
Connecticut College Connecticut College 

Digital Commons @ Connecticut College Digital Commons @ Connecticut College 

Physics, Astronomy and Geophysics Faculty 
Publications 

Physics, Astronomy and Geophysics 
Department 

2-7-2019 

Constraints and Degrees of Freedom in Lorentz-violating Field Constraints and Degrees of Freedom in Lorentz-violating Field 

Theories Theories 

Michael D. Seifert 
Connecticut College, mseifer1@conncoll.edu 

Follow this and additional works at: https://digitalcommons.conncoll.edu/physicsfacpub 

 Part of the Atomic, Molecular and Optical Physics Commons, and the Elementary Particles and Fields 

and String Theory Commons 

Recommended Citation Recommended Citation 
Seifert, Michael D., "Constraints and Degrees of Freedom in Lorentz-violating Field Theories" (2019). 
Physics, Astronomy and Geophysics Faculty Publications. 4. 
https://digitalcommons.conncoll.edu/physicsfacpub/4 

This Article is brought to you for free and open access by the Physics, Astronomy and Geophysics Department at 
Digital Commons @ Connecticut College. It has been accepted for inclusion in Physics, Astronomy and Geophysics 
Faculty Publications by an authorized administrator of Digital Commons @ Connecticut College. For more 
information, please contact bpancier@conncoll.edu. 
The views expressed in this paper are solely those of the author. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@Connecticut College

https://core.ac.uk/display/237213957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.conncoll.edu/
https://digitalcommons.conncoll.edu/physicsfacpub
https://digitalcommons.conncoll.edu/physicsfacpub
https://digitalcommons.conncoll.edu/physics
https://digitalcommons.conncoll.edu/physics
https://digitalcommons.conncoll.edu/physicsfacpub?utm_source=digitalcommons.conncoll.edu%2Fphysicsfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=digitalcommons.conncoll.edu%2Fphysicsfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.conncoll.edu%2Fphysicsfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/199?utm_source=digitalcommons.conncoll.edu%2Fphysicsfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.conncoll.edu/physicsfacpub/4?utm_source=digitalcommons.conncoll.edu%2Fphysicsfacpub%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bpancier@conncoll.edu


 

Constraints and degrees of freedom in Lorentz-violating field theories

Michael D. Seifert*

Department of Physics, Astronomy, and Geophysics, Connecticut College,
270 Mohegan Ave., New London, CT 06320, USA

(Received 10 December 2018; published 7 February 2019)

Many current models which “violate Lorentz symmetry” do so via a vector or tensor field which takes
on a vacuum expectation value, thereby spontaneously breaking the underlying Lorentz symmetry of the
Lagrangian. To obtain a tensor field with this behavior, one can posit a smooth potential for this field, in which
case it would be expected to lie near the minimum of its potential. Alternately, one can enforce a nonzero
tensor value via a Lagrange multiplier. The present work explores the relationship between these two types of
theories in the case of vector models. In particular, the naïve expectation that a Lagrange multiplier “kills off”
1 degree of freedom via its constraint does not necessarily hold for vector models that already contain primary
constraints. It is shown that a Lagrange multiplier can only reduce the degrees of freedom of a model if the
field-space function defining the vacuum manifold commutes with the primary constraints.

DOI: 10.1103/PhysRevD.99.045003

I. INTRODUCTION

Many classical field theories are constructed in such a
way that the “most natural” solutions to the equations of
motion involve a nonzero field value. This paradigm, where
an underlying symmetry of the Lagrangian or Hamiltonian
is spontaneously broken by the solutions of the equations
of motion, has proven to be both compelling and fruitful
over the years. In the context of particle physics, the best-
known example is the Higgs field [1–4]; in the context
of condensed-matter physics, this paradigm underlies the
modern theory of phase transitions, most notably the
Ginzburg-Landau theory of superconductivity [5]. Many
nonlinear sigma models can also be thought of in this way, if
one view the model’s target manifold as being embedded in
some higher-dimensional space inwhich the fields are forced
to a nonzero value. Such models have been used in the study
of both particle physics [6,7] and in ferromagnetism [8].
In more recent years, this paradigm has also been used

to study possible observational signatures of Lorentz
symmetry violation. Such models include a new vector
or tensor field and have equations of motion that are
satisfied when the metric is flat and the new tensor field is
constant but nonzero. In this sense, Lorentz symmetry is
spontaneously broken in these theories, as the tensor field
takes on a vacuum expectation value that has nontrivial

transformation properties under the Lorentz group. The
vacuum state of such a model is often said to be “Lorentz-
violating”, though it would be more accurate to say that
Lorentz symmetry is spontaneously broken in the model.
Examples of such models can be found in [9–14], as well as
a particularly early example in [15].
In general, all of these models (Lorentz-violating or

otherwise) have the property that the fields, collectively
denoted by ψα, will satisfy at least one equation of the form
fðψαÞ ¼ 0 in the “vacuum”, appropriately defined. Here, f
is a real-valued function of the fields; thus, if the fields ψα

are specified by N real numbers, the equation fðψαÞ ¼ 0
will generically specify an (N − 1)-dimensional hypersur-
face in field space. I will therefore refer to this function as
the vacuum manifold function.
Two broad classes of models in which some fields have

nontrivial background values can readily be conceived of.
In one class, the constraint fðψαÞ ¼ 0 is enforced exactly
via the introduction of a Lagrange multiplier λ in the
Lagrange density,

LLM ¼ ð∇ψαÞð∇ψαÞ þ λfðψαÞ; ð1Þ

where we have denoted the kinetic terms for the fields ψα

schematically. I will call such models Lagrange-multiplier
(LM) models.
In the other class, the fields ψα are assigned a potential

energy that is minimized when the field is nonzero. In
particular, if we define a potential VðψαÞ ∝ f2ðψαÞ and
write down a Lagrange density,

LP ¼ ð∇ψαÞð∇ψαÞ − VðψαÞ; ð2Þ
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then the lowest-energy state of the theory would be
expected to occur when fðψαÞ ¼ 0 and ∇ψα ¼ 0. I will
call such models potential models.
A natural question then arises: for a given collection of

fields ψα and a given kinetic term ð∇ψαÞð∇ψαÞ, what is the
relationship between the models (1) and (2)? In particular,
one might expect the following statement to be true:
Conjecture: In a potential model such as (2), the fields

can take on any value in the N-dimensional field space. By
contrast, in a Lagrange-multiplier model, the fields are
constrained to an (N − 1)-dimensional subspace of field
space. Thus, the number of degrees of freedom (d.o.f.) of a
Lagrange-multiplier model (1) should be one fewer than the
d.o.f. of the corresponding potential model (2).
The main purpose of this article is to show that this naïve

conjecture is not true in general; in particular, if ψα includes
a spacetime vector or tensor field, it may be false. In such
models, the fields may need to satisfy certain constraints
due to the structure of the kinetic terms; adding a new
“constraint” to such theories, in the form of a Lagrange
multiplier, does not automatically reduce the number of
d.o.f. of the theory.
To demonstrate this, I will analyze the d.o.f. of two types

of symmetry-breaking models. After a brief description of
Dirac-Bergmann analysis in Sec. II, I will first analyze
a multiplet of Lorentz scalar fields with an internal
symmetry, followed by a vector field (Secs. III and IV
respectively.) For the vector fields, the analysis will depend
on the structure of the kinetic term chosen, and so three
distinct sub-cases will need to be treated. In each case, I will
examine a model where the fields are assigned a potential
energy, and one where the fields are directly constrained via
a Lagrange multiplier.
The bulk of the explicit analysis in this work will be done

in the context of a fixed, flat background spacetime;
however, I will briefly discuss these models in the context
of a dynamical curved spacetime in Sec. V. In that section, I
will also discuss the implications of these results for the
broader relationship between these two classes of models.
More general tensor fields will be examined in a forth-
coming work [16].
Throughout this work, I will use units in which

ℏ ¼ c ¼ 1; the metric signature will be ð−þþþÞ.
Roman indices a; b; c;… will be used to denote spacetime
tensor indices; i; j; k;… will be used to denote spatial
indices, where necessary. Greek indices α; β; γ;… will be
used exclusively to denote indices in field space. All
expressions involving repeated indices (either tensor indi-
ces or field space indices) can be assumed to obey the
Einstein summation convention.

II. DIRAC-BERGMANN ANALYSIS

Our primary tool for finding the number of degrees of
each model will be Dirac-Bergmann constraint analysis
[17]; my methods and nomenclature below will draw

heavily from the later work of Isenberg and Nester [18].
I will briefly summarize the method here, and then illustrate
it in more detail via the example theories described in
Sec. III.
The method of Dirac-Bergmann analysis involves the

construction of a Hamiltonian which generates the time-
evolution of the system. In the process of this construction,
one may need to introduce constraints among various
variables, thereby reducing the number of d.o.f. of the
system. One may also discover that the evolution of certain
field combinations is undetermined by the equations of
motion (e.g., gauge d.o.f.). These combinations of fields,
which we will collectively call “gauges”, must be inter-
preted as unphysical, again reducing the number of
physical d.o.f. of the model.
If, as is usual, we count a field d.o.f. as a pair of real-

valued functions (e.g., a field value and its conjugate
momentum) that can be freely specified on an initial data
surface, then the number of d.o.f. Ndof can be inferred quite
simply once the above analysis is complete,

Ndof ¼
1

2

��
no:of
fields

�
þ
�

no:of
momenta

�
−
�

no:of
constraints

�

−
�

no:of
gauges

��
: ð3Þ

In general, of course, the number of fields and the number
of conjugate momenta will be the same. Moreover, in
the particular field theories I will be considering in this
work, I will not find any “gauges”, so the last term in (3)
will vanish. Thus, for my purposes, the above equation
reduces to

Ndof ¼
�
no:of
fields

�
−
1

2

�
no:of

constraints

�
: ð4Þ

III. SCALAR MULTIPLET FIELDS

The first case we will consider is a multiplet ofN Lorentz
scalars: ψα ¼ ϕα, with α ¼ 1; 2; 3;…; N. We wish to
construct a model where these scalars “naturally” take
on values in some (N − 1)-dimensional hypersurface,
defined by fðϕαÞ ¼ 0 (with f a real-valued function).
The “potential model” for this field will be derived from
the Lagrange density

L ¼ −
1

2
∂aϕ

α∂aϕα − κfðϕαÞ2

¼ 1

2
½ð _ϕαÞð _ϕαÞ − ð∇⃗ϕαÞ · ð∇⃗ϕαÞ� − κfðϕαÞ2; ð5Þ

where κ is a proportionality constant; the LMmodel for this
field will be
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L ¼ −
1

2
∂aϕ

α∂aϕα − λfðϕαÞ

¼ 1

2
½ð _ϕαÞð _ϕαÞ − ð∇⃗ϕαÞ · ð∇⃗ϕαÞ� − λfðϕαÞ; ð6Þ

where λ is a Lagrange multiplier field. In both cases, we
have chosen a time coordinate t and performed a 3þ 1
decomposition of the tensors; a dot over a quantity (e.g.,
_ϕα) will denote its derivative with respect to this time
coordinate, while spatial derivatives will be denoted with

either ∇⃗ or ∂i depending on the expression.

A. Potential model

The d.o.f. for the model (5) are particularly easy to count.
The momenta conjugate to the fields are all well-defined,

πα ¼ ∂L
∂ _ϕα

¼ _ϕα: ð7Þ

The Hamiltonian density is therefore

H0 ¼ πα _ϕα − L ¼ 1

2
½παπα þ ð∇⃗ϕαÞ · ð∇⃗ϕαÞ� þ κfðϕαÞ2:

ð8Þ

Nothing further is required here; we have no primary
constraints on the initial data, and the Hamiltonian obtained
by integrating H0 over space will generate the field
dynamics. We thus have the N d.o.f. one would expect.

B. Lagrange-multiplier model

Counting the d.o.f. for the model (6) requires a bit more
effort. As the kinetic term of (6) is the same as that of (5),
the momenta conjugate to the scalars ϕα are again defined
by (7). The difficulty arises due to the Lagrange multiplier
λ. From the perspective of the model, it is just another field,
but its associated momentum vanishes automatically,

ϖ ¼ ∂L
∂ _λ ¼ 0≡Φ: ð9Þ

We thus have a primary constraint, Φ ¼ 0, on this theory.
The “base Hamiltonian density”H0 ¼ πα _ϕα − Lmust then
be modified to obtain the “augmented Hamiltonian den-
sity”HA by adding this primary constraint multiplied by an
auxiliary Lagrange multiplier uλ,

1

HA ¼ H0 þ uλϖ ¼ 1

2
½ðπαÞ2 þ ð∇⃗ϕαÞ2� þ λfðϕαÞ þ uλϖ:

ð10Þ

We now need to ensure that this constraint is preserved
by the time-evolution of the system; in other words, we
must have _ϖ ¼ fϖ; HAg ¼ 0, where HA ≡ R

HAd3x.
2 If

this Poisson bracket does not vanish identically, this
demand will yield a secondary constraint Ψ1 ¼ 0. The
demand that this constraint be preserved may lead to new
secondary constraints Ψ2 ¼ 0, Ψ3 ¼ 0, and so forth, which
must themselves be conserved. We will refer to the stage at
which a secondary constraint arises as its “order”. In other
words, if Ψ1 ensures the preservation of a primary con-
straint, it is a “first-order secondary constraint”; if Ψ2

ensures the preservation of Ψ1, it is a “second-order
secondary constraint”; and so on. In this process, it may
occur that the preservation of these constraints allows us to
determine the auxiliary Lagrange multiplier uλ introduced
above. The process is continued until all constraints are
known to be automatically conserved or a contradiction is
reached.
With this in mind, we derive the secondary constraints

for this model. We first have

0 ¼ _ϖ ¼ fϖ; HAg ¼ −
δHA

δλ
¼ fðϕαÞ: ð11Þ

Thus,Ψ1 ¼ fðϕαÞ ¼ 0 is a secondary constraint. We repeat
this procedure, obtaining another secondary constraint,

_Ψ1 ¼ fΨ1; HAg ¼ ∂fðϕαÞ
∂ϕβ

δHA

δπβ
¼ ðδβfÞπβ ≡Ψ2; ð12Þ

where we have defined δβf ¼ δf=δϕβ. (Higher derivatives
will be defined similarly.) Ψ2 must also be conserved,
which leads to a third secondary constraint,

_Ψ2 ¼ fΨ2; HAg ¼ −δαf½−∇2ϕα þ λδαf� þ παπβðδαβfÞ
≡Ψ3: ð13Þ

Finally, demanding that Ψ3 be conserved allows us to
determine the auxiliary Lagrange multiplier uλ; this is
because Ψ3 is itself dependent on λ,

_Ψ3 ¼ fΨ3; HAg

¼ ∂Ψ3

∂ϕγ

δHA

δπγ
−
∂Ψ3

∂πγ
δHA

δϕγ þ ∂Ψ3

∂λ
δHA

δϖ
: ð14Þ

1Here and throughout, we will need to distinguish between the
“real” Lagrange multiplier that appears in the original Lagrangian
and the “auxiliary” Lagrange multipliers that are used to construct
a Hamiltonian for the model. In general, we will only have one
real Lagrange multiplier at a time, which we will denote with λ;
auxiliary Lagrange multipliers will be denoted with the symbol u,
possibly with subscripts or diacritical marks.

2We are playing a bit fast and loose with notation here; in
Hamiltonian field theory, the Poisson bracket is only rigorously
defined for a functional with a single real value, not for a field
which is a function of space. A more rigorous definition of what
we mean by an expression like fϖ; HAg is given in the Appendix.
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When the dust settles, we obtain

_Ψ3 ¼ πγ½ðδαγfÞð3∇2ϕα − 4λδαfÞ þ∇2ðδαfÞþπαπβðδαβγfÞ�
− ðδαfÞðδαfÞuλ: ð15Þ

So long as δαf ≠ 0 when f ¼ 0, this allows us to determine
the previously unknown auxiliary Lagrange multiplier uλ.
Thus, the process terminates here.
Having determined the Hamiltonian and its constraints,

we can count the d.o.f. We have N þ 1 fields, namely the
multiplet ϕα (α ¼ 1;…; N) and the Lagrange multiplier λ,
one primary constraint Φ ¼ ϖ ¼ 0, and three secondary
constraints, Ψ1 ¼ Ψ2 ¼ Ψ3 ¼ 0. The single auxiliary
Lagrange multiplier is determined, which means that there
are no unphysical gauge d.o.f. With N þ 1 fields and four
constraints, the number of d.o.f. of the model (6) is
therefore

Ndof ¼ ðN þ 1Þ − 1

2
ð4Þ ¼ N − 1:

Thus, the Lagrange-multiplier theory (6) has one less d.o.f.
than the corresponding potential theory (5). In this case, the
conjecture outlined in the Introduction holds true.

IV. VECTOR FIELDS

We now consider the case of a vector field Aa which
spontaneously breaks Lorentz symmetry. As the motivation
behind these models is usually a spontaneous breaking of
Lorentz symmetry, we want our Lagrange density to be a
Lorentz scalar, without any prior geometry specified.
In any such Lagrange density, we can identify a set of

“kinetic” terms LK that depend on the derivatives of Aa.
The most general kinetic term that we can write down
which is quadratic in the field Aa is3

Lk ¼ c1∂aAb∂aAb þ c2ð∂aAaÞ2 þ c3∂aAb∂bAa: ð16Þ

However, since

ð∂aAaÞ2 ¼ ∂aAb∂bAa þ ∂a½Aa∂bAb − Ab∂bAa�; ð17Þ

we can eliminate one of c2 or c3 via an integration by parts.
We will therefore set c2 ¼ 0 in what follows. The familiar
“Maxwell” kinetic term

LK ¼ −
1

4
FabFab;

with Fab ¼ 2∂ ½aAb� corresponds to c1 ¼ −c3 ¼ − 1
2
.

We can now perform the usual 3þ 1 decomposition of
the Lagrange density, writing A0 for the t-component of Aa

and A⃗ (or Ai) for its spatial components. The kinetic term
(16) then becomes

LK ¼ 1

2
c13ð _A0Þ2 −

c1
2
ð∇⃗A0Þ2 −

c1
2

_A⃗
2
− c3

_A⃗ · ∇⃗A0

þ c1
2
ð∂iAjÞð∂iAjÞ þ c3

2
ð∂iAjÞð∂jAiÞ; ð18Þ

where c13 ≡ c1 þ c3. The momenta conjugate to A0 and A⃗
are then

Π0 ¼ ∂LK

∂ _A0

¼ c13 _A0 ð19Þ

and

Π⃗ ¼ ∂LK

∂ _A⃗
¼ −c1

_A⃗ − c3∇⃗A0: ð20Þ

These equations can be inverted to find the velocities _A0

and _A⃗ so long as c1 þ c3 ≠ 0 and c1 ≠ 0. If either of these
expressions vanishes, (19) and (20) will instead yield
constraint equations; we will have to handle these cases
separately.
For the potential term, meanwhile, our desire for the

Lagrangian to be a Lorentz scalar implies that the only
possible form for the vacuum manifold function is one
which sets the norm of Aa to some constant b. For
simplicity’s sake, we will therefore choose fðAaÞ to be
of the following form:

fðAaÞ ¼ AaAa − b; ð21Þ

where b is a constant. Depending on the sign of b, the
“vacuum”manifold will consist of timelike vectors (b < 0),
spacelike vectors (b > 0), or null vectors (b ¼ 0).4 Our
potential model will then be

LP ¼ LK − κfðAaÞ2 ¼ LK − κð−A2
0 þ A⃗2 − bÞ2; ð22Þ

where κ is again a proportionality constant; the LM model
will be

LLM ¼ LK − λfðAaÞ ¼ LK − λð−A2
0 þ A⃗2 − bÞ: ð23Þ

For compactness, I will denote the four-norm of Aa as
A2 ¼ −A2

0 þ A⃗2; the norm of the spatial part on its own will

always be denoted by A⃗2.

3This follows the notation of [10], with the coefficient c4 from
that reference set equal to zero.

4As spontaneous symmetry breaking implies a nonzero field
value, one would normally exclude the case b ¼ 0 to ensure that
Aa ¼ 0 is not in the vacuum manifold. However, this is not
necessary for the analysis which follows.
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A. General case: c13 ≠ 0, c1 ≠ 0

1. Potential model

Performing a Legendre transform on LP (22) to obtain
the Hamiltonian density, we obtain a base Hamiltonian
density of

HB ¼ 1

2c13
Π2

0 −
1

2c1
Π⃗2 þ c21 − c23

2c1
ð∇⃗A0Þ2

−
c3
c1

Π⃗ · ∇⃗A0 −
c1
2
ð∂iAjÞð∂iAjÞ

−
c3
2
ð∂iAjÞð∂jAiÞ þ κðA2 − bÞ2: ð24Þ

The resulting theory has four fields (A0 and A⃗) and no
constraints, so the process terminates here, and the base
Hamiltonian is the complete Hamiltonian for the model.
Counting the d.o.f., we find that

Ndof ¼ 4 −
1

2
ð0Þ ¼ 4: ð25Þ

2. Lagrange multiplier model

For the Lagrange multiplier model (23), we have a
primary constraint associated with λ,

ϖ ¼ ∂L
∂ _λ ¼ 0: ð26Þ

We must therefore augment the Hamiltonian with an
auxiliary Lagrange multiplier uλ to enforce this constraint,

HA ¼ Π0A0 þ Π⃗ · A⃗ − LLM þ uλϖ

¼ 1

2c13
Π2

0 −
1

2c1
Π⃗2 þ c21 − c23

2c1
ð∇⃗A0Þ2 −

c3
c1

Π⃗ · ∇⃗A0

−
c1
2
ð∂iAjÞð∂iAjÞ − c3

2
ð∂iAjÞð∂jAiÞ

þ λðA2 − bÞ þ uλϖ: ð27Þ

We now find the secondary constraints required for the
primary constraint to be conserved under time-evolution.
Taking the Poisson brackets of each constraint with the
Hamiltonian in turn, we obtain three secondary constraints,

_ϖ ¼ fϖ; HAg ¼ A2
0 − A⃗2 þ b≡Ψ1; ð28Þ

_Ψ1 ¼ fΨ1; HAg

¼ 2

�
1

c13
A0Π0 þ 1

c1
A⃗ · ðΠ⃗þ c3∇⃗A0Þ

�
≡Ψ2; ð29Þ

and

_Ψ2 ¼ fΨ2; HAg ¼ 2λ

�
A2
0

c13
−
A⃗2

c1

�
þ Ξ≡Ψ3; ð30Þ

where

Ξ≡ 1

c213
ðΠ0Þ2 − 1

c21
ðΠ⃗þ c3∇⃗A0Þ2

þ c3
c1c13

ðA⃗ · ∇⃗Π0 − A0∇⃗ · Π⃗Þ þ c1 − c3
c1

A0∇2A0

−
c3
c1

A⃗ · ∇⃗ð∇⃗ · A⃗Þ þ A⃗ ·∇2A⃗: ð31Þ

All three of the quantities Ψ1, Ψ2, and Ψ3 must vanish for
the model to be consistent.
When we take the Poisson bracket of Ψ3 with HA, we

will obtain

_Ψ3 ¼ fΞ; HAg þ
�
2λ

�
A2
0

c13
−
A⃗2

c1

�
; HA

�

¼ fΞ; HAg þ 2uλ

�
A2
0

c13
−
A⃗2

c1

�

þ 4λ

�
1

c213
A0Π0 þ 1

c21
A⃗ · ðΠ⃗þ c3∇⃗A0Þ

�
: ð32Þ

This means that for generic initial data, for which

A2
0

c13
≠
A⃗2

c1
; ð33Þ

we can solve (32) for uλ.
5 Thus, the auxiliary Lagrange

multiplier uλ is determined via the self-consistency of the
theory. We have five fields (A0, A⃗, and λ), and self-
consistency generates four constraints (one primary,
three secondary), and so the total number of d.o.f. of this
model is

Ndof ¼ 5 −
1

2
ð4Þ ¼ 3: ð34Þ

Again, as expected from the conjecture, we have lost
1 d.o.f. to the Lagrange multiplier.
A related analysis was performed by Garfinkle et al. [19]

in the case of Einstein-aether theory. In such models, the
vector field is constrained to satisfy AaAa ¼ b ¼ −1; i.e.,
the vector field is unit and timelike. In that work, the time
component A0 of the vector field was explicitly eliminated
from the Lagrangian after performing a 3þ 1 decomposi-
tion, leaving the components of A⃗ as the three dynamical

5The full expression for fΞ; HAg is complicated and not
terribly illuminating, so we will not present it here. However,
from the form of Ξ and HA, we can see that it will depend on A0,
A⃗, Π0, Π⃗, and λ—but it will be independent of both ϖ and (more
importantly) uλ.

CONSTRAINTS AND DEGREES OF FREEDOM IN … PHYS. REV. D 99, 045003 (2019)

045003-5



fields. It was found in that case that the model did not
contain any extra constraints on these three dynamical
fields, if (assuming c2 ¼ c4 ¼ 0, as we have done here)

c1 ≠ 0;
c3
c1

≤ 0: ð35Þ

Such models were called “safe” by the authors of [19]; such
a model would be expected to contain the 3 d.o.f. present
in A⃗. Models with c1 ¼ 0 were called “endangered”, in that
they contained additional constraints on the initial data;
such models would contain fewer than 3 d.o.f. Finally,
models with c1 ≠ 0 and c3=c1 > 0 were called “condition-
ally endangered”, since the constraint structure of the
equations differed at various points in configuration space.
To connect this to the present work, we note that (33) is

equivalent to

c1A2
0 − c1A⃗

2 − c3A⃗
2 ≠ 0; ð36Þ

or, since c1 ≠ 0 and −A2
0 þ A⃗2 ¼ b under the constraint,

b ≠ −
c3
c1

A⃗2: ð37Þ

In the case where c3=c1 ≤ 0 and b < 0, this is guaranteed
to hold, and we therefore have no additional constraints
and 3 d.o.f. However, if c3=c1 > 0, there can be nongeneric
points in configuration space where the number of con-
straints changes.

B. Maxwell case: c13 = 0, c1 ≠ 0

1. Potential model

We now consider a vector field Aa with a “Maxwell”
kinetic term, for which c1 ¼ −c3 in (16). We again have
four independent fields, namely the four components of Aa.
In this case, the canonical momentum Π0 defined in (19)
vanishes automatically, giving us a constraint,

Π0 ¼ 0≡Φ1: ð38Þ

The other three canonical momenta Π⃗ defined in (20) have
an invertible relationship with the corresponding field
velocities,

Π⃗ ¼ c1ð− _A⃗þ ∇⃗A0Þ: ð39Þ

Thus, the base Hamiltonian density HB, given by

HB ¼ Π0
_A0 þ Π⃗ · _A⃗ − L ð40Þ

must be augmented by an auxiliary Lagrange multiplier
term enforcing the constraint Π0 ¼ 0. After simplification,
this yields

HA ¼ −
1

2c1
Π⃗2 þ Π⃗ · ∇⃗A0

−
c1
2
½ð∂iAjÞð∂iAjÞ − ð∂iAjÞð∂jAiÞ�

þ κðA2 − bÞ2 þ u0Π0: ð41Þ

Once again, we must ensure that the primary constraint
Φ ¼ Π0 ¼ 0 is conserved by the equations of motion; this
again produces a series of secondary constraints,

_Π0 ¼ fΠ0; HAg ¼ ∇⃗ · Π⃗þ 4κðA2 − bÞA0 ≡Ψ1 ð42Þ

_Ψ1 ¼ fΨ1; HAg

¼ −8κ
�
∇⃗ · ððA2 − bÞA⃗Þ − ð−3A2

0 þ A⃗2 − bÞu0

þ A0A⃗ ·

�
1

c1
Π⃗ − ∇⃗A0

��
: ð43Þ

So long as −3A2
0 þ A⃗2 − b ≠ 0, the demand that the

secondary constraint Ψ1 be preserved by the evolution
determines the auxiliary Lagrange multiplier u0 uniquely.
We therefore have four fields, two constraints (one primary,
one secondary), and no undetermined Lagrange multi-
pliers; counting the d.o.f. therefore yields

Ndof ¼ 4 −
1

2
ð2Þ ¼ 3:

2. Lagrange multiplier model

We now apply the same process to the vector model
with a Lagrange multiplier, (23). With the addition of the
Lagrange multiplier λ, we must also introduce a conjugate
momentum ϖ. As in the scalar LM model, this vanishes
identically, yielding a second primary constraint,

ϖ ¼ ∂L
∂ _λ ¼ 0≡Φ2: ð44Þ

Including this constraint with an auxiliary Lagrange multi-
plier uλ in the Hamiltonian density gives us the augmented
Hamiltonian density for the model,

HA ¼ −
1

2c1
Π⃗2 þ Π⃗ · ∇⃗A0

−
c1
2
½ð∂iAjÞð∂iAjÞ − ð∂iAjÞð∂jAiÞ�

þ λðA2 − bÞ þ u0Π0 þ uλϖ: ð45Þ

We now derive the secondary constraints and see if their
time-evolution fixes the auxiliary Lagrange multipliers u0
and uλ,
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_Φ1 ¼ fΠ0; HAg ¼ ∇⃗ · Π⃗þ 2λA0 ≡Ψ1 ð46Þ

_Φ2 ¼ fϖ; HAg ¼ −A2 þ b≡Ψ2 ð47Þ

_Ψ1 ¼ fΨ1; HAg ¼ −∇⃗ · ðλA⃗Þ þ 2A0uλ þ 2λu0 ð48Þ

_Ψ2 ¼ fΨ2; HAg ¼ 2A0u0 − 2A⃗ · ðΠ⃗þ ∇⃗A0Þ: ð49Þ

Assuming A0 ≠ 0, the requirement that both (48) and (49)
vanish determines the auxiliary Lagrange multipliers uλ
and u0. The d.o.f. counting is therefore five fields (four
components of Aa, plus λ), four constraints (two primary,
two secondary), and no undetermined auxiliary Lagrange
multipliers, for a result of

Ndof ¼ 5 −
1

2
ð4Þ ¼ 3:

This is a surprising result: the number of d.o.f. of the
theory when the vector field is “constrained” to a vacuum
manifold determined by fðAaÞ ¼ 0 is exactly the same as
when it is “allowed” to leave this vacuum manifold. In
other words, the Lagrange-multiplier “constraint” does not
actually reduce the d.o.f. of the model.
We can again connect this model to the terminology of

[19], as we did for the “general” LM case in Sec. IVA 2. In
that work, for a model of a timelike vector field with c1 ≠ 0
and c13 ¼ 0 (i.e., c3=c1 ¼ −1), the number of constraints
was found to be zero for all points in configuration space;
such a model was therefore “safe”, with 3 d.o.f. at all points
in field space. This is in agreement with our work here: so
long as the vector Aa is constrained to be timelike (b < 0),
we will always have A0 ≠ 0, and the above analysis holds.
However, the work here also implies that a version of the
Einstein-aether theory with a spacelike vector field would
only be “conditionally safe”, since it is possible for A0 to
vanish.

C. V-field case: c13 ≠ 0, c1 = 0

1. Potential model

In this case, we have a Lagrange density with c1 ¼ 0 and
c3 ≠ 0; such a field is called a “V-field” by Isenberg
and Nester [18]. When we calculate the conjugate momenta
in this case, (19) allows us to solve for the velocity _A0 ¼
Π0=c3, but (20) becomes a set of three constraints,

Φ⃗≡ Π⃗þ c3∇⃗A0 ¼ 0: ð50Þ

The augmented Hamiltonian density for the potential
model (22) is then

HA ¼ Π0A0 þ Π⃗ · _A⃗ − LP þ u⃗ · ðΠ⃗þ c3∇⃗A0Þ

¼ 1

2c3
ðΠ0Þ2 − c3

2
ð∂iAjÞð∂jAiÞ

þ κðA2 − bÞ2 þ u⃗ · ðΠ⃗þ c3∇⃗A0Þ; ð51Þ

where u⃗ is a vector of auxiliary Lagrange multipliers
enforcing the primary constraints (50). Enforcing these
primary constraints under time evolution then yields a set

of three secondary constraints Ψ⃗,

_⃗Φ¼fΦ⃗;HAg¼ ∇⃗Π0−c3∇⃗ð∇⃗ · A⃗Þ−4κðA2−bÞA⃗≡ Ψ⃗:

ð52Þ
The time-evolution of these secondary constraints, written
out in terms of spatial components, is then

_Ψi ¼ fΨi; HAg ¼ Mijuj − 4κ∂iððA2 − bÞA0Þ

þ 8κ

c3
A0AiðΠ0 þ ∇⃗ · A⃗Þ; ð53Þ

where

Mij ≡ 4κ½δijðA2 − bÞ þ 2AiAj�: ð54Þ

We require that _Ψi ¼ 0. This can be guaranteed in Eq. (53)
via an appropriate choice of uj so long as the matrixMij is
invertible. For general field values, this inverse can be
calculated to be

ðM−1Þij ¼
1

4κðA2 − bÞ
�
δij −

2AiAj

1þ 2A⃗2

�
; ð55Þ

and so we can solve the equation
_Ψ⃗ ¼ 0 for u⃗ so long as

A2 − b ≠ 0.6 The generic theory therefore has four fields, six
constraints (three primary, three secondary) and

Ndof ¼ 4 −
1

2
ð6Þ ¼ 1 ð56Þ

degree of freedom.

2. Lagrange multiplier model

As in Sec. IV B 2, the switch from a potential V-field
model to a Lagrange-multiplier V-field model does not
actually “kill off” any d.o.f. The augmented Hamiltonian
density now contains one more auxiliary Lagrange multi-
plier uλ, which (as before) enforces the constraint ϖ ¼ 0,

6It is notable that this set of field values is precisely the
vacuum manifold. This property becomes more important in the
context of tensor models involving potentials and Lagrange
multipliers and will be discussed more extensively in an upcom-
ing work [16].
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HA ¼ 1

2c3
ðΠ0Þ2 − c3

2
ð∂iAjÞð∂jAiÞ þ λðA2 − bÞ

þ u⃗ · ðΠ⃗þ c3∇⃗A0Þ þ uλϖ: ð57Þ

We thus have four primary constraints, Φ⃗ ¼ 0 [as defined in

(50)] and ϖ ¼ 0. Requiring that _Φ⃗ ¼ 0 and _ϖ ¼ 0 then

yields four secondary constraints, which I will denote by Ψ⃗
and Ψ,

_Φ⃗ ¼ fΦ⃗; HAg ¼ ∇⃗Π0 − c3∇⃗ð∇⃗ · A⃗Þ − 2λA⃗≡ Ψ⃗; ð58Þ

_ϖ ¼ fϖ; HAg ¼ A2 − b≡Ψ: ð59Þ

The time-evolution of these secondary constraints is then

_Ψ⃗ ¼ fΨ⃗; HAg ¼ 2½∇⃗ðλA0Þ − uλA⃗þ λu⃗� ð60Þ

_Ψ ¼ fΨ; HAg ¼ A⃗ · u⃗ −
1

c3
A0Π0: ð61Þ

These equations determine all four auxiliary Lagrange
multipliers u⃗ and uλ so long as A⃗ ≠ 0 and λ ≠ 0; in this
case, we have

uλ ¼
1

A⃗2

�
A⃗ · ∇⃗ðλA0Þ þ

1

c3
λA0Π0

�
ð62Þ

and

u⃗ ¼ 1

λ
½uλA⃗ − ∇⃗ðλA0Þ�: ð63Þ

Thus, for generic initial data, we are done. We have five
fields, four primary constraints, and four secondary con-
straints, and so the number of d.o.f. is

Ndof ¼ 5 −
1

2
ð8Þ ¼ 1: ð64Þ

As for the Maxwellian vector theory in Sec. IV B 2, the
addition of a Lagrange multiplier to a V-field model does
not reduce its d.o.f.
This analysis is again in agreement with the work of

Garfinkle et al. [19]. For a model with c1 ¼ 0, they find that
the Einstein-aether theory contains additional initial data
constraints on the three dynamical fields A⃗ and is therefore
“endangered”. In the present work, we have confirmed this
result: this model does indeed contain fewer than 3 d.o.f.7

V. DISCUSSION

A. Generalization

We have found that a field theory model in flat spacetime
may or may not “lose” a d.o.f. when a constraint is added to
the system via a Lagrange multiplier. Specifically, scalar
models (Sec. III) and general vector models (Sec. IVA) lose
a d.o.f. when we replace a potential with a Lagrange
multiplier; but Maxwell-type and V-type vector models
(Secs. IV B and IV C, respectively) retain the same number
of d.o.f. regardless of whether the field values are governed
by a potential or by a Lagrange multiplier.
There is an obvious difference between these cases. In

those models where there are no primary constraints in the
potential model, a Lagrange multiplier eliminates a d.o.f.
In contrast, in the models where the potential model does
contain primary constraints, the field theory retains the
same number of d.o.f. when a constraint is imposed via a
Lagrange multiplier.
The reason for this difference can be traced to a particular

feature of the models we have examined. In those models
containing primary constraints, the conservation of the
first-order secondary constraints leads to an equation that
determines the auxiliary Lagrange multiplier uλ [Eqs. (48)
and (60) for the Maxwell-like and V-field models, respec-
tively]. In those models without primary constraints, uλ is
only determined once we require that higher-order secon-
dary constraints [specifically, the third-order secondary
constraints in Eqs. (13) and (30)] be conserved.
To extend this to a general statement, we first note that

the primary constraints for a potential model and its
corresponding Lagrange multiplier model are simply
related. If the primary constraints for the potential model
are a set of M functions fΦ1;…;ΦMg, then the primary
constraints for the corresponding Lagrange multiplier
model will simply be fΦ1;…;ΦM;ϖg, where ϖ is the
conjugate momentum to the Lagrange multiplier λ.
Moreover, ϖ will commute with all of the primary
constraints that derive from the potential model, since
none of these constraints depend on λ.
The augmented Hamiltonian density will then be the

base Hamiltonian density with terms added to impose the
constraints,

HA ¼ H0 þ uIΦI þ uλϖ: ð65Þ

(Here and in what follows, repeated capitalized Roman
indices are summed from 1 toM.) The first-order secondary
constraint required in order to maintain ϖ ¼ 0 under time
evolution will then be

Ψλ ¼ fϖ; HAg ¼ −
δHA

δλ
¼ fðψαÞ; ð66Þ

where ψα here stands for the collection of fields in the
model. In addition, there will be a set of first-order

7The cases A⃗ ¼ 0 and λ ¼ 0 were excluded from the above
analysis. In this case, one would have to look at the time evolution
of the quantities in (60) and (61), generate one or more second-
order secondary constraints, and attempt to solve these for the
auxiliary Lagrange multipliers. In any event, this would generate
a model with no more than 1 d.o.f. (if the resulting model was
even consistent at such points in configuration space).
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secondary constraints ΨI (I ¼ 1;…;M), each derived from
the requirement that _ΦI ¼ 0; these are given by

ΨI ¼ fΦI; HAg: ð67Þ

Now consider the time-evolution of the first-order
secondary constraints. The time derivative of Ψλ will be
independent of uλ, though it will generally depend on the
other auxiliary Lagrange multipliers uI,

_Ψλ ⊃ uJfΨλ;ΦJg þ uλfΨλ;ϖg ¼ uJffðψαÞ;ΦJg: ð68Þ

Note that ffðψαÞ;ϖg ¼ 0 since fðψαÞ is independent of λ.
Meanwhile, the expression _ΨI (for arbitrary I) will contain
terms of the form

_ΨI ¼ fΨI; HAg ⊃ uJfΨI;ΦJg þ uλfΨI;ϖg: ð69Þ

Equations (68) and (69) together imply that if

fΨI;ϖg ¼ 0; ð70Þ

then the equations for conservation of the constraints
( _ΨI ¼ 0 and _Ψλ ¼ 0) do not contain uλ, leaving this
auxiliary Lagrange multiplier undetermined at this order.
If this occurs, then we must proceed to find additional
second- and higher-order secondary constraints. Since we
have more than two additional constraints, but only one
additional d.o.f. from λ itself, we conclude that in such
cases, the Lagrange-multiplier model will have fewer d.o.f.
than the potential model.8

This condition (70) can be greatly elucidated via use of
the Jacobi identity. Specifically, we have

ffΦI; HAg;ϖg þ ffHA;ϖg;ΦIg þ ffϖ;ΦIg; HAg ¼ 0

ð71Þ

for any primary constraint ΦI. Since ϖ commutes with the
rest of these primary constraints, the last term automatically
vanishes; and applying (66) and (67) yields the equation

fΨI;ϖg ¼ −ffðψαÞ;ΦIg: ð72Þ

Thus, the Eq. (69) will leave uλ undetermined, and the
Lagrange multiplier will reduce the d.o.f. of the model,
so long as

ffðψαÞ;ΦIg ¼ 0; ð73Þ
i.e., the vacuum manifold function fðψαÞ commutes with
all the primary constraints.

Note that this result implies that a model that is “already
constrained” by primary constraints from its kinetic term
could potentially be “further constrained” by the introduc-
tion of a Lagrange multiplier. This did not occur in any of
the vector models from Sec. IV, as all of those models
containing primary constraints also had ffðψαÞ;ΦIg ≠ 0.
Examples of “already-constrained” models in which a
Lagrange multiplier further reduces the model’s d.o.f.
can be found in the next section.

B. Lagrange-multiplier models in dynamical spacetimes

The number of d.o.f. of a field theory in flat spacetime is
not always simply related to the number of d.o.f. it
possesses in a curved, dynamical spacetime. It is well-
known that diffeomorphism-invariant field theories have
primary constraints corresponding to the nondynamical
nature of the lapse and shift functions; when we pass to a
dynamical spacetime, we both introduce new fields (the ten
metric components) as well as new constraints.9 Perhaps
less well-known, but equally important, is that d.o.f. which
are unphysical (gauge or constraint) in flat spacetime
can become “activated” in a minimally coupled curved-
spacetime theory [18]. This occurs due to the fact that the
covariant derivative of a tensor field (unlike that of a scalar)
depends on the derivatives of the metric. The “minimally
coupled” kinetic term for a tensor field therefore contains
couplings between the metric derivatives and the tensor
field derivatives, which can turn equations that were
constraints or gauge d.o.f. in flat spacetime into dynamical
equations in curved spacetime, and vice versa.
In light of these facts, we might then ask how much of

the above analysis would carry over to dynamical space-
times. Given the critical role played by the constraints in
this analysis, it is natural to ask whether a Lagrange-
multiplier model in a dynamical curved spacetime would
lose any d.o.f. relative to the corresponding potential model
in a dynamical curved spacetime.
The condition (73) sheds some light on this question.

We know that if uλ remains undetermined when we require
conservation of the first-order secondary constraints, then
we will in general have to find higher-order secondary
constraints, leading to a reduction of the d.o.f. of the theory
relative to the corresponding potential model. This will
occur when the vacuum manifold function fðψαÞ com-
mutes with the primary constraints of the theory.
Any diffeomorphism-invariant theory, when decom-

posed into 3þ 1 form, will contain terms involving the
lapse N and shift Na; these are related to the spacetime
metric gab and the induced spatial metric hab by

gab ¼ hab −
1

N2
ðta − NaÞðtb − NbÞ; ð74Þ

8It is also conceivable that uλ could remain undetermined even
after the process of finding the constraints is completed. This
would also reduce the number of d.o.f. in the final counting.

9See [20,21] for a detailed description of the Hamiltonian
formulation of general relativity.
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where ta is the vector field we have chosen to correspond
to “time flow” in our decomposition. We can then write
down the Einstein-Hilbert action in terms of this induced
metric, the lapse, and the shift. As the lapse and shift can be
arbitrarily specified, the are effectively “gauge quantities”
corresponding to diffeomorphism invariance; thus, their
time derivatives do not appear in the Lagrange density of
the theory when it is decomposed. In the Dirac-Bergmann
formalism, there are therefore primary constraints on the
momenta conjugate to these quantities,

Π≡ ∂L
∂ _N

¼ 0; Πa ≡ ∂L
∂ _Na ¼ 0: ð75Þ

The question is then whether the vacuum manifold function
fðψαÞ commutes with these primary constraints. But this is
easy enough to see, since

ffðψαÞ;Πg ¼ δf
δN

; ffðψαÞ;Πag ¼ δf
δNa : ð76Þ

Thus, the question of whether the Lagrange multiplier
reduces the number of constraints is reduced to the question
of whether the vacuum manifold function depends on the
lapse and shift. In particular, for a collection of scalar fields
in curved spacetime (the dynamical-spacetime analogue of
Sec. III), the vacuummanifold function will be independent
of the metric, and so there is no way for the lapse or shift
functions to enter into it. We would therefore expect that a
Lagrange-multiplier model containing N scalars would
have fewer than N d.o.f. attributable to the scalars.10

However, for a function of a vector field Aa, the norm of
the vector field Aa will depend on the lapse and shift
functions,

AaAbgab ¼ AahabAb −
ððta − NaÞAaÞ2

N2

¼ A⊥
a habA⊥

b −
ðAt − NaA⊥

a Þ2
N2

; ð77Þ

where At ¼ taAa and A⊥
a ¼ habAb. Any function of the

spacetime norm of Aa will therefore depend on the lapse
and shift, and so the vacuum manifold function will not
commute with the primary constraints of the theory. Given
the results stated above, it seems unlikely that the Lagrange
multiplier would reduce the number of d.o.f. of such a
theory.
It is interesting to note that this coupling occurs even

if the flat-spacetime theory does not contain any primary
constraints, as in the general vector models described
in Sec. IVA. Since the conservation of the first-order
secondary constraints determines the auxiliary multiplier uλ
in this case, rather than giving rise to further constraints,

one would conclude that the number of d.o.f. of a general
vector theory in curved spacetime would not be reduced by
the presence of a Lagrange multiplier, in contrast to the
situation in flat spacetime. In fact, this is confirmed by
known results. A model consisting of a vector field in a
curved spacetime with a “generic” kinetic term (as in
Sec. IVA) will contain 2 “metric” d.o.f. and three “vector”
d.o.f., regardless of whether the vector is forced to a nonzero
expectation value by a Lagrange multiplier [22] or by a
potential [18,23].

C. Potential models in the low-energy limit

In classical particle mechanics, it is common to think of a
constrained system in relation to an unconstrained system
with a potential energy. In the limit where the potential
energy becomes infinitely strong, it can be shown that the
dynamics of the unconstrained system reduce to those of a
system constrained to lie only in the minimum of the
potential [24]. It is therefore common, in the analysis
of constrained systems, to simply include one or more
Lagrange multipliers that enforce the constraints. In gen-
eral, each Lagrange multiplier reduces the number of d.o.f.
of the system by one.
One might think that this general picture could be carried

over to field theory. In particular, a set of fields in a
potential could be thought of as possessing a certain
number of massive modes (corresponding to oscillations
in field-space directions in which the potential increases)
and a certain number of massless modes (oscillations in
field-space directions in which the potential is flat). One
could then construct a low-energy effective field theory in
which the massive modes have “frozen out”, reducing the
number of d.o.f. of the model. In this low-energy limit, one
would expect the fields to always lie in their vacuum
manifold, effectively being constrained there. Hence, one
would think that the Lagrange-multiplier version of a
potential theory would nicely correspond to the low-energy
behavior of the corresponding potential theory.
The results of this work, however, show that the picture

is not so simple. While this simple picture holds for scalar
fields in flat spacetime, it seems quite unlikely that the low-
energy limit of a Maxwell-type or V-type vector field in a
potential would correspond to a model with the same
kinetic term but containing a Lagrange multiplier. One
would expect the low-energy limit to have fewer d.o.f. than
the full potential model, but in these cases, the Lagrange-
multiplier models and the corresponding potential models
have the same number of d.o.f. While the low-energy limit
of some such models has been investigated [23,25,26], the
Lagrange-multiplier models would necessarily have a
different behavior.
In fact, this feature was noted in [23] in the context of a

vector field with a “Maxwell” kinetic term. In Sec. IV C of
that work, it was noted that the Lagrange-multiplier model
only corresponded to the low-energy (“infinite-mass”) limit

10As there is no coupling between the kinetic terms of the
scalar and the metric, it seems likely that there would also still be
2 d.o.f. attributable to the metric itself.
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of the potential model if the Lagrange multiplier λwas set to
zero by fiat. However, for a generic solution λ will not
vanish; the vanishing of the secondary constraint in Eq. (46)

requires that λ ¼ −∇⃗ · Π⃗=2A0. In other words, one must
restrict the class of solutions under consideration—i.e.,
further reduce the number of d.o.f.—to obtain the low-
energy limit of a potential model from the corresponding
Lagrange-multiplier model. This work shows that this lack
of direct correspondence is a common feature of models in
which tensor fields take on a vacuum expectation value.
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APPENDIX: POISSON BRACKETS
AND FUNCTIONALS

In calculating the time-evolution of a field quantity in
Hamiltonian field theory, one would like to take the Poisson
bracket of a field ψαðxÞ with the Hamiltonian H to find the
time-evolution of the field at x,

_ψαðxÞ ¼ fψαðxÞ; Hg: ðA1Þ

However, one does have to be careful with this notation, as
the Poisson bracket is only rigorously defined on real-
valued field functionals, not on functions of space like ψα.
Specifically, we have

fG1; G2g≡
Z

d3z

�
δG1

δψαðzÞ
δG2

δπαðzÞ −
δG1

δπαðzÞ
δG2

δψαðzÞ
�
;

ðA2Þ

where πα is the conjugate field momentum to ψα (and a
summation over α is implied), and the functional deriva-
tives are implicitly defined via the relation

δG ¼
Z

d3z

�
δG

δψαðzÞ
�
δψαðzÞ: ðA3Þ

To extend the definition (A2) of a Poisson bracket to a
local field quantity fðψαðxÞ;∇ψαðxÞ;…Þ constructed from
field quantities at a fixed point x, one introduces the
functional

Fx ≡
Z

d3y½fðψαðyÞ;∇ψαðyÞ;…Þδ3ðx − yÞ�: ðA4Þ

The functional derivatives in (A2) then become

δFx

δψαðzÞ ¼
∂f
∂ψα δ

3ðx − zÞ −∇a

� ∂f
∂ð∇aψ

αÞ δ
3ðx − zÞ

�

þ… ðA5Þ

and similarly for πα, where the ellipses stand for higher-
order derivatives of ψα (or πα), and the partial derivatives of
f (and their gradients) are evaluated at the point z. Here and
throughout, I will use partial derivatives ∂ to denote the
variation of a locally constructed field quantity with respect
to one of its arguments, while the δ notation will be
reserved for functional derivatives.
Under this extension, the Poisson bracket of a local field

quantity fðψαðxÞ;∇ψαðxÞ;…Þ with the Hamiltonian H ¼R
Hd3x is “really” the Poisson bracket of the functional Fx

with H. Restricting attention to quantities that only depend
on the fields ψα and πα and their first derivatives, this
Poisson bracket is

d
dt
½fðψα;∇ψα;πα;∇παÞ�¼fFx;Hg

¼
Z

d3z

�� ∂f
∂ψαδ

3ðx−zÞ−∇a

� ∂f
∂ð∇aψ

αÞδ
3ðx−zÞ

��
δH

δπαðzÞ

−
� ∂f
∂παδ

3ðx−zÞ−∇a

� ∂f
∂ð∇aπ

αÞδ
3ðx−zÞ

��
δH

δψαðzÞ
�

ðA6Þ

¼ ∂f
∂ψα

δH
δπαðxÞ þ

∂f
∂ð∇aψ

αÞ∇a

�
δH

δπαðxÞ
�
−

∂f
∂πα

δH
δψαðxÞ −

∂f
∂ð∇aπ

αÞ∇a

�
δH

δψαðxÞ
�
; ðA7Þ

where all the field quantities are now evaluated at x.
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Note that this definition implies that time-evolution
“commutes” with spatial derivatives when we take the
Poisson bracket, as one would expect. For example,
suppose that f ¼ ψα and H ¼ R

Hd3x, where H is locally
constructed from the fields. Then we have

fψα; Hg ¼ δH
δπαðxÞ ¼

∂H
∂πα ; ðA8Þ

evaluated at x. Meanwhile, if f ¼ ∇aψ
α, we have

f∇aψ
α; Hg ¼ ∇a

�
δH

δπαðxÞ
�

¼ ∇a

�∂H
∂πα

�

¼ ∇aðfψα; HgÞ: ðA9Þ

This fact simplifies the calculation of the Poisson brackets
considerably.
This definition can be extended straightforwardly to

quantities depending on higher derivatives of ψα and πα,
and the above-mentioned commutativity extends to such
cases as well. It can also be extended to the Poisson
brackets of two local field quantities fðxÞ and gðyÞ by
defining functionals Fx and Gy and following the same
procedure. In such cases, the resulting Poisson bracket will
contain a factor of δ3ðx − yÞ. However, in the interests of
clarity, we will elide these factors when we take the Poisson
bracket of two such quantities; in other words, we will take
it as understood that the first argument of such a Poisson
bracket is evaluated at x, the second at y, and that the result
is multiplied by δ3ðx − yÞ or its derivatives.
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