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Abstract
1.	 Categorical	 raster	datasets	often	require	upscaling	to	a	 lower	spatial	 resolution	
to	make	them	compatible	with	the	scale	of	ecological	analysis.	When	aggregating	
categorical	data,	 two	critical	 issues	arise:	 (a)	 ignoring	compositional	 information	
present	in	the	high‐resolution	grid	cells	leads	to	high	and	uncontrolled	loss	of	in-
formation	in	the	scaled	dataset;	and	(b)	restricting	classes	to	those	present	in	the	
high‐resolution	dataset	assumes	validity	of	the	classification	scheme	at	the	lower,	
aggregated	resolution.

2.	 I	introduce	a	new	scaling	algorithm	that	aggregates	categorical	data	while	simul-
taneously	controlling	for	information	loss	by	generating	a	non‐hierarchical,	repre-
sentative,	classification	system	for	the	aggregated	scale.	The	Multi‐Dimensional	
Grid‐Point	(MDGP)	scaling	algorithm	acknowledges	the	statistical	constraints	of	
compositional	count	data.	In	a	neutral‐landscape	simulation	study	implementing	
a	 full‐factorial	 design	 for	 landscape	 characteristics,	 scale	 factors	 and	 algorithm	
parameters,	 I	 evaluated	 consistency	 and	 sensitivity	 of	 the	 scaling	 algorithm.	
Consistency	and	sensitivity	were	assessed	for	compositional	 information	reten-
tion	 (IRcmp)	and	class‐label	fidelity	 (CLF,	the	probability	of	recurring	scaled	class	
labels)	for	neutral	random	landscapes	with	the	same	properties.

3.	 The	MDGP‐scaling	algorithm	consistently	preserved	information	at	a	significantly	
higher	rate	than	other	commonly	used	algorithms.	Consistency	of	the	algorithm	
was	high	for	 IRcmp	and	CLF,	but	coefficients	of	variation	of	both	metrics	across	
landscapes	varied	most	with	class‐abundance	distribution.	A	diminishing	 return	
for	 IRcmp	 was	 observed	 with	 increasing	 class‐label	 precision.	 Mean	 class‐label	
recurrence	 probability	was	 consistently	 above	 75%	 for	 all	 simulated	 landscape	
types,	scale	factors	and	class‐label	precisions.

4.	 The	MDGP‐scaling	 algorithm	 is	 the	 first	 algorithm	 that	 generates	 data‐driven,	
scale‐specific	 classification	 schemes	while	 conducting	 spatial	 data	 aggregation.	
Consistent	gain	 in	 IRcmp	and	 the	associated	 reproducibility	of	classification	sys-
tems	strongly	 suggest	 that	 the	 increased	precision	of	 scaled	maps	will	 improve	
ecological	models	that	rely	on	upscaling	of	high‐resolution	categorical	raster	data.
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1  | INTRODUC TION

Spatially	explicit	ecological	models	rely	on	spatially	exhaustive	data	
layers	 at	 appropriate	 scales	 for	 the	 ecological	 process	 of	 interest	
(Lam	&	Quattrochi,	1992;	Mas,	Gao,	&	Pacheco,	2010),	which	often	
requires	scaling	datasets	to	the	scale	of	analysis.	Upscaling	of	raster	
data	to	coarser	spatial	resolutions	aggregates	data	of	multiple	high‐
resolution	grid	cells	into	lower	resolution	grid	cells.	As	data	are	ag-
gregated,	generalization	leads	to	information	loss.	Since	the	goal	of	
data	aggregation	is	to	retain	sufficient	information	relevant	to	a	sci-
entific	question	addressing	a	phenomenon	at	the	aggregated	scale,	
it	is	important	to	quantify	the	amount	of	information	retained	in	the	
aggregated	product	and	to	control	information	loss.

Classification	schemes	of	categorical	data	are	valid	for	the	range	
of	spatial	scales	for	which	they	were	defined.	However,	commonly	
applied	 spatial‐aggregation	 methods	majority rule,	 nearest‐neighbor 
rule,	or	random rule,	or	more	complex	methods	such	as	spatial	scan	
statistic	 (Coulston,	 Zaccarelli,	 Riitters,	 Koch,	 &	 Zurlini,	 2014),	 only	
consider	 the	original,	 high‐resolution	 class	 scheme	when	 assigning	
class	 labels	 to	 aggregated,	 larger	 landscape	 units.	 Complex	 spatial	
co‐occurrence	patterns	are	oversimplified,	often	resulting	 in	vastly	

increasing	 abundance	 of	 dominant	 classes	 and	 elimination	 of	 rare	
classes	(Gann,	Richards,	&	Biswas,	2012;	He,	Ventura,	&	Mladenoff,	
2002;	Ju,	Gopal,	&	Kolaczyk,	2005).	The	presumption	that	the	orig-
inal	 class	 descriptors	 are	 valid	 at	 the	 aggregated	 lower	 resolution,	
regardless	of	scale	factor,	 leads	to	uncontrolled	loss	of	 information	
content	in	each	grid	cell	of	the	aggregated	map,	and	potentially	to	fal-
lacy	in	ecological	models	that	use	the	oversimplified	aggregated	data.

For	 illustration,	 consider	 information	 loss	 for	 a	 landscape	 with	
two	cover	classes,	‘grass’	and	‘tree’	(Figure	1a).	Aggregating	the	land-
scape	 subset	 of	 49	 grid	 cells	 with	 a	 class	 percentage	 distribution	
of	73%	 ‘grass’	and	27%	 ‘tree’	cover	 into	a	single	coarser	 resolution	
cell	 requires	a	new	class	 label	assignment.	The	majority rule,	 a	 sim-
ple	plurality	decision	rule	that	assigns	the	output	category	with	the	
highest	proportion	of	sub‐samples	(i.e.	mode)	applies	the	label	‘grass’	
(Figure	1a).	The	nearest‐neighbour rule	assigns	the	‘tree’	class,	the	cat-
egory	closest	to	the	centre	of	the	scaled	grid	cell,	and	the	random rule 
assigns	the	output	class	at	random	(Figure	1a).	Application	of	these	
three	algorithms	to	the	same	input	data	results	in	completely	different	
class	assignments	to	the	up‐scaled	grid	cell,	resulting	in	pure	(100%	
cover)	classes	of	either	‘tree’	or	‘grass’.	Assignment	to	a	single	class	re-
duces	the	compositional	information	content	of	the	aggregated	grid	

K E Y W O R D S

categorical	raster	data,	compositional	count	data,	multi‐dimensional	grid‐point,	neutral	
landscape	models,	scaling	algorithm,	simplex,	simulation,	spatial	scaling

F I G U R E  1   Information	loss	associated	with	majority‐,	nearest‐neighbor‐ and random‐rule	scaling	algorithms.	(a)	Applying	the	three	
algorithms	to	the	two‐class	(‘grass’	(G)	and	‘tree’	(T))	landscape	example	shows	that	none	of	the	algorithms	captures	the	more	intuitive	class	
of	‘Woodland’	at	the	aggregation	scale.	Depending	on	the	algorithm,	the	amount	of	compositional	information	that	is	lost	is	either	~27%,	if	
class	‘G’	is	assigned,	or	~73%,	if	class	‘T’	is	assigned.	(b)	As	richness	increases,	assigning	a	single	input	class	label	to	the	aggregated	output	cell	
represents	only	one	of	five	original	classes	that	were	present,	and	the	maximum	compositional	information	that	can	be	retained	is	less	than	
30%.	A	mixed	class	label	that	captures	the	heterogeneity	is	required	at	this	scale	to	represent	the	landscape.	In	all	three	cases,	four	classes	
are	omitted	from	the	scaled	class	label.	The	single‐class	scaled	class	label	over‐represents	its	class	with	100%,	when	in	fact	that	class	was	
present	at	only	28.57%	for	the	outcome	of	the	majority rule,	22.45%	for	the	random rule	and	10.2%	for	the	nearest‐neighbor rule
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cells	to	73%	when	assigning	class	‘grass’,	or	to	27%	when	class	‘tree’	
is	 assigned.	With	 an	 increasing	number	of	 classes	within	 a	 sample,	
compositional	information	decreases	upon	aggregation	(Figure	1b).

Subsequently,	 if	the	aggregated	product	 is	used	in	combination	
with	remotely	sensed	data	to	retrieve	biophysical	properties	of	the	
landscape,	 for	 instance	biomass,	 then	the	biomass	estimate	will	be	
coarsely	over‐	or	underestimated	because	it	is	much	larger	for	trees	
than	it	is	for	grass.	Magnitudes	of	error	and	uncertainty	of	estimated	
properties	depend	on	the	proportional	misrepresentation	of	the	gen-
eralized	scaled	landscape	unit,	and	the	difference	in	biophysical	prop-
erties	of	the	respective	classes	that	are	over‐	or	underrepresented.	In	
the	example,	to	capture	the	relative	abundance	of	both	classes	at	the	
scale	of	lower	resolution,	a	more	appropriate	class	might	have	been	
‘Woodland’,	not	a	 label	option,	 since	 it	did	not	exist	 in	 the	original	
map.	To	date,	no	spatial	aggregation	algorithm	generates	scale–spe-
cific	representative	classes	as	landscape	units	are	aggregated.

Several	 sub‐disciplines	 of	 ecology	 have	 addressed	 defining	
representative	 classification	 schemes	 on	 the	 basis	 of	 quantitative	
measures	 of	 species	 co‐occurrence	 data	 (Braun‐Blanquet,	 1932;	
De	 Cáceres	 et	 al.,	 2015;	 Mucina,	 1997;	 Van	 Der	 Maarel,	 1979).	
Species‐association	 patterns,	 when	 randomly	 sampled	 on	 a	 1‐m2 
scale	across	a	defined	spatial	extent,	are	expected	to	differ	from	the	
association	patterns	of	the	same	species	on	a	50‐m2	scale	 (O'Neill	
et	al.,	1996;	Schlup	&	Wagner,	2008).	Consequently,	plant	commu-
nities	vary	along	the	continuum	of	spatial	scales	and	definitions	of	
communities	or	vegetation	classes	depend	on	the	scale	at	which	the	
landscape	 is	 sampled.	Methods	 that	generate	scale‐specific	 classi-
fication	schemes	 from	samples	have	 to	be	consistent	 in	delivering	
class	descriptors	(labels)	that	are	reproducible	and	representative	for	
the	population,	that	is,	the	sampled	landscape	at	the	scale	of	inter-
est	(De	Cáceres,	Font,	Vicente,	&	Oliva,	2009;	De	Cáceres	&	Wiser,	
2012;	 Tichý,	 Chytrý,	 Hájek,	 Talbot,	 &	 Botta‐Dukát,	 2010;	 Tichý,	
Chytrý,	&	 S̆marda,	2011;	Wildi,	2010).	The	principles	of	 reproduc-
ibility	and	representativeness	also	apply	to	scaling	methods	that	aim	
to	generate	 scale‐specific	 classification	schemes,	 recognizing	class	
co‐occurrence	variability	at	different	scales.	An	algorithm	that	 im-
plements	scaling	of	classification	schemes	preferably	also	provides	
a	 control	mechanism	 for	 information	 loss,	 considering	 the	 relative	
class	abundance	(composition)	and	the	spatial	arrangement	(configu-
ration)	of	sub‐samples	within	samples.	The	algorithm	presented	here	
addresses	the	compositional	information	retention	aspect.

2  | MATERIAL S AND METHODS

2.1 | Defining the sample space

The	sample	space	of	spatially	explicit,	categorical	data	is	finite	and	
discrete,	 and	 samples	 of	 local	 neighborhoods	 result	 in	 count	 fre-
quencies	 of	 classes.	 Sample	 space	 and	 relative	 class	 abundance	
distributions	within	samples	depend	on	(a)	diversity	and	spatial	char-
acteristics	of	the	landscape	and	(b)	the	scale	factor.

Richness	 (rch),	 the	 number	 of	 distinct	 classes,	 and	 evenness,	
which	 refers	 to	 the	 class	 abundance	distribution	 (CAD)	 across	 the	

landscape,	define	diversity.	The	spatial	distribution	patterns	of	the	
classes	across	the	landscape	range	from	systematic	to	random	and	
from	highly	dispersed	to	completely	aggregated.

Scale	factor	(sf)	is	the	ratio	of	the	spatial	resolution	of	the	scaled	
grid	 to	 the	 resolution	 of	 the	 original,	 high‐resolution	 grid;	 when	
squared,	sf	provides	the	number	of	sub‐units	or	grid	cells	within	a	
sample	(Nsmp).	For	instance,	if	the	resolution	of	the	original	raster	is	
1	m	and	the	scaled	grid	resolution	is	7	m,	the	scale	factor	is	7	and	the	
number	of	sample	sub‐units	Nsmp	is	49	(sf2).

With	sf and rch	greater	than	1,	the	number	of	possible	distinct	
sample	outcomes	is	the	number	of	restricted	or	weak	compositions	
with	binomial	coefficients:

Since	percent‐cover	per	 sample	 is	 constrained	 to	exactly	100%,	 the	
precision	(Prc)	of	relative	abundance	of	class	(c)	is:

For	a	given	sf,	as	rch	increases	(Table	1,	rows),	or	for	a	given	rch,	
as sf	 increases	 (Table	1,	 columns),	 the	number	of	unique	composi-
tions	increases	rapidly.	The	precision	or	granularity	of	measurement	
of	 relative	 class	 abundance	of	 a	 sample	 is	 solely	determined	by	 sf 
(Table	1,	Equation	2).	For	a	given	landscape	with	a	specific	rch and 
scaled	with	a	specific	sf,	the	frequency	distribution	of	each	possible	
composition	then	depends	on	CAD	and	the	spatial	dispersion	or	ag-
gregation	pattern	of	the	classes	across	the	landscape.

The	constraint	that	the	sum	of	all	sample	proportions	=	1	makes	
the	data	compositional	in	nature	(Aitchison,	1986).	The	sample	space	
of	compositional	data	is	called	the	simplex or SD	(Aitchison,	1986).

The	constraint	of	the	simplex	is	that	all	xi	≥	0,	and	that	the	sum	
of	 all	xi	 =	1.	When	dealing	with	 count	 compositions	 (i.e.	 integers),	
quantitative	 grouping	 or	 classification	 methods	 that	 use	 distance	
metrics	from	the	real	space	R	and	that	assume	multivariate	normal	
distributions	are	inadequate	and	lead	to	spurious	statistical	results	
(Aitchison,	 1986;	 van	 den	 Boogaart	 &	 Tolosana‐Delgado,	 2008;	
Jackson,	1997).	 Proposed	 solutions	 for	 statistical	 analysis	 of	 com-
positional	data	are	 log‐ratio	transformations	of	compositional	data	
(Aitchison	 &	 Egozcue,	 2005;	 Egozcue,	 Pawlowsky‐Glahn,	 Mateu‐
Figueras,	 &	 Barceló‐Vidal,	 2003),	 which	 then	 allow	 application	 of	
analytical	methods	that	are	valid	 in	R	space.	Log‐ratio	transforma-
tion,	however,	is	not	defined	for	count	compositions	with	count	zero,	
and	the	methods	that	have	been	proposed	to	deal	with	zero	count	
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data	 add	 noise	 to	 the	 data	 (Martín‐Fernández,	 Barceló‐Vidal,	 &	
Pawlowsky‐Glahn,	2003;	Martín‐Fernández,	Hron,	Templ,	Filzmoser,	
&	Palarea‐Albaladejo,	2014).	When	 scaling	 categorical	 raster	data,	
samples	will	contain	zeros	when	not	every	class	is	present	in	every	
sample.	The	number	of	zeros	in	a	sample	depends	on	landscape	di-
versity	and	sf.	Observations	with	zeroes	are	anticipated	whenever	
sf	 is	small	relative	to	rch	and	are	always	present	when	sf	produces	
a	sub‐sample	unit	count	 less	than	rch.	The	frequency	of	zeros	 in	a	
sample	increases	with	rch and sptAgg	and	is	present	in	every	sample	
when rch	exceeds	the	number	of	sub‐samples	(sf2).	Hence,	a	scaling	
algorithm	that	generates	representative	classification	schemes	has	
to	be	robust	in	dealing	with	compositional	data	samples	that	have	a	
high	frequency	of	zeros.

2.2 | The multi‐dimensional grid‐point 
scaling algorithm

The	 new	 multi‐dimensional	 grid‐points	 (MDGP)	 scaling	 algorithm	
presented	 here	 conducts	 spatial	 aggregation	 of	 categorical	 data	
while	simultaneously	generating	a	non‐hierarchical,	 representative	
classification	system	for	the	aggregated	scale.	The	algorithm	allows	
for	user‐control	of	information	retention	while	addressing	the	con-
straints	of	the	sample	space	of	compositional	data	with	a	high	prob-
ability	of	zeros	in	the	sample	data.

The	scaling	algorithm	performs	two	integrated	tasks:	(a)	classifi-
cation	(grouping)	of	landscape	objects	(scaled	grid	cells)	on	the	basis	
of	 relative	abundance	of	 classes	within	 the	 samples,	 resulting	 in	a	
scale‐specific	classification	system	that	is	representative	at	the	scale	
of	aggregation;	and	(b)	assignment	of	all	spatially	aggregated	units	of	
the	landscape	to	one	of	the	scaled	classes	in	the	new	classification	
system.	The	algorithm	recognizes	SD	 as	 the	multi‐dimensional	 fea-
ture	 space	 spanned	by	 compositional	 data,	 resulting	 in	 polytopes,	
where	the	number	of	features	(i.e.	richness)	defines	the	number	of	
vertices	of	the	polytope	and	with	equal	unit	distance	of	all	vertices.

For	a	given	landscape,	richness	(number	of	original	classes)	and	
scale	factor	determine	the	number	and	location	of	regularly	spaced	
multi‐dimensional	grid‐points	(MDGP)	in	the	solid	space	of	the	poly-
tope.	As	richness	and	scale	factor	increase,	the	number	of	possible	
scaled	class	combinations	(i.e.	scaled	richness)	increases	(Table	1).	
With	 increasing	 scale	 factor,	 however,	 precision	 of	 class	 propor-
tion	(the	distance	between	points	in	the	evenly‐spaced	grid)	rapidly	
increases	beyond	ecological	 and,	 in	many	cases,	 statistical	 signif-
icance	 (Table	1).	The	MDGP‐scaling	algorithm	 limits	 scaled	class‐
label	 precision	 by	 implementing	 a	 partitioning	 parameter,	 which	
reduces	the	number	of	possible	grid	points	(Table	in	Figure	2).	The	
‘parts’	 parameter	 partitions	 each	 dimension	 of	 the	 sample	 space	
(0%–100%)	into	equal	parts.	The	result	is	a	polytope	with	regularly	
spaced	MDGPs,	where	the	number	of	vertices	is	still	equal	to	the	
number	 of	 original	 classes,	 but	 now	 the	 number	 of	 partitions	 in	
each	dimension	determines	the	number	of	MDGPs	(Figure	2).	The	
1‐part	partition	is	equivalent	to	the	majority‐rule,	where	the	scaled	
classes	are	identical	to	the	input	classes	(Figure	2)	and	the	output	
label	 precision	 is	 100%	 (pure	 classes	 only).	 Increasing	 the	 scaled	
class‐label	precision	to	50%	requires	2‐part	partitioning	of	the	sam-
ple	space	 in	each	dimension,	adding	MDGPs	at	the	50%	marks	 in	
each	 dimension.	 Each	 grid	 point	 then	 gets	 a	 class‐label	 assigned	
that	is	composed	of	class	and	class	proportions.

Assignment	of	each	scaled	grid	cell	to	one	of	the	MDGPs	requires	
a	 decision	 rule.	 The	 decision	 criterion	 applied	 for	 this	 algorithm	
is	 the	 percentage	 similarity	 or	 Czekanowski	 index	 or	 coefficient	
(Czekanowski,	1909),	here	descriptively	called	compositional	 infor-
mation	retention	(IRcmp)	(Equation	4)

where Pi	=	proportion	of	class	 i and N	=	the	number	of	classes	
in	 the	 sample	data	 (Smp)	of	 the	 scaled	grid	 cell.	A	 scaled	grid	 cell	

(4)IRcmp=

N∑
i=1

min
(
PiSmp,PiMDGP

)
,

TA B L E  1  Number	of	weak	compositions	for	compositions	with	constraint	of	exactly	100%	coverage.	Precision	is	100%	divided	by	the	
number	of	subsamples	which	is	the	scale	factor	squared

 

Number	of	weak	combinations

Scale	factor

Richness 3 5 7 9 15 25

2 10 26 50 82 226 626

3 55 351 1,275 3,403 25,651 196,251

4 220 3,276 22,100 95,284 1,949,476 41,081,876

5 715 23,751 292,825 2,024,785 111,607,501  

6 2,002 142,506 3,162,510 34,826,302   

7 5,005 736,281 28,989,675    

8 11,440 3,365,856     

9 24,310 13,884,156     

10 48,620 52,451,256     

Precision 11.11% 4% 2.04% 1.23% 0.44% 0.16%
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is	assigned	to	the	MDGP	that	maximizes	IRcmp	(minimizes	the	num-
ber	of	flipped	cells).	Revisiting	the	example	of	a	two‐class	landscape	
(Figure	 1a)	 for	 each	 of	 the	 1‐	 to	 5‐part	 solutions,	 the	 number	 of	

MDGPs	increases	from	two	to	six	classes	(Table	2).	A	grid	cell	with	
a	composition	of	73%	‘grass’	and	27%	‘tree’	cover	(Figure	1a)	is	as-
signed	to	the	majority	class	grass	for	the	1‐part	solution	(label	pre-
cision	=	100%),	retaining	73.5%	compositional	information.	For	the	
4‐part	(label	precision	=	25%)	solution,	 it	 is	assigned	to	the	MDGP	
with	75%	grass	and	25%	tree,	retaining	a	maximum	of	98.5%	of	com-
positional	information	(Table	2).

The	effects	of	scaled	class‐label	precision	and	sf	on	the	num-
ber	of	potential	and	realized	grid	points	and	their	frequency	distri-
butions	are	demonstrated	in	Figures	3‒5.	A	landscape	with	three	
classes	 (Figure	3),	when	scaled	with	the	MDGP‐scaling	algorithm	
for	class‐label	precisions	of	1‐,	3‐	and	5‐parts	has	a	potential	of	3,	
10	 and	 21	 grid	 points,	 respectively.	 The	 number	 of	 realized	 grid	
points	 for	 each	 class‐label	 precision	 and	 sf	 depends	 on	 the	CAD 
and sptAgg;	 in	 Figure	 3,	 these	 are	 a	 geometric	 CAD	 with	 a	 low	

F I G U R E  2  Red	box:	Ternary	(2‐simplex)	plots	of	three	classes	a,	b	and	c,	for	multi‐dimensional	grid‐point	solutions	of	1–5	parts	
representing	100%,	50%,	33.3%,	25%	and	20%	class‐label	precisions,	respectively	(left	to	right).	Numbers	along	the	axes	are	percentages	
of	class	presence	in	each	combination	(dot).	The	outer	points	have	one	(the	apices)	or	two	classes;	the	inner	points,	when	present,	are	
composed	of	all	three	classes	in	different	proportions.	The	total	number	of	points	and	the	distances	between	points	is	the	class‐label	
precision,	which	is	determined	by	the	number	of	partitions	(Table).	The	1‐part	precision	solutions	(first	column)	are	identical	to	the	majority‐
rule	solution	with	the	distance	between	the	three	points	equal	to	100%.	Blue	box:	As	richness	increases	the	dimension	of	the	polytope	
increases.	For	Richness	=	4,	grid	points	are	evenly	spaced	within	the	3‐simplex	(tetrahedron)

TA B L E  2  Scaling	solutions	of	example	1	(Figure	1)	applying	
1‐	to	5‐part	output	class‐label	precision	solutions.	Maximized	
information	retention	for	each	class‐label	set	in	bold	and	maximized	
IR	across	all	class‐label	precision	solutions	in	bold	red.	Class‐
label	precision	of	25%	(4‐part	solution)	maximizes	compositional	
information	retention	for	this	grid	cell	and	the	MDGP	algorithm	
assigns	a	label	nominally	representing	75%	‘grass’	and	25%	‘trees’

Parts Label list IR (%)

1	(majority) G100 73.5

T100 26.5

2 G100 73.5

G5_T50 76.5

T100 26.5

3 G100 73.5

G67_T33 93.5

G33_T67 59.5

T100 26.5

4 G100 73.5

G75_T25 98.5

G50_T50 76.5

G25‐T75 51.5

T100 26.5

5 G100 73.5

G80_T20 93.5

G60_T40 86.5

G40_T60 66.5

G20‐T80 46.5

T100 26.5

F I G U R E  3  Neutral	random	landscape	of	three	hypothetical	
classes	(A,	B,	and	C).	Class	abundance	distribution	is	geometric	and	
spatial	aggregation	low	(h	=	0)
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spatial	 aggregation.	 As	 output	 class‐label	 precision	 increases	 to	
33.3%	and	20%,	 the	number	of	 realized	output	classes	 increases	
from	3	to	10	and	19	classes	for	a	sf	of	5	(Figure	4)	and	to	7	and	13	
for	a	sf	of	15	(Figure	5),	respectively.	The	frequency	distributions	
shift	from	100%	pure	classes	to	a	majority	of	grid	cells	assigned	to	
mixed‐label	classes.

As	 richness	 increases,	 the	number	of	possible	scaled	classes	 is	
still	very	high	(Table	3),	but	many	of	the	classes	are	expected	at	low	
frequencies	 across	 the	 landscape.	 Hence,	 to	 allow	 for	 removal	 of	
scaled	classes	with	low	proportions	across	the	landscape,	a	thresh-
old	 parameter	 for	minimum	 representativeness	was	 implemented.	
Output	classes	that	are	below	the	threshold	are	iteratively	removed,	

F I G U R E  4  Landscape	scaling	results	for	landscape	in	Figure	3,	scaled	with	a	scale	factor	of	five.	Scaled	landscape	class	frequencies	
(left)	and	associated	maps	(right)	for	label	precisions	of	(a)	100%	(1‐part;	majority‐rule),	(b)	33.3%	(3‐part),	and	(c)	20%	(5‐part).	Circle	size	
displays	absolute	scale	of	class	proportions	(Prop_AS)	across	all	plots;	colour	rendered	as	relative	scale	of	class	proportions	(Prop_RS)	within	
each	plot.	Black	dots	indicate	that	the	potential	grid	point	was	not	realized	at	the	aggregated	scale.	Class	labels	in	the	legend	of	the	map	as	
generated	by	the	MDGP‐scaling	algorithm.	Class	labels	are	composed	of	class	name	and	nominal	percent	representativeness
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and	their	assigned	landscape	units	are	reassigned	to	the	remaining	
MDGPs	that	maximize	their	IRcmp.	The	class	removal	process	repeats	
until	no	class	is	below	the	representativeness	threshold.	Rare	classes	
that	occur	in	monotypic	patches	at	the	aggregation	scale,	however,	
might	be	of	ecological	significance.	Maintaining	rare	classes	even	if	
they	fall	below	the	representativeness	threshold	is	achieved	with	a	

threshold	parameter	for	homogeneity,	which	sets	the	minimum	class	
percentage	 in	 a	 sample	 to	 declare	 it	 homogenous	 or	 monotypic.	
The	 pseudocode	 for	 the	 MDGP‐scaling	 algorithm	 is	 presented	 in	
Figure	6.

The	objective	of	the	following	simulation	study	was	to	conduct	a	
consistency	and	sensitivity	analysis	for	the	MDGP‐scaling	algorithm	

F I G U R E  5  Landscape	scaling	results	for	landscape	in	Figure	3,	scaled	with	a	scale	factor	of	15.	Scaled	landscape	class	frequencies	(left)	
and	associated	maps	(right)	for	label	precisions	of	(a)	100%	(1‐part;	majority rule),	(b)	33.3%	(3‐part),	and	(c)	20%	(5‐part).	Circle	size	displays	
absolute	scale	of	class	proportions	(Prop_AS)	across	all	plots;	colour	rendered	as	relative	scale	of	class	proportions	(Prop_RS)	within	each	
plot.	Black	dots	indicate	that	the	potential	grid	point	was	not	realized	at	the	aggregated	scale.	Class	labels	in	the	legend	of	the	map	as	
generated	by	the	MDGP‐scaling	algorithm
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to	evaluate	the	effects	of	landscape	characteristics,	scale	factor,	and	
scaled	class‐label	precision	on	information	retention	and	class	repre-
sentativeness	for	the	larger	landscape.

2.3 | Test framework

To	 evaluate	 consistency	 and	 sensitivity	 of	 MDGP‐scaling,	 a	 test	
framework	with	a	simulation	component	to	generate	neutral	random	

landscapes	was	 implemented.	The	framework	(Figure	7)	 integrates	
(a)	the	generation	of	neutral	landscape	models,	(b)	scaling	of	the	land-
scapes,	and	(c)	evaluation	of	the	scaling	results.	Testing	the	perfor-
mance	of	algorithms	on	replicates	of	simulated	complex	landscapes	
with	known	properties	sets	 the	statistical	benchmark	 for	applying	
them	to	real	landscapes	(Fahrig,	1991;	With	&	King,	1997).	A	full	fac-
torial	design	for	three	levels	of	rch	(3,	6,	and	9	classes),	two	models	
of	CAD	(equal	and	geometric),	and	four	levels	of	sptAgg	(0,	0.3,	0.6,	1)	

 

Number of constrained combinations

Parts (partitions)

Richness 1 2 3 4 5 6

2 2 3 4 5 6 7

3 3 6 10 15 21 28

4 4 10 20 35 56 84

5 5 15 35 70 126 210

6 6 21 56 126 252 462

7 7 28 84 210 462 924

8 8 36 120 330 792 1,716

9 9 45 165 495 1,287 3,003

10 10 55 220 715 2,002 5,005

Precision 100% 50% 33.33% 25% 20% 16.67%

TA B L E  3  Number	of	constrained	
combinations	and	precision	limits	for	
equal	part	partitioning	of	n dimensions 
(richness).	Precision	is	100%/number	of	
partitions

F I G U R E  6  Pseudocode	of	the	MDGP‐
scaling	algorithm
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defined	24	landscape	types.	Equal	CAD	(Equation	5),	although	very	
unlikely	in	natural	systems,	provided	the	most	neutral	random	land-
scape	type,	whereas	the	geometric	CAD	(Equation	6)	was	based	on	
the	ecological	theory	of	resource	limitation	(Motomura,	1932),	but	
any	mathematical	or	statistical	model	(i.e.	log‐series,	gamma,	nega-
tive	binomial,	 log‐normal)	 that	models	 the	 shape	of	 relative	 abun-
dance	distributions	(McGill	et	al.,	2007)	could	be	implemented.	Class	
proportions	Pc	 for	each	class	c	 for	equal	 and	geometric	CAD were 
calculated	as:

Neutral	landscape	models	were	produced	for	landscapes	that	
resemble	 distribution	 patterns	 that	 are	 driven	 by	 environmental	
gradients,	one	of	many	pattern	types.	An	algorithm	that	produces	
such	landscapes	is	the	midpoint‐displacement	algorithm	(Fournier,	
Fussell,	 &	 Carpenter,	 1982;	 Palmer,	 1992).	 The	 algorithm	 em-
ployed	here	was	the	implementation	in	the	Python	module	‘nlmpy’	
(Etherington,	 Holland,	 &	O'Sullivan,	 2015).	 The	 parameters	 that	
determine	the	landscape	pattern	are	the	dimensions	of	the	land-
scape	 (number	 of	 rows	 and	 columns),	 and	 a	 spatial	 aggregation	
parameter	h	that	ranges	from	0–1	and	controls	the	level	of	spatial	
autocorrelation.	The	resulting	array	of	continuous	values	was	then	
converted	to	a	raster	with	categorical	data,	using	the	classifyArray 
function	in	the	‘nlmpy’	module,	where	the	weights	parameter	was	

generated	using	 rch	 (the	number	of	 classes)	 in	 combination	with	
either	the	equal	or	geometric	CAD	(Equations	5	and	6).	Spatial	dis-
tribution	patterns	for	rch	of	three	and	nine	classes,	equal	and	geo-
metric	CAD and sptAgg	factor	h	of	0,	0.3	and	1	are	demonstrated	
in	Figure	8.

For	each	of	the	24	landscape	types	with	unique	characteristics,	
10	replicates	with	1,000	×	1,000	cells	were	generated,	resulting	in	
240	neutral	landscapes	with	known	properties.	Spatial‐aggregation	
algorithms	were	 evaluated	 for	 sf	 of	 5,	 9,	 15	 and	25.	Origin	of	 the	
scaled	grid	was	randomized	five	times	for	each	sf	and	landscape	to	
account	for	effects	of	arbitrary	origins	of	the	scaled	grid.

2.4 | MDGP‐scaling algorithm consistency and 
sensitivity to scaling parameters and landscape 
characteristics

Efficacy	 of	 the	 MDGP‐scaling	 algorithm	 to	 increase	 IRcmp	 with	
the	 increase	 in	 class‐label	 precision,	was	 evaluated	 on	 the	 basis	
of	mean	 IRcmp	 of	 all	 scaled	 grid	 cells	 across	 the	 landscape	 using	
pairwise‐paired	Wilcoxon	 rank‐sign	 tests	 (Wilcoxon,	 1945).	 Test	
p‐values	were	adjusted	using	the	Bonferroni	correction	for	multi-
ple	comparisons.

Consistency	of	the	algorithm	is	crucial	to	build	confidence	in	its	
application	to	real	landscapes.	Consistency	was	defined	as	reproduc-
ibility	of	scaling	results	across	different	simulated	random	landscapes	
that	were	congruent	in	the	key	characteristics	of	rch,	CAD and sptAgg. 
It	was	expected	that	scaled	 landscapes	originating	at	arbitrary	grid	
origins	of	the	same	original	landscape	and	across	replicate	landscapes	
with	 the	 same	 properties	 display	 low	 variability	 in	 scaling	 results.	

(5)Pc=
1

rch
forequalCAD

(6)Pc=
2rch−1(

2∗2rch−1−1
)
∗2c−1

forgeometricCAD

F I G U R E  7  Schema	of	framework	
to	test	the	effects	of	landscape	
characteristics,	scale	factor	and	class‐label	
precision	on	information	retention,	class‐
count	consistency	and	class‐label	fidelity	
in	a	full	factorial	design
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Three	 indicators	 that	 were	 expected	 to	 display	 low	 variability	 are	
IRcmp,	class	count	(CC)	of	the	scaled	classification	scheme,	and	class‐
label	fidelity	(CLF),	which	is	the	frequency	of	class‐label	recurrences	
across	classification	schemes	generated	at	random	grid	origins.

To	evaluate	consistency	of	 the	algorithm	when	presented	with	
random	variation	of	landscapes	with	the	same	characteristics,	con-
sistency	of	mean	IRcmp,	CC	and	CLF	were	evaluated	at	the	landscape	
type	level	with	coefficients	of	variability	(CV).	An	algorithm,	robust	
to	random	variations	of	the	landscape,	is	expected	to	display	low	CV.	
For	IRcmp	and	CC,	CV	was	calculated	across	the	five	random	scaling	
results	of	each	of	 the	 ten	 random	 landscapes	per	 landscape	 type.	
For	the	five	random	origins	of	each	landscape,	(a)	the	mean	proba-
bility	of	class‐label	recurrence	across	all	class	 labels	 (CLFmnPrb)	and	
(b)	 the	proportion	of	 classes	 for	which	 recurrence	probability	was	
one	 (CLFprp1)	 were	 calculated.	 High	 CLFmnPrb	 and	 CLFprp1	 indicate	
consistent	and	reproducible	classification	schemes.	Consistency	for	
the	CLF	parameters	was	evaluated	with	the	CV	calculated	across	all	
landscapes	of	a	landscape	type	and	summarized	by	landscape	type	
characteristics,	scale	factors	and	class‐label	precisions.

Sensitivity	of	the	MDGP‐scaling	algorithm	to	scaling	parameters	
and	 landscape	characteristics	was	assessed	with	the	magnitude	of	

change	for	IRcmp	and	CLF	when	evaluated	by	landscape	type	and	sf. 
With	 increasing	class‐label	precision,	 regardless	of	 landscape	 type	
and sf,	 IRcmp	was	expected	to	significantly	increase,	while	CLF	was	
expected	to	decrease.	Significance	of	differences	 in	 IRcmp	and	CLF	
between	 class‐label	 precisions	 was	 tested	 with	 pairwise‐paired	
Wilcoxon	 rank‐sign	 tests	 (Wilcoxon,	 1945),	 and	p-values were ad-
justed	using	the	Bonferroni	correction.

Consistency	 and	 sensitivity	 for	 the	 three	 indicators	 were	 as-
sessed	for	four	sf	and	four	class‐label	precisions,	ranging	from	2‐	to	
5‐parts.	For	the	simulation	study,	the	representativeness	threshold	
was	maintained	constant	at	1%	and	class	homogeneity	at	90%.

The	 MDGP‐scaling	 algorithm,	 simulation	 and	 test	 framework,	
data	 analysis	 and	 visualization	 were	 scripted	 in	 R	 (R	 Core	 Team,	
2013),	 using	 packages	 ‘RasteR’	 (Hijmans	&	 van	Etten,	 2010),	 ‘Rgdal’	
(Bivand,	Keitt,	&	Rowlingson,	2013),	‘compositions’	(van	den	Boogaart	
&	 Tolosana‐Delgado,	 2008),	 ‘foReach’	 and	 ‘dopaRallel’	 (Revolution	
Analytics	&	Weston,	2013).	Neutral	landscape	generation	and	scaled	
data	aggregation	for	random	landscape	origins	for	the	different	scale	
factors	were	scripted	in	Python	2.7	(Python	Software	Foundation)	
utilizing	the	Python	module	‘nlmpy’	(Etherington	et	al.,	2015).	All	data	
were	processed	at	 the	high‐performance‐computing	 cluster	 (HPC)	

F I G U R E  8  Neutral	landscapes	with	(a)	equal	and	(b)	geometric	CAD	of	three	(left	panels)	and	nine	(right	panels)	classes	for	sptAgg	factor	
h	=	0.0	(top),	0.3	(middle),	and	1.0	(bottom)
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of	the	Instructional	&	Research	Computing	Center	(IRCC)	at	Florida	
International	University	(FIU).

3  | RESULTS

Mean	IRcmp	was	significantly	higher	for	class‐label	precisions	of	50%	
and	greater	 (pairwise‐paired	Wilcoxon	Rank‐Sign	 tests;	Bonferroni	
adjusted	p < .001; N	=	50;	Figure	9).	Scale	factor	had	a	greater	effect	
on IRcmp	for	majority‐rule	aggregated	landscapes	than	MDGP‐scaled	
landscapes	for	all	landscapes	regardless	of	CAD	and	spatial	aggrega-
tion	factors	greater	than	zero	(Figure	9).	Difference	in	IRcmp	between	
MDGP‐scaled and majority‐rule	 aggregated	 landscapes	 increased	

with	sf	for	all	landscapes	and	was	much	greater	for	landscapes	with	
low sptAgg.

3.1 | Algorithm consistency

Consistency	 of	 the	 algorithm	 was	 high	 for	 IRcmp,	 CC	 and	 CLF.	
Landscape‐specific	 coefficient	 of	 variation	 for	 IRcmp	 ranged	 from	
0.05%	to	5.2%.	Consistency	of	 IRcmp	was	high	across	all	 landscape	
types	and	scale	factors	and	varied	little	with	scale	factor.	However,	
evaluating	 consistency	 for	 individual	 landscape	 characteristics	
showed	that	CV	was	almost	twice	as	high	for	landscapes	with	equal	
CAD,	and	variability	increased	with	richness	but	decreased	with	spa-
tial	aggregation.

F I G U R E  9  Sensitivity	of	information	retention	(IR)	to	scaling	parameters	for	landscapes	with	(a)	equal	and	(b)	geometric	class‐abundance	
distribution	(CAD).	Richness	(rch)	increases	across	columns,	while	spatial	aggregation	(sptAgg)	increases	down	rows.	MAJ‐1	=	majority‐rule 
algorithm	with	100%	class‐label	precision,	MDGP	=	multi‐dimensional grid‐point	scaling	algorithm	with	2	=	50%,	3	=	33%,	4	=	25%	and	
5	=	20%	class‐label	precision
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Variability	in	class	count	on	average	was	below	10%	when	eval-
uated	by	landscape,	class‐label	precision	and	scale	factor	(95th	per-
centile	=	19.7%).	 Lowest	 consistencies	 (CV	>	20%)	were	observed	
only	for	a	few	landscapes	with	high	spatial	aggregation	(h	=	1),	and	
in	two	instances	for	 low	aggregation	(h	=	0)	when	the	scale	factor	
was 25.

Consistency	 in	 CLF	 was	 high	 for	 both	 parameters,	 CLFmnPrb 
and	 CLFprp1.	Mean	 CV	 for	 CLFmnPrb	 was	 below	 10%	 for	 all	 label	
precisions	(95th	percentile	=	12.6%).	The	strongest	effect	on	con-
sistency	of	CLFmnPrb	was	observed	for	spatial	aggregation	of	land-
scapes.	 For	 landscapes	with	 high	 spatial	 aggregation	 (h	 =	 1)	 CV	
was	on	average	8.3%	(95th	percentile	=	15.9%),	at	 least	twice	as	
high	as	for	all	 lower	aggregation	levels.	Variability	of	CLFprp1 was 
much	higher	than	for	CLFmnPrb.	CLFprp1	varied	most	across	spatial	
aggregation	 levels	 as	well,	 but	CV	 reached	 18.8%	 (95th	 percen-
tile	=	34.6%).	No	effects	on	consistency	of	either	CLF	metric	were	
observed	 for	 landscape	characteristics	 richness	 and	CAD,	or	 for	
scale	factor.

3.2 | Algorithm sensitivity

Mean	 IRcmp	 increased	 with	 increasing	 class‐label	 precision	 and	
decreasing	 sf	 for	 all	 landscapes	 (Figure	 9).	 Mean	 IRcmp	 was	 sig-
nificantly	 lower	 (paired	 Wilcoxon	 rank‐sign	 test;	 p	 <	 .001)	 for	
landscapes	with	 equal	CAD	 than	 for	 those	with	 geometric	CAD,	
and	 it	 increased	with	 sptAgg	 and	 decreased	with	 rch	 (Figure	 9).	
Considering	the	magnitude	of	effect,	a	diminishing	return	for	IRcmp 
with	increasing	class‐label	precision	was	observed	across	all	land-
scapes	and	sf	(Figure	9).	Largest	gains	were	consistently	observed	
when	 increasing	 label	 precision	 from	 1‐part	 to	 2‐part	 solutions	
(majority‐rule	 or	100%	 to	MDGP‐2	or	50%	precision).	 Increase	 in	
IRcmp	 with	 label	 precision	 was	 reduced	 as	 sptAgg increased and 
was	lowest	for	landscapes	with	aggregation	of	one.	Largest	gains	
in IRcmp	with	 increasing	 label	 precision	were	 observed	 for	 land-
scapes	with	high	rch	and	for	high	sf	(Figure	9).

Class‐label	fidelity	was	high	for	all	 landscape	types,	scale	fac-
tors	and	class‐label	precisions,	but	decreased	with	increasing	class‐
label	precisions	(Figure	10).	Mean	probability	of	class	recurrence	for	
landscapes	with	equal	CAD	ranged	from	0.99	±	0.02	for	a	class‐label	
precision	of	50%,	decreasing	to	0.91	±	0.1	for	a	precision	of	20%.	
For	landscapes	with	geometric	CAD,	a	mean	probability	reduction	
of	0.02	±	0.05	was	observed	when	compared	to	the	correspond-
ing	equal	CAD	 landscapes	 (Figure	10).	With	 increasing	class‐label	
precision,	the	greatest	losses	of	CLF	were	observed	for	fully	aggre-
gated	landscapes,	regardless	of	rch and CAD.	For	landscapes	with	a	
geometric	CAD and low sptAgg,	CLF	actually	increased	with	class‐
label	precision	as	rch	increased	to	nine	classes	(Figure	10).

4  | DISCUSSION

The	scale	of	analysis	 is	crucial	when	developing	ecological	mod-
els,	as	results	for	environmental	and	ecological	processes	can	vary	

significantly	when	evaluated	at	different	scales.	Essential	compo-
nents	 for	 reliable	 interpretation	 of	 results	 are	 selecting	 the	 ap-
propriate	 analytical	 scale	 for	 the	 ecological	 processes	modelled	
and	providing	data	with	adequate	precision	to	support	the	models.	
The	MDGP‐scaling	algorithm	is	the	first	algorithm	that	generates	
data‐driven,	 scale‐representative	 classification	 schemes	 while	
conducting	 spatial	 data	 aggregation.	 The	 simulation	 study	 dem-
onstrated	that	the	algorithm	consistently	delivers	similarly	scaled	
class	labels	when	generating	scale‐specific	classification	systems.	
Representativeness	 of	 generalized	 data	 is	 application‐specific.	
When	 scaling	 categorical	 data,	 two	 thresholds	 are	 of	 interest:	
the	minimum	 level	 of	 thematic	 class	 precision	 required	 to	main-
tain	enough	information	to	answer	the	scientific	question;	and	the	
threshold	of	minimum	relative	abundance	of	a	class,	below	which	
it	is	of	no	ecological	interest	at	the	aggregated	scale.	The	minimum	
level	 of	 class	 precision	 is	 the	 point	 beyond	 which	 location‐spe-
cific	 generalization	 reduces	 information	 content	 to	 levels	where	
the	question	of	 interest	can	no	 longer	be	addressed.	To	attain	a	
desired	 precision	 in	 the	 thematic	 domain,	 the	MDGP‐scaling	 al-
gorithm	provides	control	parameters	 that	allow	for	 IRcmp	optimi-
zation	 in	the	thematic	domain	that	can	be	tuned	with	respect	to	
ecological	significance	for	subsequent	modeling.	Spatially	explicit	
and	exhaustive	layers	of	compositional	information	retention	that	
are	 provided	 by	 the	 MDGP‐scaling	 algorithm	 provides	 valuable	
input	 for	 ecological	 models	 that	 consider	 the	 spatially	 explicit	
propagation	of	uncertainty	and	error.

Gains in IRcmp	with	increasing	class‐label	precision	followed	the	
law	of	diminishing	returns.	Richness	in	scaled	classification	systems	
increased	while	CLF	diminished,	which	complicates	optimization	of	
the	precision	parameter.	Decreasing	class‐label	precision	in	several	
instances	reduced	IRcmp	marginally	while	significantly	enhancing	CLF	
and	 reducing	 class	 count,	 producing	 a	more	 general	 classification	
scheme.	An	increase	in	class‐label	precision	did	not	always	increase	
CC	or	reduce	CLF,	which	indicates	that	the	class‐label	precision	pa-
rameter	needs	to	be	optimized	for	 individual	 landscapes	and	scale	
factors.

4.1 | Ecological applications

Spatially	 explicit	models	 of	 landscape	 dynamics	 have	 their	 advan-
tages	over	spatially	implicit	models	(DeAngelis	&	Yurek,	2017),	but	
they	 require	 the	detection	of	spatially	explicit	change	at	adequate	
spatial	 and	 temporal	 resolutions.	 Detection	 of	 changes	 in	 land	
cover	 and	 ecosystem	 properties	 are	 common	 remote	 sensing	 ap-
plications.	 Interpretation	 of	 changes	 in	 spectral‐reflectance	 pat-
terns,	as	 they	 relate	 to	biophysical	parameters	of	 the	 land	surface	
or	as	changes	in	land	cover	depends	on	the	accurate	identification	
of	 land	 cover	 at	 the	 spatial,	 temporal	 and	 thematic	 precision	 at	
which	 changes	 are	 modeled.	 Landscapes	 that	 display	 high	 spatial	
heterogeneity	complicate	retrieval	of	biophysical	parameters	using	
remotely	 sensed	data	 (Jacob	&	Weiss,	 2014;	 Liu,	Hiyama,	Kimura,	
&	Yamaguchi,	2006;	Lu,	2006).	For	instance,	Leaf	Area	Index	(LAI),	
and	Fraction	of	Photosynthetically	Active	Radiation	(FPAR)	are	two	
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important	 biophysical	 variables	 in	 ecosystem	 productivity	models	
that	 rely	 on	 prior	 knowledge	 of	 land‐cover	 information	 (Ganguly	
et	al.,	2008;	Knyazikhin	et	al.,	1999;	le	Maire,	Marsden,	Nouvellon,	
Stape,	&	Ponzoni,	2012;	Steltzer	&	Welker,	2006;	Zhao	et	al.,	2016).	
Sensitivity	of	LAI	and	FPAR	to	land‐cover	and	high	heterogeneity	of	
vegetation	types	within	a	pixel	affects	LAI	estimates	in	a	nonlinear	
fashion	(Garrigues,	Allard,	Baret,	&	Weiss,	2006;	Lotsch,	Tian,	Friedl,	
&	Myneni,	2003),	and	LAI	estimate	errors	at	coarse	resolution	are	
inversely	related	to	the	proportion	of	the	dominant	land	cover	in	a	
pixel	 (Tian	et	 al.,	 2002).	Consequently,	 scaling	of	 land	 cover	maps	
that	maintains	more	precise	plant	community	 information	 reduces	
error	and	uncertainty	of	biophysical	parameter	estimates	from	mod-
erate‐resolution	remotely	sensed	data.

Another	application	that	requires	scaling	of	land‐cover	informa-
tion	 is	modeling	 land‐cover	 change	 across	 long	 temporal	 extents.	
Since	 the	 early	 2000s,	 availability	 of	multi‐spectral	 datasets	with	
high	 spatial	 resolution	 has	 increased.	 Modeling	 spatially	 explicit	
and	 exhaustive	 changes	 in	 the	 past,	 however,	 requires	 resorting	
to	data	with	 lower	 spatial	 resolution.	Combining	 categorical	 land‐
cover	maps	derived	at	different	scales	requires	high	spatial	resolu-
tion	products	to	be	scaled	to	the	lower	resolution	reconciling	scaled	
differences	of	classification	systems.	A	high	priority	in	this	case	is	to	
determine	class‐label	precisions	at	which	the	low‐resolution	sensor	
can	 spectrally	 differentiate	 the	most	 common	 co‐occurrence	 pat-
terns	of	mixed	 classes.	Applying	 the	MDGP‐scaling	 algorithm	can	
assist	 in	the	optimal	class‐label	precision	selection	for	a	variety	of	

F I G U R E  1 0  Sensitivity	of	class‐label	fidelity	evaluated	across	all	landscape	iterations	with	the	same	characteristics	for	five	random	
origins	(N	=	50)	for	landscapes	with	(a)	equal	and	(b)	geometric	class‐abundance	distribution	(CAD).	Richness	(rch)	increases	across	columns,	
while	spatial	aggregation	(sptAgg)	increases	down	rows.	MAJ‐1	=	majority‐rule	algorithm	with	100%	class‐label	precision,	MDGP	=	multi‐
dimensional grid‐point	scaling	algorithm	with	2	=	50%,	3	=	33%,	4	=	25%	and	5	=	20%	class‐label	precision
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sensors	for	which	 larger	spatial	extents	or	 longer	time‐series	data	
are	 available.	 In	 a	 test	 study,	 the	MDGP‐scaling	method	was	 ap-
plied	 to	scale	2	m	resolution	plant	community	maps	derived	 from	
WorldView‐2	data	 to	 the	30	m	Landsat	 resolution	 (Gann,	2018a).	
Scaling	the	original	map	with	a	class‐label	precision	of	33%	increased	
IRcmp	 by	 15%,	 while	 also	 increasing	 class‐detection	 accuracy	 by	
5.2%	when	compared	to	majority‐rule	aggregation.	Classification	ac-
curacy	increased	because	the	mixed	classes	had	more	refined	class	
definitions	(labels)	that	translated	into	more	specific	multi‐spectral	
reflectance	patterns.	How	scaled	maps	with	higher	class‐label	pre-
cision	 increase	 accuracy	 and	precision	of	 ecological	modeling	 still	
needs	to	be	evaluated.
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