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Multi-Partner Interactions in Corals in the Face of
Climate Change

KOTY H. SHARP1,*, AND KIM B. RITCHIE2

1Eckerd College, 4200 54th Avenue South, St. Petersburg, Florida 33711; and
2Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, Florida 34236

Abstract. Recent research has explored the possibility
that increased sea-surface temperatures and decreasing pH
(ocean acidification) contribute to the ongoing decline of
coral reef ecosystems. Within corals, a diverse microbiome
exerts significant influence on biogeochemical and ecolog-
ical processes, including food webs, organismal life cycles,
and chemical and nutrient cycling. Microbes on coral reefs
play a critical role in regulating larval recruitment, bacterial
colonization, and pathogen abundance under ambient con-
ditions, ultimately governing the overall resilience of coral
reef systems. As a result, microbial processes may be in-
volved in reef ecosystem-level responses to climate change.
Developments of new molecular technologies, in addition to
multidisciplinary collaborative research on coral reefs, have
led to the rapid advancement in our understanding of bac-
terially mediated reef responses to environmental change.
Here we review new discoveries regarding (1) the onset of
coral-bacterial associations; (2) the functional roles that
bacteria play in healthy corals; and (3) how bacteria influ-
ence coral reef response to environmental change, leading to
a model describing how reef microbiota direct ecosystem-
level response to a changing global climate.

Introduction

The health of coral reefs is declining on a global scale and
continues to be threatened by overfishing and habitat de-
struction. Anthropogenically induced global climate change
has been identified as a significant threat to these sensitive
ecosystems. As temperatures rise, bleaching and diseases
are increasing, and excess atmospheric carbon dioxide is

greatly altering reef ecosystems by changing seawater
chemistry through decreases in pH (Anthony et al., 2011).

In a recent review, Bosch and McFall-Ngai (2011) high-
light the significance of viewing animals as “metaorgan-
isms”—multicellular organisms consisting of a macroscopic
host and multiple microorganisms that interact synergisti-
cally to shape the ecology and evolution of the entire
association. In this sense, the term metaorganism can be
applied to a broad range of animal-microbe symbioses,
ranging from humans to sponges (Bosch and McFall-Ngai,
2011). Coral research within this perspective has revolu-
tionized the way that researchers study corals. In sclerac-
tinian (hard) corals, the term “holobiont” (Knowlton and
Rohwer, 2003) was adapted to indicate that corals are dy-
namic, multi-domain assemblages consisting of an animal
host, symbiotic dinoflagellates in the genus Symbiodinium,
bacteria, archaea, fungi, and viruses (Rohwer et al., 2001,
2002; Stat et al., 2006; Wegley et al., 2007; Thurber et al.,
2009). The term metaorganism is especially useful for de-
scribing corals and reflecting that corals’ response to envi-
ronmental change is driven by physiological interactions
among the various microorganisms associated with the tis-
sue, skeleton, and mucous layer. Corals harbor Symbio-
dinium, which provides fixed carbon to the host via photo-
synthesis, serving as the trophic foundation for coral reef
ecosystems. It has been proposed that corals have addition-
ally evolved to exploit specific bacterial metabolic capabil-
ities that, in turn, directly modulate the survival of the coral
holobiont in the marine environment (Zilber-Rosenberg and
Rosenberg, 2008). An extensive characterization of the di-
verse microorganisms in corals will guide our understand-
ing of the ecology of corals and coral reef ecosystems in
response to a changing global climate.

Coral microbiology is a rapidly growing area of study.
Early culture-based studies of coral-associated bacteria pro-
vided a foundation from which genomics, metagenomics,
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and transcriptomics approaches were established in corals,
leading to exciting new advances in our current understand-
ing of the diversity and dynamics of coral-associated bac-
terial communities. Evidence is accumulating that bacteria
have an enormous influence on coral health and resilience,
particularly with respect to changing reef environments
(Azam and Worden, 2004; Rosenberg et al., 2007; Bourne
et al., 2009; Ainsworth et al., 2010; Garren and Azam,
2012). The field of marine microbial ecology underwent a
revolution in the 1990s, when culture-independent molecu-
lar techniques revealed that bacterial diversity from culture-
based assessments was largely underestimated (Azam,
1998). Studies of persistent associations between corals and
bacteria, both beneficial and pathogenic, were enhanced by
new methods and approaches from this revolution. Those
techniques were adopted by coral microbiologists, resulting
in the discovery that particular components of bacterial
communities are specific to some coral host species (Roh-
wer et al., 2002).

The cost and time associated with characterizing these
complex bacterial assemblages initially posed a challenge to
scientists attempting to identify patterns of diversity across
a large scale. However, the gradually decreasing cost and
increasing efficiency of high-throughput methods, including
454 pyrosequencing technology, allowed researchers to per-
form community 16S rRNA gene profiling and metagenome
sequencing in a broad range of coral specimens. Recent
applications of 16S pyrosequencing in corals have produced
hundreds of thousands of 16S sequences—in contrast to
hundreds of sequences from cloning methods. Results from
pyrosequencing-based studies provide evidence of the pres-
ence of “coral-specific” groups of bacterial ribotypes (Reis
et al., 2009; Kvennefors et al., 2010; Sunagawa et al., 2010;
Ceh et al., 2011). Experiments investigating the bacterial
component of coral surface mucous layers suggest that the
composition of bacterial communities in coral mucus is
distinct from other surface-associated biofilms and is influ-
enced by the physical and biochemical properties of the
mucus (Barott et al., 2011; Sweet et al., 2011b). Although
corals maintain specific groups of bacteria, variation among
individuals of a coral species may occur according to loca-
tion (Guppy and Bythell, 2006; Littman et al., 2009; Kven-
nefors et al., 2010; Ceh et al., 2011).

Bacterial communities are maintained in microhabitats
within an individual coral host, spatially structured within
chemical micro-niches, or compartments, in the skeleton,
tissues, and surface mucous layer of corals (Rohwer et al.,
2001, 2002; Daniels et al., 2011; Sweet et al., 2011a). This
spatial microheterogeneity is similar to previously described
trends in the speciation of the dinoflagellate Symbiodinium
in branching acroporid corals (Rowan and Knowlton, 1995).
With that in mind, new collection techniques and appara-
tuses have recently been developed to enable collection
from specific compartments of the coral, with minimized

contamination by bacteria from other compartments (Sweet
et al., 2011a).

Recent research surveying bacterial communities in a
large number of marine sponges suggests that bacteria de-
tected in sponges can be classified in three categories
(Schmitt et al., 2011): core (groups of bacteria that are
shared across many sponges), species-specific (groups of
bacteria that are specific to certain sponge hosts), and vari-
able (groups of bacteria that are transiently associated with
the host, probably due to passive attachment from seawa-
ter). The recent composition analyses of bacterial assem-
blages in corals indicate that a similar classification scheme
can be applied to coral-associated bacteria. An interesting
difference between corals and sponges is that while many
sponges have been documented to transmit diverse, specific
bacterial communities in their gametes or larvae (Schmitt et
al., 2007; Sharp et al., 2007), most corals appear to acquire
specific bacteria from the seawater each generation (Sharp
et al., 2010; Apprill et al., 2009). The mechanisms by which
corals selectively and specifically recruit their core and
specific bacterial components are largely undescribed, but
they likely involve the physical properties and the chemical
structure of the mucous layer, which is thought to be unique
in specific coral species (Bythell and Wild, 2011). Bacteria
that successfully colonize the mucus are, in turn, involved in
cycling nutrients and organic compounds in corals and on
the reefs, and the resident microbes have the potential to
modulate the bacterial community structure in coral mucus
and tissue.

Here we review recent advances in the study of the coral
metaorganism and specifically address (1) the onset of cor-
al-bacterial associations; (2) the functional roles that bacte-
ria play in healthy corals; and (3) how bacteria influence
coral reef response to environmental change. These new
discoveries are the basis for a model of how coral-associ-
ated and reef-inhabiting microbiota influence ecosystem-
level responses to global climate change.

Onset of Coral-Bacterial Associations

The Caribbean coral Porites astreoides has been shown
to transmit a bacterial component to its offspring (Sharp et
al., 2012). However, this seems to be an exception to the
rule in scleractinian corals. In eight other coral species that
have been examined (Apprill et al., 2009; Sharp et al.,
2010), corals do not appear to inherit bacteria from parents;
rather, bacterial colonization occurs in planula larvae or
post-settlement stages. Many bacterial phylotypes detected
in planulae and post-settlement stages of P. astreoides have
also been documented in the adult (Wegley et al., 2007),
suggesting that corals acquire specific bacterial phylotypes.

Exploration of bacterial communities in early life stages
of corals has not only provided new information about
bacterial infection in corals, but it has also simplified anal-
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ysis of diversity and dynamics of bacterial communities in
corals across spatiotemporal scales. In contrast to their adult
counterparts, swimming planula larvae of most corals have
not yet accumulated a high bacterial load from the surround-
ing environment or by feeding (Apprill et al., 2009; Sharp et
al., 2010); as a result, it is more tractable to characterize and
quantify the associated bacterial component in these larvae.
Similar phylogenetic clades of bacteria were detected in 16S
rRNA gene sequence clone libraries from multiple larval
specimens of the Caribbean coral Porites astreoides (Sharp
et al., 2012) and in the Pacific coral Pocillopora meandrina
(Apprill et al., 2009), suggesting that some groups of bac-
teria are common across different coral species. A number
of bacterial types have been commonly detected in multiple
species of corals, but of particular interest are those belong-
ing to the phylum �-proteobacteria (Apprill et al., 2009;
Raina et al., 2009; Sharp et al., 2012). The �-proteobacteria
(particularly the Roseobacteriales) are abundant in the
oceans, often constituting a third of the bacterioplankton
(Wagner-Dobler and Biebl, 2006). This same group of
bacteria is also closely associated with phytoplankton, in-
cluding the dinoflagellate coral endosymbiont Symbio-
dinium (Webster et al., 2004). Many of these bacteria, now
classified as Ruegeria spp., were originally designated Si-
licibacter spp. (Yi et al., 2007). It is unknown whether these
bacteria play a functional role in corals, but their consistent
detection in early life stages of corals and in seawater during
coral spawning may be an indication that they are signifi-
cant to the health of larvae, or even to adult colonies
(Apprill et al., 2009; Apprill and Rappe, 2011; Sharp et al.,
2012).

New research focusing on the molecular basis of bacterial
colonization of the coral tissues or surface mucous layer
indicates that coral mucous biofilm communities are a result
of selection processes driven by the coral holobiont rather
than by incidental attachment by bacteria in the seawater
(Sweet et al., 2011b). This is consistent with recent findings
from studies in the cnidarian Hydra, in which researchers
found that the composition of the surface-associated bacte-
rial community is driven directly by host metabolism and
production of compounds in the surface layer of Hydra
(Augustin et al., 2010). It is likely that there are specific
molecules that influence colonization in the coral mucous
layer. Lectin-mediated uptake of Symbiodinium has been
demonstrated in corals (Wood-Charlson et al., 2006), but
very little is known about bacterial uptake or invasion in
corals.

Functional immunological molecules with bacterial bind-
ing capacity have been found in corals, describing a means
by which the host may control associated microbial com-
position (Kvennefors et al., 2008; Kvennefors and Roff,
2009). Molecules that control the activities of other coral-
associated microbes are thought to be derived from the coral
host and in some cases from the associated bacteria (Ritchie,

2006; Teplitski and Ritchie, 2009; Vidal-Dupiol et al.,
2011a, b). As previously described in a broad range of other
animal-microbe systems (McFall-Ngai et al., 2012), mole-
cules that direct bacterial infection of animal tissue-associ-
ated bacteria may be conserved, regardless of whether the
bacteria are beneficial, commensal, or pathogenic.

Role of Bacteria in Health of Coral and Coral Reefs

Recent coral microbiology research has described how
bacterial communities contribute to the overall physiology
and ecology of apparently healthy corals. These discoveries
were made possible both by new molecular technologies
and by novel fieldwork-based approaches. Bacteria within
corals govern the biogeochemical cycling within coral tis-
sues. In addition, bacteria on surfaces in the reef environ-
ment influence and facilitate settlement of coral larval, and
resident microbes in corals play a role in defining the
composition of the bacterial community in corals.

Studies over the past several years indicate that coral-
associated bacteria influence biogeochemical cycling within
corals and on reefs. Metagenomic data from the bacterial
fraction of DNA from the coral Porites astreoides indicate
the presence of numerous genes capable of degrading di-
verse aromatic compounds (Wegley et al., 2007). Coral-
associated bacteria have been shown to be involved in
cycling mucous-derived particulate and dissolved organic
compounds in the reef environment (Wild et al., 2004,
2009; Huettel et al., 2006). In addition, the bacterial met-
agenome of P. astreoides consists of genes encoding en-
zymes involved in cycling nitrogen via nitrogen fixation,
ammonification, nitrification, and denitrification (Wegley et
al., 2007). The detection of bacterial nitrogen fixation genes
is consistent with previous biochemical research in which
cyanobacterial nitrogen fixation was detected (Lesser et al.,
2007). Further research focusing on nifH gene diversity in
two species of Montipora (Olson et al., 2009) suggests that
nitrogen-fixing bacteria in corals are not limited to cyano-
bacteria but also belong to taxa representing the �-, �-, �-,
and �-proteobacterial classes (Olson et al., 2009). Bacteria
have been shown to be significant players in transforming
nitrogen (Fiore et al., 2010) as well as sulfur and carbon
compounds (Ferrier-Pages et al., 2001; Raina et al., 2009;
Kimes et al., 2010) in corals and on coral reefs.

Bacteria outside of the coral animal also exert influence
on the behavior of corals during their early life stages.
Particular species of crustose coralline algae (CCAs) have
been shown to facilitate larval settlement of the threatened
coral species Acropora cervicornis and A. palmata in the
Florida Keys and the Caribbean (Ritson-Williams et al.,
2010). The integration of microbiological and chemical
ecology approaches suggests that the facilitation of larval
settlement by CCAs may be regulated by bacteria growing
in biofilms on the surface of CCAs (Negri et al., 2001;
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Webster et al., 2004; Tebben et al., 2011). To date, all of the
CCA-associated bacteria implicated in inducing coral meta-
morphosis and settlement belong to the �-proteobacteria. A
strain of the �-proteobacterium Pseudoalteromonas sp. iso-
lated from the surface of the CCA species Hydrolithon
onkodes induces significant levels of larval metamorphosis
in the corals Acropora willisae and A. millepora in labora-
tory experiments (Negri et al., 2001). Researchers have
recently shown that exposure to Pseudoalteromonas isolates
cultured from Negoniolithon fosliei and Hydrolithon
onkodes significantly increases rates of metamorphosis on
the Pacific coral Acropora millepora (Tebben et al., 2011).
Bioassay-guided isolation identified the inductive molecule
as tetrabromopyrrole (Tebben et al., 2011). Other strains of
Pseudoalteromonas and Thalassomonas have also been
shown to induce larval settlement and metamorphosis in the
coral Pocillopora damicornis (Tran and Hadfield, 2011).
Not all tested isolates of Pseudoalteromonas and Thalas-
somonas were inductive in that study, indicating that the
ability to induce settlement is taxon-specific. In addition, the
isolation source of the bacteria (algal surface vs. coral
surface) was not linked to the strains’ inductive properties
(Tran and Hadfield, 2011). Together, these studies indicate
that coral recruitment and successful larval attachment and
metamorphosis (which is crucial for continued repopulation
of coral reef ecosystems) is strongly governed by the activ-
ity of specific bacteria in reef environments.

Recent research has focused on the role of bacteria native
to the coral surface mucous layer that control bacterial
colonization within the mucus, ultimately regulating resis-
tance to disease. Corals have been shown to protect them-
selves against pathogen infection via the presence of allelo-
pathic properties in the mucus (Geffen and Rosenberg,
2005; Ritchie, 2006) or the coral tissue (Koh, 1997; Kelman
et al., 2006; Gochfeld and Aeby, 2008). However, antimi-
crobial assays with numerous Red Sea corals reveal that the
capabilities of coral species for antibiotic production are
highly variable (Kelman et al., 2006). Bacteria isolated from
corals are able to inhibit the colonization and growth of
many other types of bacteria, including potentially invasive
coral pathogens (Reshef et al., 2006; Ritchie, 2006; Wegley
et al., 2007; Gochfeld and Aeby, 2008; Nissimov et al.,
2009; Shnit-Orland and Kushmaro, 2009; Sharon and
Rosenberg, 2010; Kvennefors et al., 2012). In addition, the
presence of a high number of genes involved in antibacterial
compound biosynthesis have been detected in metagenomes
from multiple corals (Wegley et al., 2007; Thurber et al.,
2009). It is not clear to what extent these bacteria and the
metabolites they produce play a role in community struc-
ture. In situ antibiotic production by bacteria is known to be
a means of securing a niche by controlling microbial pop-
ulations competing for the same resources (Nielsen et al.,
2000; Rao et al., 2005). It is therefore likely that bacteria in

and on the coral host govern the dynamics of coral micro-
biota.

Although the mechanisms by which mucous-associated
bacteria prevent pathogenic infection are still unknown, the
data indicate that a sophisticated system of bacterial cell-
cell chemical signaling known as quorum sensing (QS) may
be involved in microbial pathogenesis in corals. QS is
modulated by small diffusible compounds called autoinduc-
ers, which are molecules that, when accumulated to a
threshold concentration within a diffusion-limited environ-
ment, result in synchronized group behaviors. This density-
dependent regulation allows bacterial populations to act in
unison, effectively magnifying their ecological impact.
Though the cell-cell communication systems differ among
bacterial species, QS has been demonstrated to regulate
many bacterial behaviors, including biofilm formation, an-
tibiotic production, bioluminescence, and pathogenesis (Ng
and Bassler, 2009), and it commonly drives important in-
teractions between bacterial communities and their hosts
(Rasmussen and Givskov, 2006; Dobretsov et al., 2009).

Quorum sensing in bacterial pathogens is the mechanism
by which virulence genes are expressed relative to pathogen
density in the host, thereby initiating a coordinated attack
once bacterial cell numbers reach a critical mass (Dobretsov
et al., 2009). Both eukaryotes and prokaryotes have evolved
to recognize and counter QS in pathogens, and there is
evidence that eukaryotic signal-mimics can stimulate QS
responses in bacteria (Teplitski et al., 2011). Other bacteria
can counter-attack by producing quorum-quenching acy-
lases or lactonases that break down signaling molecules
(Teplitski et al., 2011). In addition to the signal-degrading
enzymes, eukaryotes can inhibit or activate bacterial QS by
producing compounds that mimic QS signals. For example,
Rajamani et al. (2008) demonstrated that lumichrome, a
derivative of the vitamin riboflavin that is produced by the
unicellular alga Chlamydomonas reinhardtii (as well as
other prokaryotes and eukaryotes) can interact with the
bacterial receptor for QS signals and elicit QS responses.

Quorum sensing may inhibit or activate pathogenesis,
antibiotic production, exoenzyme production, and attach-
ment by beneficial bacteria within coral tissues and on
surfaces. Coral extracts contain compounds capable of in-
terfering with QS activities (Skindersoe et al., 2008; Al-
agely et al., 2011) that may be involved in regulating the
colonization of coral mucus by pathogens, commensal bac-
teria, or beneficial bacteria. The source of this activity is
difficult to pinpoint and could originate from the coral, the
dominant endosymbiont, or any associated bacteria. Alagely
et al. (2011) recently showed that both coral- and Symbio-
dinium-associated bacteria alter swarming and biofilm for-
mation in the coral pathogen Serratia marcescens. These
phenotypes are typically controlled by QS, although inhibi-
tion of QS by these isolates remains to be demonstrated.
There are few studies on the in situ roles of QS in corals, but
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this process is likely to be used in both pathogenesis and
mutualistic interactions (Krediet et al., 2009a, b; Teplitski
and Ritchie, 2009; Tait et al., 2010). While it is clear that at
least some coral-associated commensals and pathogens pro-
duce QS signals under laboratory conditions (Tait et al.,
2010; Alagely et al., 2011), it is not clear whether these
signals accumulate to threshold concentrations in natural
environments.

It is feasible that Symbiodinium spp. also produce signal-
ing molecules that control bacterial cell-cell communica-
tion, which would influence the specific complement of
bacteria that associate with corals. Perhaps bacterial spe-
cies-specificity in corals is, in part, driven by Symbiodinium
within the coral, but this has yet to be tested. The potential
for Symbiodinium to be a source of antibacterial compounds
in corals represents an aspect of bioactive compound pro-
duction that is not yet described. It is likely that the source
of antibacterial activity in corals is a combination of allelo-
pathic chemicals produced by the coral, by associated bac-
teria, or by endosymbiotic dinoflagellates. In a study con-
ducted by Marquis et al. (2005), eggs from 11 coral species
were tested for antibacterial activity, and the only species
exhibiting antibiotic activity was the one coral species in the
study that incorporates Symbiodinium into the egg before
the egg is released, suggesting a potential allelopathic con-
tribution of Symbiodinium. It is also possible that coral-
associated bioactive compounds are derived from bacteria
whose presence or activity is influenced by Symbiodinium,
but this has yet to be tested.

Role of Bacteria in Reef Ecosystem Responses to
Environmental Change

The latest research on how coral-associated bacterial
communities mediate responses of corals and coral reef
ecosystems to environmental change addresses shifts in
both the phylogenetic structure and metabolic capabilities of
bacterial assemblages in corals. Multiple approaches and
tools from microbiology, molecular biology, microscopy,
and chemical ecology have been used to identify the role of
bacterial communities in response to threats such as in-
creased sea-surface temperature, increased organic carbon
and nutrient levels in seawater, increased macroalgal and
cyanobacterial cover on reefs, and decreased seawater pH.

Rising sea-surface temperatures are linked to increases in
coral diseases worldwide. However, the study of microbial
coral diseases has been challenging due to many factors
including microbial dynamics in the marine environment,
the complications of proving unequivocal disease causation,
and insufficient diagnostic tools (Pollock et al., 2011; Weil
and Rogers, 2011). Some bacteria identified as coral patho-
gens include Serratia marcescens (Sutherland et al., 2011),
Aurantimonas coralicida (Denner et al., 2003), and a con-
sortium of bacterial and cyanobacteria phylotypes that make

up what is known as Black Band Disease (Sekar et al.,
2008). The most common bacteria present and problematic
for corals are members of the Vibrionaceae that have been
implicated in coral bleaching (Kushmaro et al., 1997; Ben-
Haim and Rosenberg, 2002) and a myriad of coral diseases
(Patterson et al., 2002; Frias-Lopez et al., 2003, 2004; Kline
et al., 2006; Cervino et al., 2008). The Vibrionaceae are a
common but diverse group of heterotrophic marine bacteria,
collectively referred to as vibrios. Vibrios have been shown
to be present in higher abundance on coral surfaces before
obvious signs of distress (Ritchie, 2006; Mao-Jones et al.,
2010). This group includes human pathogens and benign
planktonic and animal-associated marine bacteria. Bleach-
ing of the scleractinian coral Oculina patagonica in the
eastern Mediterranean Sea was shown to be caused by
Vibrio shiloi (Kushmaro et al., 1997). Vibrio coralliilyticus
was isolated from bleached corals of the genus Pocillopora
damicornis and shown to cause coral bleaching and tissue
sloughing (Ben-Haim and Rosenberg, 2002). In these patho-
gens, toxin production and the ability to infect coral tissue
have a strong temperature dependence (Kushmaro et al.,
1997; Ben-Haim and Rosenberg, 2002). Vibrio dynamics
are affected by water temperature and salinity, yet little else
is known about environmental drivers of their abundance
and distribution in the marine environment (Johnson et al.,
2010). These organisms are often cultured rapidly and are
able to utilize a wide range of carbon sources, suggesting
that the biogeochemical significance of vibrios may vary
with the nutrient state of the environment (Thompson et al.,
2004). Some reef organisms are thought to be vectors for
coral disease agents, specifically vibrios. These include or-
ganisms that come into contact with, or feed on, corals such
as fireworms, snails, and corallivorous fishes (Weil and
Rogers, 2011). Several recent reviews offer a comprehen-
sive summary of the occurrence and possible environmental
determinants of coral diseases (Rosenberg et al., 2009;
Pollock et al., 2011; Weil and Rogers, 2011). Research on
processes governing pathogen dynamics, abundance, and
pathogenesis has informed us on coral defense mechanisms.

The coral surface mucous layer and its resident microbes
appear to be significant in defending corals from microbial
diseases. Mucus harvested from the coral Acropora palmata
during a period of increased seawater temperatures does not
exhibit significant antibiotic activity compared to mucus
sampled at lower temperatures (Ritchie, 2006). This sug-
gests that the protective capacity of some corals may be lost
when temperatures increase, providing a mechanism to ex-
plain how increased temperatures lower coral resistance and
increase susceptibility to diseases. In addition, when tem-
peratures increase, the dominant bacterial flora in coral
mucus shifts from antibiotic-producing bacteria to patho-
gens (Ritchie, 2006). This finding indicates that a balance of
potentially beneficial microbes may be important for the
overall physiological health of reef corals. Rising sea-sur-
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face temperatures can cause a breakdown of coral-Symbio-
dinium symbiosis. In addition, shifting seawater tempera-
tures can simultaneously affect interactions among other
microbes, particularly bacteria present in or on the coral,
rendering the host susceptible to opportunistic or secondary
infection by certain bacteria (Ritchie, 2006; Lesser et al.,
2007). Research on the Pacific coral Acropora millepora
indicates that after bleaching (the loss of Symbiodinium)
there is a dramatic shift to a Vibrio-dominated community
(Bourne et al., 2007), but it is unclear whether the bacterial
communities are responding to the absence of the Symbio-
dinium, to physiological changes in the coral host, or to the
increased light and sea-surface temperature. Following
bleaching-induced coral mortality, nitrogen-fixing bacteria
increase in abundance on coral skeletons (Holmes and John-
stone, 2010). The resulting increase in available nitrogen in
the seawater has the potential to affect the growth of mac-
roalgae and other nitrogen-limited primary producers, in-
cluding benthic cyanobacteria (Holmes and Johnstone,
2010). Taken together, these results demonstrate that tem-
perature stress and coral bleaching have the potential to alter
the composition and metabolism of coral-associated bacte-
rial assemblages, with significant impacts on the health of
corals and coral reef communities.

As a result of heightened fishing pressure, decline in
herbivore populations, and increased nutrient levels, reefs
are undergoing a “phase shift” from coral-dominated eco-
systems to algal-dominated ecosystems (Pandolfi et al.,
2003). Overgrowth by turf macroalgae and benthic cyano-
bacteria has been documented on adult coral colonies on
reefs (Ritson-Williams et al., 2005). Concern is growing for
how this shift in ecosystems affects bacterial communities
within coral reefs (Dinsdale et al., 2008). Recent research
demonstrates that allelochemicals from macroalgae and
benthic cyanobacteria have the potential to mediate shifts in
abundance and community composition of microbiota as-
sociated with adult corals (Morrow et al., 2011). When
tested against a library of strains isolated from algal sur-
faces, from mucus of the Caribbean corals Montastraea
faveolata and Porites astreoides in direct contact with algal
surfaces, and from the mucus without direct contact of
algae, chemical extracts from six species of macroalgae and
two species of benthic cyanobacteria stimulated the growth
of some strains but inhibited the growth of other strains
(Morrow et al., 2011). While some of the algal extracts had
broad-spectrum activity against the collection of test iso-
lates from phylogenetically diverse environmental bacteria,
other extracts specifically increased the growth rates of the
bacterial genus Vibrio (Morrow et al., 2011). Many of the
active compounds in the study were hydrophilic, indicating
that the bioactive compounds from algae or cyanobacteria
may be readily solubilized and transported throughout sea-
water, providing a potential mechanism for algae to regulate
microbial activity without direct contact, especially in low-

flow benthic systems (Morrow et al., 2011). Allelopathic
interactions among algae and corals have been shown to
have detrimental effects on coral larval behavior, recruit-
ment, and survival (Kuffner and Paul, 2004; Kuffner et al.,
2006; Ritson-Williams et al., 2009). It is unknown how the
bioactive compounds influence health of the early life
stages, but it is feasible that the observed effects are linked
to shifting bacterial communities associated with the coral
planulae and recruits.

Smith et al. (2006) explored the effects of macroalgae on
bacterial growth in the coral surface mucopolysaccharide
layer. The results of that research, together with prior work
on controlled exposure of coral fragments to seawater with
increased dissolved organic carbon (DOC) levels (Kline et
al., 2006), suggest that an excess of DOC, exuded from
macroalgae, leads to coral mortality (Smith et al., 2006). In
addition, Barott et al. (2011) found that the community
composition of bacteria on surfaces of multiple reef mac-
roalgal species is distinct from those found on coral surface
mucous layers.

On the basis of these studies, it is clear that macroalgae
have the potential to act as reservoirs of specific bacteria
(beneficial, commensal, or pathogenic) not usually native to
the coral mucous layer. Macroalgae also release compounds
into the surrounding seawater that can have direct inhibitory
or stimulatory effects on the coral-associated microbiota
and, hence, on the health of the coral host.

Ocean acidification is a major concern for marine eco-
systems in general—particularly those dependent on calci-
fying organisms, as secretion of calcium carbonate skele-
tons depends directly on carbonate saturation state in
seawater (Caldeira et al., 2007). Recent research suggests
that a decrease in seawater pH can alter marine bacterial
communities, but very little is known about the large-scale
impacts of those changes (Joint et al., 2011). Laboratory
manipulations of seawater pH have shown that acidification
can result in loss of Symbiodinium endosymbionts, decrease
in calcification, depression of overall net productivity in
corals (Anthony et al., 2008), and dissolution or slowed
deposition of coral skeletons (Fine and Tchernov, 2007). In
addition, decreased seawater pH levels have been attributed
to a decline in overall abundance of crustose coralline algae
(Kuffner et al., 2008), some of which have been shown to
facilitate coral recruitment in reefs (Ritson-Williams et al.,
2010). Experiments demonstrate that lower PCO2 levels in
seawater result in significant detrimental effects on early life
stages of the coral Porites astreoides, including fertilization
success, larval settlement rates, post-settlement growth, and
post-settlement skeleton deposition (Albright et al., 2008,
2010).

Several laboratory-based studies have focused specifi-
cally on the impacts of ocean acidification on coral micro-
biota. Meron et al. (2011) explored shifts in microbial
assemblages associated with the coral Acropora eurystoma
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exposed to ambient seawater and seawater with pH 7.3 over
a period of 2 mon using denaturing gradient gel electropho-
resis profiles and 16S rRNA gene clone libraries. According
to the resulting cluster analysis, a decrease in pH results in
an increase in detection of Rhodobacteraceae and a decrease
in detection of Bacteroidetes and Deltaproteobacteria
(Meron et al., 2011). Relative to libraries from corals ex-
posed to ambient seawater, clone libraries from A. eurys-
toma exposed to pH 7.3 conditions exhibited a higher per-
centage of clones representing bacteria closely related to
those detected in stressed, injured, or diseased invertebrates
(Meron et al., 2011). In another study with the Pacific coral
Porites compressa, individuals exposed to an extremely low
pH (6.7) exhibited shifts in bacterial community diversity
(Thurber et al., 2009). Though the mechanism by which this
occurs is not yet clear, it has been suggested that the altered
seawater pH indirectly causes a shift in the bacterial diver-
sity by impacting host metabolism, which results in a shift
of nutrients and carbon available to the associated microbi-
ota (Meron et al., 2011).

Metagenomic analysis of P. compressa mucus revealed
potential functional shifts in the associated microbiota as a
result of decreased pH and increased temperature (Thurber
et al., 2009), most notably an increase in the number of
detected genes for antibiotic and toxin production. Mucus
from corals exposed to a decreased pH exhibits low anti-
microbial activity (Meron et al., 2011), and mucus of Acro-
pora palmata exhibits lower antibacterial activity after pro-
longed warm periods (Ritchie, 2006). Together, these
results warn that even slight changes in seawater pH and
temperature can have ecologically significant effects on
coral-associated microbiota and, hence, on coral’s suscep-
tibility to bacterial pathogens. The shift in the coral micro-
biome phylogenetic profile has been proposed as a potential
indicator for declining coral health before the corals exhibit
more obvious signs of stress or disease (Thurber et al.,
2009; Ainsworth et al., 2010; Garren and Azam, 2012).

A Model for Climate-Change-Induced Shifts in the
Coral Metaorganism

The research reviewed here suggests that alterations in
sea surface temperature, algal and cyanobacterial abun-
dance on reefs, and seawater pH can have detrimental
effects on corals by decreasing protective qualities of the
coral mucous layer, via inhibition of growth or compound
production in beneficial bacteria or by alteration of host-
associated compound biosynthesis. Another aspect of coral-
bacterial interactions that has garnered much attention is the
ability of bacteria on reef substrates to influence successful
larval recruitment. These surfaces include crustose coralline
algae (CCAs), which are coated with microbial biofilms and
are thought to be involved in mediating coral larval settle-

ment (Webster et al., 2001; Ritson-Williams et al., 2009,
2010; Tebben et al., 2011; Webster et al., 2011).

Figure 1 represents the current model of corals and their
interdependence on associated microbes. Both coral tissue
and coral mucus contain abundant and diverse microbial
communities (Fig. 1a). When sea-surface temperatures in-
crease, antibacterial compounds in the coral mucus disap-
pear. Simultaneously, antibacterial-producing bacteria nor-
mally associated with healthy corals decrease while bacteria
with pathogenic capabilities increase (Fig. 1b). Mathemat-
ical modeling of this system suggests that once this shift to
pathogen dominance is established, this state persists long
after conditions return to those favorable for the reestablish-
ment of beneficial microbes (Mao-Jones et al., 2010). Re-
cent data from coral mucus bacterial metagenomes exposed
to decreased pH (Thurber et al., 2009; Meron et al., 2011)
indicate that ocean acidification may also result in a similar
shift in the protective properties of coral mucus.

On the basis of this model and the data reviewed in this
paper, we present a second model of coral-bacterial inter-
actions in which environmental changes lead to shifts in
bacterial communities on reef surfaces (Fig. 1c and d). It has
been shown that increased temperatures change the phylo-
genetic composition of CCA-associated bacterial commu-
nities and the success of larval recruitment (Webster et al.,
2011). In addition, it was recently shown that decreased pH
inhibits settlement of the coral Porites astreoides (Albright
et al., 2008, 2010). Temperature may affect the growth,
abundance, or bioactive metabolite biosynthesis of benefi-
cial bacteria, particularly Pseudoalteromonas spp., on reef
surfaces that are important for successful recruitment, which
can ultimately result in a decline of new recruitment on
reefs. Though the effects of decreased pH on surface bio-
films have not been well described, this condition may alter
the bacterial biofilm community and influence larval settle-
ment success. Figure 1c and d shows a schematic model of
reef surface-associated microbes before (c) and after (d)
increased sea-surface temperature or ocean acidification. In
ambient conditions on the reef, CCAs, or bacteria growing
on CCA surfaces, produce compounds that facilitate larval
settlement (Fig. 1c). When sea-surface temperatures in-
crease, bacterial communities on CCAs change, resulting in
lower larval recruitment rates (Fig. 1d). Similarly, as pH
decreases, larval settlement decreases (Albright et al., 2008,
2010). It is hypothesized that the inductive properties of
CCAs, whether they are due to compounds released by
bacterial biofilms on CCAs or by the CCAs themselves,
decrease (Fig. 1d). As in the coral mucus (Fig. 1a and b),
there is a shift in the bacterial community of the reef
surfaces. In this case, under increased sea-surface tempera-
tures, the bacterial community dominated by inductive bac-
teria, such as Pseudoalteromonas and Thalassomonas,
moves to a community dominated by bacteria that may not
have inductive properties.
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Next Questions: Microbe-Microbe
Interactions in Corals

One of the next steps in increasing our understanding of
coral fitness is a comprehensive characterization of coral-
associated microbial interactions. For example, it is unclear
if Symbiodinium plays a role in selectively recruiting bac-
teria to corals, if Symbiodinium affects bacterial physiology
or secondary metabolite biosynthesis, or if bacterial metab-
olism influences Symbiodinium activity.

Little is known about the nature of free-living Symbio-
dinium, including what bacterial mutualisms may be present
before coral acquisition of Symbiodinium, in the case that
the algal symbiont is not transmitted vertically. Members of
the Roseobacteriales group are specifically present in asso-
ciation with Symbiodinium cultures and are able to increase
Symbiodinium growth rates in vivo (Ritchie, 2011). This
observed association between �-proteobacteria and dinofla-
gellates may be a true mutualism with benefits for both the

Figure 1. Schematic of coral surfaces and associated microbes. (a) Under normal conditions, the coral
animal, associated endosymbiotic algae, or native bacteria may produce allelopathic compounds that regulate the
abundance and activities of other microbes that come into contact with the coral. (b) Under conditions of coral
stress (such as increased temperature or decreased pH), production of allelopathic compounds may be altered
within the coral holobiont, either by affecting production by the coral host or by the associated microbes.
Simultaneously, native beneficial bacteria are replaced by pathogenic bacteria on the coral surfaces. (c) Crustose
coralline algae (CCA) and biofilm microbial communities facilitate attachment and settlement of coral larvae via
inductive compounds (settlement cues) produced by the CCA or by recruiting specific bacteria that release these
cues. (d) Certain types of environmental change (decreased pH, lower PCO2, increased temperature) may alter
the abundance of the inductive bacteria or their production of settlement cue compounds, resulting in reduction
of attachment, metamorphosis, and successful settlement of coral larvae.
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bacteria and the algal host. The bacteria may benefit by
having a readily available source of organic compounds
such as dimethylsulfoniopropionate (DMSP), a preferred
source of reduced sulfur (Miller and Belas, 2004; Raina et
al., 2010). The algae may derive benefits from the bacterial
production of antimicrobials such as tropodithietic acid (Geng
and Belas, 2010) and bioactive compounds such as vitamin
B-12 (Geng and Belas, 2010). A genomic comparison of the
Roseobacter clade of �-proteobacteria indicates that some
type of surface-associated lifestyle is central to the ecology
of all members of the group (Slightom and Buchan, 2009).

Very little is known about how Symbiodinium affects
bacterial communities in corals (or vice versa) or how these
interactions impact the fitness of the coral host. Recent
studies suggest that bacterial communities in juvenile corals
differ significantly if they were initially colonized by dif-
ferent strains of Symbiodinium (Littman et al., 2009) with
different photosynthetic efficiencies (Littman et al., 2010).
It has been hypothesized that DMSP production by Symbio-
dinium plays a role in structuring bacterial communities in
corals by attracting certain bacteria to the surface mucous
layer of corals (Raina et al., 2009, 2010).

An important adaptive property of many �-proteobacteria
is the presence of a bacterial system for diversity generation
facilitated by gene transfer agents (GTAs) (Paul, 2008).
GTAs are defective bacteriophages that are able to ran-
domly package bacterial host DNA and transfer DNA to
other �-proteobacteria (Paul, 2008). It has recently been
shown that Symbiodinium-associated �-proteobacteria pro-
duce GTAs and are able to transfer genes to a range of
bacteria in the marine environment (McDaniel et al., 2010).
Furthermore, gene transfer via this mechanism is much
higher in the coral reef environment than in other marine
environments, suggesting an alternate mode of adaptation via
swapping of potentially beneficial genes among marine bacte-
ria (McDaniel et al., 2010) and possibly the coral holobiont.

A fundamental requirement of model systems is that they
address interspecies interactions in a metaorganism. Re-
search on host-microbe interactions can greatly benefit from
a well-documented host-microbe study that spans the spec-
trum from pathogenicity to mutualism. Much work has been
done on the basal metazoan Hydra to illustrate the value of
a model systems approach (Weis et al., 2008; Bosch et al.,
2009). Because Hydra is associated with a limited number
of bacteria, it has provided valuable insight into the molec-
ular basis of immunity and symbiosis in simple animals.
Cnidarian and dinoflagellate models can also be used to
elucidate roles of bacteria in both coral and Symbiodinium
biology. Ideally, these models require cultured symbionts
(bacterial and dinoflagellate) and an easily maintained cni-
darian host (Weis et al., 2008). Our ability to culture many
of these bacterial symbionts will aid in exploring functions
that are otherwise impossible to study due to the complex
nature of the coral holobiont. Generation of genome se-

quence data from animal hosts and their associated micro-
organisms will exponentially enhance our basic understand-
ing of symbiotic associations at the molecular level. This
includes reconstruction of host-symbiont phylogenies, anal-
ysis of genes important in specific interactions, comparative
genomics, and advanced technologies. The sea anemone
Aiptasia pallida has recently been proposed as a model for
coral biology for a number of reasons (Weis et al., 2008).
While corals are difficult to grow in captivity, this species is
hardy to laboratory manipulation and grows quickly in
aquaria. Many protocols have been developed to manipulate
Symbiodinium density in A. pallida without lethal effects on
the host, and as a result, this organism has successfully been
used to describe mechanisms of coral bleaching (Dunn et
al., 2007) and disease (Alagely et al., 2011). Aiptasia pal-
lida represents an opportunity to integrate a model systems
approach with novel technologies from the “omics age” to
learn more about multipartner interactions in corals in a
moment of great environmental change.
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