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Summary of recent advances

Bryostatins are a family of protein kinase C modulators that have potential applications in 

biomedicine. Found in miniscule quantities in a small marine invertebrate, lack of supply has 

hampered their development. In recent years, bryostatins have been shown to have potent 

bioactivity in the central nervous system, an uncultivated marine bacterial symbiont has been 

shown to be the likely natural source of the bryostatins, the bryostatin biosynthetic genes have 

been identified and characterized, and bryostatin analogues with promising biological activity 

have been developed and tested. Challenges in development of bryostatins for biomedical and 

biotechnological application include the cultivation of the bacterial symbiont and heterologous 

expression of bryostatin biosynthesis genes. Continued exploration of the biology and the 

symbiotic origin of the bryostatins presents promising opportunities for discovery of additional 

bryostatins, and new functions for bryostatins.

Introduction

Microbial symbionts have often been suggested to be the source of natural products isolated 

from marine invertebrates, usually based on structural similarity of compounds to known 

microbial secondary metabolites. Structural similarity is a valid argument only for 

structurally complex molecules assembled through many biosynthetic steps. The bryostatins 

were originally isolated from the bryozoan Bugula neritina, and the bacterial symbiont of B. 

neritina appears to be responsible for bryostatin biosynthesis (see “Evidence for symbiotic 

origin of bryostatins” below). The B. neritina symbiosis represents one of the best 
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documented examples of bioactive metabolite symbiosis. In this model system, the 

ecological roles and biomedical potential of the compound are well described, and the 

symbiotic origin of the compound has been explored. This review provides an overview of 

the origin, biological context, and biotechnological prospects of bryostatins, and covers the 

period from 2005–2010.

Bryostatins: Discovery and structures

The bryostatins are a family of structurally related cyclic polyketides originally isolated 

from the marine bryozoan Bugula neritina (reviewed in [1]). All known bryostatins share a 

common macrolactone core with three tetrahydropyran rings (Figure 1); they differ 

predominantly in their substituents at C-7 and C-20 positions, and whether a γ-lactone ring 

is fused to the C-19 to C-23 tetrahydropyran ring. The bryostatins can also be categorized by 

the presence or absence of a 2,4-octadienoate moiety at their C-20 positions. The first 

bryostatins were discovered using an antineoplastic bioassay-guided fractionation approach 

[2]. Bryostatins are present in very low amounts in B. neritina colonies: nearly all of the 

bryostatins were isolated at a yield of 10−5 and 10−7 % B. neritina adult colony wet weight 

from various populations worldwide. Bryostatins 10 and 20 were isolated from B. neritina 

larvae, but at a thousand-fold higher concentration than the adult colonies, which suggests a 

significant role of these compounds in the larval stage of B. neritina. Additional bryostatins 

undoubtedly exist in nature. Using a bioassay, bryostatin activity was observed in a related 

bryozoan, B. simplex, and the presence of structurally similar but novel bryostatins was 

detected by chromatography and mass spectrometry [3]. Whether the structural diversity of 

bryostatins is related to biological function, environmental conditions or artifacts of isolation 

is not clear [4,5].

Clinical status of bryostatins

Most of the pharmacological and clinical research on bryostatins has focused on bryostatin 

1, which is noteworthy for its hydrophobic alkyl chain at C-20 (Figure 1). Bryostatins bind 

to the diacylglycerol binding site of the C-1 regulatory domain of protein kinase C (PKC); 

most, but not all, of bryostatins’ pharmacological effects are attributed to this interaction [6]. 

Protein kinase C (PKC) signaling pathways are involved in many regulatory processes in 

eukaryotic cells. PKC exists in ten isoforms that are differentially expressed in tissues, and 

variously regulated by diacylglycerol, calcium and phospholipid. Consequently, PKC 

activators, including bryostatins, have complex effects in animals, and these effects can vary 

greatly with concentration.

Bryostatins were first isolated due to their inhibition of the growth of murine P388 

lymphocytic leukemia cells in vitro and in vivo [2]. After more than thirty phase I and II 

clinical trials in a variety of cancers, alone and in combination with other chemotherapy 

agents, bryostatin 1 has not been effective enough to progress to phase III clinical trials as a 

cancer treatment. More recently, bryostatin 1 has been explored in other contexts. It shows 

promise in central nervous system applications [7]. In rodent models of learning, depression, 

stroke and Alzheimer’s disease, bryostatin 1 has produced striking positive results [8–13]. A 

human Alzheimer’s disease Phase II clinical trial has been initiated. Most recently, 
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bryostatin 1 has been proposed as a possible therapy for human immunodeficiency virus 

(HIV) [14]. Although current antiviral therapy is effective against HIV, the disease cannot 

be cured because latent viruses persist in resting cells. Based on in vitro studies, bryostatins 

may be effective in activating latent viruses so they can be purged from cellular reservoirs, 

exposed to antiviral therapy, and eliminated.

Poor availability of bryostatins has hindered clinical development. Mariculture of B. neritina 

has been accomplished, but has not been commercially implemented [15]. Although total 

synthesis of naturally occurring bryostatins has been achieved and is steadily being 

improved, it is not yet practical for industrial production [16]. Synthesis of simplified 

structural analogues of bryostatins is currently an active area of research [17,18]. Analogues 

that are more synthetically accessible, yet retain biological activity, have been attained and 

may ultimately prove clinically useful.

Bugula neritina

Bugula neritina, the source of all fully characterized bryostatins, is a marine bryozoan with a 

cosmopolitan distribution. Like other bryozoans, it is a colonial organism comprised of 

individual zooids (Figure 2A). Each feeding zooid in the colony possesses a lophophore, a 

ring of tentacles used to capture plankton from seawater (Figure 2B). Zooids in a colony are 

interconnected by a funicular system, which transports nutrients from feeding zooids to non-

feeding zooids and to the brood chambers called ovicells (Figure 2B) [19]. Embryos develop 

from fertilized eggs in the ovicells, and when mature, they are released as non-feeding 

larvae into the seawater (Figure 2C). B. neritina larvae typically settle on hard substrate, 

after which they metamorphose into the first feeding zooid, called the ancestrula. The 

ancestrula then reproduces asexually by budding to form a juvenile colony (Figure 2D).

Ecological role of bryostatins

The first hint that bryostatins may be significant to the ecology of B. neritina larvae came 

from a study using whole extracts of B. neritina adult and larvae in fish feeding assays [20]. 

The study demonstrated that adult extracts were palatable to generalist fish, while larval 

extracts were deterrent. Moreover, it was shown that when predators ingest B. neritina 

larvae, the larvae are regurgitated and their metamorphosis is not hindered [21]. A follow-up 

study identified bryostatins 10 and 20 as feeding deterrents when tested at concentrations 

found in the larvae [22,23]. Ontogenetic localization of bryostatins, using a unique 

fluorescence technique based on bryostatins’ PKC-binding activity, revealed that the 

bryostatins are delivered as a coating onto the developing embryo in the ovicell from 

bacterial aggregates via the funicular system [24]. Upon maturation and release, this “cloak” 

of bryostatins (Fig. 3E) remains on the larvae until two days after they settle on a substrate 

and begin metamorphosis. The loss of bryostatins not unexpectedly coincides with the 

synthesis of a chitin exoskeleton, which would physically protect juvenile B. neritina from 

predation. The data from the bryostatin localization corroborate previous research 

demonstrating ontogenetic changes in bioactivity during early B. neritina development [25].
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Discovery of symbionts

Before the discovery of bryostatins, B. neritina was the subject of numerous studies in 

developmental biology and natural history. In 1969, during an investigation of the 

microanatomy of several bryozoans, Lutaud observed the presence of rod-shaped bacteria in 

the funicular system of adult colonies of a Bugula species, B. turbinata [26]. To our 

knowledge, this was the first account of bacteria living within a bryozoan. Whether the 

observed bacteria are a monoculture or are a mixed community could not be determined 

from microscopic examination. Another microscopic investigation of larvae of different 

Bugula species revealed that B. neritina, B. pacifica and B. simplex contained rod-shaped 

bacteria in the larval pallial sinus [25]. Interestingly, the pallial sinuses of B. stolonifera and 

B. turrita are devoid of bacteria. The morphological similarities of the bacteria in adult B. 

turbinata observed by Lutaud [26] and in B. neritina, B. pacifica, and B. simplex larvae [27] 

hint at close evolutionary relationships among the bacteria; however, molecular methods 

were necessary to uncover the identities and relationships of the bacteria in the Bugula 

larvae.

Haygood and Davidson used bacterial small subunit (SSU, 16S) ribosomal RNA gene 

sequencing to identify bacteria in from B. neritina larvae collected in Southern California 

[28]. A specific oligonucleotide probe targeting the SSU rRNA sequence hybridizes to rod-

shaped bacterial cells in the pallial sinus of B. neritina larvae. Identical SSU rRNA sequence 

was found in all of the California populations tested in this study, while absent in a co-

occurring bryozoan, suggesting that bacterium in the pallial sinus engaged in a specific 

relationship with B. neritina. Co-hybridization of the specific probe and a universal bacterial 

probe demonstrates that both probes bind to all the bacterial cells, indicating the pallial sinus 

bacteria are a monoculture (Figure 3B). This bacterial symbiont was named “Candidatus 

Endobugula sertula.” The Candidatus designation is used for description of bacteria that 

have not been cultivated. Two strains of “Candidatus Endobugula sertula” are known (see 

discussion of sibling species of B. neritina below). The bacterial SSU rRNA sequences from 

the other symbiotic Bugula species were subsequently obtained and analyzed, and the results 

demonstrate that they are all closely related and form a unique bacterial group within the 

gamma proteobacteria, none of which has yet been cultivated [29].

Evidence for a symbiotic origin of bryostatins

The structure of the structurally and biosynthetically complex bryostatins is reminiscent of 

typical bacterial secondary metabolites, leading to the hypothesis that the symbiotic 

bacterium “Candidatus Endobugula sertula” carries out bryostatin biosynthesis. However, to 

move from speculation to confirmation of a microbial origin is challenging and requires 

rigorous experimental testing (reviewed in [30]). It is particularly challenging when the 

microbe is uncultivated.

Although definitive proof that the symbiont “Candidatus Endobugula sertula” is the 

producer of bryostatins is lacking, several lines of evidence support this hypothesis. Perhaps 

the most suggestive piece of evidence is the reduced bryostatin content in B. neritina 

colonies that developed from antibiotic-treated larvae [22,31]. The reduction in bryostatin 
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was concomitant with a reduction in “Candidatus Endobugula sertula” levels. In these two 

studies, the bryozoan host did not appear to be affected by the antibiotic treatment, however, 

the possibility that the observed decrease in bryostatins was due to the decrease of a cryptic 

symbiont cannot be eliminated.

Another line of evidence for a symbiotic origin of bryostatins stems from the discovery of B. 

neritina sibling species. There are three sibling species known to date: the Deep, Shallow 

[32]and Northern sibling species are readily distinguished by mitochondrial cytochrome 

oxidase I sequence [33] (Table 1). Because the taxonomy has not been revised, they are all 

still identified as Bugula neritina. The Deep sibling species is predominantly found in 

Southern Californian waters below 9 meters in depth, and contains bryostatins 1–3, (in 

addition to other bryostatins). These bryostatins share the 2,4-octadieonoate moiety at C-20, 

which is absent in the other bryostatins (Figure 1). The Shallow sibling species, which was 

further divided into the S1 and S2 genotypes by Mackie et al. [34], in contrast, does not 

contain bryostatins 1–3, but does contain the other bryostatins. The S1 genotype appears to 

have a cosmopolitan distribution and is considered an invasive species, while the S2 

genotype is restricted to California. Both the Deep and Shallow sibling species contain 

“Candidatus Endobugula sertula”, and the SSU rRNA sequence of “Candidatus Endobugula 

sertula” strains from Deep and Shallow sibling species differ by 4 bp. The Northern sibling 

species was found in coastal waters off Delaware and Connecticut; these animals do not 

appear to contain “Candidatus Endobugula sertula” or bryostatins [33]. Thus, the presence 

of bryostatins has always been correlated with the presence of “Candidatus Endobugula 

sertula”, supporting the hypothesis of a symbiotic origin of bryostatins.

Examination of the biosynthesis of bryostatins also provides evidence for the role of 

“Candidatus Endobugula sertula” in bryostatin production. The putative gene cluster, the 

bry cluster (described below), is proposed to produce “bryostatin 0”. Expression of mRNA 

from the cluster was detected by in situ hybridization in “Candidatus Endobugula sertula” 

cells in B. neritina larvae, and not in host cells [31]. Taken together, these three lines of 

evidence point to “Candidatus Endobugula sertula” as the producer of “bryostatin 0”.

Biosynthesis of bryostatins

Because “Candidatus Endobugula sertula” is as yet uncultivated, conventional biosynthetic 

studies using isotope labeling, mutants and in vitro studies of purified enzymes are not 

feasible. Kerr and coworkers purified radiochemically pure bryostatin 1 by incubating a B. 

neritina cell-free enzyme preparation with radiolabeled precursors. The authors showed the 

incorporation of acetate, glycerol, and SAM-adenosylmethionine, indicating these moieties 

as probable precursors of bryostatin biosynthesis [34].

Other inferences about bryostatin biosynthesis have been made from bioinformatic analyses. 

Modular polyketides synthases (PKS) consist of modules containing a set of catalytic 

domains for each extension cycle. Using primers based on conserved sequence signatures of 

modular PKS ketosynthase (KS) domains, a ketosynthase gene fragment that was 

consistently present in Shallow and Deep B. neritina metagenomic DNA was obtained [31]. 

The fragment was used to screen libraries prepared with metagenomic DNA isolated from 
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Shallow and Deep B. neritina and enriched in “Candidatus Endobugula sertula” DNA. 

Several PKS-encoding clones were obtained which, when sequenced, converged to a single 

genomic region with features of a bacterial gene cluster, named the bry cluster [31,35,36]. 

The bry cluster spans ~80Kb in size and contains two parts, both entirely conserved in both 

Shallow and Deep “Candidatus Endobugula sertula” strains; the bry cluster does not reveal 

the origin of the different bryostatin profiles among B. neritina sibling species. The two 

parts are a 71kb bryBCXDA PKS operon, formed by five giant type I PKS genes, and the 

6kb bryPQRS operon, with four smaller accessory genes (Figure 4) [36]. Genes for the 

oxidation of C-20 and modification of C-7 and C-20 have not been identified in the bry 

region. In the Deep “Candidatus Endobugula sertula” strain the two parts are not 

contiguous, while in the Shallow strain they form a unified and possibly ancestral locus 

(Figure 4). The three large identical sequence repeats in the bryBCXDA PKS operon must 

represent duplication events that would normally be resolved by recombination, suggesting 

that, like other obligate symbionts, “Candidatus Endobugula sertula” is recombination 

deficient.

Analysis of the order and sequence features of catalytic domains shows that bry cluster 

enzymes lack acyltransferase (AT) domains within modules, and thus belong to the class of 

trans-AT type I PKSs. Except for the enigmatic bryX, the predicted enzymatic reactions are 

strikingly correlated with the biosynthetic steps required for the synthesis of “bryostatin 0” 

(Figure 5) [35,36]. Particularly, the hypothesis of D-lactate starter unit formation by 

bryA_LM [35], the match between the introduction of gem-dimethyl groups with the 

location of methyltransferase (MT) domains in modules 4 and 9, as well as pyran ring 

formation with the pyran-synthase (PS) domain in module 8 [36] gave credence to the 

biosynthetic proposal (Figure 5). Moreover, recent in vitro characterization of BryP, the 

tandem-AT encoded by bryP, conclusively showed this enzyme’s ability to selectively 

acylate malonyl-CoA on native and heterologous acyl-carrier-protein (ACP) domains, as 

well as in entire trans-AT PKS modules, corroborating the proposed role of BryP in the 

trans-loading of all extending bry cluster modules [37].

Since the publication of the bry cluster, Piel’s group discovered that the KS domains of 

trans-AT PKSs can be grouped into types based on sequence similarity [38]. The types 

reflect the structure of the incoming precursor at the beta carbon, and thus the specific 

reaction catalyzed by the preceding module. Piel’s analysis [39] of the KS domains of the 

bry cluster supports the hypothesis proposed by Sudek et al. [36] that the bry cluster codes 

for “bryostatin 0” biosynthesis. In fact, only two biosynthetic steps were modified in the 

revised scheme, and these differences reflect the steps in which branching occurs in the acyl 

units loaded by the virtually identical modules 3 and 7 of the bryostatin route (respectively 

Bry_M3, and Bry_M7) [39]. In this analysis, the condensation of an acetyl-CoA moiety 

proposed to be catalyzed by the hydroxy-methyl-glutaryl-CoA synthase (HMG-CS), BryR, 

occurs on the β-keto group of loaded malonyl-CoA substrates, during chain elongation 

instead of after macrocyclization [39] (Figure 5B, substrates in red). This is in agreement 

with the grouping of BryKS4 and BryKS8 into the clade Ib (Figure 5A) for KS domains 

with specificity for β-branched substrates. Continuing advances in catalytic domain 

annotation are improving the tools for chemical structure predictions of trans-AT systems. 
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In the case of the bry cluster, these tools might be helpful in pinpointing the role of BryX, 

the PKS with an intriguingly aberrant catalytic domain constellation and with no obvious 

role in bryostatin precursor biosynthesis (Figures 4 and 5). However, bryX is completely 

conserved in bry clusters from both Deep and Shallow “Candidatus Endobugula sertula” 

strains, and is expressed in the symbiotic state, suggesting it is probably functional [36].

Challenges and opportunities in future research on bryostatins

While gaps remain in our understanding of the B. neritina-“Candidatus Endobugula sertula” 

system, it is perhaps the most well-rounded example of a bioactive metabolite symbiosis. 

The uncultivated symbiont has been identified by molecular methods, the bioactive 

metabolites are characterized, a probable biosynthetic pathway has been postulated, and the 

ecological underpinnings of the symbiosis have been established. However, there are still 

many questions that need to be addressed.

Cultivation of symbionts

Cultivation of “Candidatus Endobugula sertula” would facilitate bryostatin research, but 

may prove difficult or impossible. Over evolutionary time, obligate symbionts tend to 

undergo genomic degradation resulting in impaired recombination and repair, reduced 

genome size, increased AT content of the genome and loss of non-essential genes [40]. 

“Candidatus Endobugula sertula” appears to fall in the middle of the degradation spectrum. 

The AT content of the bry cluster is high, exceeding 70% in some regions. The large perfect 

repeats in the cluster suggest impaired recombination and repair. The genome size is 

approximately 2 Mb based on flow cytometry (C.M Anderson and M.G. Haygood, 

unpublished data), compared to 5 Mb for its close relative Teredinibacter turnerae [41]. 

Metabolic genes upstream of the bry cluster appear to be nonfunctional (C.M Anderson and 

M.G. Haygood, unpublished data). A genome size of 2 Mb, while small, does not 

necessarily preclude growth in free-living conditions. However, on the whole, the genome of 

“Candidatus Endobugula sertula” appears to be that of an obligate symbiont, which should 

be difficult to grow outside the host, since it would have poor adaptability to environmental 

change.

Expression of bry genes

Expressing the bry cluster in another host and producing an indisputable bryostatin 

precursor would be conclusive proof of the symbiotic origin of bryostatins. Such proof has 

been achieved in a different system via heterologous production of the patellamides, which 

are synthesized by the cyanobacterial symbiont Prochloron didemni in didemnid ascidians 

[42]. There are major obstacles to the heterologous expression of the bry cluster: i) the 

cluster size, which challenges any strategy for manipulation, ii) the bryA loading-module’s 

impressively high AT content (~70%), which renders this DNA segment highly unstable and 

toxic for commonly used expression vectors/hosts systems (eg, E. coli/Bacillus sp. 

expression vectors), iii) the large DNA repeats in the PKS operon, which favor 

recombination and collapse, finally iv) the mechanisms of expression regulation which are 

still obscure for bry cluster. However, major advances have been made in all steps of 

heterologous expression in the last decade, and similar issues have been overcome in other 
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systems. Manipulation of large DNA fragments for example, were achieved in the 

reconstitution of the myxothiazol gene cluster [43] and in the transfer of a 100Kb DNA 

segment in B. subtilis 168 [44]. Problems of DNA toxicity and codon usage bias, on the 

other hand, can be circumvented by de novo design and artificial DNA synthesis [45,46].

How is bryostatin biosynthesis regulated?

Several studies have documented the changes in bryostatin content across life stages in B. 

neritina [22,24,25], and regulatory regions have been identified upstream of the bryBCXDA 

operon (Christine M Anderson, PhD thesis, University of California, San Diego, 2006), but 

it is still unknown what factors regulate bryostatin biosynthesis in nature. It is also unclear if 

the increase in bryostatin content in the ovicells is due to a stoichiometric increase in 

“Candidatus Endobugula sertula” levels, or to density-dependent gene expression (ie, 

quorum sensing) of bryostatin biosynthetic genes. One tantalizing piece of evidence in 

support of the quorum sensing hypothesis is the lack of bryostatin signal in B. neritina 

juveniles which contain a small inoculum of “Candidatus Endobugula sertula”, and the 

subsequent colocalization of bryostatins with “Candidatus Endobugula sertula” when the 

population density of “Candidatus Endobugula sertula” increases [24]. It is also unclear if 

an intermediary host factor made by B. neritina is used to transduce the signal from the 

environment to the symbionts.

Bryostatin diversity

Though the genetic architecture of the bry cluster is consistent with that of the hypothetical 

compound, “bryostatin 0”, we still do not understand how this putative precursor is 

elaborated to form the 20 known bryostatins. While “bryostatin 0” appears to be 

symbiotically produced, it is possible that the oxidation of C-20, esterifications at C-7 and 

C-20, and the γ-lactone at C-19 and C-23, are the result of enzymatic modifications by the 

host bryozoan, other microbes or due to abiotic processes. One possible abiotic process was 

documented by Abadi et al. who detected esterification products, similar in structure to some 

bryostatins, by mass spectrometry when bryostatin 1 was incubated with a carboxylic acid 

[5]. Furthermore, investigation of the mechanism by which bryostatins are transported and 

attached to the larvae may reveal new and ecologically relevant bryostatin variants. 

Exploration of the relationships between B. neritina and its various predators and 

competitors in different habitats should also reveal new information about bryostatins’ 

structures, activities and regulation. For example a nudibranch predator of B. neritina on the 

U.S. West coast, Polycera atra, contains bryostatins in its body and egg masses (Seana K 

Davidson, PhD thesis, University of California, San Diego, 1999; Grace E Lim, PhD thesis, 

University of California, San Diego, 2004). Are these known or novel bryostatins, and do 

they function in chemical defense?

Summary

The Bugula-Endobugula-bryostatin system is a complex tapestry of biology, ecology, 

microbiology and chemistry that will continue to captivate researchers. Given the increasing 

interest in bryostatins for clinical use, both the synthetic and heterologous expression 

strategies for generating supplies sufficient of active compounds will likely be pursued. 
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Further insights gained from investigation of bryostatins in their natural biological context 

will advance marine biology as well as inform biotechnological studies.
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Figure 1. 
Structures of bryostatins “0”-20 (“bryostatin 0” is the hypothetical precursor to all the 

known bryostatins). Bryostatins which contain octa-2,4-dienoate moieties (in blue) are 

found only in the Deep B. neritina sibling species, whereas Shallow B. neritina contains 

bryostatins with other kinds of esterifications (in green). The oxygen groups highlighted in 

red represent the pharmacophoric elements involved in binding to PKC.
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Figure 2. 
(A) A typical colony of Bugula neritina, which consists of (B) zooids arranged biserially. 

Ovicells brood (C) ciliated non-feeding larvae, which settled on hard substrate and 

metamorphose into the first feeding zooid, called the ancestrula, which then reproduces by 

budding to form a (D) juvenile colony
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Figure 3. 
“Candidatus Endobugula sertula” and bryostatin localization in Bugula neritina larvae. (a) 

Bacteria in the pallial sinus of a Bugula neritina larva, as shown by simultaneous 

fluorescence in situ hybridization (FISH) with two probes – the general eubacterial probe 

CY5-EUB338 (red) and a specific CY3“Candidatus Endobugula sertula” probe (green) – 

shown as a composite of the two signals (yellow). Bar = 20 μm. The same image is shown in 

higher magnification in (b)–(d), where (b) is a high magnification image of the pallial sinus 

with both probes. The symbiont-specific probe (c) and EUB338 (d) hybridize to the same 

cells, indicating a monoculture of “Candidatus Endobugula sertula” in the larval pallial 

sinus. Bar = 5 μm. (e) A coating of the bryostatins (blue) is detected around the exterior of a 

B. neritina larva via the PKC-labeling method [24]. Also visible in the larval pallial sinus is 

the CY5-EUB338/CY3-“Candidatus Endobugula sertula” FISH signal (yellow). Bar = 50 

μm.
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Figure 4. 
The organization of the bry cluster. Light gray box and dotted line emphasize differences 

found in Deep and Shallow strains of “Candidatus Endobugula sertula”. Modular polyketide 

synthase genes are shown as open arrows while accessory functions, primary metabolism 

and transposase genes are shown as orange, dark gray and black arrows respectively. The 

three large DNA repeats in the bryBCXDA PKS operon are represented as light blue, gold 

and pink boxes. PKSs modules proposed to be involved in “bryostatin 0” assembling are 

shown as black bars and numbered according to their order of action. Adapted from [37].
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Figure 5. 
Proposed biosynthesis of bryostatins. A – BryKS domains’ substrate specificity. Except for 

the D-lactate starter unit, all hypothetically recognized substrates are highlighted in colors. B 

–precursor chain elongation. Added substrates are shown after modifications, highlighted 

following the color code presented in A. Catalytic domains are shown in gray or, when 

hypothesized to be inactive, in white bubbles. Acyl-carrier-protein domains are shown as 

small filled circles with growing chain attached by the thiol group. Two proteins with split 

modules are shown in pink. The box details the HMG-CoA synthase-driven acetyl-CoA 

condensation onto C13/C20 beta-keto groups. Abbreviations not included in review’s text: 

KR, ketoreductase; OMT, O – methyltransferase; ER, enoyl reductase; DH, dehydratase; C, 

condensation. DH* and KR* are respectively DH and KR-like domains involved in the 

biosynthesis of D-lactate starter unit from the3 carbon precursor loaded by the FkbH-like 

domain, as proposed [36].
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Table 1

Summary of symbiotic status and bryostatin content in B. neritina

Sibling species Location Symbiotic? Bryostatins? Reference

Deep (D) California (> 9 m depth) Yes Chemotype O [32]

Shallow (S1) Cosmopolitan Yes Chemotype M [50,32]

Shallow (S2) California (< 9 m depth) Yes Chemotype M [50,32]

Northern Delaware and Connecticut None detected None detected [33]

Chemotype O: includes bryostatin 1 and other C-20 2,4-octadienoate bryostatins plus other bryostatins; Chemotype M, lacks bryostatin 1 and other 
C-20 2,4-octadienoate bryostatins, but contains other bryostatins
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