5-2) and between the research station and intervention villages. 

Pearl millet was grown on two experimental fields (field A and B) during the rainy 

seasons 2015 and 2016 from January until beginning of May. Hereby, rainfed plots 

with TR were compared with rainfed flat plots (R) without any alteration of the soil. 

A fully irrigated (FI) treatment was part of the experiment on field A in order to 

explore the potential yield under the prevailing environmental conditions. These 

plots were connected to a drip irrigation system and irrigated whenever the rainfall 

amount was not sufficient to meet the crop water requirements. The weeding 

frequencies and input of fertilizer was identical among the mentioned treatments. 

Each treatment was tested with 4 replicates on both fields. 

Plots were 4.0 m × 5.7 m in size, every treatment was installed with five rows, each 

containing 18 plants. Border plants were not harvested and not included in yield 

calculations. 

On-station, all plots received a mixture of fertilizers at the recommended rate 

(Kanyeka et al., 2007; Khairwal et al., 2007): 60 kg N ha-1, 13.1 kg P ha-1, 24.9 kg 

K ha-1 via Yara Mila complex fertilizer (23-10-5), potassium nitrate (13-0-46), triple 

super phosphate (0-44.5-0) were placed into each planting hole during sowing and  
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Table 5-2 Mean rainfall data ± standard deviation [mm] collected from the weather 
station in Makutupora (i.e. on-station) and by local farmers in Ilolo and Idifu for the 
cropping periods 2015 and 2016, N is the number of observations 

 Total rainfall [mm] 
in season 2015 (mean) 

N Total rainfall [mm] 
in season 2016 (mean) 

N 

Makutupora 252 1 794 1 

Ilolo 171.0 ± 5.1 6 280.4 ± 3.6 11 

Idifu 98.6 ± 6.0 7 384.1 ± 5.8 18 

covered with some soil before the seeds were added. Urea (46-0-0) was side 

dressed 4-6 weeks after emergence over all treatments. Adequate nutrient supply 

of millet with N, P and K can therefore be assumed. 

The TR geometry was based on general recommendations (Trans-SEC factsheet, 

2016) and adjusted to the irrigation set up: the ridges were 0.8 m apart and 0.25 m 

high. They were connected via cross ties in 0.6 m distance and with a height of 

0.15 m. Seeds were sown on top of the ridges. 

5.3.5. Two- and multiple-dimension experiments in the local environment: 

Mother and baby trials 

As next step, the experiments were expanded to the intervention areas, i.e. the two 

villages llolo and Idifu. The experiments on mother (demonstration plots) and baby 

trials (on-farm) started in the end of 2014. The distance between these and 

Makutupora-station amounts to approximately 60 km linear distance. Mother trials 

served as researcher-managed demonstration plots, whereas baby trials reflected 

real farm environments managed by the plot owners.  

Mother trials took place on one field per village that was provided by local farmers. 

Soil properties did not play a primary role during the site selection process. Instead, 

availability, i.e. farmers’ disposition to provide their land was decisive. In 

consequence, the mother trials differed between each other and from the on-

station fields in their RSG. This way, variability with respect to soil as well as 

meteorological variables (rainfall and its distribution) were introduced into the 

experimental error. Due to the limited variability of experimental factors and the 

management still being in the hand of the researcher, we call this experimental 

approach two-dimensional (2D). Plot size per repetition was 21.6 m²; each 

treatment was repeated 5 times in Ilolo in 2015 and three times in both villages in 

2016. The Idifu mother trial failed to produce any yield in 2015 due to deficient 
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precipitation. In order to reduce the risk of repeated crop failure, the experiment 

was shifted from the highly degraded site to an area with better water holding 

capacity. Therefore, from Idifu, only data for the season 2015 are available. 

Reference Soil Groups were Haplic Acrisol (loamic) in Idifu at the new plot and 

Chromic Lixisol in Ilolo in both seasons. On the mother trials, 3 different fertilizer 

rates were applied. The "full rate" is based on recommendations of Kanyeka et al. 

(2007): (1) recommended rate, i.e. 60 kg N ha-1 and 13.1 kg P ha-1; zero K  

(di-ammonium phosphate and calcium ammonium phosphate). The two other 

applied rates were: (2) 25% of treatment 1, and (3) control plots without fertilization 

(i.e. common farmers’ practice). The furrows related to tied ridging followed the 

given recommendations. The seeds were sown on top of the ridges. Control plots 

were left flat. 

Project staff guided the installation of the on-farm experiments (baby trials) by 

explaining the principal setup, but finally, farmers themselves managed the land. 

Baby trial treatments were to the farmers’ independent choice. Within their fields, 

one 10 m*10 m plot was assigned as treatment plot and one as control. Rainfall 

was also measured by some farmers. The amounts between the two consecutive 

seasons 2015 and 2016 differed tremendously (Table 5-2).  

For the analytical work, only data from plots within village borders, and from one of 

the major Reference Soil Groups (except Sodic Vertisol (hypereutric)) were taken 

into account to grant a sufficient number of repetitions. The number of yield data 

for analyses was n = 141. 

Apart from the variability of environmental conditions (soil, topography etc.), this 

approach incorporates one further uncertainty for data analysis, i.e. management 

control in the hands of the farmers. Consequently, transferred information on 

management practices per site might not be complete. In addition, certain yield 

explanatory environmental factors like rainfall or pest occurrence often remain 

unknown. Due to these added uncertainty components we call these experimental 

conditions multi-dimensional (multiD).   



107 

5.4. Statistical analysis 

5.4.1. On-station trials (1D) 

The following linear mixed effects model was used to evaluate on-station trials. 

𝑦𝑎𝑏𝑖𝑙 = 𝜇 + 𝑠𝑎 + 𝑗𝑏 + (𝑠𝑗)𝑎𝑏 + 𝑟𝑎𝑏𝑙 + 𝜏𝑗 + (𝑠𝜏)𝑎𝑖 + (𝑗𝜏)𝑏𝑗 + (𝑢𝜏)𝑎𝑏𝑗 + 𝑒(𝑎)𝑏𝑗𝑙   (5.1) 

where 𝑦𝑎𝑏𝑖𝑙  are the square root-transformed millet yields in site a, at year b, in 

replicate l within year and site and treatment level j. 𝜇 is the intercept; 𝑠𝑎 is the fixed 

effect of the a-th site; 𝑗𝑏 is the fixed effect of the b-th year; (𝑠𝑗)𝑎𝑏 is the fixed year 

specific site effect; 𝑟𝑎𝑏𝑙 is the effect of the l-th replicate within the combinations of 

site and year; 𝜏𝑗 is the effect of the j-th treatment; (𝑠𝜏)𝑎𝑗, (𝑗𝜏)𝑏𝑗 and (𝑠𝑗𝜏)𝑎𝑏𝑗 are the 

interactions of treatment with site, year and their combination. 𝑒(𝑎)𝑏𝑗𝑙 are the 

residual error terms. In order to account for heterogeneity of variance between the 

two sites, separate error variances were estimated with expected mean of zero and 

variances 𝜎𝑒1
2  and 𝜎𝑒2

2 : 𝑒(1)𝑏𝑗𝑙  ~ 𝑁(0, 𝜎𝑒1
2 ) and 𝑒(2)𝑏𝑗𝑙  ~ 𝑁(0, 𝜎𝑒2

2 ). 

5.4.2. Mother trials (2D) 

The following linear mixed effects model was used to evaluate on-site mother trials. 

We renounced to a joint analysis with multiD due to the enormous increase in factor 

variability from mother to baby trials (e.g. soil type, climate, management). 

Information about the blocks in mother trials is missing, therefore the data were 

analyzed as a completely randomized design. The following model was used. 

𝑦𝑎𝑏𝑗𝑘𝑙 = 𝜇 + 𝑠𝑎 + 𝑗𝑏 + 𝜏𝑗 + 𝜙𝑘 + (𝜏𝜙)𝑗𝑘 + (𝑠𝜏)𝑎𝑗 + (𝑠𝜙)𝑎𝑘 + (𝑠𝜏𝜙)𝑎𝑗𝑘 + (𝑗𝜏)𝑏𝑗 +

(𝑗𝜙)𝑏𝑘 + (𝑗𝜏𝜙)𝑏𝑗𝑘 + 𝑒(𝑎𝑏)𝑗𝑘𝑙         (5.2) 

where 𝑦𝑎𝑏𝑖𝑘𝑙 the log-transformed millet yield on the l-th plot in site a and year b, 

with the combination of the water harvesting-type j and fertilizer level k. 𝜇 is the 

intercept, 𝑠𝑎 ist the effects site a, 𝑗𝑏 is the effect of year b. 𝜏𝑗 is the effect of the j-th 

water harvesting system, 𝜙𝑘 is the effect of the k-th fertilizer level, (𝜏𝜙)𝑗𝑘 their 

interaction. (𝑠𝜏)𝑎𝑗, (𝑠𝜙)𝑎𝑘, (𝑠𝜏𝜙)𝑎𝑗𝑘, (𝑗𝜏)𝑏𝑗, (𝑗𝜙)𝑏𝑘 and (𝑗𝜏𝜙)𝑏𝑗𝑘 are the interactions 

of site, season and both treatment factors as well as their combination. 𝑒(𝑎𝑏)𝑖𝑘𝑙  are 

the residuals error terms. In order to account for heterogeneity of variance between 

environments, separate error variances were estimated: 𝑒(11)𝑏𝑗𝑙  ~ 𝑁(0, 𝜎𝑒11
2 ), 

𝑒(12)𝑏𝑗𝑙  ~ 𝑁(0, 𝜎𝑒12
2 ) and 𝑒(22)𝑏𝑗𝑙  ~ 𝑁(0, 𝜎𝑒22

2 ).  



108 

5.4.3. On-farm trials (multiD) 

The following linear mixed effects model was used to evaluate yield data from the 

two-site/two-season on-farm data. The treatment combination tied ridges without 

fertilizer was not sufficiently often chosen by farmers for statistical evaluation. 

Therefore, a single treatment factor variable with three levels (FTF0, FTPF and 

TRPF) was used in the model. 

𝑦𝑎𝑏𝑖𝑗𝑙 = 𝜇 + 𝑠𝑎 + 𝑗𝑏 + (𝑠𝑗)𝑎𝑏 + 𝜂𝑖 + 𝜏𝑗 + (𝜂𝜏)𝑖𝑗 + (𝑠𝜂)𝑎𝑖 + (𝑠𝜏)𝑎𝑗 + (𝑗𝜂)𝑏𝑖 + (𝑗𝜏)𝑏𝑗 +

(𝑠𝑗𝜂)𝑎𝑏𝑖 + (𝑠𝑗𝜏)𝑎𝑏𝑗 + (𝑠𝑗𝜂𝜏)𝑎𝑏𝑖𝑗 +  𝑒𝑏𝑖(𝑎𝑗)𝑙      (5.3) 

where 𝑦𝑎𝑏𝑖𝑗𝑙  is the log-transformed millet yield on the l-th farmers plot of soil type i, 

in site a and year b and treatment j. 𝜇 is the intercept, 𝑠𝑎 is the fixed effect of site 

a. 𝑗𝑏 is the fixed effect of season b. 𝜂𝑖 is the fixed effect of the i-th soil type, 𝜏𝑗 is 

the fixed effect of the j-th treatment, , (𝜂𝜏)𝑖𝑗, (𝜂𝜏)𝑖𝑗 is the two-way interactions of 

soil and treatment. (𝑠𝑗)𝑎𝑏, (𝑠𝜂)𝑎𝑖, (𝑠𝜏)𝑎𝑗, (𝑗𝜂)𝑏𝑖, (𝑗𝜏)𝑏𝑗, (𝑠𝑗𝜂)𝑎𝑏𝑖, (𝑠𝑗𝜏)𝑎𝑏𝑗 and 

(𝑠𝑗𝜂𝜏)𝑎𝑏𝑖𝑗 are the random site and year specific effects of soil and treatment. 𝑒𝑏𝑖(𝑎𝑗)𝑙 

are the residual error terms, whereby individual variances for each combination of 

site and water treatment were allowed to achieve homogeneity of variance. 

Independence of soil type and treatment factors was perceived to be a prerequisite 

in order to formulate model (3). The allocation of the factor soil is not randomized. 

Participating farmers themselves chose which treatment combination to use for 

their plot. Hence, possibly the selection of treatment could be guided by farmers’ 

assumption which treatment might turn out favorable on different soils. Such 

selection would distort any conclusions drawn from an analysis of performance of 

treatment combinations on different soils. To control for such bias before applying 

model (3), association of treatment and soil type was tested for each site and 

season combination. Independence of soil and treatment allocation was tested in 

contingency tables. As the expected frequencies in the tables were very low, p-

values for the χ²-test were estimated by resampling from the contingency table 

10,000 times.  

5.4.4. Model fitting 

The model parameters were estimated using the software SAS 9.4. Variance 

components were estimated by restricted maximum likelihood method (REML). 

Model assumptions normal distribution of residuals and homogeneity of variance 

were assessed by inspecting plots of standardized residuals. For the former 

assumption quantile-quantile-plots were used, for the latter the scatter plots of 
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residuals against predicted values. If assumptions were not fulfilled, response 

variables were transformed and heterogeneous variances were used until 

assumptions appeared. Random effects were tested for significance using 

likelihood-ratio tests and non-significant effects were removed from the model. 

Fixed effects were tested for significance by sequential Wald-type F-test. Non-

significant fixed effects were removed from the model. Denominator degrees of 

freedom and standard errors were adjusted using the method of Kenward and 

Roger (Littell et al. 2006). The levels of factors found significant in the F-test were 

compared by pairwise t-tests and other linear contrasts. Throughout the entire 

statistical analysis, a significance level of 5 % was used. 

5.5. Results and discussion - treatment effects on different levels 

5.5.1. One-dimensional testing: The on-station researcher managed trials - 

potential yield of and tied ridging effect on pearl millet grain yield 

When model (1) was fitted to the pearl millet yields obtained from the on-station 

trials, the F-test showed a significant interaction of season and treatment (p < 

0.0001, Tab. 5-S1) while the three-way interaction of site, season and treatment, 

as well as the two-way interaction of site (here field A and B) and treatment were 

not significant (p = 0.95 and p = 0.56, respectively, Table 5-S1). 

Estimates of treatment levels within each season and estimates of seasons within 

each treatment level were compared by pairwise t-tests. Median estimates and test 

results are reported in Figure 5-1. The yield ranking between the treatments was 

the same in both cropping seasons, i.e. FI >TR >R. Consequently, water availability 

during the rainy season was identified as production constraint. Based on the 

guidelines of the FAO-56 methodology (Allen et al., 1998), evapotranspiration of 

pearl millet under the local conditions is 524 mm. However, only 252 mm of rainfall 

occurred between sowing and harvest in 2015 (Table 5-2). Consequently, solely 

rainfed crops in flat terrain suffered from drought stress and hardly produced any 

grain. Highest susceptibility to water shortage was observed during the 

reproductive stage, i.e. at flowering. 

In contrast, the FI-treatment revealed the yield potential under ideal water supply 

on-station, i.e. 3.6 ± 0.7 t ha-1 (Fig. 5-1), but showing N-deficiency being common 

in semi-arid areas. Exchangeable P and K were present in sufficient amounts. 

Micronutrients were not analyzed. As to be expected, the FI grain yields did not 

statistically differ between the two growing seasons. Pearl millet in TR treatments  
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Figure 5-1 Median estimates and 95% confidence intervals of different water 

harvesting treatments in the on-station trials at Makutupora research station 
(Tanzania) in 2015 and 2016 averaged over two sites. Treatment medians within 
each year are compared by pairwise t-tests. Medians of treatments within one 
season that share a common small letter do not differ significantly at α = 5%. 
Medians of two seasons within the same treatment factor level that share a capital 
letter do not differ significantly at α = 5%. Median estimates are based on model 
(1) fitted to square-root-transformed data and back-transformed for graphical 
display. Legend: R: rainfed, TR: tied ridging, FI: full irrigation 

performed significantly better than under rainfed conditions. R and TR treatments 

differed between the seasons, most probably due to water availability. The 

efficiency of TR in 2016 is underlined via approximation of yields to those of the FI 

treatment.  

The generally higher yields on TR plots compared to R plants was probably 

attributed to reduced run-off as often argued in literature. However, farmers stated 

that they could apply this technology only to one acre per season, due to the extra-

ordinary workload. In contrast, several reports state that only little maintenance is 

necessary in following seasons. (UNEP, undated). In this respect farmers stated 

that erratic high intensity rain events cause enormous efforts to repair tied ridged 

fields. 

In conclusion, under the given soil conditions (Rhodic Luvisol (loamic, ochric)) TR 

increased yield compared to rainfed conditions. No information was produced how 

TR would perform under other soil conditions (e.g. low nutrient levels, different 

texture), and whether this technology is economically feasible given the high 

workload. The on-station trials revealed the importance of water availability in 
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Figure 5-2 Median estimates and 95% confidence intervals of different water 

harvesting treatments in the on-station trials at Makutupora research station 
(Tanzania) in 2015 and 2016 averaged over two sites. Treatment medians within 
each year are compared by pairwise t-tests. Medians of treatments within one 
season that share a common small letter do not differ significantly at α = 5%. 
Medians of two seasons within the same treatment factor level that share a capital 
letter do not differ significantly at α = 5%. Median estimates are based on model 
(1) fitted to square-root-transformed data and back-transformed for graphical 
display. Legend: R: rainfed, TR: tied ridging, FI: full irrigation 

certain growth stages, especially in the reproductive stage of pearl millet. On-

station plots were not useable for technology transfer to farmers, mainly due to the 

distance of 60 km from the villages and diverging soil and climate conditions. 

5.5.2. Two-dimensional testing: Researcher managed trials in the 

investigated villages – tied ridging and placed fertilizer effect on pearl millet 

grain yield 

When model (2) was fitted to mother trial yields, the F-test showed a significant 

three-way interaction of water harvesting, fertilizer and site (p = 0.0017, Tab. 5-

S2), while the same interaction with season was not significant (p = 0.2316, Tab. 

5-S2) but the season main effect (p = 0.002, Tab. 5-S2). 
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Figure 5-3 Median estimates and 95% Confidence intervals of combinations of 

water harvesting systems and fertilizer regimes at Illolo and Idifu villages 
(Tanzania). Medians at Ilolo are averaged over two years. Medians of treatment 
combinations which share a common small letter do not differ within each site at α 
= 5% significance level. Medians of the same treatment combination that share a 
common capital letter do not differ between sites at site at α = 5% significance 
level. Medians are estimated from model (2) fitted to log-transformed data and 
back-transformed for graphical display. Mean comparisons based on pairwise t-
tests. Legend: FT: flat ties, F0: no fertilization, TR: tied ridging, PF: placed fertilizer 

Figure 5-2 shows the pearl millet yield means of fertilizer regimes and water 

harvesting systems on mother trials in the two intervention villages. Crop failure in 

the first experimental season on the mother trial in Idifu was caused by highly 

degraded soil in combination with erosion on-site and severe drought. This is, 

however, reality in the village. In 2015, farmers in both villages lost most of their 

crop due to drought (Table 5-2). 

The order of treatment effects on pearl millet grain yield over the years and sites is 

consistently the same: Combined water harvesting and fertilizer > fertilizer > water 

harvesting > control. The control yields are with 0.3-0.4 t ha-1 exactly in the range 

that are reported to be average on local farms in the district (i.e. 0.36 t ha-1,  

Kimenye, 2014). Given the low rainfall in 2015, this year can be taken as worst-

case scenario with an average yield in the control of 0.31 ± 0.1 t ha-1 and an 

observed minimum yield of 0.14 t ha-1. Thus, the yield range at the chosen sites 

with low input conditions is 0.1-0.4 t ha-1 and serves as a reference for treatment 

effects  
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Indifferent from the site and whether water harvesting was used, fertilizer always 

increased yields. The difference between fertilized and unfertilized plots did not 

differ in magnitude between flat and ridged plots (p = 0.1763). On both sites water 

harvesting together with fertilizing increased the yield significantly. However, the 

effect was significantly higher in Idifu compared to Ilolo as found in an additional 

contrast (p = 0.011).  

Yields in Idifu were – except for the combined treatment – higher than in Ilolo. The 

ranking of treatment effects as well as the general significant effect of fertilizing 

shows that nutrients might be more limiting than water in the village environment, 

where irrigation is far beyond farmer means, and fertilizer access and affordability 

are limited. Nevertheless, water deficiency can reinforce nutrient deficiency as only 

water can dissolve and transport nutrients to the plant roots.  

The maximum average yield achieved by combined treatments reaches only about 

40% of the potential yield determined on-station. Combined stresses in the villages 

(water availability: less than 400 mm rainfall and depending on sowing date; 

nutrient availability: limited fertilization; biotic stresses: not recorded) can explain 

this result. The effect of combined tied ridging and placed fertilizer (TRPF) on pearl 

millet grain yield was significant in all cases.  

The interlinkage of water deficit due to scarce precipitation, surface run off and low 

infiltration, worsened by sealed soil surfaces and low water holding capacity in local 

sandy soils, together with nutrient deficiency led to low grain yields in both 

intervention villages.  

Demonstration plots in the village served for training purposes as well as for 

showing the potential success of the applied technologies. In conclusion, the 

experiments clearly show that the placed fertilizer and tied ridging treatments are 

also effective in the village environment. However, the absolute yield level and 

relative yield increase differ from on-station results. In consequence, their 

economic returns - as most relevant information for the farmer - differ. 

5.6. Multi-dimensional testing 

5.6.1. Spatially dispersed farmer-managed trials in the case study sites – tied 

ridging and fertilizer effect on pearl millet grain yield  

Due to absent significant inter-annual differences, statistical analyses consider all 

baby trial yield data for 2015 and 2016 together. The soils were grouped with 

regard to: (1) Reference Soil Groups (RSG, IUSS Working Group, 2015), (2) and - 

where reasonable - landscape position, e.g. in flat (Acrisol (flat)) or undulating 
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terrain (Acrisol (slope)). Only RSGs with a sufficient number of repetitions were 

considered, therefore, the pure placed fertilizer treatment and the Sodic Vertisol 

(hypereutric) were not evaluated.  

An independence tests for each environment revealed no indications for a 

systematic association of soil types and treatments by farmers in the resampling-

based χ²-tests. Monte-Carlo estimates (and confidence intervals) for p-values were 

0.51 (0.503; 0.529) for Idifu in 2015, 0.9211 (0.9142; 0.9280) in 2016. In Ilolo, a p-

value of 0.6296 (0.6172; 0.6420) was estimated for 2015 and 0.8571 (0.8481; 

0.8661) in 2016. We concluded that it is therefore justifiable to draw conclusions 

from the evaluation of the factor soil in the baby trial experiment. 

When model (3) was fitted to the yield data obtained from the farmer-managed 

baby trials a significant interaction of treatment and soil (p = 0.0033, Tab. 5-S3) 

was found. Figure 5-3 shows the estimates treatment factor levels on different 

soils.  

Treatments were subsequently compared within each soil-type by pairwise t-tests. 

Yields on the control plots (FTF0) over all RSGs ranged within reported ones 

 

Figure 5-4 Median estimates and 95% Confidence intervals of combinations of 
water harvesting systems and fertilizer in on farm babyplots averaged over Illolo 
and Idifu sites (Tanzania) and years. Treatment combination medians within one 
soil type that share a common small letter do not differ at α = 5% significance level. 
Medians between soil types with the same treatment that share a common capital 
letter do not differ at α = 5% significance level. Medians are estimated from model 
(3) fitted to log-transformed data and back-transformed for graphical display. Mean 
comparisons are based on pairwise t-tests. Legend: FT: flat ties, F0: no fertilizer, 
TR: tied ridging, PF: placed fertilizer 
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(Kamhambwa, 2014), i.e. between 203 and 1,239 kg ha-1 (arithmetic mean: 

518 ± 262 kg ha-1; n = 54). Yield differences between RSGs are not overall 

significant here (Fig. 5-3). The mean grain yield is 515 ± 212 kg ha-1 on Acrisols 

altogether, 336 ± 47 kg ha-1 on Lixisols, both being lower compared to 

550 ± 261 kg ha-1on Chromc Lixisols (loamic). Farmers evaluated the latter in 

focus group discussions as rather fertile with adequate infiltration. Their 

advantages are their position in rather flat landscape, promoting infiltration, a 

higher base saturation and at the same time a similar plant available P content 

compared to Acrisols. Per definition, Lixisols have a higher base saturation, i.e. a 

higher saturation of cations like Ca2+, Mg2+, and K+ at the exchange complex than 

Acrisols (IUSS Working Group, 2015). This indicates a higher chemical fertility 

status in this respect. The reference soil profile properties (Tab. 5-1) indicate that 

Lixisols (except the loamy one) have generally a lower plant available P-status. 

Statistical analysis of P contents in baby trials showed that those on all Lixisols 

(5.2 ± 4.5 mg kg-1, n = 32; except the loamic variant) are significantly lower than 

those of Acrisols (12.9 ± 13.2 mg kg-1, n = 29), the latter being closer located to the 

village centers with a higher chance of organic wastes being deployed. Plant 

available P - as usual in non-fertilized terrestrial ecosystems - is rated decisive for 

yield in the control plots. Those Acrisols with highest yields are situated close to 

the swamps in the depressions and profit from eolian redistribution of the fertile 

swamp deposits (Reinhardt and Herrmann, 2017) as well as lateral sub-surface 

water flow (own observations). In addition, capillary rise from the shallow 

groundwater can positively influence these Acrisol sites. The plant performance 

gradient was obvious during field visits at the end of the rainy season. 

TR resulted in significantly increased pearl millet yields in the cases of Acrisol 

(slope), Chromic Lixisol on foot slopes and Chromic Lixisol (hypereutric) situated 

on middle slopes. It appears that with TR in sloped terrain increased water 

infiltration led to better plant performance. In contrast, Chromic Lixisols (loamic) 

and Acrisols (flat) were solely found in levelled terrain where less surface flow but 

more lateral subsurface flow can be expected, hence TR should have less effect. 

The number of observations for Chromic Lixisol (loamic) and treatment TRF0 was 

only one and can hardly be interpreted. 

Combined fertilizer and water harvesting treatments revealed significantly higher 

yields compared to controls except for Chromic Lixisols (loamic). On Lixisols, 

affected by P-deficiency, TRPF resulted in significant yield increase as well in 

comparison to TR. Chromic Lixisols (loamic) baby trials exhibited already adequate 
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plant-available P-content without fertilizing which was 13.6 ± 17.7 mg kg-1 on baby 

trials (n = 11) which as well correlate with the distance from settlements and higher 

P-input from manure and household waste near settlements (Vanlauwe et al., 

2016), i.e. fertilization impacted to a lesser extent. 

Average yield gains with respect to treatment were the following:  

 Acrisols in plains: TRF0 +21%, TRPF +66% 

 Acrisols on slopes: TRF0 +59%, TRPF +142% 

 Chromic Lixisols: TRF0 +19%, TRPF +102% 

 Chromic Lixisols (hypereutric): TRF0 +55%, TRPF +215% 

 Chromic Lixisols (loamic): TRF0 +76% (n = 1), TRPF +66% 

The treatment effects (Fig. 5-3) allow the following conclusions: (1) water 

availability is less a constraint on Acrisols in flat landscape positions but on slopes 

where run-off can be expected. (2) Lixisols (except Chromoc Lixisol (loamic) near 

the settlement) are more limited by nutrients (in particular P) than water (higher 

additional yield gain in TRPF treatment). (3) Loamic Lixisols respond mainly to 

additional water input. (4) The yield on plots with both treatments exceed the control 

yield more than twofold. (5) Highest yields in the control treatment are near the 

swamp and the settlement in Idifu, benefiting from additional water due to low 

landscape position. With the TRPF treatment, highest yields were achieved in 

proximity to the swamp in Idifu in undulating terrain. 

In summary, nutrient status (in particular P), and water availability in dependence 

of RSG, slope position and distance to settlements mainly control the pearl millet 

crop yield. Landscape position influences soil development. It can interfere with 

soil type specific features, e.g. run off reducing infiltration on relatively fertile 

slopes, and in turn leading to less yield. Combined treatments have the best effect 

(except for loamic Lixisols). The relative low yield level in the combined treatments 

(ca. 1000 kg ha-1) reveals that further undiscovered limiting factors exist.  

On-farm plots could have performed better with a higher share of supervision from 

researcher to farmer. For smallholder farmers, local experiments are more valuable 

due to conditions influencing plant performance in their respective environment. In 

conclusion, a typical problem of on-farm trials in large numbers is an unbalanced 

data set that influences the statistical significance evaluations.   
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5.6.2. Pros and cons of different research dimensions  

Yields from on-station experiments were major compared to those from village 

level, most probably due to constant fertilization, higher overall precipitation and 

the highest level of control. Plot size also differed, which was a bit over 20 m² for 

on- station and demonstration plots and 100 m² for baby plots on farm. The 

increasing complexity with increasing research dimensions is obvious. Even on 

station, factors vary despite an envisaged controlled environment, e.g. sowing time 

and related water received from rain. From on-station to village mother trials, 

complexity increases by addition of the factors relief, RSG, soil fertility, 

meteorology, and external forces. At the same time, the possibility of control 

decreases leading to a higher necessary number of replicates. This, however, 

could not be managed within the Trans-SEC framework due to communication and 

resource constraints as well as disadvantageous timing of activity planning. 

External forcing can i.a. occur in the form of intermediate trampling and browsing 

by animals, local inundations, fire, intended influence or destruction by humans 

etc. These are not necessarily reported, since the managing person can hardly 

constantly observe the mother trials. Particular care is necessary for the choice of 

the demonstration plot locations (mother trials) also in the sense of local 

acceptance and availability. The local population often chooses degraded terrain 

for such experiments (and on-farm trials) resulting in non-representative outcome. 

Degraded sites pose a low risk of non-expected crop loss. Risk aversion can also 

lead to non-participation (Guttormsen and Roll, 2014) or low responsibility taken. 

Therefore, lack of adequate plot care is frequently observed.  

Mother and baby trials experience in a general sense similar environmental 

conditions in the same landscape. However, for the baby trials again factor 

diversity and weight increases. Next to soil fertility variability related to landscape 

position and distance from home stead, socio-cultural factors (e.g. wealth status or 

gender related plot quality; Franke et al., 2016) and management skills (i.e. 

education) are added. But also RSG diversity (by their intrinsic properties) impact 

on the most important site conditions, i.e. potential rooting depth, chemical soil 

fertility, and water infiltration/budget. Baby trials were at most visited three times 

by scientific staff: before planting for preparation of the trials, at some sites for 

intermediate control, and after harvest for data collection. In 2015, many 

participating farmers shifted the beforehand indicated baby trials to other locations. 

Since soil sampling for analysis already had been carried out on the foreseen baby 

trials, a spatial mismatch between soil analytical information and plot setting 
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occurred. Therefore, distances between new baby trials and sampled locations 

were calculated, and within the same soil unit, distances of 100 m were tolerated 

to relate yields to laboratory soil analyses. However, soil properties variability can 

be tremendous within short distances even within small farms as in our work 

(Vanlauwe et al., 2016). 

The advantage to introduce those additional factors is that they offer more 

possibilities to draw conclusions on applicability of innovations in the farmer’s 

environment. The mother trials allow farmers a first insight into the potential 

performance of a technology, into its constraints and necessary adaptations in their 

environment. In most cases, if the technology does not perform during the first 

season, farmers lose interest. Therefore, mother trials need to be well prepared in 

time, i.e. at the end of the preceding season.  

Lacking communication of mandatory conditions for the baby trials led in our 

example to increased data uncertainty: control plots were partly not installed (i.e. 

no reference yield) and some plots were installed too late (i.e. different rainfall 

experienced in control and treatment). In consequence, for further experiments, 

either a better supervision of baby trials has to be implemented, or, ex ante, the 

number of replicates needs to be fixed at higher numbers.  

It must be stated that in this case the soil map accuracy was never tested due to 

time constraints. In consequence, an unknown level of inaccuracy contributes to 

the spread of data within one "theoretically pure" RSG. This means that (1) all 

treatments need to be present in a sufficient (not necessarily equal; Vanlauwe et 

al. 2016) number for statistical evaluation and that (2) the normal cropping sites 

are represented in a sufficient number, since farmers tend to offer their worst sites 

for such kind of tests. Table 5-3 summarizes pros and cons of the research levels.  
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Table 5-3 Properties of the different research dimensions with tasks and 
conclusion for each 

  Opportunities and benefits Shortcomings 

1
D

 -
 o

n
-s

ta
ti

o
n

 t
ri

a
ls

 
one person (researcher) in charge - 
restricted communication challenges 

 

lack of transferability to subsistence 
environment: social and management 

factors are excluded 

climate and soil homogeneity simplifies 
data interpretation and detailed 
investigation of occurring issues 

artificial conditions, particularly high 
nutrient status 

potential yield under given 
circumstances achievable (full 

irrigation, pest control, weeding = 
controlled conditions) 

explanatory results but constraints in 
famer environment not identified 

constant observation and maximum 
control, biotic and abiotic stress factors 

are identifiable 

 

ideal prerequisites to serve statistical 
analysis, e.g. randomization, balanced 

number of samples, reliable and 
detailed data (e.g. weather data) 

 

task mapping of biotic and abiotic stresses and detailed soil analytical data required 

conclusion 

small-N trials are useful - due to intense and constant control,- to identify the 
processes behind the functioning of a technology 

2
D

 -
 m

o
th

e
r 

p
lo

ts
 

one person (researcher) in charge - 
restricted communication challenges 

restricted transferability to farmers’ 
practice: social and management 

factors are excluded 

subsistence environment given with 
regard to climate, soil nutrient status, 

relief 

increasing external influences, e.g. 
drought, cattle destroying the crop 

homogenous conditions regarding 
climate and soil variables 

design constraints: demonstration 
plots have to be lucid for local farmers 

fertilization impact is measureable 

local yield range and potential yield in 
village reality determinable 

locally existing limitations identifiable, 
e.g.  (ex post) possibility to identify 

biotic and abiotic stresses 

 social nets influence decision on the 
farmer providing the mother plot land 

task prepare timely several plots on major terrain (i.e. soil, relief) types 

conclusion 

adequate conditions for statistical analysis with small sample numbers, 
balanced number of samples, restricted reliability of data due to external 

influences and overall decreasing control intensity 
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m
u

lt
iD

 -
 b

a
b

y
 p

lo
ts

 

multi-actor approach: high number of 
farmers involved leads to high diversity    

of management practices/habits 

increase in complexity, decreasing 
data quality 

identification of so far not realized 
factors 

complex to identify the driving factor 
of certain results 

complete factor variability with respect 
to micro-climate, soil properties, 

landscape position, farmers practice 
and socio-cultural factors  

 

 sporadic time-consuming controls due 
to spatially distant plots 

 
communication challenges in the 
researcher - intermediate - farmer 

continuum 

 lower control intensity leads to 
unidentified influences, e.g. pests 

factor variability allows for more 
specific site- and socio-economically 

adapted recommendations 

missing knowledge about individual 
crop management 

task 

use large-N trials respecting site variability (e.g. based on the SOTER 
approach) and socio-cultural factors 

conclusion 

relation to farmers' reality increases, but data insecurity, too; more site- and 
socially adapted recommendations become possible 

5.6.3. How to prepare for a balanced trial scheme on-farm? 

With respect to the baby trials, it is fundamental to establish a spatially distributed 

testing scheme, in which a sufficient number of repetitions per relevant terrain 

condition is present. The term "terrain condition" is chosen by intention in order to 

reflect the finding that apart from RSGs (or "soil types") also landscape position, 

and distance from settlements play a role in the response function. In fact, such a 

mapping approach was introduced since long aiming at lower resolution scales by 

ISRIC, i.e. the SOTER approach (Herrmann et al., 2001) that considers terrain 

units that respond similarly to management and are usually defined by soil and 

relief variables. 

However, in a local subsistence context it appears more feasible to rely on an 

indigenous knowledge approach in order to ease communication and later 

technology adaptation. In addition to the map unit geometry information, it is wise 

to collect a reduced data set on soil variables in order to ease later yield data 

interpretation. For this purpose a mixed sample of the topmost tilled horizon, 

sampled before the season starts, is sufficient. The following (analytical) data are 

recommended: 

- location i.e. GPS position (please make sure that all data are collected in 

the same format, i.e. respect projection, map datum, grid etc.). 

- slope inclination (as indicator for water budget and erosion) 
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- local soil/terrain type name 

- texture (allows for conclusions on nutrient stock and available water 

capacity)  

- pH value (as indicator for nutrient availability or toxicities) 

- organic matter content (as indicator for N and P stocks) 

- plant available (potassium and) phosphate contents (since phosphate is 

limiting in most subsistence environments; Vanlauwe and Giller, 2006)) 

For adequate initial terrain unit information, Reinhardt and Herrmann (2017) carried 

out an innovative approach: local knowledge based mapping is advantageous due 

to decade old experience of local farmers leading to a rapid terrain and terrain unit 

overview. The following checks were executed using in situ ground-based gamma-

ray spectrometry with preliminary reference soil profile descriptions and transect 

walks, as well as subsequent randomly distributed gamma-ray measurements. For 

the following on-farm trials, it is advantageous to plan an adequate number of plots 

per terrain unit in advance. For this purpose, a statistical power analysis which 

includes factor variability would be appropriate. Guidance of farmers in the first 

experimental year could lead to results which afterwards can induce further 

experimental progress.  

5.7. Conclusions 

Referring to research question (1), on-station trials rarely reflect conditions of 

subsistence farms due to nutrient-rich soils on-station related to previous 

fertilization and diverging conditions compared to the village (climate, relief, soil 

type). Factor complexity tremendously increases from 1D researcher-managed 

plots on station over 2D demonstration plots in the village to multiD farmer-

managed plots that are spatially spread over the village area. Transferability of on-

station results to smallholder environments was, hence, hardly possible. On-station 

trials, however, enable to determine the maximum yield under a given 

management and detailed observation in a quasi-controlled environment.  

Related to research question (2), management adaption to soil type is one possible 

strategy to perform site-adapted agriculture for efficient use of available resources, 

especially in Sub-Saharan agriculture. However, this did not completely match in 

this approach. Landscape position (swamp proximity and correlated subsoil water 

reserves), distance to settlements (soil fertility gradients due to manure and 

household waste application near homesteads), as well as differing sowing dates 

(amount of received rainfall in certain plant growth stages), emerged as important 
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influences on pearl millet performance in the village. Water and P deficiency were 

attributed as limiting factors for pearl millet yields in the study area. 

According to research question (3), multiple limitations have to be considered that 

impede food security in rural central Tanzania, e.g. investment ability in fertilizer, 

and variable rainfall patterns with intermediate droughts. Tied ridging and placed 

fertilizer in reduced amounts was proven successful on-station and in the villages, 

on demonstration plots (mother trials) as well as on-farm and farmer-managed 

plots (baby trials). Nevertheless, not only financial capital but also labor is restricted 

making tied ridging only possible on a limited area of farmers’ land. With 

appropriate supervision, mechanized preparation could be an adequate way to 

overcome this constraint. 

Researchers should work together with local farmers, at first, to learn from their 

experience related to needs and barriers in the local environment and, secondly, 

to jointly develop strategies for overcoming those barriers and fulfill the needs using 

technologies adapted to local environmental and social conditions. This was 

targeted in the Trans-SEC approach; however, shortcomings related to 

communication issues appeared.  

The only way of transferring technologies to smallholder farmers is the 

demonstration of technologies in situ, i.e. the introduction of demonstration plots 

for training. Therefore, farmers should be supervised on their own plots in 

establishing adapted and sustainable technologies for yield stabilizing or increase. 

Plots should not be located far away from each other to work with comparable initial 

conditions on all research levels, i.e. soils with similar nutrient deficiency and 

related zero fertilization experiments on-station, or rainfall in similar amounts, 

should apply in future studies to be able to draw more revealing conclusions from 

the different types of field experiments.  
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5.8. Supplementary material 

Table 5-S1 Sequential F-test for fixed effects for a model fitted to pearl millet yield 

in on-station trials 

Effect Description Numerator 
DF 

Denominator 
DF 

F-value p-value 

𝜇 Intercept 1 12 451.81 < 0.0001 

𝑠𝑎 Site effect 1 10.6 0.02 0.8873 
𝑗𝑏 Season effect 1 12 51.67 < 0.0001 

𝑢𝑎𝑏 Season-specific site effect 1 9.71 5.58 0.0405 

𝑟𝑎𝑏𝑙  Block effect 12 11.9 1.26 0.3470 

𝜏𝑖 Treatment effect 2 14.1 80.73 < 0.0001 
(𝑠𝜏)𝑎𝑖 Site-specific treatment effect 1 9.09 0.31 0.5586 
(𝑗𝜏)𝑏𝑖  Season-specific treatment effect 2 14.1 20.3 < 0.0001 

(𝑢𝜏)𝑎𝑏𝑖 Site- and season-specific “ “ 1 7.61 0.004 0.9520 

F-tests are based on model (1). Response variable was square root-transformed. Random effects: 
𝜎𝑒1

2  = 211.62 and 𝜎𝑒1
2  = 36.98. Denominator degrees of freedom are adjusted with the Method of 

Kenward and Roger. 

Table 5-S2 Sequential F-test for fixed effects for a model fitted to millet yield in on-

site mother trials 

Effect Description Numerator 
DF 

Denominator 
DF 

F-value p-value 

𝜇 Intercept 1 26.2 33249.2 <0.0001 

𝑠𝑎 Site effect (Si) 1 10.5 13.81 0.0037 
𝑗𝑏 Season effect (Se) 1 26.1 11.83 0.0020 
𝜏𝑗 Water harvesting (WH) 1 22.1 41.29 <0.0001 

𝜙𝑘 Main effect fertilizer-regime 
(F) 

1 22.1 175.39 <0.0001 

(𝜏𝜙)𝑗𝑘 Interaction of WH and F 1 22.1 4.99 0.0360 

(𝑠𝜏)𝑎𝑗 Interaction of Si and WH 1 28.1 0.21 0.6499 

(𝑠𝜙)𝑎𝑘 Interaction of Si and F 1 28.1 10.44 0.0031 
(𝑗𝜏)𝑏𝑗 Interaction of Se and WH 1 25.3 2.63 0.1171 

(𝑗𝜙)𝑏𝑘  Interaction on Se and F 1 24.3 0.77 0.3893 
(𝑠𝜏𝜙)𝑎𝑗𝑘 Interaction of Si, WH and F 1 27 12.10 0.0017 

(𝑗𝜏𝜙)𝑏𝑗𝑘 Interaction of Se, WH and F 1 23.3 1.51 0.2316 

F-tests are based on model (2). Denominator degrees of freedom are adjusted with the Method of 
Kenward and Roger. Response variable was log-transformed. Residual variances: 𝜎𝑒11

2  = 0.0889, 

𝜎𝑒12
2  = 0.0384, 𝜎𝑒22

2  = 0.0076 

Table 5-S3 Sequential F-tests for fixed effects for a model fitted to millet yield in 

on-farm trials 

Effect Description Numerator 
DF 

Denominator 
DF 

F-value p-value 

𝜇 Intercept 1 107 35176.0 <0.0001 
𝑠𝑎 Main effect of Site (Si) 1 121 13.35 0.0004 
𝑗𝑏 Main effect of Season (Se) 1 61.7 3.29 0.0746 

𝜂𝑖 Main effect of soil (S) 4 75.3 1.27 0.2888 
𝜏𝑗 Main effect of treatment 2 56.2 56.78 <0.0001 

(𝜂𝜏)𝑖𝑗 Interaction of S and treatment 8 41.4 3.54 0.0033 

F-tests are based on model (3). Denominator degrees of freedom are adjusted with the Method 
of Kenward and Roger. Response variable was log-transformed. Random effects were found to 
be simultaneously non-significant in a likelihood ratio test (DF = 7, χ² = 9.73, p = 0.2046) and 
therefore removed from the model. 
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6. General discussion and conclusions 

6.1. Thesis context 

 
Figure 6-1 Thesis progress including the title on top, the developed articles in 

green boxes and means for their development in blue boxes, main conclusions are 
shown in the red-framed box 

Figure 6-1 sketches the thesis entitled “Improvement of innovation testing in a 

research for development framework based on soil information”. It deals with 

gamma-ray spectrometry as an innovative mapping tool in soil science, which 

could be proven adequate for soil type distinction and rapid soil mapping in 

combination with local soil knowledge in an agricultural R4D context. The tested 

cropping-related innovations on the different spatial and conceptional research 

levels (on-station, mother and baby plots), i.e. tied ridging and placed fertilizing, led 

to an overall yield increase on all these levels. Soil type and catena position 

explained a great share of their varied success in the terrain.  
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The main findings in the course of this thesis were: 

(1) Local terrain knowledge is valuable for initial orientation in new areas and 

overview about occurring soil types including their properties and uses. Mutual 

understanding and trust between actors is of high importance. 

(2) Gamma-ray spectrometry serves well for soil mapping if its limitations are 

well-understood. It offers, in particular, the opportunity to distinguish WRB 

Reference Soil Groups that are otherwise hardly distinguishable in the terrain. 

(3) Involving the local population in agricultural R4D initiatives is crucial for 

exploitation of local experience and for assessing innovations in real farm 

environments. The tremendous increase of environmental and socio-cultural 

factors on trial results makes large numbers of farmer-managed plots 

indispensable for solid assertions and statistical findings.  

(4) Sub-soil is often not regarded during rapid soil surveys leading to incomplete 

assessment of site properties. Often, influences from soil depths beyond 20 or 

30 cm are of high importance, in particular with respect to soil water budgets as 

remarked in this study close to swamps. 

(5) Presumed that gamma-ray mapping makes laboratory analyses redundant, 

or minimizes the sample number to only inconclusive spots where detailed 

inspection is needed, this approach is cost-effective.  

6.2. The connection of social and soil science in research for development 

Agricultural R4D projects require on the one hand the knowledge of actual 

environmental conditions for estimating the potential of cropping innovations, on 

the other the hand the interaction with socio-cultural circumstances influencing 

agricultural management. The combination of both exposes the interests and 

needs of the local society and their available means, which R4D has to address. 

For this purpose, the participatory involvement of experienced residents is high-

priority with regard to project efficiency. Figure 6-2 depicts several aspects in the 

course of a cropping season. Soil is the basic resource for farmers, in particular, in 

underprivileged regions. Thus, soil knowledge, including their properties related to 

landscape position, is crucial for R4D for amelioration and sustainable yield 

increase. As well, in the course of a cropping season, soil scientists can assist. 

Nevertheless, using participatory methods, social sciences could not only 

contribute to such approaches, but moreover benefit with regard to data collection.  
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Figure 6-2 Possible interactions of soil science and social science for valuable 
outcomes in agricultural R4D  

Several activities have been carried out in earlier studies which connected local 

soil knowledge to mapping activities (Lippe et al., 2011; Osbahr and Allan, 2003; 

Barrios and Trejo, 2003), resulting in adequate means for rapid data collection and 

solid data sets. Comparison of scientific and local denomination was reviewed by 

Talawar and Rhoades (1998). They concluded from their research, that for 

development progress, scientific denomination or explanation of physico-chemical 

soil properties are of less value for action research than involving local perception 

of the terrain and related management adaption in both ways, agro-ecological and 

socio-cultural. Studies like the one by Birmingham (2003) can help to understand 

differences in soil perception, or descriptions by local population due to differences 

in knowledge, articulation issues and in individual interests in agricultural land. 

Barrera-Bassols and Zinck (2003) recommend to put the emphasis on the 

“cosmovision” of indigenous people for improving outcomes of R4D. 
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6.3. Shortcomings in the project related to thesis components 

To present knowledge, some project or thesis aspects could have been 

accomplished in an easier, more efficient or effective way: 

- Timeliness: Conflicts of interest arose during the Trans-SEC study. 

Questionnaires for the villagers were too exhaustive and surveys were undertaken 

during busy periods, when farmers had the priority to work the land for cropping. 

Non-timely decisions led to insecure household survey results. Agricultural R4D 

projects must identify labor peaks and act accordingly. Otherwise, research is 

rather hampering development. 

- Labor, next to land, environmental and financial capital, is a limiting factor 

for subsistence farmers in the study area (Liwenga, 2013). It is one of the main 

factors distracting farmers from adopting a certain technology. Researchers should 

as well consider this aspect. Especially in the study area, fields are widespread, 

and elaborate preparation techniques like tied ridging can only be applied to fields 

near the homestead. In discussions with farmers and field assistants, mechanizing, 

i.e. oxen plough, was mentioned to be possible and requested. Tied ridges as well 

as planting distances should then be wider, to co-opt for this possibility.  

- Adoption of the introduced innovation technologies is uncertain in the study 

area due to the bad performance of the demonstration plots and farmers’ trials 

(Reinhardt et al., 2019). Nevertheless, on field trips, several farmers stated, they 

and some of their neighbors will keep preparing tied ridges on the home fields. One 

way researchers could have improved data outcome was longer stays in the village 

for better assistance during the cropping experiments. Only this way, trust on both 

sides, farmers and researchers, is achievable. Local culture and linked habits, e.g. 

in cropping, then become clearer for researchers. Communication between 

researchers and farmers would improve, leading to a more successful outcome. 

- During field studies in the research area, several extension workers one by 

one quit their jobs due to manifold personal restrictions: deficient general 

agricultural education, limited financial resources and lacking motivation to work in 

remote and harsh environments like central Tanzania (personal communication). 

This led to unsatisfactory mentoring of the farmers who repeatedly requested help 

of an extension worker. In Idifu, extension staff was not present for several months. 

For the project Trans-SEC, this circumstance constrained participatory action.  
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6.4. The way forward 

How to tailor adoptable techniques for land conservation? In R4D, as a first step, 

researchers have to adapt to local needs linked with local circumstances. Their 

intention cannot be science per se anymore, but combining scientific with local 

knowledge. Scientific interests cannot be priority number one alone in development 

work. 

Hence, transdisciplinarity is of absolute importance in R4D. Only with knowledge 

and skills contribution of all stakeholders, adoption of reasonable innovations for 

sustainable yield increase is feasible. Local conditions must be studied in-depth 

and in accordance with local farmers in the first place, but also extension workers 

and farmers organizations must be involved. Farmers need to address their 

problems in reality, scientists are then questioned to come up with possible 

solutions which must be again reviewed by locals. Applicability as well as adoption 

probability must be discussed with the key persons. Key persons for agricultural 

R4D are farmers, extension workers, development practitioners, public- and private 

decision makers and (local) politicians (Holtland, 2007) – next to dedicated 

researchers.  

Public investments in the agricultural sector with regard to training and education 

of extension workers is the central point in agricultural development. Agricultural 

R4D must contribute to capacity building, also via knowledge transfer. Train-the-

trainers, i.e. extension workshops included in R4D projects for disseminating the 

gained findings could be an adequate way. Extension workers and farmers 

organizations could act as multipliers for productivity growth. Trained farmers 

would such be prepared to spread the gained knowledge across village borders. 

For this purpose, the inclusion of village heads as respectable persons is of great 

advantage. 

Not only locally between farmers, also across researchers, knowledge exchange 

is due. So many data have been collected in the course of research, but have been 

forgotten after the respective project was finalized. These data must be made 

available to the public through follow-up projects. Only this way, researchers, non-

governmental organizations, but also governments will be capable to make 

adequate decisions. One example is adapted land use planning according to 

environmental conditions. Those data could be merged in a so-called webGIS as 
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it was generated for Tanzania in the course of the Trans-SEC project 

(http://sua.terragis.net/transsec/Welcome.html). Open access geographic 

information system software, available data sets from the Africa Soil Information 

Service (Hengl et al., 2015), climate data from the National Oceanic and 

Atmospheric Administration (http://www.noaa.gov) and yield data from the 

Tanzanian government – next to many others - were used for this purpose. The 

land evaluation tool, included in the webGIS, uses data from Sys et al. (1992) for 

evaluating land suitability according to certain crops.  

As could be shown in this thesis, also landscape position related to subsurface 

expansion of water reserves, run off from slopes or distances from homesteads 

contributes to plant performance. For improved interpretability of environmental 

data, the implementation of the SOil and TERrain digital database (SOTER) could 

act as helpful means, beyond the pure soil unit approach. It is an initiative of the 

International Soil Science Society (ISSS, now IUSS), the Food and Agriculture 

Organisation of the United Nations (FAO), the International Soil Reference and 

Information Centre (ISRIC) and the United Nations Environment Programme 

(UNEP), launched in 1986 (http://www.isric.org/projects/soil-and-terrain-soter-

database-programme). Within SOTER, land is made up of SOTER units consisting 

of terrain and soil bodies combinations. Spatial delineations of the SOTER units 

are determined by landform morphology and parent material. 

Figure 6-3 displays the SOTER division approach. Including the landscape division 

concept from the beginning with slight transformations, i.e. include the field  

 

Figure 6-3 Soil and landform division concept according to the SOTER approach 

(Dijkshoorn 2008) 
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distance from homesteads, would have led to more insightful results regarding 

plant performance on farmers’ trials.  

Implementation of drones for airborne gamma-ray surveys would be one way to 

even accelerate the used mapping approach. Besides, airborne surveys can 

display a broader and continuous picture of soil signatures in the area. An initial 

investigation with drones with a following ground-truthing survey for validation or 

clarification can save time with little extra-costs.  

Detailed and sophisticated soil maps in developing countries, even of remote or 

hard to access terrain could be generated in the following way: 

(1) Gain local knowledge about occurring soil types and its main properties via 

focus group discussions and high resolution satellite images, including cropping 

calendar for avoiding time conflicts for further participatory actions 

(2) Use traditional soil science to assess the terrain via SOTER, classify the 

major soil types after e.g. the WRB (IUSS Working Group, 2015) together with 

gamma-ray signature measurements of reference soil profiles 

(3) Apply drones with modern light gamma-ray detectors for soil  

type delineation 

(4) Assess the produced tertiary images from 40K, 232Th and 238U signals in GIS 

software combined with digital elevation models for evaluation landscape  

position effects 

(5) Ground-check anomalies or uncertainties, also for map validation 

(6) Produce map with local denominations for farmers’ use 

Impact on crop performance is known to be the interaction of crop genotype, local 

environment and agricultural management (Vanlauwe et al., 2016). Research can, 

thus, further assist yield increase in harsh environments by breeding crop varieties 

that deliver stable yields with higher resistance to biotic and abiotic stresses in situ, 

e.g. drought or low phosphate availability, or stem borer infestation, instead of high 

yielding varieties. Researchers must not only connect to local knowledge and 

environmental conditions, also the advancement of local crop varieties is more 

promising than re-inventing the wheel.  

With regard to possible yield increasing or land conservation measures, in order to 

stop degradation, traditional measures like terracing could help against loss of top 
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soil induced by water erosion. Farmers realized the misconception of land clearing 

for crops on slopes in the study area. They repeatedly requested tree planting to 

prevent erosion and to promote organic matter input to the soil. However, access 

to seedlings is bad. Besides, cattle due to feed scarcity will eat up the young trees. 

Corridors, where cattle invasion is prevented, must be established for regenerating 

natural vegetation. A traditional approach of the local population exactly covered 

this task (Holtland, 2007). The approach includes the grazing of cattle on crop 

residues on-farm directly after harvest. Subsequently, the cattle is enclosed in 

attended areas in valley bottoms called “luwindo”, then moved to a corral (“milaga”) 

near the cattle owner’s field or house. Unfortunately, this system collapsed during 

colonial times in Tanzania and was never re-adopted.  

Another approach for regeneration of natural vegetation is, instead of investing 

additional labor in planting, just let nature take back the land with indigenous and 

adapted plants, especially on slopes, where agricultural land cannot be established 

sustainably. 

6.5. Concluding remarks  

The combination of the participatory methods together with gamma ray 

spectrometry as a rapid and non-invasive modern opportunity served well for soil 

mapping in central Tanzania. The Trans-SEC approach with on-station, mother 

and baby trials, however, is disputable. Project internal and external aspects led to 

a non-satisfactory data set regarding repetition number for statistics and reliability.  

For transdisciplinary testing yield increasing innovations on-farm, it is, therefore, 

necessary to conduct multi-year interventions to deal with interferences to ensure 

the success in those treatments. Farmers will not participate without trust in the 

innovations. Only with positive visible outcomes, R4D can have an impact. 

The overall target of agricultural R4D should be the improvement of local 

agricultural systems. For this purpose, multiple perspectives need to be considered 

to include the whole system contributing to agricultural sustainability and to achieve 

a long-term impact. Findings of agricultural R4D need to be disseminated to 

relevant stakeholders at all levels. Only interdisciplinary together with 

transdisciplinary collaboration can converge to global food security.   
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7. Annex 

 

Figure 7-1 Soil maps of Idifu (a) and Ilolo (b) in Dodoma region, Tanzania; names 
in the legend refer to the World Reference Base for soil resources (IUSS Working 
Group, 2015) and literally translated local soil names, used by farmers 
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Table 7-1 Soil data (Ilolo, Chamwino district). BD: bulk density, H2O: water content (gravimetric method), EC: electrical 
conductivity, P- and K-Bray: plant-available P and K. BS: base saturation. Number of measurements N = 2 except for BD (N=3) 
 

Soil Horizon BD Depth Color H2O   EC  pHH2O P Bray K Bray BS Texture Coordinates 
    [kg dm-3] [dm]   [w%] [µS cm-1] - [mg kg-1] [mg kg-1] [%]   WGS84, EPSG 4326 

Haplic 
Acrisol 
(loamic) 

Ep 1.40 1.7 2.5YR 4/6 1.02 65 5.6 7.7 189 69 SL 

35.9005,  
-6.3520 

Btw1 1.52 3.7 
2.5YR 4/6-

8 
1.83 79 5.4 5.2 163 38 SCL 

Bw1 1.46 5.0 
2.5YR 4/6-

8 
1.59 84 5.2 3.0 124 31 SCL 

Btw2 1.40 6.5 5YR 5/8 2.50 73 4.9 2.6 107 19 SC 
Bgw 1.44 >6.5 5YR 5/6 2.35 60 5.1 2.6 121 SL SC 

             

Cutanic 
Stagnic 
Luvisol 

(hypereutric) 

Ep 1.36 1.9 7.5YR 4/3 2.92 154 9.0 12.2 330 95 SCL 
35.8975,  
-6.3368 

Bt 1.55 3.6 10YR 6/3 3.89 166 7.8 10.8 221 70 SCL 
Bgw 1.46 5.6 10YR 6/4 5.50 144 8.0 11.0 270 93 CL 
BC 1.34 >5.6 7.5 YR 5/3 8.20 265 8.8 7.5 336 102 CL 

             

Sodic 
Vertisol 

(hypereutric) 

Ah 0.97 1.0 5YR 4/1 10.9 413 8.4 0.8 267 73 C 
35.8916,  
-6.3631 

Bin 1.21 5.6 5YR 5/1 12.6 2045 8.9 0.0 175 83 C 
Biw 1.30 9.0 2.5YR 4/1 13.2 402 8.4 1.9 178 91 C 
Bw 1.27 >9.0 5YR 5/1 13.9 430 8.5 1.9 133 90 C 

             

Chromic 
Lixisol 

(hypereutric 
profondic) 

E 1.42 0.9 10r 3/6 1.72 93 5.1 0.4 189 71 SCL 

35.9014,  
-6.3454 

Bt 1.45 2.9 10r 3/6 3.55 91 4.3 0.3 84 73 SC 
Bw1 1.33 5.8 10r 3/6 2.57 87 6.4 0.0 36.4 80 SC 
Bw2 1.37 7.6 10r 3/6 1.48 88 6.9 0.9 26.4 69 SC 
Cw 1.44 >7.6 10r 4/6 1.17 123 6.3 0.3 37.4 98 SCL 

             

Chromic 
Lixisol 

Ap 1.28 1.1 5YR 4/8 1.23 90 5.0 5.1 211.1 59 SCL 

35.9036,  
-6.3550 

E 1.30 3.0 5YR 4/8 2.09 81 5.0 5.4 241.5 56 SCL 
Bt 1.32 5.0  5YR 5/8 1.47 68 4.9 2.2 180.7 50 SC 

Bw1 1.38 7.5 5YR 5/8 1.65 82 4.9 2.3 94.1 52 SC 
Bw2 1.43 >7.5 5YR 5/8 1.71 51 5.3 0.5 91.9 57 SC 
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Table 7-2 Soil data (Ilolo, Chamwino district). Ct: total C, Cc: carbonate C (after Scheibler), Corg: organic C, Nt: total N,  
CECpot: potential cation exchange capacity, CECclay: cation exchange capacity of clay. N = 2 

        Exchangeable cations 
Soil Horizon Ct CC Corg Nt CECpot CECclay Na

+
 K

+
 Ca

2+
 Mg

2+
 

   [%] [%] [%] [%] [mmolc+ kg
-1

] [cmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] 

Haplic 
Acrisol 
(loamic) 

Ep 0.39 * 0.39 0.06 46.3 2.6 0.4 9.2 14.8 7.5 
Btw1 0.33 * 0.33 0.05 62 15.2 1.0 8.5 8.8 5.0 
Bw1 0.45 * 0.45 0.06 68 14.0 1.6 6.6 8.2 4.6 
Btw2 0.31 * 0.31 0.05 83 15.6 1.5 2.6 6.8 4.6 
Bgw 0.26 * 0.26 0.05 97 18.6 4.3 2.6 9.9 6.2 

            
Cutanic 
Stagnic 
Luvisol 

(hypereutric) 

Ep 0.39 * 0.39 0.06 137 43.3 4.1 24.8 68 32.5 
Bt 0.32 * 0.32 0.05 215 53 5.3 19.6 94 30.8 

Bgw 0.26 * 0.26 0.04 302 66 12.2 20.0 167 81 
BC 0.40 0.25 0.15 0.04 226 46 21.7 21.3 92 96 

            

Sodic 
Vertisol 

(hypereutric) 

Ah 1.05 0.21 0.84 0.08 624 84 11.7 9.7 307 126 
Bin 0.90 0.37 0.53 0.07 667 80 115 7.0 280 150 
Biw 0.79 0.39 0.40 0.05 561 75 62 12.2 286 151 
Bw 0.62 0.40 0.22 0.06 559 71 97 12.7 260 133 

            

Chromic 
Lixisol 

(hypereutric 
profondic) 

E 0.34 * 0.34 0.05 72 17.5 0.6 9.6 29.2 11.7 
Bt 0.36 * 0.36 0.06 78 15.3 0.8 3.8 37.9 14.0 

Bw1 0.31 * 0.31 0.06 77 15.3 1.3 2.0 43.4 15.0 
Bw2 0.28 * 0.28 0.05 85 17.5 1.2 0.8 43.8 12.5 
Cw 0.30 * 0.30 0.05 87 19.7 2.6 1.4 66 15.4 

            

Chromic 
Lixisol 

Ap 0.38 * 0.38 0.06 43.9 8.0 0.3 10.6 9.5 5.4 
E 0.31 * 0.31 0.05 56 13.1 0.2 12.4 12.2 6.6 
Bt 0.29 * 0.29 0.05 60 10.4 0.4 5.0 15.2 8.6 

Bw1 0.32 * 0.32 0.05 57 9.7 1.5 2.3 14.2 11.7 
Bw2 0.31 * 0.31 0.05 60 11.0 2.8 2.3 16.8 12.4 

*below detection limit
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Table 7-3 Soil data (Idifu, Chamwino district). BD: bulk density, H2O: water content (gravimetric method), EC: electrical 
conductivity, P- and K-Bray: plant-available P and K. BS: base saturation. N = 2 except for BD (N=3) 
 

Soil Horizon BD Depth Color H2O   EC  pHH2O P Bray K Bray BS Texture Coordinates 
   [kg dm-3] [dm]   [w%] [µS cm-1] - [mg kg-1] [mg kg-1] [%]   WGS84, EPSG 4326 

Chromic 
Lixisol 

(loamic) 

Ep 1.51 1.1 5YR 3/4 0.78 141 6.3 2.3 108 49 SL 
35.9969,  
-6.4526 

Bt 1.58 4.6 5YR 4/4 1.22 127 6.3 4.0 114 55 SCL 
Bw 1.48 1.7 5YR 4/6 2.88 121 6.6 2.1 41.2 55 CL 

             

Chromic 
Lixisol 

(hypereutric) 

Ep 1.53 0.6 10R 3/4 1.00 161 7.1 1.9 111 69 SL 
35.9539,  
-6.4548 

Bt 1.64 1.4 10R 3/4 1.69 177 7.2 1.5 94 74 SCL 
Bwk 1.70 4.5 10R 3/4 2.12 177 7.0 2.9 56 77 SCL 
BC  >2.5 10R 3/4 2.29 83 7.9 1.2 20.8 100 L 

             

Chromic 
Lixisol 

Ep 1.38 0.5 2.5YR 3/4 0.78 149 6.4 0.6 112 52 SL 

35.9947,  
-6.4408 

Bt 1.55 2 2.5YR 3/6 1.58 129 5.8 0.2 121 48 SC 
Bw1 1.46 3.6 2.5YR 3/6 1.48 143 6.3 0.2 125 56 CL 
Bw2 1.36 3.9 2.5YR 3/6 1.88 168 7.0 1.4 46.7 63 SCL 
Bwg 1.37 >1 2.5YR 3/6 2.28 225 8.1 0.9 29.2 85 SL 

             

Haplic 
Acrisol 
(loamic) 

Ap1 1.62 0.4 10YR 3/3 0.40 51 5.9 24.9 63 48 LS 
35.9862,  
-6.4408 

Ap2 1.65 2.0 10YR 4/3 0.31 61 5.6 0.3 73 41 LS 
Bt 1.59 4.2 10YR 5/6 1.01 38 5.0 0.2 27.6 15 SCL 
Bg 1.62 >3.5 10YR 5/6 1.02 39 4.8 0.7 23.5 24 SCL 

             

Sodic 
Vertisol 

(hypereutric) 

Ap1 0.97 0.3 2.5YR 4/2 5.09 223 6.5 5.1 372 73 C 

35.9628,  
-6.4520 

Ap2 1.51 1.4 2.5YR 3/2 6.51 210 6.7 2.8 420 70 C 
Biw1 1.42 3.6 5Y 4/1 5.48 161 6.8 3.9 265 85 C 
Biw2 1.30 1.8 5Y 5/2 9.49 340 8.5 2.6 217 89 C 
Bwg 1.27 >3 2.5Y 5/2 8.00 607 9.8 1.2 205 100 C 
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Table 7-4 Soil data (Idifu, Chamwino district). Ct: total C, Cc: carbonate C (after Scheibler), Corg: organic C, Nt: total N,  
CECpot: potential cation exchange capacity, CECclay: cation exchange capacity of clay. N = 2 

        Exchangeable cations  
Soil Horizon Ct CC Corg Nt CECpot CECclay Na

+
 K

+
 Ca

2+
 Mg

2+
 

   [%] [%] [%] [%] [mmolc+ kg
-1

] [cmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] [mmolc+ kg
-1

] 

Chromic 
Lixisol 

(loamic) 

Ep 0.39 * 0.39 0.04 64 29.6 2.6 8.6 16.8 3.7 
Bt 0.37 * 0.37 0.04 81 23.9 2.5 10.7 25.2 5.9 
Bw 0.33 * 0.33 0.04 140 35.7 4.0 4.7 63 5.1 

            

Chromic 
Lixisol 

(hypereutric) 

Ep 0.48 * 0.48 0.05 78 27.1 4.8 8.5 35.2 5.1 
Bt 0.53 * 0.53 0.06 95 20.4 3.7 7.7 54 6.1 

Bwk 0.50 * 0.50 0.06 109 24.2 2.5 5.2 70 5.8 
BC 0.40 0.09 0.31 0.04 131 42.4 1.6 2.6 123 4.2 

            

Chromic 
Lixisol 

Ep 0.43 * 0.43 0.04 68 28.2 4.5 9.8 15.3 6.2 
Bt 0.32 * 0.32 0.04 86 18.4 3.4 11.6 20.1 6.5 

Bw1 0.24 * 0.24 0.04 85 21.8 5.8 11.8 20.9 9.4 
Bw2 0.23 * 0.23 0.04 106 35.2 6.8 4.3 45.2 10.6 
Bwg 0.21 * 0.21 0.02 100 43.6 7.6 3.5 73 1.3 

            

Haplic 
Acrisol 
(loamic) 

Ap1 0.40 * 0.40 0.03 22.9 14.2 0.4 3.8 5.7 1.1 
Ap2 0.31 * 0.31 0.03 24.8 25.8 0.9 4.2 4.3 0.8 
Bt 0.20 * 0.20 0.02 56 21.9 1.2 2.8 3.5 0.9 
Bg 0.19 * 0.19 0.02 59 20.6 1.2 2.8 5.6 4.3 

            

Sodic 
Vertisol 

(hypereutric) 

Ap1 1.36 * 1.36 0.12 269 40.3 5.6 45.9 88 57 
Ap2 1.49 * 1.49 0.14 270 39.4 5.4 52 94 38.5 
Biw1 0.47 * 0.47 0.04 201 38.1 7.9 30.5 66 68 

Biw2 0.36 0.09 0.27 0.03 294 40.0 33.2 29.9 119 80 

Bwg 0.60 0.34 0.26 0.03 301 40.8 84 33.8 143 40 

*below detection limit



141 

Table 7-5 Gamma ray spectrometric data (K, eTh, eU) from reference profiles in 
Ilolo, Chamwino district. N = 5 

Ilolo K SD eTh SD eU SD 
  [%]  [ppm]  [ppm]  

Haplic Acrisol  
(loamic) 

0.83 0.01 2.43 0.15 0.38 0.10 

       
Cutanic Stagnic Luvisol 

(hypereutric) 
0.87 0.06 6.55 0.17 0.78 0.10 

       
Sodic Vertisol 
(hypereutric) 

0.70 0.06 8.0 0.60 1.10 0.14 

       
Chromic Lixisol 

(hypereutric profondic) 
1.83 0.03 6.75 0.33 0.33 0.17 

       
Chromic  
Lixisol 

0.37 0.02 4.20 0.23 0.35 0.13 

 

Table 7-6 Gamma ray spectrometric data (K, eTh, eU) from reference profiles in 

Idifu, Chamwino district. N = 5 
Idifu K SD eTh SD eU SD 

  [%]  [ppm]  [ppm]  

Chromic Lixisol  
(loamic) 

1.0 0.01 9.20 0.45 0.80 0.14 

       
Chromic Lixisol 

(hypereutric) 
0.29 0.04 4.70 0.62 0.55 0.22 

       
Chromic  
Lixisol 

0.48 0.02 5.73 0.22 0.83 0.06 

       
Haplic Acrisol  

(loamic) 
0.44 0.02 2.90 0.24 0.40 0.14 

       
Sodic Vertisol 
(hypereutric) 

0.94 0.01 5.10 0.53 0.40 0.09 

  



142 

Table 7-7 (part 1) Transect soil data (weighted average for the top 30 cm) in Ilolo, Chamwino district. Lat: latitude, Long: longitude 
(WGS84), EC: electrical conductivity, P- and K-Bray: plant-available P and K, Ct: total C, Nt: total N; K, eTh, eU: gamma ray data 
of K, Th, U, CLAYR: clayrich. Texture was determined following Jahn et al. (2008). Soils were classified following WRB, IUSS 
working group, 2015). N = 2, except for gamma ray data (N = 5) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 

 

11 -6.3489 35.9148 1085 2.5YR 3/6 SCL 190.6 6.8 2.8 218 0.04 0.33 0.97 3.03 0.49 Chromic Lixisol 

12 -6.3487 35.9145 1083 2.5YR 4/6 SCL 38.0 6.0 1.9 156 0.04 0.25 1.01 2.81 0.38 Chromic Lixisol 

13 -6.3483 35.9141 1087 2.5YR 4/8 SCL 43.1 5.4 1.1 122 0.03 0.25 0.91 2.78 0.40 Chromic Lixisol 

14 -6.3480 35.9138 1086 2.5YR 4/6 
SL 

CLAYR 40.9 6.5 3.7 242 0.03 0.28 0.88 3.54 0.46 Chromic Lixisol 

15 -6.3474 35.9135 1085 2.5YR 4/6 SCL 49.5 5.9 3.3 242 0.04 0.54 1.01 2.11 0.35 Chromic Lixisol 

16 -6.3469 35.9132 1070 7.5YR 4/4 SL 27.2 6.1 4.9 268 0.03 0.30 1.03 2.86 0.36 Chromic Lixisol 

17 -6.3464 35.9127 1068 7.5YR 3/4 
SL 

CLAYR 41.4 5.9 8.0 286 0.03 0.36 0.89 3.28 0.29 Chromic Lixisol 

18 -6.3457 35.9122 1068 5YR 4/8 US 9.2 6.1 2.4 65 0.03 0.29 1.07 1.89 0.43 

Chromic Lixisol 
(hypereutric, 
profondic) 

19 -6.3449 35.9114 1074 5YR 3/6 L 37.2 6.3 2.2 159 0.02 0.23 1.02 1.84 0.34 

Chromic Lixisol 
(hypereutric, 
profondic) 

110 -6.3436 35.9104 1075 10R 3/6 LS 14.3 6.8 0.9 88 0.01 0.16 1.37 7.04 0.73 

Chromic Lixisol 

(hypereutric, 
profondic) 

111 -6.3433 35.9102 1076 10R 3/6 SL 19.1 6.9 2.5 92 0.01 0.24 1.22 10.59 0.93 

Chromic Lixisol 
(hypereutric, 
profondic) 

112 -6.3428 35.9097 1078 5YR 4/8 
SL 

CLAYR 19.6 6.4 2.8 156 0.01 0.26 1.28 11.27 0.84 

Chromic Lixisol 
(hypereutric, 
profondic) 

21 -6.3386 35.9041 1079 2.5YR 3/4 L 99 7.3 12.0 476 0.04 0.41 0.60 17.30 1.43 Chromic Lixisol 

22 -6.3389 35.9037 1082 2.5YR 3/3 L 189 7.0 1.6 719 0.10 1.19 0.73 15.92 1.74 Chromic Lixisol 

23 -6.3390 35.9033 1072 7.5YR 3/4 LS 33.4 6.7 11.0 232 0.02 0.27 0.70 19.46 1.56 Chromic Lixisol 

24 -6.3392 35.9030 1071 5YR 4/4 SL C 40.2 6.5 4.9 261 0.12 1.38 0.63 21.17 1.30 Chromic Lixisol 
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Table 7-7 (part 2) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 

 

25 -6.3394 35.9026 1070 7.5YR 3/3 SL 86 8.3 0.0 448 0.15 1.00 0.68 30.81 1.71 Chromic Lixisol 

26 -6.3399 35.9020 1075 5YR 3/3 SL 20.4 6.6 15.3 191 0.07 0.42 0.64 29.00 1.21 Chromic Lixisol 

27 -6.3404 35.9011 1065 7.5YR 4/6 SL 37.1 5.2 2.5 68 0.03 0.34 0.95 3.74 0.52 
Haplic Acrisol 

(loamic) 

28 -6.3405 35.9008 1078 7.5YR 3/4 SL 22.8 6.5 6.7 161 0.03 0.25 0.91 5.06 0.53 
Haplic Acrisol 

(loamic) 

29 -6.3410 35.9002 1079 5YR 4/6 SL 25.9 5.2 4.0 108 0.01 0.23 0.95 3.77 0.43 
Haplic Acrisol 

(loamic) 

210 -6.3412 35.8998 1076 7.5YR 3/4 SL 40.7 5.2 3.9 161 0.03 0.31 0.84 3.90 0.40 
Haplic Acrisol 

(loamic) 

211 -6.3416 35.8991 1086 5YR 4/6 
SL 

CLAYR 61 5.3 1.3 144 0.02 0.32 0.87 3.48 0.45 
Haplic Acrisol 

(loamic) 

31 -6.3194 35.9114 1126 2.5YR 3/6 
SL 

CLAYR 26.9 6.0 0.9 99 0.07 0.41 1.23 9.93 0.64 

Chromic Lixisol 
(hypereutric, 
profondic) 

32 -6.3198 35.9109 1122 
2.5YR 
2.5/4 SL 54 7.0 1.4 150 0.12 0.70 1.28 10.54 0.78 

Chromic Lixisol 
(hypereutric, 
profondic) 

33 -6.3200 35.9106 1119 2.5YR 3/6 LS 34.3 6.2 1.0 142 0.07 0.36 1.30 12.90 0.76 

Chromic Lixisol 

(hypereutric, 
profondic) 

34 -6.3206 35.9101 1117 2.5YR 3/6 LS 55 5.7 1.6 94 0.06 0.31 1.34 8.61 0.77 

Chromic Lixisol 
(hypereutric, 
profondic) 

35 -6.3214 35.9094 1114 2.5YR 3/6 LS 31.5 5.7 2.5 77 0.02 0.16 1.37 7.04 0.47 

Chromic Lixisol 
(hypereutric, 
profondic) 

36 -6.3223 35.9082 1112 2.5YR 3/4 LS 23.7 6.5 2.5 68 0.02 0.20 1.17 15.50 0.89 

Chromic Lixisol 
(hypereutric, 
profondic) 

37 -6.3239 35.9070 1111 2.5YR 3/6 LS 25.7 6.7 0.3 28 0.02 0.22 1.21 9.86 0.84 

Chromic Lixisol 
(hypereutric, 
profondic) 

38 -6.3248 35.9064 1110 5YR 3/4 LS 45.3 6.3 5.2 120 0.02 0.30 1.18 10.75 0.86 

Chromic Lixisol 

(hypereutric, 
profondic) 

39 -6.3266 35.9052 1107 5YR 3/4 LS 35.9 6.1 3.1 96 0.01 0.22 1.24 9.41 0.81 

Chromic Lixisol 
(hypereutric, 
profondic) 

310 -6.3270 35.9049 1106 2.5YR 3/4 SL 19.9 5.8 1.0 97 0.02 0.20 1.14 9.51 0.79 

Chromic Lixisol 

(hypereutric, 
profondic) 
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Table 7-7 (part 3) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 

 

311 -6.3277 35.9041 1105 2.5YR 3/4 LS 30.7 6.4 2.9 184 0.03 0.32 1.17 8.53 0.74 

Chromic Lixisol 

(hypereutric, 
profondic) 

312 -6.3284 35.9033 1104 2.5YR 4/4 LS 28.9 6.3 1.3 217 0.12 0.86 1.04 11.47 0.96 Gradient  

313 -6.3292 35.9026 1100 5YR 3/4 LS 133 8.0 2.6 46.6 0.08 0.30 1.26 23.89 1.55 

Chromic Lixisol 
(hypereutric, 
profondic) 

314 -6.3299 35.9019 1099 10YR 4/3 SCL 151 8.6 1.4 107 0.09 0.61 0.76 9.98 1.14 
Cutanic Stagnic 

Luvisol 

41 -6.3635 35.8999 1060 10YR 4/1 CL 481 9.4 2.0 137 0.04 0.71 0.41 5.99 0.61 
Sodic Vertisol 
(hypereutric) 

42 -6.3633 35.9002 1056 7.5YR 3/2 CL  133 8.6 2.5 159 0.05 0.73 0.46 6.47 0.77 
Sodic Vertisol 
(hypereutric) 

43 -6.3632 35.9005 1057 7.5YR4/4 CL 582 2.9 6.0 155 0.04 0.67 0.83 12.19 0.89 
Vertisol with red 

overburden 

44 -6.3630 35.9009 1056 7.5YR 4/4 CL 148 7.9 3.1 187 0.06 0.80 0.80 9.82 0.85 
Vertisol with red 

overburden 

45 -6.3628 35.9012 1053 5YR 4/4 L 132 6.8 5.1 120 0.03 0.34 1.08 9.81 0.77 
Vertisol with red 

overburden 

46 -6.3637 35.9014 1061 5YR 3/4 SCL 61 6.5 2.8 290 0.05 0.49 1.19 13.46 1.18 
Vertisol with red 

overburden 

47 ** ** ** 5YR 6/8 SL 16.7 6.3 1.0 25.1 0.01 0.04 1.52 4.71 0.42 Chromic Lixisol  

48 -6.3633 35.9023 1059 7.5YR 4/4 L 147 6.3 6.3 304 0.02 0.02 0.58 6.82 0.47 Chromic Lixisol  

49 -6.3628 35.9033 1061 7.5YR 3/4 L 147 6.3 6.3 304 0.02 0.02 0.28 4.80 0.47 Chromic Lixisol 

410 -6.3626 35.9036 1062 7.5YR 3/3 
SL 

CLAYR 50 5.7 7.8 298 0.03 0.32 0.35 4.07 0.32 Chromic Lixisol 

411 -6.3623 35.9043 1067 5YR 4/6 SL 57 6.7 19.1 409 0.02 0.35 0.47 4.24 0.31 Chromic Lixisol 

412 -6.3620 35.9049 1071 2.5YR 3/4 LS 32.9 5.2 6.0 150 0.02 0.30 0.60 4.10 0.56 Chromic Lixisol 

51 -6.3418 35.8935 1109 5YR 3/4 SL 55 6.4 1.4 143 0.06 0.75 0.88 2.17 0.27 Leptosol 

52 -6.3414 35.8935 1106 5YR 4/4 
SL 

CLAYR  41.4 6.5 4.3 267 0.05 0.47 0.64 2.55 0.30 Leptosol 

53 -6.3411 35.8935 1104 2.5YR 3/4 SL  24.6 6.7 2.8 204 0.04 0.45 0.73 3.18 0.31 Leptosol 

54 
- 

6.3405 35.8935 1100 5YR 4/4 
SL 

CLAYR  56 6.7 1.7 104 0.04 0.45 0.70 2.60 0.37 Leptosol 

**missing 
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Table 7-7 (part 4) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 

 

55 -6.3401 35.8935 1097 7.5YR 4/4 L 43.5 7.3 2.6 124 0.06 0.58 0.59 2.24 0.25 Chromic Lixisol 

56 -6.3396 35.8935 1093 5YR 4/4 L 33.2 5.7 1.4 149 0.02 0.27 0.52 3.28 0.38 Chromic Lixisol 

57 -6.3392 35.8935 1092 5YR 3/6 L 26.0 5.4 3.0 114 0.02 0.28 0.57 2.84 0.37 Chromic Lixisol 

58 -6.3388 35.8935 1091 5YR 4/4 L 31.3 6.9 16.9 198 0.02 0.27 0.65 2.85 0.49 Chromic Lixisol  

59 -6.3384 35.8935 1095 5YR 4/6 LS 29.4 5.8 4.2 90 0.02 0.23 0.71 2.74 0.36 Chromic Lixisol 

510 -6.3376 35.8934 1094 7.5YR 3/3 L 86 7.2 14.2 301 0.04 0.30 0.84 6.47 0.79 
buried Cutanic 
Stagnic Luvisol 

511 -6.3372 35.8934 1097 7.5YR 3/4 
SL 

CLAYR 25.6 6.1 2.4 211 0.03 0.29 1.26 7.36 0.73 

Chromic Lixisol 
(hypereutric, 
profondic) 

512 -6.3369 35.8934 1099 7.5YR 3/4 SL 55 6.1 8.7 211 0.02 0.27 1.38 8.24 0.73 

Chromic Lixisol 
(hypereutric, 
profondic) 

61 -6.3510 35.8925 1023 2.5YR 3/4 SL  29.7 6.3 3.7 155 0.04 0.48 0.55 4.56 0.41 Chromic Lixisol 

62 -6.3514 35.8924 1077 2.5YR 3/6 SL  886 7.9 0.0 264 0.04 0.49 0.54 4.56 0.40 Chromic Lixisol 

63 -6.3522 35.8923 1074 2.5YR 3/4 
SL  

CLAYR 152 5.9 4.7 158 0.04 0.45 0.70 5.06 0.51 Chromic Lixisol 

64 -6.3526 35.8922 1073 2.5YR 3/6 
SL 

CLAYR 43.5 5.8 1.7 201 0.03 0.30 0.67 5.33 0.42 Chromic Lixisol 

65 -6.3534 35.8921 1070 2.5YR 3/4 SCL 17.6 6.3 1.6 226 0.03 0.31 0.68 3.77 0.38 
Haplic Acrisol 

(loamic) 

66 -6.3538 35.8920 1070 7.5YR 4/4 SL 22.0 6.1 1.8 137 0.03 0.36 0.72 3.64 0.42 
Haplic Acrisol 

(loamic) 

67 -6.3545 35.8918 1067 7.5YR 4/6 LS 23.3 6.5 5.1 113 0.02 0.20 0.81 2.13 0.36 
Haplic Acrisol 

(loamic) 

68 -6.3552 35.8917 1067 7.5YR 4/4 LS 20.1 5.8 4.4 138 0.02 0.26 0.75 4.50 0.50 
Haplic Acrisol 

(loamic) 

69 -6.3556 35.8916 1068 7.5YR 4/4 LS 28.8 5.5 2.3 100 0.02 0.25 0.72 3.30 0.29 
Haplic Acrisol 

(loamic) 

610 -6.3564 35.8916 1068 5YR 3/3 
SL 

CLAYR  43.0 6.3 4.5 202 0.05 0.73 0.74 2.94 0.33 
Haplic Acrisol 

(loamic) 

611 -6.3575 35.8913 1066 5YR 3/4 
SL 

CLAYR  42.4 5.9 2.7 208 0.16 1.51 0.69 2.35 0.30 
Haplic Acrisol 

(loamic) 
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Table 7-7 (part 5) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 

 

612 -6.3587 35.8912 1065 7.5YR 3/3 
SL 

CLAYR  55 5.8 2.0 208 0.07 0.42 0.66 2.81 0.37 
Haplic Acrisol 

(loamic) 

613 -6.3592 35.8912 1064 7.5YR 4/4 LS 43.2 5.8 3.2 139 0.09 0.58 0.71 2.07 0.28 
Haplic Acrisol 

(loamic) 

614 -6.3597 35.8913 1065 7.5YR 4/6 LS 28.1 6.2 8.8 269 0.13 1.30 0.69 1.67 0.25 
Haplic Acrisol 

(loamic) 

615 -6.3603 35.8912 1060 7.5YR 4/4 LS 355 8.0 11.2 308 0.18 1.62 0.53 2.97 0.42 
Haplic Acrisol 

(loamic) 

616 -6.3612 35.8911 1062 10YR 3/1 CL 237 8.5 2.0 156 0.14 2.87 0.31 4.52 0.70 
Sodic Vertisol 
(hypereutric) 
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Table 7-8 (part 1) Transect soil data (weighted average for the top 30 cm) in Idifu. Lat: latitude, Long: longitude (WGS84), EC: 
electrical conductivity, P- and K-Bray: plant-available P and K, Ct: total C, Nt: total N; K, eTh, eU: gamma ray data of K, Th, U, 
CLAYR: clayrich. Texture was determined following Jahn et al. (2008). Soils were classified following WRB, IUSS working group, 
2015).  
N = 2, except for gamma ray data (N = 5) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  

[µS cm-

1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 

 

11 -6.4409 35.9887 997 2.5YR 3/3 C 672 7.9 31.5 881 0.24 2.84 0.80 4.49 0.86 

Sodic 
Vertisol 

(hypereutric) 

12 -6.4407 35.9895 998 10YR 2/2 SC 226 6.9 18.1 558 0.14 1.35 0.66 4.87 0.75 

Sodic 
Vertisol 

(hypereutric) 

13 -6.4407 35.9903 1001 10YR 3/3 CL 150 7.219 1.6 481 0.09 0.93 0.5325 4.4375 0.6375 

Sodic 
Vertisol 

(hypereutric) 

14 -6.4405 35.9910 1002 10YR 3/4 LS 29.7 6.4 39.0 145 0.03 0.21 0.48 4.85 0.53 
Chromic 
Lixisol 

15 -6.4405 35.9918 1005 7.5YR 4/4 LS 48.2 6.7 30.3 177 0.06 0.45 0.45 4.48 0.50 
Chromic 
Lixisol 

16 -6.4406 35.9925 1004 5YR3/6 LS 25.6 6.5 12.4 214 0.05 0.34 0.47 5.36 0.53 
Chromic 
Lixisol 

17 -6.4406 35.9934 1004 7.5YR 4/6 LS 23.5 6.0 12.0 181 0.06 0.30 0.49 5.84 0.66 
Chromic 
Lixisol 

18 -6.4405 35.9950 1003 7.5YR 4/4 SL 22.2 5.9 7.0 222 0.06 0.36 0.45 5.38 0.55 
Chromic 
Lixisol 

19 -6.4405 35.9966 1008 2.5YR 3/6 SL 37.5 6.6 2.1 281 0.07 0.36 0.45 6.30 0.39 
Chromic 
Lixisol 

110 -6.4404 35.9982 1010 2.5YR 4/6 LS 35.9 6.3 4.7 225 0.06 0.43 0.42 6.12 0.52 
Chromic 
Lixisol 

111 -6.4404 35.9989 1013 2.5YR 4/6 SL 35.5 5.8 5.8 228 0.06 0.37 0.40 5.82 0.78 
Chromic 
Lixisol 

112 -6.4403 36.0004 1010 10YR 3/6 SL 41.5 5.9 5.1 251 0.07 0.49 0.43 6.81 0.67 
Chromic 
Lixisol 

113 -6.4402 36.0027 1023 5YR 3/6 SL 34.3 5.7 1.8 373 0.09 0.63 0.48 6.41 0.69 
Chromic 
Lixisol 

114 -6.4401 36.0038 1014 5YR 4/6 LS 33.4 5.6 12.8 368 0.07 0.44 0.73 6.21 0.55 
Chromic 
Lixisol 

115 -6.4402 36.0034 1007 5YR 3/6 LS 98.3 6.6 28.4 351 0.05 0.41 0.66 8.09 0.73 
Chromic 
Lixisol 

21 -6.4139 35.9705 1005 5YR 3/3 CL ** ** ** ** ** ** 0.53 5.53 0.83 

Sodic 
Vertisol 

(hypereutric) 

22 -6.4125 35.9698 1004 5YR 3/2 CL 223 5.5 31.4 516 0.17 2.10 0.59 6.98 0.65 

Sodic 
Vertisol 

(hypereutric) 

 
**missing 
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Table 7-8 (part 2) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  

[µS cm
-

1
] - [mg kg

-1
] [mg kg

-1
] [%] [%] [%] [ppm] [ppm] 

 

23 -6.4118 35.9694 1005 5YR 3/3 CL 77.3 6.7 31.6 226 0.11 1.28 0.55 4.61 0.47 

Sodic 

Vertisol 
(hypereutric) 

24 -6.4115 35.9692 1003 5YR 3/3 LS 36.9 6.7 8.6 266 0.06 0.84 0.54 3.87 0.46 

Haplic 
Acrisol 
(loamic) 

25 -6.4111 35.9690 1000 5YR 4/4 LS 49.3 5.7 9.0 162 0.04 0.59 0.52 3.76 0.42 

Haplic 
Acrisol 
(loamic) 

26 -6.4104 35.9687 1001 7.5YR 3/4 LS 56.6 6.0 2.5 197 0.04 0.45 0.63 5.36 0.53 

Chromic 
Lixisol 

(loamic) 

27 -6.4096 35.9683 1003 5YR 3/4 SL 92.3 6.4 8.6 260 0.05 0.54 0.68 6.80 0.53 

Chromic 
Lixisol 

(loamic) 

28 -6.4090 35.9679 999 5YR 2/4 LS 59.1 6.6 11.6 198 0.06 0.35 0.70 6.10 0.55 

Chromic 

Lixisol 
(loamic) 

29 -6.4083 35.9676 999 5YR 2/3 LS 115 8.1 8.1 519 0.06 0.72 0.77 5.86 0.63 

Chromic 
Lixisol 

(loamic) 

210 -6.4077 35.9672 1000 2,5YR 2/4 LS 195 6.5 8.3 389 0.05 0.50 0.76 6.79 0.58 

Chromic 
Lixisol 

(loamic) 

211 -6.4070 35.9669 1000 2.5YR 3/4 SL 51.8 6.5 13.9 259 0.05 0.57 0.72 8.16 0.55 

Chromic 
Lixisol 

(loamic) 

212 -6.4057 35.9662 1003 2.5YR 3/4 LS 38.1 6.6 5.1 202 0.05 0.67 0.72 6.59 0.66 

Chromic 
Lixisol 

(loamic) 

213 -6.4050 35.9659 1007 10R 3/3 SL 41.0 6.3 5.2 271 0.07 0.47 0.59 5.25 0.52 
Chromic 
Lixisol 

214 -6.4043 35.9655 1011 10R 4/6 
SL 

CLAYR 104 6.2 3.6 376 0.05 0.45 0.57 5.43 0.53 
Chromic 
Lixisol 

215 -6.4035 35.9652 1014 2,5YR 3/4 SL 51.5 6.1 3.6 283 0.04 0.55 0.56 5.93 0.55 
Chromic 
Lixisol 

216 -6.4021 35.9643 1021 2.5YR 3/4 SL 44.8 6.2 4.3 292 0.04 0.57 0.52 5.34 0.60 
Chromic 
Lixisol 

217 -6.4014 35.9639 1023 2.5YR 3/4 SL 46.4 6.3 5.7 259 0.04 0.60 0.49 5.56 0.44 
Chromic 
Lixisol 

218 -6.4007 35.9635 1016 2.5YR 3/4 LS 57.8 5.6 11.0 195 0.04 0.44 0.49 5.50 0.51 
Chromic 
Lixisol 

31 -6.3930 36.0031 999 5YR 3/6 LS 47.4 6.2 5.4 244 0.03 0.46 0.62 14.02 0.79 
Chromic 
Lixisol 
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Table 7-8 (part 3) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  

[µS cm-

1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 

 

32 -6.3937 36.0033 995 2.5YR 4/6 
SL 

CLAYR 42.6 5.9 3.9 241 0.03 0.34 0.67 10.62 0.56 
Chromic 
Lixisol 

33 -6.3945 36.0036 997 2.5YR 3/6 L 41.5 6.0 8.2 242 0.03 0.37 0.68 11.58 0.54 
Chromic 
Lixisol 

34 -6.3952 36.0038 995 2.5YR 4/6 SL 29.7 6.4 7.1 298 0.05 0.48 0.73 12.10 0.71 
Chromic 
Lixisol 

35 -6.3956 36.0039 994 7.5YR 3/6 SCL 62.9 6.0 6.2 441 0.04 0.41 0.82 13.86 0.60 

Chromic 

Lixisol 
(loamic) 

36 -6.3959 36.0041 997 7.5YR 4/6 LS 58.1 7.2 10.2 328 0.04 0.34 0.87 12.19 0.53 

Chromic 
Lixisol 

(loamic) 

37 -6.3963 36.0042 996 7.5YR 4/4 LS 32.0 6.7 18.8 291 0.04 0.35 1.05 14.84 0.45 

Chromic 
Lixisol 

(loamic) 

38 -6.3967 36.0043 1000 7.5YR 4/3 LS 20.2 5.9 8.6 228 0.02 0.25 1.02 12.48 0.65 

Chromic 
Lixisol 

(loamic) 

39 -6.3971 36.0045 995 2.5YR 4/6 L 53.6 5.6 0.4 136 0.03 0.39 0.72 12.10 0.81 
Chromic 
Lixisol 

310 -6.3977 36.0047 998 10R 3/6 L 37.3 5.7 5.5 287 0.04 0.40 0.61 10.83 0.60 
Chromic 
Lixisol 

311 -6.3984 36.0049 999 10R 3/6 SL 0.0 0.0 5.3 323 0.06 0.79 0.57 10.06 0.36 
Chromic 
Lixisol 

312 -6.3991 36.0052 999 2.5YR 3/6 
SL 

CLAYR 138 5.8 4.8 362 0.04 0.36 0.55 10.83 0.60 
Chromic 
Lixisol 

313 -6.4001 36.0054 1000 2.5YR 3/4 L 88.2 6.6 5.7 427 0.05 0.47 0.36 8.91 0.69 
Chromic 
Lixisol 

314 -6.4006 36.0055 997 2.5YR 3/4 L 31.9 6.3 8.3 363 0.05 0.45 0.36 10.81 0.51 
Chromic 
Lixisol 

41 -6.4332 36.0004 1012 5YR3/4 
SL 

CLAYR 64.8 6.4 5.5 398 0.05 0.53 1.04 9.62 0.74 

Chromic 
Lixisol 

(loamic) 

42 -6.4335 36.0007 1012 5YR3/4 SCL 36.3 4.5 5.3 187 0.03 0.27 1.08 10.86 0.68 

Chromic 
Lixisol 

(loamic) 

43 -6.4338 36.0010 1010 5YR3/6 SCL 32.7 6.4 3.6 296 0.06 0.52 1.00 11.35 0.98 

Chromic 
Lixisol 

(loamic) 

44 -6.4341 36.0013 1008 2.5YR3/6 SL 26.2 5.7 2.8 243 0.04 0.43 0.93 13.61 0.79 

Chromic 
Lixisol 

(loamic) 

45 -6.4347 36.0018 1007 5YR 7/6 S 33.8 6.76 3.39 307 0.04 0.41 0.67 13.51 0.77 Street 
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Table 7-8 (part 4) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  

[µS cm
-

1
] - [mg kg

-1
] [mg kg

-1
] [%] [%] [%] [ppm] [ppm] 

 

46 -6.4347 36.0018 1008 7.5YR4/4 LS 18.6 6.1 4.3 192 0.05 0.54 1.12 12.58 0.85 

Chromic 

Lixisol 
(loamic) 

47 -6.4357 36.0028 1009 2.5YR3/4 L 144 6.7 1.1 170 0.03 0.24 0.85 15.88 0.95 

Chromic 
Lixisol 

(loamic) 

48 -6.4362 36.0033 1004 5YR3/4 LS 34.6 5.6 5.2 200 0.04 0.49 1.42 11.75 0.71 

Chromic 
Lixisol 

(loamic) 

49 -6.4365 36.0036 1005 5YR3/4 LS 32.2 5.8 4.4 127 0.03 0.34 1.10 10.87 0.64 

Chromic 
Lixisol 

(loamic) 

410 -6.4371 36.0042 1008 5YR3/6 
SL 

CLAYR 75.5 5.9 3.1 238 0.05 0.45 0.74 8.14 0.62 

Chromic 
Lixisol 

(loamic) 

411 -6.4375 36.0045 999 5YR4/8 CL 245 6.1 2.5 465 0.06 0.42 0.63 9.26 0.74 
Chromic 
Lixisol 

412 -6.4377 36.0048 1001 5YR4/8 LS 37.3 5.9 2.4 200 0.04 0.41 0.76 8.09 0.70 

Chromic 
Lixisol 

(loamic) 

413 -6.4383 36.0053 1005 2.5YR4/6 L 33.0 6.5 4.5 328 0.04 0.48 0.76 8.53 0.67 

Chromic 
Lixisol 

(loamic) 

51 -6.4346 35.9479 979 5YR 4/6 L 42.1 5.8 8.7 250 0.04 0.45 0.47 3.86 0.39 

Haplic 
Acrisol 
(loamic) 

52 -6.4348 35.9476 971 5YR 4/6 SL 47.8 6.2 4.6 228 0.02 0.30 0.36 3.39 0.39 

Haplic 
Acrisol 
(loamic) 

53 -6.4352 35.9470 972 7.5YR 5/6 SL 56.0 5.2 5.2 273 0.03 0.36 0.36 6.38 0.50 

Haplic 

Acrisol 
(loamic) 

54 -6.4355 35.9466 993 7.5YR 4/6 SL 127 5.5 3.8 288 0.04 0.48 0.35 6.33 0.44 

Haplic 
Acrisol 
(loamic) 

55 -6.4358 35.9463 1015 7.5YR 6/4 SL 106 8.3 5.4 285 0.04 0.51 0.41 6.82 0.45 
Chromic 
Lixisol 

56 -6.4364 35.9456 1021 7.5YR 6/4 L 41.2 6.2 8.4 200 0.05 0.53 0.42 5.86 0.40 
Chromic 
Lixisol 

57 -6.4367 35.9452 1022 7.5YR 6/4 L 137 4.9 6.3 133 0.04 0.36 0.46 5.94 0.49 
Chromic 
Lixisol 

58 -6.4370 35.9449 1022 7.5YR 6/4 SL 40.6 5.0 5.6 87 0.04 0.40 0.45 7.65 0.64 
Chromic 
Lixisol 

59 -6.4372 35.9447 1022 7.5YR 6/4 SL 64.5 6.7 2.1 119 0.04 0.40 0.62 8.46 0.64 
Chromic 
Lixisol 
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Table 7-8 (part 5) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Nt Ct K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  

[µS cm-

1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 

 

510 -6.4376 36.9442 1025 10YR 5/4 
SL 

CLAYR 23.6 6.3 6.2 155 0.01 0.15 0.91 9.15 0.56 

Chromic 

Lixisol 
(loamic) 

511 -6.4381 35.9435 1025 10YR 5/4 LS 17.3 5.6 5.6 100 0.07 0.45 0.81 7.41 0.27 

Chromic 
Lixisol 

(loamic) 

512 -6.4389 35.9428 1025 5YR 5/6 LS 27.5 6.3 29.4 143 0.07 0.48 0.83 6.71 0.41 

Chromic 
Lixisol 

(loamic) 

61 -6.4378 35.9582 931 7.5YR 4/3 LS 31.5 6.7 3.9 80 0.10 0.72 0.41 3.10 0.36 Leptosol 

62 -6.4375 35.9581 943 7.5YR 4/4 
SL 

CLAYR 39.1 6.1 2.7 64 0.02 0.27 0.52 3.71 0.38 Leptosol 

63 -6.4371 35.9579 941 5YR 3/6 
SL 

CLAYR 27.6 6.0 7.1 138 0.02 0.27 0.31 4.29 0.53 
Chromic 

Lixisol 

64 -6.4366 35.9579 938 10R 3/6 
SL 

CLAYR 80.3 5.5 7.3 216 0.03 0.30 0.28 4.15 0.38 
Chromic 
Lixisol 

65 -6.4363 35.9578 935 5YR 4/2 CL 31.1 5.5 23.0 114 0.03 0.33 0.29 4.18 0.49 
Chromic 
Lixisol 

66 -6.4360 35.9578 951 2.5YR 4/6 SCL 24.7 5.4 3.1 136 0.02 0.20 0.32 4.21 0.33 
Chromic 

Lixisol 

67 -6.4356 35.9577 955 7.5YR 4/4 SL  35.6 6.5 3.2 293 0.04 0.30 0.35 4.04 0.38 

Haplic 
Acrisol 
(loamic) 

68 -6.4352 35.9577 952 7.5YR 4/4 
SL 

CLAYR 53.8 6.3 2.9 362 0.04 0.34 0.29 3.34 0.33 

Haplic 
Acrisol 
(loamic) 

69 -6.4345 35.9576 949 7.5YR 4/4 L 20.4 5.4 1.1 150 0.02 0.24 0.32 5.29 0.51 
Chromic 
Lixisol 

610 -6.4337 35.9574 951 7.5YR 4/6 
SL 

CLAYR 19.0 5.7 3.1 205 0.12 1.11 0.33 4.14 0.55 
Chromic 
Lixisol 

611 -6.4329 35.9572 954 7.5YR 4/4 
SL 

CLAYR 42.5 5.0 2.8 171 0.09 0.65 0.30 2.78 0.41 

Haplic 
Acrisol 
(loamic) 

612 -6.4322 35.9571 954 7.5YR 4/6 SL 35.2 5.2 3.7 140 0.09 0.73 0.29 3.32 0.52 

Haplic 
Acrisol 
(loamic) 

613 -6.4314 35.9570 957 7.5YR 5/4 
SL 

CLAYR 311 5.0 7.8 272 0.06 0.55 0.21 2.61 0.41 

Haplic 
Acrisol 
(loamic) 
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Table 7-9 (part 1) Baby plot soil data (weighted average for the top 30 cm) in Ilolo, Chamwino district. Lat: latitude, Long: longitude 
(WGS84), EC: electrical conductivity, P- and K-Bray: plant-available P and K, Ct: total C, Nt: total N; K, eTh, eU: gamma ray data 
of K, Th, U, CLAYR: clayrich. Texture was determined following Jahn et al. (2008). Soils were classified following WRB, IUSS 
working group, 2015). N = 2, except for gamma ray data (N = 5) 

Plot Lat Long 
Eleva-
tion Color 

Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 
 

1 -6.3258 35.9010 1130 2.5YR 3/4 L 266 7.7 22.6 791 0.28 0.04 1.20 12.13 1.04 

Chromic 

Lixisol 
(hypereutric, 
profondic) 

2 -6.3121 35.9026 1168 2.5YR 3/4 LS 39.7 6.7 4.1 135 0.28 0.02 1.19 13.12 0.81 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

3 -6.3438 35.8892 1114 5YR 4/6 SL 14.1 5.5 2.8 71 0.23 0.03 0.94 2.89 0.32 
Haplic Acrisol 

(loamic) 

4 -6.3426 35.8908 1097 2.5YR 4/6 SCL 32.4 5.8 4.3 212 0.31 0.03 0.95 2.95 0.46 
Chromic 
Lixisol 

5 -6.3352 35.8930 1119 2.5YR 3/4 
SL 

CLAYR  31.4 5.9 2.1 192 0.37 0.04 1.34 9.26 1.02 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

6 -6.3495 35.9109 1080 2.5YR 4/6 SL 25.0 5.6 2.8 122 0.31 0.03 1.16 1.83 0.40 
Haplic Acrisol 

(loamic) 

7 -6.3486 35.9239 1104 2.5YR 3/4 
SL  

CLAYR 55.2 6.1 1.4 112 0.31 0.04 0.88 2.58 0.28 

Chromic 
Lixisol 

(hypereutric, 
profondic)/ 

shallow, gully 

8 -6.3475 35.9114 1076 2.5YR 4/4 SL 26.0 6.0 4.9 176 0.29 0.02 1.05 1.73 0.37 
Haplic Acrisol 

(loamic) 

9 -6.3488 35.9086 1086 2.5YR 3/4 SCL 26.1 6.2 3.0 211 0.44 0.05 0.99 1.54 0.33 
Haplic Acrisol 

loamic 

10 -6.3462 35.9180 1096 2.5YR 2/2 LS 20.9 5.7 2.3 69 0.18 0.01 1.06 1.71 0.24 
Haplic Acrisol 

(loamic) 

11 -6.3397 35.9170 1093 5YR 4/4 
SL  

CLAYR 36.0 5.6 3.7 171 0.29 0.02 1.37 14.18 0.64 

Chromic 

Lixisol 
(hypereutric, 
profondic) 
with sand 

overburden 

12 -6.3574 35.9008 1070 5YR 3/4 
SL 

CLAYR  50.6 6.5 4.8 214 0.46 0.05 0.65 9.82 0.64 
Chromic 

Lixisol  
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Table 7-9 (part 2) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray 

K 
Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] 

[mg kg-

1] [%] [%] [%] [ppm] [ppm] 
 

13 -6.3556 35.8963 1076 7.5YR 4/3 L 85.8 7.4 13.3 402 0.36 0.04 0.54 3.28 0.39 

Gradient 

Chromic 
Lixisol to 

Haplic Acrisol 
(loamic) 

14 -6.3333 35.8921 1099 10YR 4/4 L 41.3 6.4 4.3 167 0.35 0.04 0.58 4.22 0.48 
Chromic 
Lixisol  

15 -6.3510 35.8965 1082 5YR 4/6 L 55.5 6.3 2.2 148 0.33 0.04 0.66 6.82 0.53 

Chromic 
Lixisol 

gradient to 
(hypereutric, 
profondic) 

16 -6.3495 35.8951 1090 2.5YR 3/6 
SL 

CLAYR  27.0 6.2 2.4 105 0.36 0.04 0.77 3.34 0.17 

Chromic 
Lixisol 

(hypereutric, 

profondic)/ 
shallow, gully 

17 -6.3518 35.9000 1073 5YR 4/6 SL 22.6 5.7 2.0 113 0.23 0.01 0.96 2.74 0.31 
Haplic Acrisol 

(loamic) 

18 -6.3495 35.9026 1024 2.5YR 3/6 
SL 

CLAYR  28.5 5.5 6.3 171 0.34 0.03 0.55 4.15 0.32 
Chromic 
Lixisol 

19 -6.3462 35.9040 1084 5YR 4/4 
SL 

CLAYR  46.6 5.8 9.6 249 0.38 0.03 0.72 3.72 0.33 
Chromic 
Lixisol 

20 -6.3438 35.8892 1114 2.5YR 3/4 
SL 

CLAYR  98.6 7.7 6.4 311 0.52 0.05 1.24 13.95 1.04 

Chromic 
Lixisol 

(hypereutric, 
profondic) 
with sand 

overburden 

21 -6.3393 35.9240 1112 7.5YR 4/4 LS 16.4 6.0 16.2 68 0.18 0.01 1.82 15.53 0.38 

Chromic 
Lixisol 

(hypereutric, 
profondic) 
with sand 

overburden 

22 -6.3400 35.9243 1113 2.5YR 2/2 
SL 

CLAYR  44.6 6.2 10.6 210 0.30 0.02 1.68 11.18 0.43 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

23 -6.3358 35.9198 1106 2.5YR 4/4 LS 39.4 5.7 3.9 203 0.32 0.03 1.28 12.49 0.77 

Chromic 
Lixisol 

(hypereutric, 
profondic) 
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Table 7-9 (part 3) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray 

K 
Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] 

[mg kg
-

1
] [%] [%] [%] [ppm] [ppm] 

 

24 -6.3487 35.8959 1083 2.5YR 3/4 SCL 28.7 5.4 1.3 154 0.31 0.04 1.19 16.65 0.73 

Chromic 

Lixisol 
(hypereutric, 
profondic) 

25 -6.3238 35.9226 1076 2.5YR 3/4 
SL 

CLAYR  35.1 5.8 0.7 158 0.27 0.03 1.16 10.50 0.64 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

26 -6.3282 35.9222 1070 2.5YR 3/4 
SL  

CLAYR 29.2 6.2 1.7 197 0.32 0.04 1.36 10.71 0.74 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

27 -6.3287 35.9219 1066 2.5YR 3/6 SL 31.6 5.9 1.6 189 0.27 0.03 1.27 8.10 0.48 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

28 -6.3331 35.9199 1041 2.5YR 3/4 SL 31.4 6.1 1.8 169 0.57 0.05 1.27 18.67 0.79 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

29 -6.3356 35.9060 1104 2.5YR 4/4 L 33.4 5.7 2.9 181 0.38 0.03 1.11 5.35 0.52 

Chromic 
Lixisol 

(hypereutric, 
profondic) im 

Dorf 

30 -6.3258 35.9034 1124 2.5YR 4/4 SL 46.8 7.3 9.6 239 0.37 0.03 1.28 10.96 0.64 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

31 -6.3399 35.9092 1090 2.5YR 3/4 
SL 

CLAYR  26.4 6.5 4.2 187 0.30 0.02 1.25 15.37 0.99 

Chromic 
Lixisol 

(hypereutric, 
profondic) 

32 -6.3631 35.8921 1058 10YR 4/2 CL 1196 7.9 4.1 282 1.10 0.07 1.28 12.45 0.70 
Sodic Vertisol 
(hypereutric) 
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Table 7-10 (part 1) Baby plot soil data (weighted average for the top 30 cm) in Idifu, Chamwino district. Lat: latitude, Long: 
longitude (WGS84), EC: electrical conductivity, P- and K-Bray: plant-available P and K, Ct: total C, Nt: total N; K, eTh, eU: gamma 
ray data of K, Th, U, CLAYR: clayrich. Texture was determined following Jahn et al. (2008). Soils were classified following WRB, 
IUSS working group, 2015). N = 2, except for gamma ray data (N = 5) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 
 

1 -6.4458 35.9959 1002 2.5YR 3/4 L 25.0 6.2 2.2 181.7 0.04 0.39 0.53 9.00 0.89 

Chromic 

Lixisol 
(loamic) 

2 -6.4492 36.0006 1011 5YR 3/4 SL 32.6 6.6 61.0 234.3 0.02 0.38 1.36 9.14 0.87 

Chromic 
Lixisol 

(loamic) - 
rock outcrops 

3 -6.4452 35.9981 1000 2.5YR 3/4 
SL 

CLAYR  30.9 6.2 6.9 297.1 0.04 0.43 0.98 8.77 0.78 

Chromic 
Lixisol 

(loamic) - 
rock outcrops 

4 -6.4401 36.0035 993 5YR 3/4 
SL  

CLAYR 41.4 6.1 7.6 352.8 0.05 0.49 0.68 8.44 0.75 

Gradient 
Chromic 
Lixisol to 
Chromic 
Lixisol 

(loamic)  - 
rock outcrops 

5 -6.4403 35.9976 1001 2.5YR 3/4 L 35.4 5.8 3.9 227.1 0.04 0.46 0.41 5.31 0.58 
Chromic 
Lixisol 

6 -6.4458 35.9959 1001 2.5YR 3/4 
SL  

CLAYR 28.9 5.4 4.2 249.8 0.04 0.44 0.70 6.73 0.77 
Chromic 
Lixisol 

7 -6.4461 35.9912 998 5YR 4/6 SL 43.2 5.7 4.6 256.9 0.03 0.28 0.44 5.73 0.60 
Chromic 
Lixisol 

8 -6.4376 35.9861 995 10YR 4/3 SL 22.8 6.4 2.9 154.4 0.03 0.28 0.45 5.75 0.64 

 Haplic 
Acrisol 

(loamic) - 
vertisol 

sediment on 
top 

9 -6.4477 35.9871 999 10YR 4/4 SL 26.9 6.0 12.5 203.3 0.03 0.37 0.72 8.73 0.63 

Chromic 
Lixisol 

(loamic) 

10 -6.4398 35.9799 1006 10YR 4/3 SL 26.1 5.2 16.7 89.6 0.02 0.37 0.33 2.53 0.36 

Haplic 
Acrisol 
(loamic) 

11 -6.4427 35.9808 1000 7.5YR 4/4 SCL 29.1 5.2 14.2 175.6 0.03 0.40 0.11 3.15 0.32 

Haplic 
Acrisol 
(loamic) 
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Table 7-10 (part 2) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 
 

12 -6.4447 36.0079 1013 5YR 3/4 SL 25.3 5.9 2.3 182.2 0.03 0.35 0.72 8.76 0.67 

Chromic 

Lixisol 
(loamic) 

13 -6.4357 35.9788 1005 10YR 4/4 LS 26.0 6.4 7.4 115.5 0.02 0.24 1.15 3.22 0.37 

Haplic 
Acrisol 
(loamic) 

14 -6.4342 35.9768 1009 10YR 4/3 LS 27.9 6.2 15.3 85.4 0.02 0.31 1.17 2.33 0.35 

Haplic 
Acrisol 
(loamic) 

15 -6.4276 35.9778 1003 10YR 3/4 
SL 

CLAYR  46.7 5.4 10.8 181.0 0.03 0.34 0.17 3.41 0.39 

Haplic 
Acrisol 

(loamic) - 
vertisol 

sediment on 
top 

16 -6.4254 35.9754 1001 10YR 3/2 SL 67.1 6.7 17.3 235.1 0.04 0.49 0.21 3.37 0.37 

Haplic 

Acrisol 
(loamic) 

17 -6.4411 35.9776 1015 10YR 4/2 SL 17.6 5.9 27.1 111.3 0.03 0.43 0.49 2.36 0.31 

Haplic 
Acrisol 
(loamic) 

18 -6.4446 35.9754 1016 7.5YR 4/4 
SL 

CLAYR  26.0 5.2 4.9 103.5 0.02 0.32 0.13 3.04 0.35 

Haplic 
Acrisol 
(loamic)  

19 -6.4455 35.9636 1025 10YR 4/4 L 32.8 5.3 4.2 156.5 0.05 0.40 0.43 4.85 0.52 

Haplic 
Acrisol 
(loamic) 

20 -6.4449 35.9628 1026 10YR 4/4 SL 46.1 5.8 10.3 117.6 0.03 0.39 0.48 2.03 0.23 

Haplic 
Acrisol 
(loamic) 

21 -6.4477 35.9602 1028 7.5YR 4/4 
SL 

CLAYR  27.9 5.3 3.8 169.0 0.04 0.39 0.23 3.27 0.39 

Haplic 
Acrisol 
(loamic) 

22 -6.4595 35.9672 1043 2.5YR 3/6 L 43.6 5.7 3.1 189.7 0.04 0.34 0.44 8.42 0.80 

Chromic 
Lixisol 

(loamic) 

23 -6.4560 35.9666 1033 5YR 4/4 
SL 

CLAYR  21.9 5.9 3.2 150.3 0.03 0.34 0.37 5.14 0.45 
Chromic 

Lixisol 

24 -6.4382 35.9706 1041 10YR 4/4 LS 30.2 5.6 14.5 80.0 0.02 0.27 0.16 2.46 0.17 

Haplic 
Acrisol 
(loamic) 

25 -6.4362 35.9728 1045 10YR 4/2 SL 25.0 6.2 18.9 98.2 0.02 0.29 0.17 1.76 0.20 

Haplic 
Acrisol 

(loamic) 

26 -6.4339 35.9705 1044 10YR 4/6 SL 15.0 5.5 6.3 63.2 0.09 0.63 0.16 1.93 0.22 

Haplic 
Acrisol 
(loamic) 
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Table 7-10 (part 3) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 
 

27 -6.4254 35.9659 1038 10YR 3/3 
SL 

CLAYR  105.9 5.8 24.7 299.1 0.04 0.47 0.13 2.54 0.41 

Haplic 

Acrisol 
(loamic) 

28 -6.4289 35.9614 1004 10YR 4/4 SL 21.6 5.4 11.9 94.2 0.02 0.27 0.22 3.39 0.18 

Haplic 
Acrisol 
(loamic) 

29 -6.4294 35.9897 943 10YR 4/4 L 27.1 6.1 8.7 205.6 0.04 0.40 0.33 6.60 0.64 

Haplic 
Acrisol 
(loamic) 

30 -6.4270 35.9955 952 7.5YR 4/4 L 43.1 5.8 8.7 275.1 0.05 0.45 0.44 8.41 0.84 

Haplic 
Acrisol 
(loamic) 

31 -6.4213 35.9931 941 10YR 4/3 SL 26.8 5.7 14.5 179.7 0.04 0.43 0.36 7.26 0.51 

Haplic 
Acrisol 
(loamic) 

32 -6.4177 35.9951 945 10YR 3/6 
SL 

CLAYR  169.1 5.9 6.7 219.6 0.04 0.45 0.34 7.92 0.65 

Haplic 

Acrisol 
(loamic) 

33 -6.4169 35.9985 943 5YR 3/4 L 33.1 6.1 7.3 307.0 0.05 0.50 0.54 7.65 0.46 

Chromic 
Lixisol 

(loamic) 

34 -6.4327 35.9976 949 5YR 4/4 SL 52.9 5.7 14.6 326.6 0.05 0.45 1.21 11.32 0.98 

Chromic 
Lixisol 

(loamic) 

35 -6.4142 35.9512 993 5YR 4/3 
SL  

CLAYR 58.3 6.2 14.3 307.7 0.05 0.56 0.23 3.51 0.55 

Haplic 
Acrisol 
(loamic) 

36 -6.4104 35.9460 999 5YR 3/4 
SL 

CLAYR  42.5 7.0 6.5 169.3 0.03 0.36 0.88 2.37 0.31 
Chromic 
Lixisol 

37 -6.4213 35.9404 997 2.5YR 3/6 
SL 

CLAYR  51.2 5.6 4.3 200.2 0.03 0.36 0.50 2.91 0.43 
Chromic 
Lixisol 

38 -6.4222 35.9403 997 2.5YR 3/4 SCL 38.3 5.7 4.0 182.3 0.03 0.34 0.56 3.10 0.51 
Chromic 
Lixisol 

39 -6.4227 35.9402 996 5YR 3/4 SL 42.6 6.4 5.8 207.7 0.03 0.31 0.75 3.72 0.44 
Chromic 
Lixisol 

40 -6.4234 35.9403 996 5YR 4/6 SL 28.8 5.9 2.5 131.0 0.03 0.31 1.00 11.90 0.43 

Chromic 
Lixisol 

(loamic) 

41 -6.4093 35.9536 940 10YR 3/4 SL 215.2 6.3 14.0 282.6 0.04 0.37 0.33 6.33 0.68 

Haplic 
Acrisol 
(loamic) 

42 -6.4014 35.9603 996 7.5YR 4/4 SL 35.1 5.9 8.8 244.2 0.05 0.50 0.50 4.72 0.40 

Haplic 
Acrisol 

(loamic)  
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Table 7-10 (part 4) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm
-1

] - [mg kg
-1

] [mg kg
-1

] [%] [%] [%] [ppm] [ppm] 
 

43 -6.3971 35.9685 975 10YR 3/6 SCL 261.4 6.8 21.2 714.6 0.04 0.37 0.50 6.29 0.42 

Haplic 

Acrisol 
(loamic) - 
beyond: 
Chromic 
Lixisol 

44 -6.4010 35.9785 965 7.5YR 4/4 
SL 

CLAYR  31.1 5.6 6.8 248.1 0.04 0.40 0.41 9.45 0.58 

Haplic 
Acrisol 
(loamic) 

45 -6.4113 35.9861 949 10YR 3/4 
SL 

CLAYR  126.1 6.8 30.0 405.7 0.05 0.54 0.53 10.32 0.86 

Chromic 
Lixisol 

(loamic) - 
Acrisol 

sediments on 
top 

46 -6.4139 35.9834 949 7.5YR 3/4 
SL 

CLAYR  373.1 6.7 28.0 536.7 0.03 0.36 0.34 8.80 0.82 

Haplic 

Acrisol 
(loamic) 

47 -6.4119 35.9774 946 7.5YR 4/4 
SL 

CLAYR  34.0 5.6 10.8 218.2 0.03 0.33 0.18 6.61 0.70 

Haplic 
Acrisol 
(loamic) 

48 -6.4362 35.9497 934 10YR 4/4 LS 22.4 5.5 9.8 103.8 0.03 0.40 0.45 3.59 0.35 

Haplic 
Acrisol 
(loamic) 

49 -6.4396 35.9541 985 2.5YR 4/6 L 36.0 6.1 4.9 131.2 0.03 0.36 0.29 4.15 0.45 

Haplic 
Acrisol 
(loamic) 

50 -6.4363 35.9508 935 7.5YR 6/4 LS 24.1 5.4 6.4 82.9 0.03 0.32 0.65 4.46 0.41 

Haplic 
Acrisol 
(loamic) 

51 -6.4428 35.9562 973 7.5YR 4/4 
SL 

CLAYR  33.9 5.5 6.2 190.9 0.03 0.41 0.30 4.41 0.43 

Haplic 
Acrisol 
(loamic) 

52 -6.4372 35.9644 958 10YR 3/3 
SL 

CLAYR  57.9 6.9 69.4 422.3 0.04 0.43 0.23 6.00 0.51 

Haplic 
Acrisol 
(loamic) 

53 -6.4367 35.9649 960 10YR 4/4 SL 41.4 5.7 22.2 169.1 0.02 0.40 0.16 3.71 0.26 

Haplic 
Acrisol 
(loamic) 

54 -6.4336 35.9669 970 10YR 4/3 CL 118.4 5.7 6.3 250.1 0.04 0.47 0.30 4.61 0.54 

Haplic 
Acrisol 
(loamic) 

55 -6.4319 35.9572 950 7.5YR 4/4 
SL 

CLAYR  42.8 5.2 8.2 155.7 0.02 0.30 0.21 2.82 0.34 

Haplic 
Acrisol 

(loamic) 
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Table 7-10 (part 5) 

Plot Lat Long 
Eleva-

tion Color 
Tex-
ture EC pHH2O P Bray K Bray Ct Nt K eTh eU 

Deno-
mination 

No. [°] [°] [m] [w%]  [µS cm-1] - [mg kg-1] [mg kg-1] [%] [%] [%] [ppm] [ppm] 
 

56 -6.4357 35.9855 995 10YR 4/3 
SL 

CLAYR  54.8 6.4 14.5 241.5 0.04 0.45 0.39 6.28 0.59 

Haplic 

Acrisol 
(loamic) 

57 -6.4345 35.9713 1004 10YR 4/4 SL 23.1 5.0 11.5 65.0 0.02 0.31 0.30 2.39 0.33 

Haplic 
Acrisol 
(loamic) 

58 -6.4411 35.9509 1016 7.5YR 4/4 
SL 

CLAYR  23.1 5.9 4.7 188.7 0.03 0.38 0.40 5.72 0.49 

Haplic 
Acrisol 
(loamic) 
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Table 7-11 Pearl millet yields of on-station experiments in year 2015 and 2016. 
WH: Water harvesting intervention, FT: flat ties, TR: tied ridging; FI: full irrigation; 
fertilizer was uniformly applied prior to seeding 

Field Year Block WH Grain yield  

    [kg ha-1] 

A 2015 3 FT 5 

A 2015 4 FT 11 

A 2015 1 FT 28 

A 2015 2 FT 56 

A 2015 2 TR 92 

A 2015 4 TR 270 

A 2015 3 TR 321 

A 2015 1 TR 955 

B 2015 4 FI 3418 

B 2015 1 FI 3753 

B 2015 2 FI 4292 

B 2015 3 FI 4065 

B 2015 2 FT 3 

B 2015 3 FT 17 

B 2015 1 FT 32 

B 2015 4 FT 112 

B 2015 4 TR 122 

B 2015 3 TR 503 

B 2015 2 TR 698 

B 2015 1 TR 1271 

A 2016 2 FT 135 

A 2016 4 FT 3362 

A 2016 3 FT 3385 

A 2016 1 FT 4145 

A 2016 2 TR 155 

A 2016 4 TR 2610 

A 2016 1 TR 3003 

A 2016 2 TR 3339 

B 2016 2 FI 2015 

B 2016 1 FI 3172 

B 2016 3 FI 3817 

B 2016 4 FI 4066 

B 2016 1 FT 1093 

B 2016 4 FT 1382 

B 2016 2 FT 1471 

B 2016 3 FT 1530 

B 2016 3 TR 2020 

B 2016 1 TR 2044 

B 2016 2 TR 2148 

B 2016 4 TR 2546 
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Table 7-12 Pearl millet yields on the respective mother plot in year 2015 and 2016. 
WH: Water harvesting intervention, FT: flat ties, TR: tied ridging; Fertilization: F0: 
no fertilizer, PF: placed fertilizer, Ilolo 2015: no yield 

Field Year Block WH Fertilization Crop yield  
     [kg ha-1] 

2015 Idifu 1 FT FO 273 

2015 Idifu 1 FT PF 540 

2015 Idifu 1 TR FO 288 

2015 Idifu 1 TR PF 1246 

2015 Idifu 2 FT FO 261 

2015 Idifu 2 FT PF 455 

2015 Idifu 2 TR FO 297 

2015 Idifu 2 TR PF 1395 

2015 Idifu 3 FT FO 238 

2015 Idifu 3 FT PF 264 

2015 Idifu 3 TR FO 175 

2015 Idifu 3 TR PF 912 

2015 Idifu 4 FT FO 250 

2015 Idifu 4 FT PF 553 

2015 Idifu 4 TR FO 386 

2015 Idifu 4 TR PF 1428 

2015 Idifu 5 FT FO 135 

2015 Idifu 5 FT PF 637 

2015 Idifu 5 TR FO 344 

2015 Idifu 5 TR PF 1521 

2016 Idifu 1 FT FO 334 

2016 Idifu 1 FT PF 628 

2016 Idifu 1 TR FO 389 

2016 Idifu 1 TR PF 1286 

2016 Idifu 2 FT FO 298 

2016 Idifu 2 FT PF 769 

2016 Idifu 2 TR FO 438 

2016 Idifu 2 TR PF 1688 

2016 Idifu 3 FT FO 389 

2016 Idifu 3 FT PF 871 

2016 Idifu 3 TR FO 391 

2016 Idifu 3 TR PF 924 

2016 Ilolo 1 FT FO 437 

2016 Ilolo 1 FT PF 942 

2016 Ilolo 1 TR FO 727 

2016 Ilolo 1 TR PF 1336 

2016 Ilolo 2 FT FO 371 

2016 Ilolo 2 FT PF 986 

2016 Ilolo 2 TR FO 736 

2016 Ilolo 2 TR PF 1196 

2016 Ilolo 3 FT FO 436 

2016 Ilolo 3 FT PF 809 

2016 Ilolo 3 TR FO 637 

2016 Ilolo 3 TR PF 1189 
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Table 7-13 Pearl millet yields in proximation of 100 m (same soil unit) of the 
respective baby plot in Ilolo in year 2015 and 2016. Lat: latitude, Long: longitude 
(WGS84), WH: Water harvesting intervention, FT: flat ties, TR: tied ridging; 
Fertilizer: fertilization intervention, F0: no fertilizer, PF: placed fertilizer 

Plot Year Lat Long Elevation WH Fertilizer 
Crop 
yield 

No.  [°] [°] [m]   [kg ha-1] 

1 2015 -6.3256 35.9010 1107 TR PF 958 

11 2015 -6.3399 35.9171 1088 TR PF 942 

16 2015 -6.3495 35.8949 1087 PT PF 954 

19 2015 -6.3462 35.9040 1078 FT F0 389 

29 2015 -6.3356 35.9061 1108 FT F0 286 

29 2015 -6.3356 35.9061 1108 TR PF 567 

30 2015 -6.3258 35.9035 1124 FT F0 397 

30 2015 -6.3258 35.9035 1124 TR PF 822 

31 2015 -6.3400 35.9088 1085 TR PF 1247 

1 2016 -6.3256 35.9010 1107 FT F0 363 

1 2016 -6.3256 35.9010 1107 TR F0 588 

1 2016 -6.3256 35.9010 1107 TR PF 1304 

6 2016 -6.3498 35.9114 1079 FT F0 418 

6 2016 -6.3496 35.9108 1076 FT F0 235 

6 2016 -6.3496 35.9108 1076 TR F0 679 

6 2016 -6.3498 35.9114 1079 TR PF 639 

6 2016 -6.3496 35.9108 1076 TR PF 1004 

15 2016 -6.3510 35.8966 1080 FT F0 355 

15 2016 -6.3510 35.8966 1080 TR F0 506 

15 2016 -6.3510 35.8966 1080 TR PF 804 

16 2016 -6.3495 35.8949 1087 FT F0 277 

16 2016 -6.3495 35.8949 1087 TR PF 689 

31 2016 -6.3310 35.9088 1085 FT F0 303 

31 2016 -6.3310 35.9088 1085 TR PF 1008 
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Table 7-14 (part 1) Pearl millet yields in 100 m proximation (same soil unit) of the 
respective baby plot in Idifu, Chamwino district, in 2015 and 2016. Lat: latitude, 
Long: longitude (WGS84), WH: Water harvesting intervention, FT: flat ties, TR: tied 
ridging; Fertilizer: fertilization intervention, F0: no fertilizer, PF: placed fertilizer 

Plot Year Lat Long Elevation WH Fertilizer 
Crop 
yield 

No.  [°] [°] [m]   [kg ha-1] 

3 2015 -6.4453 35.9980 1014 TR PF 624 

4 2015 -6.4402 36.0035 995 TR PF 1305 

13 2015 -6.4359 35.9789 1005 TR PF 1231 

14 2015 -6.4341 35.9769 1010 TR F0 757 

14 2015 -6.4341 35.9769 1010 TR F0 509 

16 2015 -6.4254 35.9750 997 TR F0 665 

19 2015 -6.4454 35.9638 1004 TR PF 1069 

24 2015 -6.4381 35.9707 1005 TR PF 1099 

38 2015 -6.4219 35.9403 1006 FT PF 518 

38 2015 -6.4219 35.9403 1006 FT PF 373 

46 2015 -6.4133 35.9836 1002 TR PF 1071 

47 2015 -6.4119 35.9773 1003 FT PF 1231 

53 2015 -6.4365 35.9648 1001 TR PF 975 

53 2015 -6.4365 35.9648 1001 TR PF 827 

58 2015 -6.4409 35.9509 1007 TR F0 561 

58 2015 -6.4409 35.9509 1007 TR F0 491 

3 2016 -6.4453 35.9980 1014 FT F0 883 

3 2016 -6.4453 35.9980 1014 FT PF 548 

3 2016 -6.4453 35.9980 1014 TR PF 1483 

4 2016 -6.4402 36.0035 995 FT F0 634 

4 2016 -6.4402 36.0035 995 TR PF 888 

5 2016 -6.4403 35.9976 1004 FT F0 770 

5 2016 -6.4403 35.9976 1004 TR  F0 203 

5 2016 -6.4403 35.9976 1004 TR PF 397 

10 2016 -6.4389 35.9791 1005 FT F0 410 

10 2016 -6.4389 35.9791 1005 TR  F0 586 

10 2016 -6.4389 35.9791 1005 TR PF 770 

13 2016 -6.4359 35.9789 1005 FT F0 391 

13 2016 -6.4359 35.9789 1005 TR PF 639 

15 2016 -6.4271 35.9784 999 FT F0 178 

15 2016 -6.4271 35.9784 999 TR PF 324 

16 2016 -6.4254 35.9750 997 FT F0 472 

16 2016 -6.4254 35.9750 997 TR  F0 628 

16 2016 -6.4254 35.9750 997 TR PF 1256 

17 2016 -6.4408 35.9781 1008 FT F0 544 

17 2016 -6.4408 35.9781 1008 TR  F0 771 

17 2016 -6.4408 35.9781 1008 TR PF 1017 

18 2016 -6.4447 35.9753 999 FT F0 236 

18 2016 -6.4447 35.9753 999 TR  F0 423 

18 2016 -6.4447 35.9753 999 TR PF 544 

19 2016 -6.4454 35.9638 1004 TR  F0 1504 

19 2016 -6.4454 35.9638 1004 TR PF 1586 

20 2016 -6.4449 35.9628 1027 FT F0 809 
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Table 7-14 (part 2) 

Plot Year Lat Long Elevation WH Fertilizer 
Crop 
yield 

No.  [°] [°] [m]   [kg ha-1] 

20 2016 -6.4449 35.9628 1027 TR PF 1352 

24 2016 -6.4381 35.9707 1005 FT F0 654 

24 2016 -6.4381 35.9707 1005 TR  F0 995 

24 2016 -6.4381 35.9707 1005 TR PF 1162 

25 2016 -6.4362 35.9732 1008 FT F0 203 

25 2016 -6.4362 35.9732 1008 TR  F0 345 

25 2016 -6.4362 35.9732 1008 TR PF 397 

28 2016 -6.4289 35.9615 1005 FT F0 412 

28 2016 -6.4289 35.9615 1005 TR  F0 582 

28 2016 -6.4289 35.9615 1005 TR PF 1022 

29 2016 -6.4298 35.9897 1004 FT F0 805 

29 2016 -6.4298 35.9897 1004 TR PF 1557 

30 2016 -6.4271 35.9959 1005 FT F0 745 

30 2016 -6.4271 35.9959 1005 TR  F0 818 

30 2016 -6.4271 35.9959 1005 TR PF 1008 

40 2016 -6.4236 35.9403 1005 FT F0 397 

40 2016 -6.4236 35.9403 1005 TR PF 577 

41 2016 -6.4095 35.9535 1007 FT F0 677 

41 2016 -6.4095 35.9535 1007 TR PF 1054 

44 2016 -6.4009 35.9785 1011 FT F0 375 

44 2016 -6.4009 35.9785 1011 TR PF 1432 

45 2016 -6.4116 35.9859 1003 FT F0 401 

45 2016 -6.4116 35.9859 1003 TR PF 1022 

46 2016 -6.4133 35.9836 1002 FT F0 768 

46 2016 -6.4133 35.9836 1002 TR PF 1521 

47 2016 -6.4119 35.9773 1003 FT F0 800 

47 2016 -6.4119 35.9773 1003 TR PF 1163 

48 2016 -6.4363 35.9502 1003 FT F0 1918 

48 2016 -6.4363 35.9502 1003 TR PF 948 

50 2016 -6.4363 35.9511 1006 FT F0 534 

50 2016 -6.4363 35.9511 1006 TR PF 1584 

53 2016 -6.4365 35.9648 1001 FT F0 676 

53 2016 -6.4365 35.9648 1001 TR  F0 770 

53 2016 -6.4365 35.9648 1001 TR  PF 1281 

55 2016 -6.4318 35.9574 998 FT F0 260 

55 2016 -6.4318 35.9574 998 TR PF 387 

56 2016 -6.4358 35.9850 1004 FT F0 1239 

56 2016 -6.4358 35.9850 1004 TR PF 2010 

58 2016 -6.4409 35.9509 1007 FT F0 863 

58 2016 -6.4409 35.9509 1007 TR PF 1391 
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