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ABSTRACT

One of theleading health challenges worldwide is dementia, the incidence of which is
rapidly increasing along with increasing life expectancy. The number of people with
dementia is estimated to reach 150 million by 2050. Thus, the estimated financial
costs associated will be enormous, and there is tremendous pressure to find better
tools for the prevention, early detection and treatments of dementia.

The most common neurodegenerative disease is Alzheimer’s disease (AD),
covering at least 50% of patients with dementia. Other common dementing diseases
include vascular dementia (VaD) (20%), frontotemporal lobar degeneration (FTLD)
(10%) and dementia with Lewy bodies (DLB) (5%). In addition, neuropathological
studies have suggested some recently identified neurodegenerative entities to be
common in the very elderly population. One such entity is hippocampal sclerosis of
aging (HS-Aging), which is characterized by neuronal loss in the hippocampal CA1
and subiculum, and TDP-43 -positive inclusions in the hippocampal dentate fascia.

The general aim of this thesis project was to investigate the frequency and
genetic background of age-associated neurodegenerative diseases, particularly HS-
Aging and other TDP-43 proteinopathies, in the Finnish population. In Study I,
we determined the prevalence of HS-Aging and the associated neuropathological
changes in a population-based sample of very elderly Finns (Vantaa85+ study). In
Study II, the associations of previously identified risk variants with HS-Aging were
investigated in a combined dataset of Finnish and British population-based cohorts.
In Study III, the prevalence of an amyloid precursor protein (APP) mutation,
previously shown to be protective against AD, was determined among the oldest
old Finns. In the last study, Study IV, we investigated the neuropathological and
molecular genetic phenotype of Finnish familial patients with FTLD associated with
a rare brain tumor, dysplastic gangliocytoma.

HS-Aging was detected in 16% of Finns aged over 85 years. HS-Aging
without any other comorbid neuropathologies was seen in only one individual
(2% of cases). 51% of subjects with HS-Aging exhibited a bilateral disease,
indicating that pathological sections should be taken from both hippocampi for
neuropathological diagnostics. Dementia and TDP-43-, p62- and Tau-positive
granular cell inclusions were strongly associated (p< 0.001) with HS-Aging (I).
The population -representative cohorts confirmed polymorphisms in GRN and
TMEM106 to be genetic risk factors for HS-Aging and accumulation of TDP-43
positive inclusions in hippocampus (II). The protective APP mutation (A673T) was
detected in only one very aged female (0.19%) subject. This individual exhibited
HS-Aging, but no AD pathology, indicating that this mutation probably protects
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Abstract

against AD changes (IIT). The familial FTLD was characterized neuropathologically
by abundant hippocampal and cortical TDP-43- and cerebellar p62-pathology,
and it was shown to be caused by a hexanucleotide repeat expansion mutation in
Coorf72.In addition, Cgorf72 repeat expansion mutation hypothetically promoted
the development of dysplastic gangliocytoma (IV).

In conclusion, this study provided new information on the prevalence and
genetic background of HS-Aging and other TDP-43-proteinopathies in the Finnish
population.

Key words: HS-Aging, population-based, oldest old, risk alleles, APP mutation,
Coorf72 expansion
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1. INTRODUCTION

The frequency of old-age-associated dementing neurodegenerative diseases is
increasing in line with the raising life expectancy of population. Globally, the number
of people with dementia is estimated to reach 76 million in 2023. In addition to
human suffering, the financial costs of these diseases are enormous, and there is
a pressing need to recognize the signs of dementia earlier and to develop effective
early interventions.

The most common neurodegenerative disease is Alzheimer’s disease (AD),
covering atleast 50% of patients with dementia. Other common dementing diseases
include vascular dementia (VaD), dementia with Lewy bodies (DLB), Parkinson”s
disease (PD) and frontotemporal lobar degeneration (FTLD). The neuropathological
hallmarks of the diseases listed above have been described several decades ago;
however, more recent neuropathological studies have suggested some new
neurodegenerative entities, such as Limbic Age-related TDP-43 Encephalopathy,
LATE. The term is considered to include TDP-43 proteinopathy associated with
cognitive impairment including, for example hippocampal sclerosis of aging (HS-
Aging). However, these are new disorders and need to be studied in representative
population-based samples in order to elucidate their impact on society.

The great majority of patients (>95%) suffer from sporadic forms of
neurodegenerative diseases, which are multifactorial in origin, so both genetic
variants and environmental factors have a role in their pathogenesis. <5% of
patients have familial forms of neurodegeneration, caused by gene defects that
areinherited in a Mendelian fashion. Genetic technologies, including genome-wide
association studies (GWAS, since 2005) and next generation sequencing (NGS,
since 2009), have developed very rapidly during the last two decades and have
revolutionized the study of genetics of both familial and sporadic neurodegenerative
diseases. Gene defects underlying rare inherited forms of diseases can be identified
with these technologies with lower costs and workload. Furthermore, the new
technologies make it possible to find rare gene variants, either predisposing or
protective, which affect the risk of common sporadic forms of diseases. GWAS
allows us to use hypothesis-free approaches to find new disease-associated gene
variants underlying the sporadic forms of neurodegeneration.

The main aim of this thesis project was to study the frequency and genetic
background of old-age-associated HS-Aging in a Finnish elderly population- based
sample (the Vantaa 85+ study). In addition, the prevalence of the amyloid precursor
protein (APP) A673T mutation, previously reported to be protective against AD,
was analyzed in this same cohort. The genetic and neuropathological characteristics
of a Finnish familial form of FTLD associated with a very rare tumor, dysplastic
gangliocytoma, was also described.

15



2. REVIEW OF LITERATURE

2.1. NEURODEGENERATION AND DEMENTIA

Dementia is a usually incurable, gradually progressive disease causing memory
impairment, difficulties with cognition, changes in emotional behavior and
motivation caused by neurodegeneration in the specific brain areas (van der
Flier and Scheltens 2005, Elahi and Miller 2017). Most prevalence estimates of
dementia are based on clinical diagnosis; therefore, the prevalence numbers of
various neurodegenerative pathologies causing dementia are not reported precisely
(Prince et al. 2013). Identifying early disease stages before the onset of clinical
dementia is very challenging, and at older ages, mixed pathologies become more
common (Tanskanen et al. 2017). The prevalence of neurodegenerative diseases
varies from study to study, even in the few studies with neuropathological assessment
(Brunnstrom et al. 2009) (Figure 1), mainly because the criteria and methods
used and the brain regions assessed are different. It should be remembered that
there are differences between clinical and neuropathological principles to define
neurodegenerative diseases. Neuropathological examination to set correct diagnosis
of dementia subtype after death is essential (Brunnstrom et al. 2009). However, it is
clear that the most prevalent dementing disease is AD (Ferri et al. 2005, Brunnstrom
et al. 2009, Prince et al. 2016).

Prevalence of dementia subtypes (%)

AD Range: 41.6-65.0
mVaD Range: 2.4-21.6
mAD +VaD Range: 2.5-23.7
mLBD Range: 0.2-22.4

FTD Range: 2.8-4.0

Other Range: 5.7-31.7

Figure 1. Neuropathologically defined diagnosis of neurodegenerative disorders in seven different studies.
There is a great variation in the prevalence estimates between the different studies. Modified from the
figure by Brunnstrom et al 2009.
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By 2030, the number of people with dementia is predicted to reach almost 76 million
and increase by a further 80% by 2050 (https://www.who.int/mental_health/
neurology/dementia/dementia_thematicbrief epidemiology.pdf). There are
almost 8 million new dementia patients each year (Ferri et al. 2005). The incidence
(Figure 2) and prevalence of dementia are associated with age, but dementia is not
considered to be a part of normal aging (Irwin et al 2018). The worldwide costs
of dementia were estimated to be $604 billion (USD) in 2010 (Wimo et al. 2013).
The World Alzheimer’s Disease Report 2013 (https://www.alz.co.uk/research/
GloballmpactDementia2013.pdf) predicted an 85% increase in costs by 2030.

[] High-income countries B curope [ North America

[ Low-and middle- income countires i Latin America

Incidence/1000 person-years

Age

Figure 2. Estimated incidence of dementia divided by region and its development status based on meta-
analysis data by WHO. Modified from http://wwwwho.int./mental_health/neurology/dementia/en/.

2.2. CLASSIFICATION OF NEURODEGENERATIVE DISEASES

The main neuropathological findings in neurodegenerative diseases include
neuronal loss and gliosis in certain disease-specific brain areas, and disease-
specific intracellular or extracellular protein aggregates found in neuronal and
glial cells (Figure 3) (Ross and Poirier 2004, Kovacs 2016). Clinical symptoms
can be very different depending on the type of neuropathological changes and
their location in the brain, but there are common signs and symptoms for all
forms of neurodegenerations, including changes in the person’s cognitive and
psychological abilities (Soto and Estrada 2008, Kovacs 2016). The classification
of neurodegenerative diseases includes several categories, presented in Figure 3.
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2.3. NEURODEGENERATIVE DISEASES, MISFOLDED PROTEINS,
AND MIXED NEUROPATHOLOGICAL FINDINGS

The common misfolded proteins (found in neuronal and glial cells) associated with
neurodegenerative diseases (Table 1) in the central nervous system are Amyloid-
beta (AP), Tau, TDP-43, a- Synuclein (a-Syn) and FUS (den Haan et al. 2018,
Kovacs 2016, Lee et al. 2013, Neumann et al. 2006, Mackenzie et al. 2010b, Goedert
et al. 2017, Kuusisto et al. 2008, Armstrong 2012b, Oshima and Dickson 2009,
Ren and Sahara 2013). According to these morphologically variable aggregated
proteins (Figure 4), a nomenclature has been created for different proteinopathies:
for example tauopathies, a-synucleopathies, TDP-43 proteinopathies, and FUS/FET
proteinopathies (Kovacs 2016). A sporadic or inherited mutations are causing the
accumulation and aggregation of these proteins (Martin 1999, Jellinger et al. 2001,
Kovacs 2016). Inherited forms of neurodegenerative diseases are caused by the
mutations in the genes encoding relevant proteins and have usually earlier onset a
more severe phenotype compared to sporadic forms of neurodegenerative disease
(Martin 1999, Jellinger et al. 2001, Kovacs 2016).

Table 1. The misfolded proteins, the chromosomal locations and genes encoding them, and the associated
neurodegenerative diseases.

Protein Chromosomal Gene Disease associated with the protein
location

B-amyloid  21g21.3 APP Alzheimer s disease

Tau 17921.31 MAPT Pick’s disease

Corticobasal degeneration

Progressive supranuclear palsy

Argyrophilic grain disease

Multiple system tauopathy with presenile dementia STD
Frontotemporal lobar degeneration with Tau inclusions

a-synuclein 49221 SNCA Parkinson’s disease
Dementia Lewy body
Multisystem atrophy

TDP-43 1p36.22 TARDBP  Frontotemporal lobar degeneration with TDP-43 inclusions
(type A-D)
Motor neuron disease with TDP-43 inclusions
Frontotemporal lobar degeneration - Motor neuron disease
with TDP-43 inclusions

FUS 16p11.2 FUS Atypical FTLD with ubiquitin positive inclusions
Neurofilament intermediate filament inclusion disease
Basophilic inclusion disease
Motor neuron disease with FUS positive inclusions
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1. Beta-amyloid

Figure 4. Different morphological aggregates of beta-amyloid, Tau, TDP-43, alpha-sunuclein and FUS.

1.A = Fibrillar plaque, 1.B = Compact plaque, 1.C = Cored plaque, 1.D = Diffuse plaque, 1E = Cerebral amyloid
angiopathy (CAA). Images from Haan et al 2018.

2.A = Tau deposits in neuronal perikarya, dendrites and neurophil threads, 2.B = Tau deposits in
oligiodendroglial cells, 2.C = Tangles and neurophil threads, 2.D = Tufted astrocytes, 2.E = Coiled bodies in
olidendroglial cells, 2.F = Astrocytic plague. Images from Oshima and Dickson 2009 and Ren et al 2013.

3.A = Short neurites, 3.B = Perinuclear inclusion in neurons, 3.C = Skein-like inclusions in motoneurons, 3.D =
Intracytoplasmic round inclusion in motor neuron. Images from Neumann et al 2006, Mackenzie et al 2010.

4.A = Lewy body (large) in neuron, 5.B = Small Lewy bodies and aggegates in neurites. Images modified
from https://www.alzforum.org/print-series/554861 by Dennis Dickson.

5.A = Neuronal cytoplasmic inclusions, 5.B = Tangle-like inclusions, 5.C = Conglomerate inclusion in a
neuron, 5.0 = Vermiform intranuclear inclusions in neurons, 5.E = A ring shaped intranuclear inclusion in
a neuron. Images modied from Lee et al 2013.

It is common in neurodegenerative diseases that the pathological findings
and clinical features differ between patients categorized into the same disease
group. Similarly, the same misfolded protein can be seen in several different
neurodegenerative diseases (Table 2) (Kovacs et al. 2008). This phenomenon causes
overlap in the neurodegenerative diseases and difficulties in the categorization of
subjects not clearly belonging to any basic group (Armstrong 2012a). In addition,
the co-existence of classification categories and similar kinds of pathogenic disease
pathways complicates the classification (Kovacs et al. 2008). Three different models,
based on clinicopathological features, are suggested for neurodegenerative diseases:
discrete, overlap and continuum (Figure 5) (Armstrong 2012a).
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Table 2. Pathological aggregates overlap in some neurodegenerative diseases. AD = Alzheimer s disease,
FTLD = Frontotemporal lobar degeneration, DLB = Dementia with Lewy Bodies, PD = Parkinson s disease.

Disease AD FTLD DLB PD

Protein

AB

Tau

a-Syn

TDP-43

Figure 5. Overlapping models based on clinicopathological features of neurodegenerative diseases. A =
Discrete model, B = Overlapping model and C = Continuum model for neurodegenerative diseases. Each
number (1, 2 and 3) represents a different disease and its distribution. A: Three different diseases with
minor overlap. B: Three different diseases with clear overlap. C: Three different sets of clinicopathological
features continuously redefined as one disease to another (Modified from Amstrong et al. 2012a).

2.4. NEURODEGENERATION, CELL DEATH, AND
PROTEIN DEGRADATION

Neurodegenerative diseases are progressive and a typical feature is the death of
neurons in selected areas of the nervous system (Ross and Poirier 2004). The
number, distribution and type of misfolded and aggregated proteins usually
correlates with the severity of the disease (Gorman 2008). Misfolded protein
aggregates are associated with different neurodegenerative disorders and can be
caused by the problems of clearance mechanisms, resulting in cell death (Gorman
2008, Knight and Verkhratsky 2010). Several different cell death mechanisms for
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the neuronal cells in neurodegenerative diseases are known: apoptotic, necrotic,
autophagic and exitotoxic (Bedford et al. 2009, Ciechanover 2015). In apoptosis, the
cells are shrunk , DNA is degraded and apoptotic bodies are formed. The execution
of apoptosis can be incited by signals, either extrinsically or intrinsically (Chi et al.
2018). The cellular content of the cell does not leak out during this process, which
is the case in necrotic cell death as a consequence of cell swelling (Chi et al. 2018).
Autophagocytosis is an intracellular process to degrade aggregated proteins and
damaged cell organelles, which are too large to be degraded in the proteasomes
(Bedford et al. 2009, Chi et al. 2018). Excitotoxic cell death is caused by excessive
neurotransmitter stimulation often mediated by glutamate or other related amino
acids (Chi et al. 2018).

Misfolded proteins are formed in different cellular compartments, including
the cytoplasm, nucleus, and endoplasmic reticulum (ER) and the proteins are
primarily degraded in the ubiquitin proteasome system (UPS) (Bedford et al. 2009,
Tanaka and Matsuda 2014). Ubiquitin is activated by an ATP-dependent reaction
and conjugated with the targeted protein, and these proteins are subsequently de-
ubiquitinated and degraded into short peptides (Figure 6) (Bedford et al. 2009,
Ciechanover 2015). Another common form of degradation is autophagocytosis
mediated, for example, by p62 (Figure 7), where the autophagosome is finally fused
with the lysosome for degradation (Bedford et al. 2009, Tanaka and Matsuda 2014).
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Figure 6. Ubiquitin-activating enzyme ET1 activates ubiquitin in an ATP-driven reaction. Next, ubiquitin is
relocated to conjugating enzyme E2. E3, the ubiquitin ligase protein, combines the substrate and ubiquitin.
A de-ubiquitylating enzyme, DUB, separates ubiquitin and the substrate protein. In the fourth phase,
ubiquitin molecules are attached to the substrate to form a chain. This complex is able to bind with the 26S
proteasome, where degradation is performed. Modified from Neurodegeneration, the molecular pathology
of dementia and movement disorders. Second Edition, 2011. Edited by D. Dickson and R. Weller.
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Figure 7. Degradation and autophagy. A polyubiquitinated protein, combined with p62 (conjugated with
signaling molecule LC3), is sequestered into the autophagosome. Modified from Tanaka et al. 2014.

2.5. NEURODEGENERATION AND NEOPLASIA

Although neurodegeneration and neoplasia have not traditionally been associated
with each other, recent studies have provided evidence suggesting that common
mechanisms may be involved in these disease groups.

Some epidemiological studies have shown an inverse correlation between the risk
of developing cancer and neurodegenerative diseases (Sorensen et al. 1999, Fois et al.
2010). According to a quite recent, age-adjusted study, AD diagnosis was associated
with a 60% reduced risk of cancer, and cancer history with a 30% reduced risk of
AD (Bennett 2010). However, there is also evidence that some malignant neoplastic
diseases are associated with an increased risk of neurodegenerative disease (Monaco
and Vallano 2003, Mavrou et al. 2008).

Neoplasia and neurodegeneration are suggested to be the result of the interaction
of genetic and environmental factors. Age is likely to play an important role in the
link between the two disorders. Both neoplastic and neurodegenerative diseases are
also characterized by the contribution of inherited mutated genes (Plun-Favreau et
al.2010). Many genes and their protein products (Table 3), which are associated with
these two disease groups, are kinases and play a role in the cell cycle, DNA repair,
and apoptosis (Monaco and Vallano 2003, Mavrou et al. 2008). The pathways of
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protein degradation are often dysfunctional in both cancer and neurodegeneration
(Plun-Favreau et al. 2010). Mitochondrial dysfunction and oxidative stress have
also been shown to cause both diseases (Burchell et al. 2010, Hsu et al. 2016, Ali
et al. 2019). Further, the autophagosomal-lysosomal pathway has been recognized
as playing a major role in the mechanisms associated with both conditions (Arroyo
et al. 2014, Ali et al. 2019). There is a shared feature for these processes — it is age.
The frequency of onsets of both diseases have been shown to be increase with age
(Plun-Favreau et al. 2010).

Table 3. The proteins associated with both neurodegeneration and neoplasia. Modified from Plun-Favreau
et al. 2010). AD (Alzheimer’s disease), APP (amyloid precursor protein), ATM (Ataxia telangiectasia mutated
protein kinase), CDK5 (Cyclin-dependent kinase-5 protein), mTOR (mammalian target of rapamycin, p53
(tumor suppressor protein p53), PD (Pick’s disease) and PTEN (phosphatase and tensin homolog).

AD: p53 regulates and is AD, PD:
regulated by members of a kinase phosphorylating
the gamma-secretase Tau and parkin

p53 | — | complex COKS | —

Several cancer types:
Several cancer types: a tumor promoter
a tumor supressor gene

PD: Ataxia telangiectasia:
a functional link between caused by the mutation of
other PD associated genes ’m _ | ATM gene
PTEN |
Several cancer types: Malignant melanoma:
a tumor suppressor gene, a tumor suppressar gene

mutated in sporadic and
— | inherited diseases

AD: inhibtion of

contributing to A
autophagy outing B

‘ AD: mutations

APP  — |accumulation
mTOR | —
Several cancer types: | | Acute myeloid leukemia:
autophagy: oncogenic | | overexpressed

and/or suppressive -

2.6. HIPPOCAMPAL SCLEROSIS (HS)

Originally the term ‘HS’ was related to epilepsy, referring to the hardening and
structural abnormality of the Ammon s horn with epileptic patients described by
Meynert, Sommer and Bouchet in 1860 (Eadie 2017). Today, the term ‘HS’ is used
for the most frequent histopathology in patients with drug-resistant temporal lobe
epilepsy (TLE), defined by severe neuronal loss and gliosis in the CA1 and CA4
sectors by the International League Against Epilepsy (ILAE) (Blumcke et al. 2013).
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Theterm "HS-Aging” is used for the pathology of severe neuronal loss of the CA1
sector and subiculum in very old people (Dickson et al. 1994). The other CA sectors
are not affected. Clinical presentation shows cognitive and functional impairment
(Leverenz et al. 2002, Nelson et al. 2011b, Wilson et al. 2013, Snyder et al. 2015,
Dutra et al. 20152a), and HS-Aging can be clinically difficult to distinguish especially
from late-onset AD (Ala et al. 2000, Attems and Jellinger 2006, Pao et al. 2011,
Murray et al. 2014) HS-Aging often occurs with other age-related neurodegenerative
pathologies, such as DLB, tauopathy, cerebrovascular disease and FTLD. HS-Aging
is also associated with hypoxic ischemic damage, prolonged hypoglycemia, and
traumatic encephalopathy. Pure HS-Aging, without any comorbid pathology, is
rare (Beach et al. 2003, Blass et al. 2004, Kovacs et al. 2008, Nelson et al. 2011b,
Hatanpaa et al. 2014, Neltner et al. 2014, Snyder et al. 2015, Neltner et al. 2016)

2.6.1. EPIDEMIOLOGY

The prevalence range for HS-Aging is wide, varying from 5 to 30% of autopsied
brains in old age individuals (Dickson et al. 1994, Jellinger 2000, Leverenz et al.
2002, Barker et al. 2002, Probst et al. 2007, Nelson et al. 2011b, Zarow et al. 2012,
Rauramaa et al. 2013, Dutra et al. 2015a, Nelson et al. 2016). There are many factors
which may explain this range. In several studies, the individuals of the study cohorts
are too young (Corey-Bloom et al. 1997, Blass et al. 2004, Rauramaa et al. 2013),
since the prevalence of HS-aging increases heavily in individuals older than 9o years
(Nelson et al. 2011b, Nelson et al. 2016). In routine neuropathological sampling,
usually only one of the hippocampi is sectioned, which might cause false negative
results (Nelson et al. 2011b, Zarow et al. 2012). It is also reported that HS-Aging
can be segmental, which is not elucidated in any large study cohorts (Ighodaro et
al. 2015). Most of the published study cohorts are biased by selective accumulation
of demented individuals from dementia care units, involving individuals with
mixed neuropathologies (Bennett et al. 2006, Schneider et al. 2007, Schneider et
al. 2009, Nelson et al. 2013). It is not possible clinically to separate HS-Aging from
AD. Clinically, most individuals affected by HS-Aging are categorized as having
probable (70%) or possible (15%) AD (Nelson et al. 2013, Nelson et al. 2016). The
predominance of sex in HS-Aging is controversial, some reports support male
predominance (Leverenz et al. 2002, Pao et al. 2011, Zarow et al. 2012), the others
female predominance (Hokkanen et al. 2018).
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2.6.2. CLINICAL FEATURES

HS-Aging often affects individuals older than 85 years and has a clinical picture
involving episodic memory impairment, which is often confused with the clinical
phenotype of AD (Leverenz et al. 2002, Zarow et al. 2008, Nelson et al. 2011b,
Zarow et al. 2012, Nelson et al. 2013, Murray et al. 2014, Nag et al. 2015, Nelson
et al. 2016). In neuropsychological studies, HS-Aging has been compared to AD:
deficits in HS-Aging extend beyond episodic memory and mimic the impairments
seen in AD. These overlapping pathologies make it very challenging to build up a
cognitive profile unique to HS-Aging (Zarow et al. 2008). Problems with memory
is the first detected problem in HS-Aging (Jellinger 2000, Ala et al. 2000, Beach
et al. 2003, Zarow et al. 2008). It is reported that individuals affected by HS-Aging
managed poorly on episodic memory tasks demanding the recollection of recently-
learned information (Corey-Bloom et al. 1997). In AD, the findings are very similar.
Verbal fluency has been reported to be better preserved in comparison to AD patients
(Nelson et al. 2013, Ighodaro et al. 2015). In some publications, individuals with
HS-Aging have been older at the onset time of the symptoms and, as result, have
a shorter duration of illness compared to those with AD (Ala et al. 2000, Leverenz
et al. 2002). There is also some evidence from post-mortem imaging studies that
hippocampal atrophy is more severe in HS-Aging than in AD (Dawe et al. 2011,
Zarow et al. 2012, Nelson et al. 2013). However, there are no neuroimaging methods
to specify the clinical diagnosis of HS-Aging (Nelson et al. 2013).

One overlapping entity with HS-Aging is FTLD. However, in FTLD patients
the cortical and brainstem atrophy is much more severe compared to those with
HS-Aging (Amador-Ortiz et al. 2007a, Brenowitz et al. 2014) Individuals with
associated FTLD pathology are of much younger age at clinical onset and death
(Amador-Ortiz et al. 2007a, Brenowitz et al. 2014). Generally, the neurocognitive
status of HS-Aging patients is better compared to FTLD (Ighodaro et al. 2015). From
the clinical point of view, FTLD-TDP is a very rare entity among very old people
(Knopman and Roberts 2011). In contrast, HS-Aging is very frequent among very
old individuals (Zarow et al. 2008, Zarow et al. 2012, Nelson et al. 2013). Based
on the facts described above, it is more likely that these two diseases are separate
entities, although they harbor overlapping features.

2.6.3. NEUROPATHOLOGY

In HS-Aging (Figure 8), the typical histopathological finding is a severe neuronal
loss of the CA1 sector. The subiculum may also be affected (Dickson et al. 1994,
Zarow et al. 2008, Nelson et al. 2011b, Zarow et al. 2012), but the CA sectors 2 to
4 are intact (Probst et al 2007). One critical feature of HS-Aging is the presence of
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TDP-43-positive inclusions, primarily detected in the cytoplasm of the granular cells
of the dentate fascia (Bachstetter et al. 2015). Individuals with HS-Aging are very
aged and often present with comorbid neuropathologies: AB plaques, NFTs, Lewy
bodies and argyrophilic grains (Jellinger 1994, Leverenz et al. 2002, Barker et al.
2002, Beach et al. 2003). The term “pure HS” is associated with aged individuals
without other neurodegenerative pathological findings (Jellinger 2000, Ala et al.
2000, Amador-Ortiz et al. 2007a). An important diagnostic criterion for HS-Aging
is that the observed Tau- pathology is not categorized as severe (Beach et al. 2003,
Pao et al. 2011). There is some evidence for vascular pathologies associated with
HS-Aging (Corey-Bloom et al. 1997, Ala et al. 2000, Leverenz et al. 2002, Nelson
et al. 2011b, Nelson et al. 2013). There are no neuropathological consensus criteria
for HS-Aging. Consensus criteria are difficult to define based on the existing data,
because variations in study materials and methods make it impossible to compare
the different studies thoroughly.

Figure 8. A: The neuroanatomical structure of the hippocampus. CA4-CAT: Pyramidal cells of the cornu
ammonis. Dentate gyrus: granular cell layer of neurons. B: Intact CAl-sector and subiculum. C: The neuronal
loss of CAT and subiculum in HS-Aging.

Abundant TDP-43 immunopositivity can be observed in a large proportion (65-
70%) of individuals with HS-Aging (Amador-Ortiz et al. 2007b, Nelson et al.
2011b). In HS-Aging, the TDP-43 pathology is described as localizing especially in
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CA1, subiculum and granular cells of the dentate fascia. All these locations contain
neurites, mainly short dystrophic ones. In the CA1 and subiculum regions, if any
neurons are left, some NCIs (neuronal cytoplasmic inclusion) and NIIs (neuronal
intranuclear inclusions) can be observed. In dentate, a relatively high number of
TDP-43- positive NCIs can be detected (Figure 9) (Murray et al. 2014, Nag et al.
2015, Hokkanen et al. 2018). HS-Aging associated TDP-43 pathology may also be
detected on the outside the of hippocampus(Cykowski et al. 2017, Nelson et al. 2019).

FTLD-TDP-43 is suggested to be closely related to HS-Aging based on the high
frequency of TDP-43 pathology (Hatanpaa et al. 2008). Hatanpéia et al. reported
that HS was detected in 42% of FTLD-TDP individuals (Hatanpaa et al. 2004). In
the majority of HS-Aging subjects, TDP-43-positive neurites and inclusion bodies
can be seen, as with FTLD-TDP (Hatanpaa et al. 2008). However, the TDP-43
pathology seen in HS-Aging and FTLD-TDP is not specific only to these entities
(McKee et al. 2010, Davidson et al. 2011, Walker et al. 2013).

Figure 9. HE-staining of a hippocampal sample from an HS-Aging case. There is severe neuronal loss in
the CAT sector and subiculum (marked with a white dashed line). The area marked with a black box shows
the granular cell layer of dentate gyrus with pTDP-43- positive inclusions (yellow arrows). The image
enlargement shows the cytoplasmic inclusions of pTDP-43 (IHC staining), which are typical of HS-Aging.

2.6.4. GENETICS

Genetic risk factors can give us insights into disease-specific pathways and
hypotheses. Previous research, based on US brain bank data on volunteer and clinical
dementia cohorts, has indicated that single nucleotide polymorphism genotypes,
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such as GRN rs5848 (progranulin-encoding gene), TMEM106B rs1990622
(transmembrane protein 106B-encoding gene), rs704180 in ABCCg (sulfonylurea
receptor 2-encoding gene) and rs9637454 in KCNMB2 (calcium-activated potassium
channel subunit beta-2) are associated with HS-Aging (Beecham et al. 2014, Nelson
et al. 2014, Nelson et al. 2015a, Katsumata et al. 2017) (Table 4). Furthermore, it is
confirmed in several publications that apolipoprotein E (APOE) gene variants are
not associated with increased risk of HS-Aging, which may indicate that AD is a
different entity (Troncoso et al. 1996, Leverenz et al. 2002, Pao et al. 2011, Brenowitz
et al. 2014, Nelson et al. 2015b). The rs5484 SNP of GRN is strongly associated
with HS-Aging as a disease-modifying factor (Nelson et al. 2016). TMEM106B,
containing the rs10990622 SNP, is known to encode a lysosomal protein influencing
the expression of GRN (Brady et al. 2013) and involved in cognitive impairment
of ALS patients as well (Vass et al. 2011). This SNP is also linked to HS-Aging and
the associated neuropathological findings (Simon-Sanchez et al. 2009, Vass et al.
2011, Aoki et al. 2015, Ighodaro et al. 2015, Yu et al. 2015, Nelson et al. 2015b).
The GWAS study by Nelson showed a link between ABCC9 and HS-Aging, as well
as a link between HS-Aging and brain arteriolosceleoris (B-ASC) (Nelson et al.
2014). This gene participates in regulation of potassium channels and plays a role
as a metabolic guard for vascular reactions to hypoxia, ischemia and inflammation
(Nelson et al. 2015a). The fourth known genetic risk factor for HS-Aging pathology
is KCNMB2, more precisely the SNP rs9637454 (Beecham et al. 2014). The gene
product of KCNMB2 is involved in the physiology of the hippocampus (Zarei et
al. 2007).

Table 4. The risk SNPs associated with HS-Aging.

GENE SNP METHOD REFERENCES

GRN rs5848 CANDITATE GENE STUDY  Rademakers et al. 2008

TMEMI1068B rs1990622 CANDIDATE GENE STUDY  Rutherford et al. 2012

ABCC9 rs704180 GWAS Nelson et al 2014, Nelson et al. 2015
KCNMB2 rs9637454 GWAS Beecham et al. 2014

Progranulin, encoded by GRN (on chromosome 17), is expressed in the central
nervous system (CNS) during early neuronal development, and also at modest
levels in neurons and microglia in adults (Dickson et al. 2010, Sun and Eriksen
2011). This protein is proteolytically cleaved into granulin peptides by extracellular
proteases, mainly elastase, likely produced by astrocytes and microglia (Dickson et
al. 2010). In neurodegenerative diseases, levels of progranulin have an increased
association with neuroinflammation. If there is tissue damage in CNS, progranulin
can suppress excessive immunity-based microglial activation and protect neurons
from reactive oxygen radicals and proinflammatory cytokines such as TNF (Sun and
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Eriksen 2011). GRN mutations causing FTLD-TDP have been shown to generate
null alleles via the haploinsufficiency mechanism, resulting in reduced progranulin
protein levels (Rademakers et al. 2008). In FTLD-TDP or other related diseases,
progranulin may act as a potential neurotrophic factor, and its malfunction may
cause neurodegeneration, leading to the development of TDP-43-positive pathology
in HS-Aging (Dickson et al. 2010). Progranulin expression may have effects on
the cleavage and distribution of TDP-43 (Keage et al. 2014). The polymorphic
rs5848 site in the 3’-untranslated region of GRN is associated with variations in
progranulin levels and increased risk of HS-Aging, and it is also part of a binding
site for microRNA miR-659 (Rademakers et al. 2008). miR-659 may also increase
arisk for FTLD-TDP and HS-Aging by an inhibition of progranulin translation and
causing an effect explaining those biochemical and pathological findings related to
GRN-null mutations (Sun and Eriksen 2011).

TMEM106B (on chromosome 7) encodes a transmembrane protein, which is
expressed especially in the frontal lobe (Finch et al. 2011). Genetic variation in
TMEM106B may specifically modify the development of FTLD in subjects with
GRN mutation (Murray et al. 2014). The TMEM106B rs1990622 variant, reported
toregulate GRN expression, was found to be protective against HS-Aging in a cohort
of AD cases (Rutherford et al. 2012).

ABCCg9 (on chromosome 12) codes for an evolutionarily conserved large
polypeptide sulfonylurea receptor 2 (SUR2) (Nelson et al. 2014). This protein
contains multiple membrane-spanning domains and has multiple biologically
complex functions (Nelson et al. 2015a) (Nelson et al. 2015a). Intronic SNPs that
are clustered in the 3’ portion of ABCC9 have been associated with a risk for human
brain illnesses, including sleep disturbances and HS-Aging (Nelson et al. 2015a).
The SUR2 transcript variants discovered may indicate novel alternative splicing
in the mRNA’s coding region. 3’ untranslated region (3’UTR) variants showing
accumulation of a shorter 3" UTR and higher levels of gene expression (Nelson et
al. 2014). The risk variant of the gene, associated with HS-Aging, is an expression
quantitative trait locus that influences the levels and splice variants of the brain
mRNA transcripts derived from ABCCo (Nelson et al. 2015a).

KCNMB2 encodes the transmembrane protein f-subunit of a Ca2*/K* channel
(Katsumata et al. 2017). This subunit is involved the Ca**/K* channel inactivation
with the other associated subunits of the channel, contributing to neuronal voltage-
dependent currents and synaptic transmission (Beecham et al. 2014, Nho et al.
2016, Katsumata et al. 2017). Such Ca**/K* channels can be found in the CA1
hippocampal neurons (Hicks and Marrion 1998), and this suggest that HS-Aging
may be associated with KCNMB2 thorough Ca*/K* channel activation (Katsumata
et al. 2017).

There is evidence for a shared genetic background in HS-Aging and FTLD-TDP:
the SNPs TMEM106B 15190622 and GRN rs5848 have been associated with both
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disorders (Dickson et al. 2010, Nicholson et al. 2013, Murray et al. 2014, Nelson et al.
2015b, Nelson et al. 2015¢). Based on this and the shared TDP-43 immunopositivity,
it has been suggested that there is a pathogenic link between HS-Aging and FTLD-
TDP (Ighodaro et al. 2015, Nelson et al. 2015b, Nelson et al. 2015¢).

2.6.5. HYPOTHESES ON PATHOGENESIS

Similar to other sporadic neurodegenerative diseases, HS-Aging is a complex
and multifactorial disease, contributed to by environmental factors, risk gene
polymorphisms and more specific neuropathological factors (Nelson et al. 2016)
(Figure 10). The possible mechanisms/pathways behind HS-Aging are known only
superficially. The genetic risk variants of HS-Aging have been suggested to work as
upstream or downstream factors.

ABBCgis a genetic upstream factor that may be linked to brain arteriolosclerosis
(B-ASC). In HS-Aging and associated B-ASC (Ighodaro et al. 2015, Ighodaro et
al. 2017), the brain arterioles are not thickened by amyloid deposits but instead
caused by hyaline, and it is often associated with lymphocytic inflammation around
the hyalinized area (Nelson et al. 2016). Fibroid necrosis, microcalcification,
degeneration of smooth muscle cells of the vessel wall and multiluminal arteriolar
structures can be seen in these small vessels (Nelson et al. 2016). There may also
be other structural changes in the small arterioles, such as a complex arrangement
of pericytes, endothelial cells, astrocyte endings and extracellular matrix. These
arterioles have variable functions that are still somewhat unclear concerning waste
removal, blood pressure regulation, neuroglial activity and the neuroimmune system
(Nelson et al. 2016). The SNPs of TMEM106B and GRN have been suggested to
act as downstream factors, modifying the phenotype of the disease. These factors
may affect the outcome of the disease, possibly causing misfolding and aggregation
of the TDP-43 protein (Nelson et al. 2016).
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Figure 10. A hypothetical model of the pathogenic pathway involved in HS-Aging. ABCC9 (marked with
yellow circle) is associated with hippocampal sclerosis as well with brain arteriolosclerosis (B-ASC).

2.7. ALZHEIMER'S DISEASE

2.7.1. EPIDEMIOLOGY

Worldwide, AD is the most common neurodegenerative disease-causing dementia,
covering 50-70% of all subjects with the condition (Jellinger 1991, Breteler et al.
1992). Both the prevalence and incidence significantly increase with age (Hy and
Keller 2000). The average prevalence is settled between 5-7%, varying from continent
to continent (Prince et al. 2013). The incidence of AD in Europe has been reported
to be 1.3 times greater than in the USA (mean in USA 15/1000 person-years, mean
in Europe 19.4/1000 person-years) (Kawas et al. 2000, Kukull and Ganguli 2000,
Fratiglioni et al. 2000). One possible, though not the only explanation for the higher
incidence rate among women might due to longevity of women compared to men,
(Vina and Lloret 2010). The incidence has been shown to peak at the age range of
80-89 years, decreasing in the older age groups (Prince et al. 2016).
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2.7.2. CLINICAL FEATURES

In 2011, the National Institute on Aging and Alzheimer”s Association (NIA-AAA)
published new combined (based on genetic and biomarker) diagnostic guidelines for
AD, allowing the diagnosis of probable AD to be set with increasing certainty among
living patients. However, examination of brain after death is necessary for definite
AD diagnosis (Grandy 2012). The clinical diagnosis of AD is not always obvious and
simple because frequently there are mixed pathological processes behind cognitive
dysfunction. The clinical progression of AD is seen as increasingly severe memory
problems, behavioral changes as well as difficulties in managing with daily life (Allan
et al. 2017). Clinically there are three different stages seen in AD: 1. Early/mild, 2.
Middle/Moderate, 3. Late/severe. (Li et al. 2014). From stage one to three, memory
loss worsens, problems with language are more obvious, daily tasks become more
difficult to handle and social activity decreases. At the final stage, the selfhood and
autonomy of the patient is lost.

Individuals suspected to have dementia should be tested with neuropsychological
tests in order to determine the correct diagnosis early enough and organize the
follow-up for disease progression. For clinical assessment of progressed dementia
there are many cognitive screening tests available, though the most widely used is
Mini-Mental Status Examination (MMSE) (Yang et al. 2016).

Differentimaging methods are used for detecting changes in AD brains. Magnetic
resonance imaging (MRI) can detect atrophy in the medial temporal lobes. Damage
in the brain might be severe (quite large areas of atrophy can be seen in the entorhinal
cortex and hippocampus), even though the patient is asymptomatic or presents only
mild symptoms. MRI alone cannot be used for diagnosis because the typical findings
in AD often overlap with the other dementing diseases, and sometimes subjects
with AD have atypical findings in MRI (Bonifacio and Zamboni 2016). Positron
emission tomography (PET) imaging methods are sometimes used as diagnostic
help as well. FGD-PET (fluoro-2-Deoxy-D-glucose) measures decreased glucose
metabolism as an indirect measure of the synaptic activity. Amyloid PET is based on
several - amyloid radioligands, which bind to -amyloid in the brain, and in turn
Tau PET radioligands bind to Tau protein. Neither of these methods can be used to
make a definitive AD diagnosis because it is possible for healthy elderly people to
have positive -amyloid or Tau PET results (Gordon et al. 2016, Villemagne et al.
2017). It is also possible to detect AD-related pathology using biomarkers found in
the cerebrospinal fluid (CSF). In the AD brain, the levels of Tau and phospho-Tau
increase because these proteins no longer bind with microtubules to stabilize these
structures. This is caused by AB accumulation, which in turn causes activation of
several kinases causing hyperphosporylation of Tau. Soluble A, especially AB42,
levels decrease as a consequence of increased aggregation of AP to plaques (Spies
et al. 2013, Herukka et al. 2017).
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2.7.3. NEUROPATHOLOGY

AD pathology may begin decades before the onset of the clinical symptoms are
seen. In postmortem brains, macroscopic atrophy is seen in different brain areas:
the temporal, parietal and frontal lobes and sometimes occipital lobe as well as the
motor cortex. The amount of white matter is decreased when ventricular systems
are dilated and sulci are widened (Rani et al. 2016).

The typical histological changes in AD include the following findings (Braak
and Braak 1991, Thal et al. 2002, Perl 2010, Hyman et al. 2012a): 1) parenchymal
AP deposits called neuritic plaques, 2) intraneuronal neurofibrillary tangles (NFTs)
mainly consisting of Tau protein, 3) dystrophic neurites and neuropil threads
(NTs) consisting of Tau formed as misrepresentation of neuronal processes, 4)
loss of synapses, 5) loss of neurons, 6) cerebral amyloid angiopathy (CAA) and
7) leptomeningeal AP deposits. Other commonly seen histological features are
granulovascular degeneration, Hirano bodies, lipofuscin and corpora amylacea
(Singhrao et al. 1995, Mitake et al. 1997, Funk et al. 2011, Moreno-Garcia et al.
2018), but none of these changes are specific to AD and can also be seen to some
degree in normal aged brains.

AP deposits (Figure 11) can be divided into two categories: diffuse and focal.
Diffuse deposits harbor an irregular shape and inaccurate borders, and they are
often seen in normal aging. Focal deposits are categorized into three subcategories:
primitive plaque, neuritic plaque and compact plaque (Masters et al. 1985, Selkoe
2001, Murphy and LeVine 2010).

Neuritic plaque

Diffuse plague

Ccmpactl plaque

Figure 11. Morphological types of AB plaques. Images constructed from Neuropathology, 3 Edition, 2012,
by David Ellison and Seth Lowe.
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NFTs are composed of paired helical filamentous aggregates of hyperphosphorylated
Tau protein. Those NFTs can be classified as intra- and extracellular tangles (ghost
tangles) (Kosik et al. 1986, Trojanowski and Lee 1995, Binder and Smrzka 2006).
NFTs (Figure 12) form plaques composed of dystrophic neurites, often merged with
AP plaques and unorganized NTs (Kosik et al. 1986, Trojanowski and Lee 1995,
Binder and Smrzka 2006). NFTs might present in multiple forms, depending on
the brain area where the neuron is located. In pyramidal cells, band-shaped NFTs
can be observed, flame-shaped NFTs are mainly seen in large pyramidal cells (Fahn
et al. 2011), small globose tangles are detected in small neurons in some cortical
layers, whereas large globose tangles are seen, for example in the substantia nigra
(Fahn et al. 2011). Ghost tangles are extracellular remnants of the Tau protein in
a dead neuron (Miyasaka et al. 2005).

Early stage

- o &
Tau protein  Neuron Amyloid beta

Established stage

Late stage

I

Figure 12. Maturation of NFTs. At the early stage, Tau protein is accumulated into the neuron in a diffuse
manner, often around the nucleus. At the established stage, there are paired helical straight Tau filaments.
The late stage is represented by ghost tangles, in which Tau filaments are left, but the neuronal material is
dead and phagocytosed. Modified from Neuropathology, 3¢ Edition, 2012, by David Ellison and Seth Lowe.

Three different staging systems (Braak, Thal and CERAD) are used to set the
neuropathological diagnosis of AD (Braak and Braak 1991, Thal et al. 2002, Hyman
et al. 2012a). Each of these schemes seek to offer an estimate of the probability that
cognitive impairment of the subject is caused by AD.

The Braak stages (I-VI) are determined by the number of NFTs and other tau
pathology found in different cortical areas (Figure 13): In stages I-II, NFTs are
found in the transenthorinal region of the brain; in stages ITII-IV, NFTs progress
into limbic regions, including the hippocampus; and in stages V-VI, NFTs spread
into the neocortical regions as well (Braak and Braak 1991, Braak et al. 2006).
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Figure 13. Brain areas studied for Braak staging with Tau immunohistochemistry in suggested order of
assesment. Block 1= Occipital cortex, Block 2= Temporal Cortex, Block 3 = Anterior hippocampus and Block
4 = posterior hippocampus. Modified from Alafuzoff et al. 2008.

CERAD (The Consortium to Establish a Registery for Alzheimer”s disease) scores
(o, sparse, moderate or frequent) are defined by semiquantitative neuritic plaque
density in different cortical areas (Hyman and Trojanowski 1997) (Figure 14). The
plaque score is age-related (age at death), which determines the probabilty of AD
behind dementia.
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Figure 14. A. Brain neocortical sections used to obtain CERAD score, B. CERAD neuritic plaque densities.

Thal phases are A} deposits, accumulating in a progressive hierarchical fashion,
from phase 1 to phase 5, in certain brain areas (Figure 15). Phase 1 AP deposits are
found in the neocortex, Phase in 2 the allocortex, Phase 3 in the interbrain and the
striatum, Phase 4 in the brainstem, and Phase 5 in the cerebellum and the other
locations in the brain (Thal et al. 2002).

Phase AB plaques

land2 Neocortex and
hippocampus

Phase 1 3 Striatum
4 Brainstem
Phase 4 Phase 5 2 L

Figure 15. Progression of AR plaques in the brain categorized by the Thal Phase scheme. Images from
the article Thal et al. 2002.

The NIA-AAA ABC scoring system combines all three schemes into one, called the
ABC score (A for AB plaques = Thal Phases, B for Braak NFTs and C for CERAD).
The ABC score gives the probability for AD based on neuropathological findings:
NOT, LOW, INTERMEDIATE AND HIGH (Kovacs and Gelpi 2012, Hyman et al.
2012b).
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2.7.4. GENETICS

The majority (>95%) of AD patients suffer from the sporadic form of AD, but a
small quantity of patients (1-5%) have familial AD (FAD). FAD is defined as early-
onset (age at onset before 65 years) and is known to be caused by mutations in
three known genes: presenilin 1 (PSEN1 on chromosome 14) (Lanoiselee et al.
2017, Kelleher and Shen 2017), presenilin 2 (PSEN2 on chromosome 1) (Cai et al.
2015, Lanoiselee et al. 2017) and amyloid precursor protein (APP on chromosome
21) (Lanoiselee et al. 2017).

Over 300 detected mutations (https://www.alzforum.org/mutations) in the
PSEN1 gene are found in ~50% of all familial AD patients (Cai et al. 2015, Kelleher
and Shen 2017, Mengel et al. 2019). Mutations in PSEN2 areless common compared
to PSEN1 as only 38 mutations have been discovered to date (Cai et al. 2015).
Mutations in both genes increase the carboxylpeptidase proteolytic activity of the
y-secretase and production of more toxic and longer AB42 peptide, but the effect
of the PSEN1 gene causes more harm (Giri et al. 2016).

APPmutations are mainly found within or in a close proximity of the sites where
Ap protein is cleaved from APP. Subjects with trisomy of chromosome 21 (Down
syndrome) have three copies of the APP gene, causing excessive APP production
and A accumulation and thus predisposing to early onset of AD (Hithersay et al.
2019). Most of the APP mutations are harmful as they increase AB42 production
and its aggregation and deposition in blood vessels. The Swedish double mutation
(KM670/671NL) of APP is known to increase abnormal cleavage of cellular APP by
B-secretase (Goate et al. 1991, Mullan et al. 1992). The London mutation (V7171) is
a point mutation localized close to the y-secretase cleavage site (Goate et al. 1991,
Mullan et al. 1992), causing increased production of the most pathogenic form of Aj3,
APB42. The Flemish mutation (A692G) is located within the AB sequence, near the
a-secretase cleaving site. It increases AP production as well A deposition in brain
blood vessels, which can cause intracerebral hemorrhages (Hendriks et al. 1992).
Another mutation located within the coding region of A is the Arctic mutation
(E693G), causing increased A protofibril formation and aggregation (Kamino et
al. 1992, Jonsson et al. 2012a, Maloney et al. 2014). Protective APP mutations have
been reported as well. One of these is the Icelandic mutation (A673T), near to the
[B-secretase cleavage site in amino acid number 2 of the Af sequence (Kamino et al.
1992, Jonsson et al. 2012a, Maloney et al. 2014).This mutation has been shown to
reduce [-secretase cleavage of APP, resulting in a reduction in the formation of A
peptides (Kamino et al. 1992, Jonsson et al. 2012a, Maloney et al. 2014). Af levels
are also decreased in plasma (Martiskainen et al. 2017). The other FAD-associated
APP mutations and associated cleavage sites are shown in Figure 16.
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Figure 16. Summary of APP mutations and their locations in APP protein.

Sporadic AD (~95%) is caused by a combination of genetic and environmental
factors, and is characterized by onset after the age of 65 (Lambert et al. 2009,
Awada 2015, Hinz and Geschwind 2017, Kunkle et al. 2019) (Figure 20). GWAS
studies have identified ~30 genetic risk gene variants, which are mainly categorized
into four separate categories based on the function of the proteins these genes
encode (Bertram and Tanzi 2009, Kunkle et al. 2019): immunity, synaptic function,
endocytosis and lipid metabolism (Figure 20). Inheritance of several of these genetic
risk polymorphisms is believed to result in an increased risk of developing AD
(Lambert et al. 2009, Awada 2015, Hinz and Geschwind 2017, Kunkle et al. 2019).

Human apolipoprotein E (ApoE) is a ~34-kDa polypeptide coded by the
polymorphic APOE gene, located on chromosome 19q13, is the most well-known
and the mostinfluential risk gene of late-onset AD (Strittmatter et al. 1993).The ApoE
protein is needed for transporting cholesterol for synapse development, dendrite
formation, long-term potentiation and axonal guidance (Huang and Mahley 2014).
ApoE may have an effect on A metabolism, aggregation and deposition in the brain
(Kim et al. 2009, Kim et al. 2013).There are three APOEe isoforms separated from
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each other by two cysteine-arginine interchanges at the polypeptide chain: APOEe2,
APOEs3and APOEg4 (Kim et al. 2009). APOEe3 allele is the most common, APOEg4
is found in ~15% of the normal population (Figure 17), but among AD patients
44% carry this allele (Liu et al. 2013). Even one copy of this allele increases the
risk of developing AD threefold and two copies increase the risk 10-fold. APOEe2
has some protective effect on AD development, and APOEe3 carriers have a lower
risk of developing AD than carriers of APOEe4 (Corder et al. 1994a, Huang and
Mabhley 2014). This risk is reported to vary by demographic factors including sex,
ethnicity, geography and even age (Heffernan et al. 2016). The APOE haplotype
modulates AD risk in €3/e3 homozygotes, indicating that there is another risk
variation at the APOE locus in addition to the protein isoform (Myllykangas et al.
2002, Rantalainen et al. 2016).

APOE alleles

77%

APOEe2 APOEe3 = APOEe4

Figure 17. Proportions of APOE alleles in the general population.

2.7.5. HYPOTHESES ON PATHOGENESIS

The most predominant hypothesis on the neurobiological progression leading to
familial AD, as well sporadic AD, is the Amyloid Cascade Hypothesis (Figure 18)
(Selkoe 1991, Hardy and Higgins 1992). This hypothesis assumes that, with age, Ap
protein begins to accumulate in the brain, caused by increased production (mainly
in FAD) and/or decreased degradation of AP (in sporadic form), co-affected by
genetic and environmental factors. When A accumulates in the brain, it causes the
activation of many kinases (glycogen synthase kinase-33, cAMP-dependent protein
kinase and cyclin-dependent kinase-5), which in turn cause hyperphosphorylation
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of Tau (Selkoe 1991, Hardy and Higgins 1992). Hyperphosphorylated Tau forms
NFTs, which cause synaptic dysfunction and neuronal loss leading to memory loss
and cognitive problems (Arendt et al. 2016).

AMYLOID CASCADE
APP, PSEN1, PSEN2

EARLY-ONSET AD =

Figure 18. Early-onset AD, risk genes and amyloid cascade.

APP is an integral membrane protein concentrated in the synapses of neurons but
also expressed in other tissues, and it is transported in vesicles into the cell surface
after being synthesized in the endoplastic reticulum (ER) (Caporaso et al. 1994).
AP can be produced from APP by the amyloidogenic pathway (Hardy and Higgins
1992) (Figure 19).

a-secretase cleaves within the AB-domain, which produces sAPPa. sAPPa
participates in neuronal plasticity and protects against excitotoxity (Furukawa et al.
1996). Certain members of the ADAM-family metalloproteases harbor a-secretase
activity (Kojro and Fahrenholz 2005). This pathway blocks the production of Ap
(Figure 19), called the non-amyloidogenic pathway (Hardy and Higgins 1992). In
this pathway, y-secretase (composed of PSEN1 or 2, nicastrin APH1 and PEN2)
cleaves CTF 83 (C-terminal fragment) and produces soluble p3 peptide and AICD
(APP intracellular domain). p3 peptide is proposed to have a role in AD but is not
especially harmful because it does not form oligomers or 3-sheet structures as easily
when compared to A, and it does not activate microglia. AICD fragments (C59
and C57) can be compared to AB, and AICD is known to modulate gene expression,
apoptosis and cytoskeletal dynamics in AD (Zhang et al. 2012).

In the amyloidogenic pathway (Figure 19) (Hardy and Higgins 1992), APP is first
cut by the B-secretase enzyme (BACE1), producing sAPPf, CTF 89 and 99. Then
y-secretase (composed of PSEN1 or PSEN2, nicastrin APH1 and PEN2) cleaves CTF
89 or CTF 99 to generate the different isoforms of AB, such as Ap40, Ap42 and
AP43 (Takami et al. 2009). The aggregation ability of AB42 is high and it forms
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AB-plaques. However, recently it has been indicated that the oligomeric as well the
fibril forms of AP might be the most toxic molecules for the brain (Arbor et al. 2016).
This may explain the ability of AB oligomer to form calcium ion (Ca?*) channels
within the neuronal cell membrane lipid raft domains, causing an uncontrollable
influx of Ca2* ions into cells, leading to neuronal cell death (MacLeod et al. 2015,
Arbor et al. 2016).

NON-AMYLOIDOGENIC PATHWAY AMYLOIDOGENIC PATHWAY

s-APPa s-APPB

/)'Hgomer fibril

monomers

Extracellular space/lumen \

Cell membrane

WAL

AICD CTF 83 APP CTF 89, 99 AICD Intracellular space

Synaptic failure and neuronal loss

Figure 19. The amyloidogenic and non-amyloidogenic pathway of APP processing. APP (amyloid precursor
protein, AICD (amyloid precursor protein intracellular domain, CTF (c-terminal fragment), s-APPa (soluble
APP alpha), s-APPB (soluble APP beta) and NFT (neurofibrillary tangles).

The sporadic late-onset form of AD is a multifactorial disease driven by several
different genes and environmental factors (Lambert et al. 2009) (Figure 20). GWAS
have identified 30 common loci increasing the risk of developing the disease and
highlighted possible pathways concerning innate immunity, synaptic function,
endocytosis, lipid metabolism and AP metabolism (Chen et al. 2017). How these
pathways are related to each other is still under investigation (Lambert et al. 2009,
Hinz and Geschwind 2017).
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Figure 20. Late onset AD pathways.

Gene polymorphisms associ ated with endocytosis functions are located in PICALM
(Thomas et al. 2016), SORL1 (Yin et al. 2015) and CD2AP (Naj et al. 2011). These
genetic changes are, for example, involved in modulating autophagy, Tau pathology
and APP trafficking to amyloidogenic endocytic pathways (Chouraki and Seshadri
2014). Polymorphisms of PTK2B (Li et al. 2016), BIN1 (Seshadri et al. 2010),
and MS4A cluster (Antunez et al. 2011) are involved in the regulation of calcium
signaling and homeostasis. Polymorphism in genes CD33 (Cao and Crocker 2011)
and TREM2 (Jonsson et al. 2013) produce immunity-associated proteins regulating
inflammatory responses and microglia survival as a reaction to Af accumulation
(Guerreiro et al. 2013, Jiang et al. 2014). The genes associated with lipid metabolism
and A clearance are CLU (Harold et al. 2009) and ABAC7 (Hollingworth et al. 2011).
CLU also functions as part of the complement system involving modulating the
immune system (Wang et al. 2019). Several of these risk genes are multifunctional,
working in two or even three categories of hypothesized pathways. Rare mutations
in genes associated with FAD (APP, PSEN1 and PSEN2) have also been found to
cause some forms of late-onset AD (Cruchaga et al. 2012).

Non-geneticfactors are also associated with the risk of late-onset AD. Cholesterol-
rich lipid rafts of the cell membrane offer a location for y-secretase cleavage of APP
and AP oligomers are able to form Ca2* ion channels through the cell membrane
(Arbor et al. 2016). If cholesterol levels in the brain are increased, the amyloidogenic
processing of APP and AP production is also increased (Mendiola-Precoma et al.
2016). Patients with Type 2 diabetes have a doubled risk of having AD. It has been
hypothesized that AD may be Type 3 diabetes (de la Monte and Wands 2008). AD
patients have decreased insulin sensitivity in the periphery caused by prolonged
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hyperinsulinemia (Ferreira et al. 2018). They also have increased insulin resistance
and decreased insulin receptor expression as well as decreased insulin transport
into the brain. The abnormalities caused by insulin are most notable in the medial
temporal lobe (the area heavily affected by A accumulation among AD patients). A
decreased level of insulin in the brain activates the cascade, decreasing the amount
of the insulin degrading enzyme (IDE), which in turn reduces the breakdown of
AP (Zilliox et al. 2016).

2.8. FRONTOTEMPORAL LOBAR DEGENERATION (FTLD)

FTLD is a term describing a group of different disorders with various clinical
presentations, genetics and histopathological features. Shared cognitive and motoric
features are seen in different FTLD subtypes, but the biological mechanisms and
proteinopathies behind the clinical symptoms are different (Irwin et al. 2015).

2.8.1. EPIDEMIOLOGY

FTLDis thought to be the third most common neurodegenerative dementing disease.
Forthose with dementia onset at < 65 years, FTLD is estimated to cover 10-20% of the
cases (Luukkainen et al. 2015). It might be more frequent in males, according to some
studies (Mercy et al. 2008, Garre-Olmo et al. 2010). The prevalence figures for FTLD
have varied between 4.0-29.9/100,000 in different European studies (Ratnavalli et
al. 2002, Harvey et al. 2003, Garibotto et al. 2011). In the Finnish population (ages
between 45-70 years), the prevalence was 26.8/100000 (Luukkainen et al. 2015).
In the population aged 45-65 years in Northern Finland, the mean 1-year incidence
of FTLD was 5.54/100000 and the prevalence was 20.5/100000 (Luukkainen et
al. 2015). Incidence figures from other European countries have varied from 1.3-
3.5/100000 (Mercy et al. 2008, Garre-Olmo et al. 2010).

2.8.2. CLINICAL FEATURES

In clinical practice, the term FTD (frontotemporal dementia) is used for those
diseases grouped neuropathologically under the term FTLD. FTD can be categorized
into three main groups: behavioral variant FTD (bvFTD), semantic dementia (SD)
and progressive nonfluent aphasia (PNFA) (Ghosh and Lippa 2015). FTD is a more
“aggressive” disorder than other common forms of dementias. The mean survival
period in all FTD forms is estimated to vary between 6 and 10 years after first
symptoms are seen (Roberson et al. 2005, Knopman and Roberts 2011).
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In bvFTD (~ 50% of FTD types), the apparent clinical features are variable and
multiple changes in the personality are seen, such as lack of empathy, unexpected
and uncontrolled spontaneous reactions (disinhibition), difficulties with motivation
and ability to concentrate, change in eating, inability to maintain daily routines,
decreased ability of executive functions and lack of social contacts due to increasing
apathy (Michotte et al. 2001, Mychack et al. 2001, Mendez et al. 2008). Those
patients with bvFTD (Bang et al. 2015) might have also motor neuron disease (up
to 40%) or parkinsonism (about 20% of patients) (Burrell et al. 2011).

SD covers 20- 25% of patients with FTD (Johnson et al. 2005). These patients
often have different problems with language, problems recollecting words as well as
problems in understanding information without words (Roberson 2006, Rosen et al.
2006). Disinhibition and obsessive-compulsive behavior is often seen, and patients
with semantic dementia have no idea of their social shortcomings (Roberson 2006,
Rosen et al. 2006). In semantic dementia, semantic memory is poor, but episodic
memory is preserved relatively well (Ghosh and Lippa 2015).

In PNFA (~ 25% of FTD), the first disability is slow speech, which is also not
fluent. (Johnson et al. 2005, Knibb et al. 2009). The style of speech might be
telegraphic, with mistakes in grammar (Johnson et al. 2005, Knibb et al. 2009).
These patients have difficulties understanding multilayered sentences and some of
the patients may become mute (Josephs 2007).

SD and PNFA are sometimes referred together as a primary progressive aphasia,
which includes three clinical variants based on the specific speech and language
features (Gorno-Tempini et al. 2011).

Neuroimaging studies, traditional volumetric MRI, MRI-based fMRI (resting
state functional) and DTI (diffusion tensorimaging),and FDG-PET (hypometabolism
on 18-F fluorodeoxyglucose) are used to identify different FTD types (Ghosh and
Lippa 2015). For structural imaging, MRI should be used. In FTD, atrophy is seen
bilaterally in both frontal and temporal lobes, especially in the front part of the
cingulum, uncus and parahippocampal gyrus, but also in the borders of parietal
and occipital lobes (Munoz-Ruiz et al. 2012). Functional imaging, such as PET,
is improving the reliability of diagnosis. Through PET imaging hypoperfusion or
hypometabolism in the frontal and/or temporal lobes can be seen (Rascovsky et al.
2011). DTI is not used routinely for FTD imaging, but it is shown to be even more
sensitive in detecting the changes in FTD brain (Santillo et al. 2013).
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2.8.3. NEUROPATHOLOGY

Table 5. The pathological subtypes of frontotemporal lobar degeneration. Modified from Neuropathology,
3 Edition, 2012, by David Ellison and Seth Lowe.

Frontotemporal lobar degeneration= FTLD
Pathological subtypes FTLD-TDP FTLD-Tau FTLD-UPS FTLD-FUS FTLD-ni
IHC- findings TDP-43 inclusions Tau-pathology p62 or/and ubiquitin FUS inclusions No inclusion
positive inclusions. No detected with
positivity with other IHC- markes for
subtype IHC- markers other subtypes
Anatomical region Prefrontal and anterior Frontotemporal Temporal Temporal Frontotemporal
temporal
Shared histological features | Mier 1alation superficial cortical layers, transcortical microvacualation and status spongiosus, astrocytic gliosis,
neuron loss and in some cases motor neuron loss
Clinical manifestations bvFTD* PNFA** Liviiss sD PNFA

*bvFTD = behavioral variant FTD
**PNFA = progressive nonfluent aphasia
##25D = semantic dementia

The pathological subtypes of FTLD are divided into five main groups (Sieben et al.
2012, Mackenzie and Neumann 2016): FTLD-Tau, FTLD-TDP, FTLD-UPS, FTLD-
FUS, FTLD-ni (Table 5) This categorization is based on immunohistochemical
stainings, typically involving the following: Tau, TDP-43, FUS, ubiquitin or p62.
The most common neuropathological subtype is FTLD-TDP (~50%), the second
most common is FTLD-Tau (~45%), and the third most common is FTLD-FUS
(~5%). FTLD-UPS and FTLD-ni are rare (<1%) (Bigio 2013).

2.8.3.1. FTLD-TDP

The most common subtype (50%) of FTLD is FTLD-TDP. Common neuro-
pathological features of FTLD-TDP include progressive neuronal loss, astrocytic
gliosis and microvacuolation of the superficial laminas of the frontal and temporal
cortical areas (Sampathu et al. 2006). As the disease becomes more severe, these
changes can be seen transcortically. FTLD-TDP s classified into four different groups
(Table 6) A, B, Cand D according to a harmonized classification system (Mackenzie
et al. 2011b) based on the different TDP-43 positive pathological findings (Figure
21): 1. neuronal cytoplasmic inclusions (NCI), 2. neuronal intranuclear inclusion
(NII) and 3. dystrophic neurites (DNs) (Cairns et al. 2004, Mackenzie et al. 2006,
Sampathu et al. 2006, Davidson et al. 2007, Dickson 2008a).
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Table 6. The neuropathological subtypes of FTLD-TDP

Type A Type B Type C Type D
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FTLD-TDP classification with typical neuropathological findings is based on the
different morphological TDP-43 deposits (Mackenzie et al. 2011b). Type A is the
most prevalent (~40%), and this type typically shows numerous NCIs and short
DNs in cortical neurons. In the dentate gyrus of the hippocampus some NCIs can
be seen, as well as a moderate number of NIIs. In Type B (prevalence ~35%), NCIs
are seen in layer 2, but also in deeper cortical layers. In the granular cell layer of
the dentate gyrus of the hippocampus, NCIs are quite common. DNs may be found
transcortically, and N1Is are seen in some cases. Hippocampal sclerosisis possible. In
type C (prevalence ~25%), NCIs may be seen both neocortically and in the granular
cell layer of the dentate gyrus. In layer 2, but also in deeper layers, numerous long
and thick DNs are seen. NIIs are possible, and severe neuronal loss and gliosis
in the hippocampus are seen occasionally. Type D is very rare, typically showing
many short DNs in the neocortex. Some NCIs may be demonstrated neocortically
and in the granular cell layer of the hippocampus. NIIs are lentiform shaped and
frequent (Lee et al. 2017).
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Figure 21. Different types of TDP-43 pathology found in neurons in FTLD-TDP.

2.8.3.2. Other FTLD types

Mutations in the microtubule-associated protein tau (MAPT) gene on chromosome
17 were first detected in families with frontotemporal degeneration and parkinsonism
(FTDP-17) (Hutton et al. 1998). 50% of these families harbor a nearby mutation
in GRN in chromosome 17 (Baker et al. 2006). Pathologically, patients with
mutations in GRN show FTLD with TDP-43 pathology (FTLD-TDP), whereas
familial MAPT mutations are considered to belong to FTLD-Tau, having the Tau
pathology (Rademakers et al. 2013, Forrest et al. 2018). FTLD-Tau cases with
familial mutations in MAPT are separated from sporadic cases, based upon the
independent pathogenic mechanisms of these two entities (Forrest et al. 2018).
Further subclassification of sporadic FTLD-Tau is based on different tau protein
isoforms, 3-repeat TAU (3R) and 4-repeat Tau (4R). Pick’s disease (PiD) is a 3R
tauopathy, whereas progressive supranuclear palsy (PSP), corticobasal degeneration
(CBD), and argyrophilic grain disease (AgD) are 4R diseases (Braak and Braak 1987,
Baborie et al. 2011, Josephs et al. 2011, Sieben et al. 2012). These diseases share
neuropathological features such as accumulation of paired helical or straight Tau
filaments in neurons and glial cells. In PiD, Tau-positive intracytoplasmic spherical
inclusions (Pick bodies) are seen in pyramidal neurons, dentate granule cells in the
hippocampus and neocortical areas (Dickson 2001). In PSP, CNS regions harbor
Tau aggregates or diffuse Tau deposits in neuronal and glial cells (Dickson 1999).
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In CBD, (Dickson et al. 2002) findings are neuronal loss and gliosis of astrocytes,
swollen neurons and superficial spongiosis. In Argyrophilic grain disease (AgD),
spindle-shaped argyrophilic grains (ArG) in dendrites and axons, as well as coiled
bodies in oligodendrocytes, are mainly found in limbic regions (Braak and Braak
1987, Togo et al. 2002, Tolnay et al. 2004).

FTLD-FUS is characterized by FUS-immunoreactive inclusions in neurons
(NCIs, NIIC) and glial cells (GCIs), and three subtypes are described: 1. atypical
FTLD-U (aFTLD-U), 2. basophilic inclusions body disease (BIBD), and 3. neuronal
intermediate filament inclusion disease (NIFID) (Mackenzie et al. 2009, Mackenzie
et al. 2010a, Mackenzie et al. 2011a). FTLD-U is the most common, and neuronal
inclusions (NCIs and NII) in this group are FUS, ubiquitin and p62 positive,
but TDP-43 and Tau negative (Mackenzie et al. 2008, Mackenzie et al. 2011a),
and the inclusions are mainly found in the frontal and temporal neocortex, and
the hippocampus. NIFID is characterized by FUS-positive NCIs, NIIs and GClIs
(Mackenzie et al. 2008, Mackenzie et al. 2011a). NIIs are rare in BIBD, but GCIs
are common (Yokota et al. 2008, Munoz et al. 2009, Mackenzie et al. 2011a).

In FTLD-UPS, inclusions are immunopositive only for ubiquitin and p62
antibodies. After the TDP-43 antibody was discovered, many cases in the FTLD-
UPS category were regrouped into FTLD-TDP (Mackenzie and Neumann 2016,
Hernandez et al. 2018). In rare FTLD-ni, no pathological inclusions are detected
with any other FTLD IHC-markers (Mackenzie et al. 2009, Mackenzie et al. 2010a).

2.8.4. GENETICS

In the FTLD-Tau group, the inherited causative gene is MAPT on chromosome 17,
encoding the Tau protein and covering 6-18% of all mutations in FTLD patients
(Sieben et al. 2012, Mackenzie and Neumann 2016). There are several different
MAPT mutations associated with FTLD- Tau. The H1 haplotype of MAPT is
associated with sporadic FTLD-Tau (Kaivorinne et al. 2008a, Kaivorinne et al.
2008b). Mutations in the FUS gene are not demonstrated in the FTLD-FUS group
(Sieben et al. 2012, Mackenzie and Neumann 2016). A link to FUS mutations has
been shown in juvenile onset of BIBD (Baumer et al. 2010, Lee et al. 2013). Mutations
in charged multivesicular body protein 2B (CHMP2B) are associated in some cases
with FTLD-UPS (Holm et al. 2009, Sieben et al. 2012). Causative mutations for
FTLD- ni have not been detected (Sieben et al. 2012). The FTLD-TDP Type A is
often associated with the gene mutations GRN and Cgorf72. Family history is seen
in about 50% of cases (Sieben et al. 2012, Mackenzie and Neumann 2016). Type B
involves genetic mutations in TARDP and C9orf72, and a positive family history
occurs in 30% of affected subjects (Sieben et al. 2012, Mackenzie and Neumann
2016). In Type C, about 30% of subjects have a positive family history. In type
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D, mutations in the valosin-containing protein (VCP) gene have been described
(Sieben et al. 2012, Mackenzie and Neumann 2016). The frequency of familial VCP
mutations is <1% of all FTLD mutations (Takada 2015). The gene mutations and
FTLD subtypes are summarized below (Table 7).

Table 7. General summary of FTLD-subtypes and associated genes.

FTLD-TDP FTLD-FUS FTLD-UPS FTLD-ni FTLD-Tau
Genetics GRN No mutations CHMP2B Cases largely MAPT/Ch17
C9orf72 assigned to MAPT/H1
TARDBP FUS (juvenile FTLD-TDP
VCP BIBD) group

2.8.4.1. C9orf72 hexanucleotide repeat expansion mutation

Hexanucleotide expansion mutation in Cgorf72 was recognized in FTLD/ALS
(amyotrophic lateral sclerosis) patients in 2011 (Renton et al. 2011, DeJesus-
Hernandez et al. 2011). In Finland, the Coorf72 expansion is the most common
genetic cause of ALS and FTLD (Renton et al. 2011, DeJesus-Hernandez et al. 2011,
Majounie et al. 2012). Neuropathologically the Coorf72 repeat expansion mutation is
known to cause the cytoplasmic TDP-43-positive inclusions seen in motor neurons,
and p62-immunopositive inclusions in cerebellar granular cells (Davidson et al.
2011, Al-Sarraj et al. 2011, Mackenzie et al. 2011b). The Cgorf72 expansion mutation
is able to cause the formation of toxic RNA-foci, which in turn cause regulation
error of the glutamate receptor, RNA-editing, increased Ca2* influx, breakdown
of the nuclear transporting system and accumulation of dipeptide proteins in the
cytoplasm (Donnelly et al. 2013, Mizielinska and Isaacs 2014, Freibaum et al. 2015,
Zhang et al. 2016). It is still under debate which of the repeat lengths is pathological
and causes the disease onset (Byrne et al. 2014, Beer et al. 2015, Kaivola et al. 2019).

2.8.5. HYPOTHESES ON PATHOGENESIS

FTLD is known to be related to several different genes with complex biological
functions. The correlation between different aspects, genetics and neuropathological
findings is not straightforward. There are at least four different pathways associated
with FTLD (Figure 22). Protein degradation, clearance and autophagy pathways
are linked with the genes SQSTM1 (Rubino et al. 2012) UBQLN (Ugwu et al. 2015),
TBK1 (Gijselinck et al. 2015), VCP (Watts et al. 2004), CHMP2B (Skibinski et al.
2005) and OPTN (Pottier et al. 2015). These genes and their protein products
are specifically involved in autophagy and proteasomal degradation. In the second
pathway, the genes GRN (Gass et al. 2006) and CHMP2B (Han et al. 2012) are

50



involved in lysosomal and endosomal function pathways. Genetic risk factors
for FTLD, TMEM106B (Lang et al. 2012) and RAB38 (Ferrari et al. 2014), are
involved in the same pathway as described for GRN and CHMP2B. The third
pathway includes the genes FUS (Zhou et al. 2013), TARDBP (Borroni et al. 2010),
Coorf72 (van Blitterswijk and Rademakers 2015), hnRNPA1 and hnRNPA2/B1
(Kim et al. 2013) and the protein products of these genes are involved in the RNA/
DNA metabolism pathway. Mutations in CHCHD10 (Bannwarth et al. 2014) are
associated with mitochondrial dysfunction. The MAPT (Ghetti et al. 2015) and
DCTN1 (Vilarino-Guell et al. 2009) genes are involved in protein aggregation and
intracellular transport.

LYSOSOMAL TRAFFICKING MITOCHONDRIAL DYSFUNCTION
GRN, CHMP2B, TMEM 1068, RAB38 CHCHD10

PROTEIN DEGRADATION PROTEIN AGGREGATION DNA/RNA METABOLISM
UBQLNZ, TKB1, OPTN, SQ5TM1, VCP, SQSTMA, FUS, hnRNPA1, hnRNPAZ/B1, FUS, TARDPB, hnRNPA2/B1,
CHMP2B, VCP UBQLNZ, DCTN1, MAPT hnRNPA1, UBQLNZ,CI0RF72

Figure 22. The cellular pathways associated with FTLD (modified from Pottier et al. 2016). Protein
degradation: Ubiquitinated proteins (UBQLN2) are decomposed and transported into the proteasome
(VCP) or into preautophagosomal structures (OPTN/TBK1 complex, SQSTMY), which fuse to become the
autophagosome (CHMP2B). Lysosomal trafficking: Selective material recycling (CHMP2B, Rab38, TMEM106,
GRN) and fusion with vesicles (CHMP2B, Rab38). Mitochondrial dysfunction: Recycling of damaged
mitochondria (CHCHD10) into autophagosomes. DNA/RNA metabolism: Aberrant RNA splicing (TDP-43,
FUS, hnRNPA1, hnRNPA2/B1), transcription regulation (TDP-43, hnRNPA1, hnRNPA2/B1), RNA transport
(TDP-43, FUS, UBQLN2, hnRNPA1, hnRNPA2/BT) and RNA foci (C90orf72) disturb DNA/RNA metabolism.
Proteinaggregation: Associated with many genes (VCP, p62, hnRNPAT1, hnRNPA2/B1, TDP-43, FUS, UBQLN2,
C9orf72, MAPT, and DCTNI) which are mutated in FTLD.
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3. AIMS OF THE STUDY

The general aim of this study was to investigate the neuropathological and genetic
background of age-related neurodegenerative disorders, especially HS-Aging and
other TDP-43 proteinopathies.

The specific aims were as follows:

1) To assess the frequency of HS-Aging in a study cohort of Finns aged over
85 years (Vantaa 85+ study).

2) To investigate the possible association of known genetic variants of GRN,
TMEM106B, and ABCC9 with HS-Aging in the Vantaa 85+ study material.

3) Todeterminethefrequency of the protective APPmutation A673T in the Vantaa
85+ study cohort.

4) To identify the causative gene defect and to describe the neuropathological
phenotype of a familial FTLD associated with a rare tumor, dysplastic
gangliocytoma.
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4. MATERIAL AND METHODS

4.1. SUBJECTS

4.1.1. PUBLICATION I-llI

The Vantaa 85+ study consists of all people aged over 85 years old living in Vantaa
in Finland on 1st of April, 1991. In the baseline in 1991 there were 601 subjects
included in this study, and 553 subjects could be clinically examined. As of 2001,
565 subjects were dead, and an autopsy was carried out for 304/565. This is known
to be the second highest autopsy rate in a population-based autopsy study (Zaccai
et al. 2006). 273 of the autopsied subjects had given a peripheral blood sample for
DNA extraction. The neuropathological and clinical data of this study cohort was
first described by Tuomo Polvikoski in 1995 (Polvikoski et al. 1995).

4.1.2. PUBLICATION II

The Cambridge City over-75s Cohort (CC75C) and the Medical Research Council
(MRC) Cognitive Function and Ageing Study (CFAS) are two population-based
clinicopathological studies. CC75C began in 1985 and 2610 individuals (aged 75)
participated in this study, resulting in 241 brain donations to date. The CFAS study
involved 18 226 people (aged =65 years), and at the time of the current study, 562
CFAS brain donations had been collected. Both cohorts have been described earlier
(Brayne et al. 2006, Fleming et al. 2007, Hokkanen et al. 2018).

4.1.3. PUBLICATION IV

This study consists of the index patient (death at age 56) and his sister (death at
age 62). Two other siblings and four other family members were included in this
study. The blood samples were collected from all subjects described above.

4.2. NEUROPATHOLOGICAL PARAMETERS

4.2.1. ORIGINAL SAMPLING PROCEDURE FOR VANTAA 85+

Originally, the brains of the 306 autopsied subjects were fixed in 10% formalin
for at least two weeks. The tissue samples of the right side (from middle frontal,
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superior temporal, middle temporal gyri and inferior parietal lobule) were processed
into FFPE blocks according to the CERAD protocol (Polvikoski et al. 1995). The
entorhinal cortex, hippocampus and occipital lobe samples were embedded in
polyethylene glycol (PEG) for Braak staging (Polvikoski et al. 1995). The other
hemispheres (left) of the brains were left in formalin and were processed into FFPE
blocks after several years.

4.2.2. PUBLICATION I AND II

The pathology of the hippocampi were studied bilaterally. The hippocampal samples
of the left hemisphere were fixed for several years in neutral buffered formalin
before tissue processing and paraffin embedding. The PEG blocks, assessed from
the right hemisphere and containing the hippocampal area, were re-processed into
paraffin. The PEG matrix was removed by immersing the blocks in distilled water
and then in neutral buffered formalin overnight at room temperature. After that,
the blocks were processed in a tissue processor according to standard protocol for
brain samples (Thermo Shandon Excelsior, Thermo Fisher, USA), and embedded
in paraffin.

Hematoxylin-eosin staining of the bilateral histological sections (6 um) was used
to determine the general histological alterations in these samples, as well as the
severity and distribution of neuronal loss in each field of the hippocampus, CA4-CA1
and subiculum by the observers Mia Kero, Liisa-Myllykangas and Anders Paetau.
The severity of neuronal loss was classified: I: Intact/Infrequent; no sign or minor
loss of pyramidal neurons in the CA1 and subiculum. II: Frequent; severe marked
loss of pyramidal neurons in the CA1 and subiculum. III: Complete; total loss of
pyramidal neurons in the CA1 and subiculum. For the statistical analysis, the next
scheme was followed: subdivision I was the non-HS-Aging group and subdivisions
II and III were combined into an HS-Aging group.

For publication II, the Finnish study material (Vantaa 85+) and the two British
study cohorts were combined for the studying of genetic alterations, and different
scoring criteria for HS were used. The severity of neuronal loss of the hippocampus
was determined in the British study cohorts based on the criteria described by
Hokkanen et al. 2018. For the sake of clarity and unity, the Vantaa 85+ study material
was also scored according to a semi-quantitative protocol, which captures various
hippocampal neuron loss patterns (extent, severity and location), comparing their
occurrence in the context of HS-Aging (Hokkanen et al. 2018).

Other variables, used in publication I, have been described earlier: CERAD
scoring (Polvikoski et al. 1995) and Braak-staging (Polvikoski et al. 2001),
a-synuclein pathology/LB (Oinas et al. 2009), brain infarcts, atherosclerosis and
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coronary disease (Myllykangas et al. 2001) and the severity and frequency of CAA
(Makela et al. 2016).

4.2.3. PUBLICATION I

HE-staining was used to determine the histopathological changes of a patient with
a protective APP mutation. The neuritic plaques were originally determined by
Bielschowsky staining and later with THC (details are described in 4.3.2). NFTs
and NTs were originally stained with Gallyas-staining, AP plaques were determined
with methenamine silver, but THC stainings were performed for this study. CAA
was identified with both Congo Red and THC.

4.2.4. PUBLICATION IV

The neuropathologic examination and sample collection of the index patient and
his diseased sister was performed using standardized methods after fixing the brain
for at least 10 days. HE and THC stainings were used to evaluate the changes in
the brains of the index patient and his sister.

4.3. IMMUNOHISTOCHEMISTRY

4.3.1. PUBLICATIONS | AND Il

The hippocampus samples of the right hemisphere (4um) were stained with the
LabVision immunostainer. The polymer-based detection kits were used to detect the
following antigens: p62, TDP-43, and Tau (Table 8). The reactions were visualized
with DAB chromogen. TDP-43-, p62-, and Tau-positivity was observed in the
granular cell layer of the dentate fascia and the pyramidal cell sectors CA4, CA3,
CA2, CA1 and subiculum. The results were ascertained in consensus sessions by
Mia Kero, Liisa Myllykangas and Anders Paetau. We used p62 THC staining as a
screening method to confirm the neuropathological findings, such as TDP-43 THC-
positivity, and any other accompanying pathology.

4.3.2. PUBLICATION IlI
In selected cases, AP and Tau immunohistochemistry (Table 8) was performed with

immunostainer LabVision. All samples positive in Congo red were further stained
using antibodies against Af. The cerebrovascular AP} deposition was analyzed in 4
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neocortical areas (frontal, temporal, parietal, occipital), and in the hippocampus
and cerebellum (Tanskanen et al. 2012). The analysis of Lewy-related pathology
was performed as described earlier (Oinas et al. 2009).

4.3.3. PUBLICATION IV

The following brain areas were selected for IHC staining: the spinal cord (C6-C7),
cerebellum, hippocampus, and frontal cortex. In addition, cerebellar tumor samples
of dysplastic gangliocytoma were analyzed. IHC for p62, ubiquitin, TDP-43 and
Tau was performed using Lab Vision 480 Autostainer (Table 8).

Table 8. The details of the IHC stainings in publications |, II, Il and IV.
Antibody Clone Pretreatment 1% antibedy dilution Detection kit Instrument
(catalog no., and (catalog no., producer) (producer)
producer) incubation time/°C and
incubation time/°C
I w I v I w
62 D-3 TE {pH 9,0) TE (pH 9,0) 1:500 1:500 Advanced Envision LabVision 480
P (5c-28359, Autoclave Micro 60min/RT | 30min/RT (K3468, Agilent) | (KS007, Agilent) | (Thermo Fisher Scientific, USA)
Santa-Cruz) 121°C/10min 30 min/RT link ab 30 min/RT
30 min/RT antiink ab
119 Al w L v Al w LabVision 480
(CAC-Tip-PTOMOL, TE (pH9,0) TE(pH9,0) 1:2000 1:2000 Envision Envision [Therma Fisher Scientific, USA)
TOP-43 Cosmobio) PT-module Micro 4Smin/RT .~ 30min/RT (K5007, Agilent) (K5007, Agilent)
98°C/20min | 100°C/24 min A5min/RT 30 min/RT
ATB I i, v I ] v I i, v LabVision 480
(BR-03, TE(pH9,0) Trypsin dig. 1:800 | 1:600 1:300 Advanced Envision (Therma Fisher Scientific, USA)
Tau Imogenetics) | PT-module | 20min/37°C | 60min/T | 30min/RT (k3468 Agient) | (K5007, Agilent]
98°C/20min 45min/RT link ab 30min/RT
45 min/RT antiink ab
polyclonal | v [ LabVision 480
bi (20458, Agilent) Citrate (pH6,0) 1:1000 Enwision (Thermao Fisher Scientific, USA)
Ubi Micro 30min/RT (K5007, Agilent)
100°C{24min 30 minfRT
6Ff3D n (] 1] LabVision 480
(M0872, TE(pH9,0) 15 Envision (Thermo Fisher Scientific, LISA)
AB Agilent) Micro 30min/RT (K5007, Agilent)
100°C/24 min 30 min/RT

4.4, GENETIC ANALYSES

4.4.1. PUBLICATION I

For the Vantaa 85+ cohort, the genotypes of GRN rs5848, TMEM106B rs1990622
and ABCC9 rs407180 were partly determined from the WGS data and partly by
Sangersequencing, which was performed on the remainder of the neuropathologically
examined subjects (variant containing sequences were first amplified using the
primers described in Table 8. ABI3730xl DNA Analyzer was used to run the
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fragments at the Institute of Molecular Medicine Finland, and the sequencing data
were analyzed using the Sequencher 4.0 analysis software (Applied Biosystems).

Single nucleotide polymorphism (SNP) analysis of GRN rs5848, TMEM106B
rs1990622 and ABCC9 rs407178 for CC75C/CFAS was done at the Karolinska
Institute, Sweden, using a TagMan SNP 7500 genotyping assay on real time PCR
(Applied Biosystems, CA, USA). Pre-designed TagMan SNP Genotype Assays were
available from ThermoFischer Scientific.

The rs407180 polymorphism was in nearly complete linkage disequilibrium with
rs704178, and the genotype for ABCC9 rs704178 was imputed from the Vantaa85+
material with Beagle 4.1 (version 27Jan18.7e1) using the population-specific SISu
v3 imputation reference panel (dx.doi.org/10.17504/protocols.io.nmndcse). The
imputed data was shown tobe reliable in this dataset (Makela et al. 2018). The quality
of imputed rs704178 genotypes was high and post-imputation quality control was
passed (INFO score =1, a similar MAF in our imputed dataset and in the Finnish
GnomAD population [0.44 vs. 0.41] and 98.6% concordance between imputed and
whole genome sequencing-derived genotypes of internal control samples).

Table 8. The primers of the studied SNPs

SNP Gene Forward primer (5’-3") Reverse primer (5’-3")
rs5848 GRN GCCAGGGGTACCAAGTGTTT GCAGGGCGGCAAATCAGA
151990622 TMEMI106B ACACACGGCATTGTGTTTGATT TGAGATGACCAGCCACTCCA
rs704180 ABCC9 CTTGAGAACAGGCCCCTGAC ~ TGGGCCTTACCTAGTCCTGG

4.4.2. PUBLICATION III

DNA was extracted from peripheral blood leukocytes using standard methods.
APP exon 16 and flanking intronic sequences were amplified by polymerase chain
reaction using the forward primer 5"-TTGGAACAAAGCCCCAAAGTAG-3" (intron
15) and reverse primer 5 -GGCAAGACAAACAGTAGTGGAAAG-3’ (intron 16). The
618 base pair polymerase chain reaction products were sequenced by the Sanger
method. Cycle sequencing was carried out by the forward primer in all samples and
all suspected variants were also confirmed by sequencing with the reverse primer.
Sequence data analysis was carried out with the Sequencer 4.5 Software (Gene
Codes Corp., Ann Arbor, MI, USA).

4.4.3. PUBLICATION IV

The candidate genes microtubule-associated protein tau (MAPT; exons 1, 9, 10, 11,
12, and 13 and intronic flanking regions), progranulin (GRN), and TDP-43 (all exons
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and intronic flanking regions) were sequenced in all 5 siblings. Similarly, the repeat
expansion mutation in Cgorf72 was determined by repeat-primed polymerase chain
reaction (RP-PCR)in all 5siblings (Renton et al. 2011). All reactions (sequencing and
RP-PCR) were run on an ABI3730 DNA Analyzer (Applied Biosystems, Foster City,
CA, USA), and the results were analyzed and visualized using Sequencher 4.9 (Gene
Codes Corporation, Ann Arbor, MI, USA) and Gene Mapper software (GeneMapper
v4.0). The range of =40 repeats were kept as the threshold to discriminate presence
versus absence of expansion in Cgorf72. PTEN was sequenced (coding regions)
through multiplex ligation—dependent probe amplification for the index patient
because this gene has been found to be mutated in the majority of patients with
adult-onset dysplastic gangliocytomas (Zhou et al. 2003, Abel et al. 2005).

4.5. STATISTICS

4.5.1. PUBLICATION |

IBM SPSS Statistics version 22.0 was used for statistical analyses. The Chi-Square
test was used to compare the differences of sex in individuals with and without
HS-Aging, and with and without TDP-43 THC-positivity in the granular cell layer
of the hippocampus. The Mann-Whitney U test was used to compare age at death
in these groups. Binary logistic regression, adjusted for age at death and sex, were
used to analyze all the other variables.

4.5.2. PUBLICATION II

Using the Hardy-Weinberg Equilibrium (HWE), expected frequencies were
determined and tested using the Chi2 goodness of fit. Chi2 (or Fisher’s exact test)
was used to determine the association of genotype or allele frequency and LATE-
NC+HS or TDP-43 pathology. All SNP was analyzed using an additive mode of
inheritance (number of risk alleles determined o, 1, or 2). ABCC9 rs704178 was
also analyzed using a recessive mode of inheritance (MOI) (2 risk alleles = 1; 0
otherwise), which has been proved to be an appropriate method based on the earlier
studies (Nelson et al. 2014, Nelson et al. 2015, Katsumata et al. 2017). Effect size,
using Cramér’s phi, was determined as well. Logistic regression (Odds ratio, 95%
confidence interval) was used to clarify genotype associations with LATE-NC+HS
or TDP-43 pathology when taking the effect of age at death and sex into account.
a was set at 0.05. The STATA14 software (Stata Corporation 2015, Texas, USA)
was used to analyze data in this study.
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4.6. APPROVAL OF THE STUDY

Publications I, IT and III

The Vantaa 85+ study material was approved by the Ethics Committee of the
Health Centre of the City of Vantaa and by Helsinki University Central Hospital
Coordinating Ethics Committee. The Finnish Health and Social Ministry accepted
the use of the health and social records as death certificates. Blood samples were
collected only from those subjects from whom informed consent was obtained (either
provided by the subjects themselves or their relatives). The National Authority for
Medicolegal Affairs (VALVIRA) approved the collection of tissue samples at autopsy
as well as their use for research. A written consent for autopsy was obtained from
the closest relatives.

Publication IV

The Ethics Committee of the Department of Neurology, Helsinki University Central
Hospital, approved the study of familial dementing disorders (the approval was
updated in 2011 and 2014).
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5. RESULTS AND DISCUSSION

5.1. PUBLICATION I

The frequency of HS-Aging and its associations with other dementia-related
neuropathologies among very elderly individuals were studied in a population-
based study setting.

1. In our study, the prevalence of HS-Aging was 15.6%, which lies within the range
(10-25%) of the earlier studies (Leverenz et al. 2002, Barker et al. 2002, Lippa and
Dickson 2004, Rauramaa et al. 2011, Malek-Ahmadi et al. 2013, Keage et al. 2014,
Jellinger and Attems 2015, Uchino et al. 20153, Hokkanen et al. 2018). However,
because the definitions, diagnostic criteria, study settings and study cohorts for HS-
Aging have varied (Nelson et al. 2011b, Zarow et al. 2012, Rauramaa et al. 2013,
Jellinger and Attems 2015, Dutra et al. 2015a, Uchino et al. 2015b, Hokkanen et
al. 2018, Nelson et al. 2019), it is difficult to estimate the actual prevalence of HS-
Aging and directly compare the different studies.

Female gender was more prevalent in our study (~90%), but not associated
with HS-Aging. A similar trend for female predominance with lack of statistical
significance has been shown in some other studies (Murray et al. 2014, Oveisgharan
et al. 2018). In some younger study cohorts, male gender has been shown to be
more prevalent (Leverenz et al. 2002, Pao et al. 2011, Zarow et al. 2012). Females
are more likely to live until very advanced age (Neltner et al. 2016), and thus in our
study, focused on the very elderly, the female gender is prominent.

2. The pure form of HS-Aging without any comorbid neuropathological changes
was very rare (~2%) in this very elderly study population. The prevalence of pure
HS-Aging has also been low (0.5%- 5.4%) in other publications (Ala et al. 2000,
Jellinger 2000, Leverenz et al. 2002, Probst et al. 2007, Amador-Ortiz et al. 200743,
Dutra et al. 2015b, Thara et al. 2018). Comorbid pathologies are very common in
the aged brain (Kovacs et al. 2008, White 2009, Rahimi and Kovacs 2014, Murray
et al. 2014, Robinson et al. 2018).

3. Both hippocampi were investigated, and 51% (47/302) of the samples showed
bilateral HS changes. Solely unilateral changes were more frequent (25%) in the
left side hippocampus. In general, the neuronal loss in the CA1 sector was more
severe (> 80%) compared to neuronal loss in the subiculum.
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There are only very few studies where both hippocampi have been studied
(Nelson et al. 2011b, Zarow et al. 2012). HS-Aging was shown to be unilateral in
40-50% of cases evaluated from HE-stainings (Nelson et al. 2011b, Zarow et al.
2012) in accordance with our results. However, it is known that HS-Aging may also
be segmental and observed only in some histological sections of the hippocampus
(Ighodaro et al. 2015). Thus, HS-Aging cases might be more prevalent (Nelson
et al. 2016), but the routine practice for neuropathological examination and
sampling of the hippocampus is unilateral and non-segmental. There are no earlier
publications concerning the severity of the neuronal loss between the CA1-sector
and the subiculum, nor are published data available on the preferable side in the
unilateral cases.

4. In our study, most of the HS-Aging (96%) patients were demented at the time
of death, and there was a strong association between HS-Aging and dementia (p<
0.001). We also discovered that TDP-43 positivity in the dentate fascia granular
cell layer was independently associated with dementia (p< 0,001).

Dementia has also been prevalent and associated with HS-Aging in other
publications (Nelson et al. 2010, Nag et al. 2015, Nelson et al. 2019). In HS-Aging,
the decline of cognitive functions and dementia develops at a slower rate when
compared to AD (Smirnov et al. 2019).

5. Several different neuropathological and vascular variables were studied for
possible associations with HS-Aging. A weak association was seen with CERAD score
(0.01< p <0.05), but the other AD associated variables did not achieve statistical
significance. The studied vascular variables, except for heart infarct (0.01< p <0.05),
were not associated with HS-Aging.

The distribution of the CERAD score among HS-Aging patients has been studied
in other publications (Zarow et al. 2012, Brenowitz et al. 2014, Hokkanen et al. 2018).
HS-Aging individuals have been found in each CERAD score class, from none to
frequent. Hokkanen et al. did not find a significant association between HS-Aging
and CERAD score (Hokkanen et al. 2018), and in our study the significance was
weak. In our study, individuals with HS-Aging were more aged compared to the study
by Hokkanen et al. (Hokkanen et al. 2018). However, the distribution of CERAD
scores of HS-Aging cases were similar. Braak NFT stage was not associated with
HS-Aging in our study, and the result was also the same in other studies (Brenowitz
et al. 2014, Hokkanen et al. 2018)

Myocardial infarction was weakly associated with HS-Aging in our study, but this
has not been studied or confirmed by other studies focusing on different vascular
variables and HS-aging (Neltner et al. 2014, Nag et al. 2015, Nelson et al. 2016,
Hokkanen et al. 2017). Previously, B-ASC (Bridges et al. 2014) has been associated
with HS-Aging (Neltner et al. 2014, Ighodaro et al. 2015, Neltner et al. 2016, Nelson
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etal. 2016). We were not able to study the association between HS-Aging and B-ASC
because this variable has not been assessed in our study. Non-Af-based thickening
of brain arterioles (B-ADC) has been shown to be associated with the gene variant
541780 of ABCC9 (Neltner et al. 2014), which is one of the HS-Aging associated risk
SNPs. Interestingly, B-ASC is associated with sleep fragmentation (Lim et al. 2016)
and the ABCCg variant is associated with sleeping problems (Parsons et al. 2013).

6. Immunohistochemical stainings with TDP-43, p62 and Tau showed a strong
association (p < 0.001) with HS-Aging. TDP-43 positivity as NCIs was detected in
the granular cell layer of dentate fascia. In the CA1 sectors, TDP-43 immunopositivity
was shown in some residual neurons as NCIs. Tau-positive neurofibrillary lesions
and neuropil threads in dentate fascia cells, and p62 immunopositivity in the
granular cell layer was associated with HS-Aging.

HS-Aging is known to be associated with robust TDP-43 IHC pathology in the
granular cell layer of the dentate fascia (Amador-Ortiz et al. 2007b, Dickson 2008b,
Rauramaa et al. 2013, Nag et al. 2015, Nelson et al. 2016, Hokkanen et al. 2017). In
previous studies, it has been hypothesized that neuronal loss of HS-Aging begins
in the subicular end of the CA1 when it is associated with the TDP-43 pathology
(called pre-HS-Aging), developing later into end-stage HS-Aging (Aoki et al. 2015,
Hokkanen et al. 2017). TDP-43 positivity in the dentate fascia granular cells as an
early marker for HS-Aging has also been suggested by Nelson et al. (Nelson et al.
2016).

In our study, the Tau immunopositive pathology was strongly associated with
HS-Aging. This may indicate a general neurodegenerative process in the dentate
fascia granule cells as well as comorbid neuropathologies (Beach et al. 2003, Pao
et al. 2011). In recent studies, granular cell layer Tau-positivity was found to be a
key feature in late-stage HS-Aging, independent of Braak stage (Nelson et al. 2016,
Hokkanen et al. 2017). Immunopositivity of p62 in the dentate fascia granular
cells and its association with HS-Aging is rational, because p62 reacts with many
accumulated protein aggregates in neurodegenerative diseases and it is widely used
as a primary screening tool for those aggregates (Kuusisto et al. 2008).

7. As TDP-43 positivity in the granular cell layer has been proposed to be a robust
marker for early HS-Aging (Neltner et al. 2014, Nelson et al. 2016), its associations
with other neuropathological markers and vascular variables were studied to confirm
this. Significant associations were found between TDP-43-positivity and dementia,
the CERAD score and immunopositivity of p62 as well as Tau. Weak associations
were seen with age at death, Braak stage, a-synuclein pathology and infarcts of
posterior circulation.

Associations found between the TDP-43 immunopositivity in the granular cell
layer and different studied variables were similar to associations of these variables
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with HS-Aging. This indicates support for the hypothesis that TDP-43 might be an
early marker for HS-Aging and a secondary phenomenon as a reaction to abnormal
proteostasis caused by different factors (Neltner et al. 2014, Nelson et al. 2016).
Small end-arterioles from the anterior choroidal and posterior cerebral arteries
are feeding of CA1 sector of hippocampus, which is sensitive for hypoxia. In our
study, an infarct of the posterior circulation showed a modest association with
TDP-43 positivity in the granular cell layer. It has been published earlier that TDP-
43 positivity in the hippocampus and entorhinal cortex are seen more often in
individuals with clinical dementia and that it correlates well with the severity of
dementia and more advanced age (Uchino et al. 2015a). In addition, those elderly
individuals who died after the age of 9o and had dementia were more likely to
show TDP-43 inclusions (Keage et al. 2014). This is in accord with the fact that
the probability for HS-Aging is known to increase strongly after 9o years of age
(Nelson et al. 2011a, Neltner et al. 2016, Nelson et al. 2016). In advanced age,
NFTs are inevitably detected, and the association with Tau immunopositivity in
the dentate fascia granule cells might be related to this. Data from several studies
have showed that NFTs can be accumulated in the hippocampus via at least two
different processes. Oneis combined accumulation of A and Tau positive NFTs, and
the other is accumulation of only NFTs, resulting in milder symptoms of cognitive
impairment (Jellinger and Attems 2007, Nelson et al. 2009, Brenowitz et al. 2014).
The association of TDP-43 with CERAD and a-synuclein pathology may be related to
the issue that TDP-43 pathology is observed in neurodegenerative processes sharing
common disease mechanisms, especially AD type pathology (Brenowitz et al. 2014).
The etiological significance of the TDP-43 pathology seen in HS-Aging and AD as
well as in other age-related neurodegenerative processes is largely unclear (Dutra
et al. 20153, Nelson et al. 2016) and more studies are needed to clarify this topic.

5.2. PUBLICATION li

The associations between known risk gene alleles and HS-Aging and the association
with TDP-43 was studied in three European population-based cohorts (Vantaa 85+,
CFAS and CCy5C = EClipSE), a total of 744 patients.

1. The GRN rs5848 genotype was strongly associated with HS-Aging (p< 0.001).
The C/T and T/C genotypes were more frequent in HS-Aging subjects compared
to non- HS-Aging subjects. The T allele was shown to be the risk allele (p< 0.001).

GRN 1s5484 has been proven to be a genetic risk factor for HS-Aging in previous
studies (Rademakers et al. 2008, Dickson et al. 2010, Murray et al. 2014, Nelson et al.
2015b, Nelson et al. 2015¢, Nho et al. 2016). It has been hypothesized that rs5848 is a
disease-modifying variant promoting the manifestation of several different diseases
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(Cruts et al. 2006, Snowden et al. 2012, Chang et al. 2013, Kamalainen et al. 2013,
Nelson et al. 2016) not only of HS-Aging. The T allele has been shown to be a risk
allele in HS-Aging subjects (Dickson et al. 2010, Murray et al. 2014, Nelson et al.
2015b), similarly to our study. The TT genotype has been reported to be associated
with lower proganulin levels in the brain (Rademakers et al. 2008).

2. TMEM106B rs1990622 was found to be associated with HS-Aging (p< 0.001).
A/A was the most frequent genotype in the HS-Aging group, and the A allele was
shown to be the risk allele.

HS-Aging has been associated with TMEM106B rs1990622 (Murray et al. 2011,
Rutherford et al. 2012, Nelson et al. 2015b, Nelson et al. 2015¢), and this variant has
been found to be associated with other diseases, such as FTLD, chronic traumatic
encephalopathy and ALS (Vass et al. 2011, Cherry et al. 2018). Other studies have
pointed out the same risk allele A that was detected in our study (Nelson et al.
2015b, Nelson et al. 2015¢).There are also some publications showing that this
SNP is associated with AD (Satoh et al. 2014, Lu et al. 2014). Lysosomal protein
produced from TMEM106B is known to affect the expression levels of progranulin
(Finch et al. 2011, Lang et al. 2012, Brady et al. 2013).

3. ABCC9 15704178 was not associated with HS-Aging in this study. C/G was the
most frequent genotype in both the HS-aging and non-HS-Aging groups.

The association of rs704180/rs704178 (in near perfect LD) and HS-Aging was
published some years ago based on GWAS data (Nelson et al. 2014, Nelson et al.
2015a). We were not able to confirm this finding in our study, but it should borne
in mind that the power of statistical analysis might be low due to the relatively small
cohort size. This SNP is known to affect mRNA levels of the ABCC9g gene (Nelson
et al. 2015a). ABCC9-derived proteins participate in the regulation of potassium
channels (Zarei et al. 2007, Nelson et al. 2015b, Nelson et al. 2015¢), acting as a
sensor needed in vascular responses to hypoxia, ischemia and inflammation (Nelson
et al. 20152). A decreased level of thyroid hormone is known to be linked to the
ABCC9 risk genotype (Nelson et al. 2015b, Trieu et al. 2018, Nelson et al. 2019).

4. TDP-43 positivity of the dentate fascia granular cells showed an association with
the genotypes T/C and T/T in GRN rs5848 (p< 0.001) and the risk allele T (p<
0.001) as well as with the genotype A/A in TMEM106B 151990622 (p= 0.006)
and the risk allele A (p= 0.001). TDP-43 positivity was not associated with ABCC9
15704178. 48/56 (~83%) of the HS-Aging subjects had TDP-43 immunopositive
NClIs in the dentate fascia. When the subjects with HS-Aging were deleted from the
analysis, the association with TDP-43 positivity of dentate fascia granule cells and
the associations of the genotypes T/C and T/T in GRN rs5848 remained significant
(p= 0,018), as did the T allele (p= 0.006). The TMEM106 B rs1990622 genotype

64



or allele were not associated with TDP-43 positive NCIs in dentate when all the
LATE-NC + HS individuals were excluded.

The known mutations of GRN, for example, in FTLD-TDP cause a reduction of
expressed progranulin levels (Katsumata et al. 2017). Progranulin is suggested to
act as a neurotrophic factor and loss of function may lead to TDP-43 accumulation
in HS-Aging as well (Zhang et al. 2007, Nelson et al. 2015b, Nelson et al. 2015¢).
The polymorphic rs5484 site in the 3" UTR region of GRN is related to variations
in progranulin levels and a higher risk for HS-Aging. rs5484 is also a binding site
for microRNA miR-659, which may inhibit progranulin translation and predispose
to increased risk to HS-Aging (Rademakers et al. 2008). TMEM106B is known to
be able to modulate progranulin levels (Finch et al. 2011). The risk alleles of GRN
and TMEM106B together can lead to alterations of proganulin levels, which are not
tolerated in aged brains, causing neuronal damage and loss of CA1 sector neurons
and accumulation of TDP-43 positive NCIs in the dentate fascia granule cells (Zhang
et al. 2007, Nelson et al. 2015b, Nelson et al. 2015¢).

5.3. PUBLICATION Iil

The mutations in the APP gene are usually pathogenic, causing accumulation of
Ap in the brain. However, a protective APP mutation (A673T) against AD has also
been described (Jonsson et al. 2012a). This mutation reduces (-cleavage of the
APP protein, thus leading to lower levels of AP (Jonsson et al. 2012a, Jonsson et
al. 2012b, Li et al. 2019). We investigated the frequency of this mutation among
very old Finns and the phenotype that the mutation carriers have.

1. The A673T mutation of the APP gene was found only in one very old individual
(104.8 years) of the 515 subjects (0.19%), indicating that this is not a frequent
variant in the Vantaa 85+ study cohort.

In the Nordic countries (Norway, Sweden, Finland and Iceland) the average
frequency of the A673T mutation has been described as 0.43% (Mengel-From et
al. 2015). In the Danish population, this variant has been shown to be very rare
(0.0014%). Whether this is due to genetic drift or natural selection is not known.
This variant has not been found in Asian populations (Ting et al. 2013, Liu et al.
2014), and two studies on the US population showed that this variant is extremely
rare in the US (Wang et al. 2015). One of these studies found zero A673T variant
carriers (Bamne et al. 2014) and the other showed as small a frequency as seen
in the Danish population (Mengel-From et al. 2015). Thus, this variant seems to
be enriched in the Nordic population, excluding the Danes. A Finnish group has
managed to generate a human induced pluripotent stem cell line from a patient
with the A673T variant. This may provide an opportunity to study the mechanisms
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behind this mutation more carefully and discover possible treatment strategies for
AD in the future (Lehtonen et al. 2018). Another Finnish group showed in addition
that carriers of this mutation had 30% lower AP levels determined from blood
samples (Martiskainen et al. 2017).

2. In the neuropathological characterization of the A673T variant carrier, no A
pathology was seen when using methenamin silver staining: the CERAD score was
0. However, immunostaining with the A antibody showed some diffuse A deposits
in the parietal lobe, but no neuritic plaques were found. A positivity was seen
mainly in the meningeal arteries (1-2%), and mild amyloid angiopathy (CAA) was
also seen in these arteries. The Braak stage was determined as 3 based on some
NFTs and NT found in the temporal cortex using immunohistochemistry. Neuronal
loss in the CA1 sector of the hippocampus and subiculum was seen bilaterally,
consistent with HS-Aging. Some vascular pathology, mainly small infarctions, was
also observed. Some Lewy bodies were detected in the brain stem and limbic areas.
The APOE genotype was £2/¢€3.

The neuropathological phenotype of our patient cannot be compared to other
A673T variant carriers, because the neuropathological details of other carriers
have not been reported. The neuropathological findings of our mutation carrier
were mild and for the most part similar to that which is commonly seen in the
aged brain (Bennett et al. 2006, Fjell et al. 2014). CAA is strongly associated with
AD in most elderly subjects (Yamada 2002, Attems and Jellinger 2006), but not
all. Our mutation carrier had moderate CAA only in some leptomeningeal areas.
Interestingly, our patient had the APOE e2/¢3 genotype, known to be a protective
factor for EOAD and LOAD (Corder et al. 1994a, Corder et al. 1994b, Panza et al.
2000). This APOE genotype combined with the A673T variant may have protected
our patient from AD.

5.4. PUBLICATION IV

Relatively soon after the Cgorf72 repeat expansion mutation was discovered to
be linked to both the sporadic and familial forms of ALS and FTD some years ago
(Renton et al. 2011, DeJesus-Hernandez et al. 2011), it was found that this gene
defect was associated with more heterogenous phenotypes and entities, than had
been described earlier, for example PD, AD and Huntington disease phenocopies
(Murray et al. 2011, Kohli et al. 2013, Chi et al. 2016). On the other hand, there has
been great interest in the connection between neoplasia and neurodegeneration. In
this study, we studied a family with Cgorf72-associated FTLD, possibly connected
with a rare form of neoplasia, dysplastic gangliocytoma.
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In the autopsy of the index patient, cerebral atrophy, in addition to a cerebellar
tumor dysplastic gangliocytoma, was seen. His sister suffered from more severe
cerebral atrophy, especially in the frontal lobes. Neuropathological findings in the
index patient and his sister showed abundant p62 immunopositive (but TDP-43
negative) inclusions in the cerebellum. Both siblings were diagnosed after autopsy
with FTLD-TDP-43, subtype A in the index patient and subtype A/B in his sister.
Both siblings had moderate to severe problems in cognitive functions. The duration
of the illness was only one year in our index patient, but the sister lived 6 years
after disease onset and also developed more serious clinical symptoms during that
period. Both died because bronchopneumonia.

The cerebellar inclusions in the cerebellar granular cells were p62 and ubiquitin
immunopositive but TDP-43 negative. These kinds of inclusions were originally
found in some familial FTLD-TDP cases, and they have been shown to be a specific
feature for the Cgorf72 repeat expansion mutation (Pikkarainen et al. 2010, Hsiung
et al. 2012, King et al. 2013). Interestingly, these inclusions have been found in
subjects with the Cgorf72 repeat expansion mutation, though with another type of
neuropathologic phenotype than FTLD-TDP-43 (Pasanen et al. 2018).

The Cgorf72 hexanucleotide expansion is common among Finnish FTLD/ALS
patients; almost 30% of FTLD and ALS patients have this mutation (Renton et al.
2011). The other common genetic causes of FTLD/ALS, GRN and MAPT mutations
are rare among Finns (Kaivorinne et al. 2008a, Kaivorinne et al. 2008b, Kruger et
al. 2009). Most often, the Cgorf72 repeat expansion mutation is related to FTLD-
TDP subtype B, but other subtypes can be found, especially the combined subtype
A and B (Mackenzie et al. 2011b), as was found in our study.

2. The index patient had a rare tumor in the cerebellum, dysplastic gangliocytoma,
(Lhermitte-Duclos disease, LDD). Mutations in the PTEN gene have been found
to be a cause for this tumor in previously published patients, but not in our index
patient.

Germline mutations in the PTEN gene on chromosome 10 are associated with
LDD (Staal et al. 2002, Abel et al. 2005). The exact mechanisms concerning how
PTEN mutations are involved in the development of LDD are unknown. However,
some LDD patients do not have germline mutations in the PTEN gene (Zhou
et al. 2003). Mutations inactivating PTEN cause increased expression levels of
phosphorylated Akt, which exaggerates cell growth via different downstream routes,
for example mTOR (Abel et al. 2005, Stopford et al. 2017). In the mouse PTEN
knockout model, mimicking LDD, disturbed precursor granular cell migration
and control of cell size have been demonstrated (Kwon et al. 2001). In these cells
phosphorylated Akt is highly expressed as well as p-S6, which is one component
of the mTOR signaling pathway (Kwon et al. 2001, Backman et al. 2001, Abel et
al. 2005).
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We did not detect germline mutations in the coding sequence of PTEN. The
other candidate genes (MAPT, GRN and TDP-43) were sequenced and no mutations
were found within their coding sequence either. Our patients showed a pathological
length of Cgorfy2 repeat expansion mutation, which is known to have inhibitory
effects (most probably through toxic gain of function) in the mTOR/Akt/S6 pathway,
resulting in adverse consequences for neuronal cells (Stopford et al. 2017). Ithasbeen
shown in a cell line model of motoneurons that even partial depletion of the PTEN
gene can protect cells from the toxicity of the Cgorf72 repeat expansion mutation
(Stopford et al. 2017). Because the patients showed pathological length in the
genetic analysis as well as p62 inclusions in the cerebellum in the neuropathological
examination, we hypothesized that there might be some link between these features.
The Cgorf72 repeat expansion mutation had possibly induced depletion of PTEN,
hypothetically promoting the development of dysplastic gangliocytoma in our index
patient (Snowden et al. 2012, King et al. 2013).

3. Three subjects in this family (the index patient and his diseased sister as well
as another sibling) were found to have >40 repeats of Coorf72 repeat expansion
mutation.

Recently, it has been reported that Cgorf72 repeat expansion mutations
containing over 30 repeats are pathological and harmful (Byrne et al. 2014, Stopford
et al. 2017), but the pathogenic repeat length threshold is still unclear and other
repeat lengths associated with disease have also been suggested (Kaivola et al.
2019). However, expansions between 200-5000 have been found in ALS patients
(Cooper-Knocket al. 2014, Byrne et al. 2014, Stopford et al. 2017, Kaivola et al. 2019).
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6. STRENGTHS AND LIMITATIONS OF THE STUDY

In publications I-III, we have investigated the Vantaa 85+ study material, which
is population-based and thus lacks selection bias. Most of studies and materials
concerning elderly people are focused on demented and cognitively impaired people,
collected from specific nursing homes (Nelson et al. 2016, Hokkanen et al. 2018).

The prevalence of hippocampal sclerosis increases as a function of advanced
age, and after the age of 9o years, the increase is most aggressive (Nelson et al.
2016). Underlining this fact, our study material represents a group old enough to
study HS-Aging.

Frequently, studies of elderly people are clinically but not neuropathologically
defined. HS-Aging has been relatively rarely studied bilaterally, but we were able to
determine the bilateral status of HS-Aging lesions. In all publications, I-IV, we were
able to show the findings on the histological level, clarifying the neuropathological
phenotype behind the described entities. Using genetic methods, we were able
to study biological processes more carefully and to compare the results between
histological and genetic findings.

Concerning genetic studies, our study material (Vantaa 85+) is relatively small,
which might decrease the power of statistical analysis. However, the genetic results
from Vantaa 85+ were confirmed in the British study cohorts CFAS and CC75C.

For TDP-43 THC stainings we had to use reprocessed, originally PEG-embedded
material. It is known that the TDP-43 epitope may be influenced by long fixation
and preservation of blocks (Cykowski et al. 2017). We managed to counteract those
problems with stronger pretreatment and a more sensitive detection system.

HS-Aging has been described as segmental/patchy-like in one study (Ighodaro
et al. 2015), but unfortunately it was not possible for us to study different levels
of hippocampi because our samples were collected only at the level of the lateral
geniculate body.

B-ASC is thought to be associated with HS-Aging. We were not able to confirm
this finding because of the lack of B-ASC data in the Vantaa85+ sample.
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7. CONCLUSIONS

Based on the results presented in this thesis, the following specific conclusions
can be drawn.

Publication I

HS-Aging is very common among the oldest old (16%), but it occurs very seldom
without any other type of old-age associated neuropathological changes (pure HS-
Aging). Almost half of the HS-Aging cases appeared unilateral. This finding should
be taken into consideration in routine neuropathological examination, in which
only one hippocampus is often sampled. TDP-43 immunopositivity was strongly
associated with HS-Aging but was not specific for this entity.

Publication IT

We confirmed the previously reported genetic associations between GRNrs5848 and
TMEM106B rs199062 and HS-Aging in three European population-based cohorts.
The ABCCg variants, however, were not significantly associated with HS-Aging in
these population-based studies.

Publication III

We showed that the previously reported, protective APP mutation A673T is very
rare among the very old Finns. The only mutation carrier of the Vantaa85+ material
lived an extraordinarily long life with virtually no AD pathology identified in the
neuropathological examination after death. Our results support the hypothesis that
the A673T mutation is protective against AD, inhibiting the B-secretase cleavage of
APP and reducing the production of the harmful Ap.

Publication IV

A familial FTLD-TDP phenotype was shown to segregate with a hexanucleotide
repeat expansion in Cgorf72. One diseased family member has a rare cerebellar
dysplastic gangliocytoma, in which PTEN germline mutations were not detected. It
is possible that the Cgorf72 repeat expansion mutation has induced the depletion of
PTEN in the granular cells in the cerebellum of the index patient. This might also
indicate that Cgorf72 repeat expansion mutation is involved in more heterogenous
neuropathological conditions than originally described. The results support the
view that the PTEN pathway may be involved in the pathogenesis induced by the
Coorf72 repeat expansion mutation, and that there may be significant overlap
between neoplastic and neurodegenerative processes.
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Taken together, this thesis provided new information on the prevalence and
genetic background of HS-Aging and other TDP-43 proteinopathies in the Finnish
population and forms a basis for further studies on old-age associated TDP-43
accumulation, particularly in the context of LATE-NC.
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