Triangles in convex distance planes

Jussi Väisälä

Abstract

The article deals with a plane equipped with a convex distance function. We extend the notions of equilateral and acute triangles and consider circumcenters of such triangles.

Keywords: convex distance, bisector, central set, acute Mathematics Subject Classification: 52A10, 52A21

1. Introduction. A convex distance plane is a pair (E, K) where E is a 2-dimensional real vector space and $K \subset E$ is a compact convex set with $0 \in \text{int } K$. The set K induces the convex distance function $d = d_K \colon E \times E \to \mathbb{R}$, defined by

$$d_K(a,b) = \inf\{r \ge 0 \colon b \in a + rK\}.$$

We write

$$B_K(a, r) = a + rK = \{x \in E : d_K(a, x) \le r\},\$$

$$B_K(a, r) = a + r \text{ int } K = \{x \in E : d_K(a, x) < r\}$$

for the closed and open discs with center a and radius r. The subscript K can be omitted if there is no danger of misunderstanding.

For the basic properties of convex distance functions, see e.g. [Ma, Chapters 1-2], [IKLM], [IKLMS] or [HMW, Chapter 1]. Instead of d_K , many authors make use of the gauge $\gamma_K \colon E \to \mathbb{R}$, defined by $\gamma_K(x) = d(0, x)$. If K is symmetric with respect to the origin, then γ_K is a norm, but in the general case d(a, b) need not be equal to d(b, a).

A triangle in E is a set $T = \{t_1, t_2, t_3\}$ of three noncollinear points. Suppose first that E is equipped with a norm ||x||. Let $m_i = (t_j + t_k)/2$ be the midpoint of the side opposite to t_i , and let $s_i = ||t_j - t_k||/2 = ||t_j - m_i|| = ||t_k - m_i||$. The triangle T was called normacute in [AMS] and acute in [Vä] if $||t_i - m_i|| > s_i$ for all i = 1, 2, 3. It was proved that every such triangle has a circumcenter z, which means that $||z - t_1|| = ||z - t_2|| = ||z - t_3||$.

In this paper we extend this result to convex distance planes. However, if J = [a, b] is a line segment in E, we may have $d(a, b) \neq d(b, a)$. Therefore we reformulate the definition of acuteness by replacing the length of J by the *radius* of J, defined in Section 2.

As a special case, we obtain the result for equilateral triangles.

The convex set -K defines a convex distance function d_{-K} , and we have

(1)
$$d_K(a,b) = d_K(-b,-a) = d_{-K}(b,a) = d_{-K}(-a,-b)$$

for all $a, b \in E$. Hence d_K is a metric iff K = -K, which means that K is symmetric with respect to the origin. In this case, $||x|| = d_K(0, x)$ defines a norm in E.

The plane (E, K) and the function d_K are called *strictly convex* if $S = \partial K$ contains no line segment. We let (e_1, e_2) denote the standard basis $e_1 = (1, 0), e_2 = (0, 1)$ of \mathbb{R}^2 .

From now on we assume that (E, K) is a given convex distance plane.

2. The radius of a set. Suppose that $A \neq \emptyset$ is a compact set in *E*. The radius (called *circumradius* in [Ja1]) of *A* is the number

$$\operatorname{rad}_{K} A = \operatorname{rad} A = \inf\{r > 0 \colon A \subset \overline{B}(x, r) \text{ for some } x \in E\}.$$

Clearly rad A = 0 iff A contains only one point. If A contains more points, then an easy compactness argument shows that there is at least one disc $\overline{B}(x, \operatorname{rad} A)$ containing A. Such a disc is called a *minimal enclosing disc* of A. Minimal enclosing discs in normed planes have been extensively studied in [AMS]. A set may have several minimal enclosing discs; see Example 11. However, if K is strictly convex, then the minimal enclosing disc of a compact set A is unique. More generally, we have the following result:

3. Lemma. Let $A \neq \emptyset$ be a compact set in E and let M be the locus of the centers of all minimal enclosing discs of A. Then M is a (possibly degenerate) line segment. If E is strictly convex, then M is a singleton.

Proof. We may assume that $\operatorname{rad} A = 1$. We first show that M is convex. Let $x, y \in M$, $x \neq y$, and let $z = \lambda x + \mu y$ where $0 < \lambda, \mu < 1$ and $\lambda + \mu = 1$. If $a \in A$, then a = x + u = y + v for some $u, v \in K$. Hence $a = \lambda a + \mu a = z + w$ where $w = \lambda u + \mu v \in K$. Consequently, $A \subset z + K$ and therefore $z \in M$. If E is strictly convex, the proof gives the contradiction $A \subset z + \operatorname{int} K$, and therefore M is a singleton.

It remains to show that $\operatorname{int} M = \emptyset$. This was done by T. Jahn in the recent paper [Ja2, Th. 4.7]. We give a slightly different proof. Assume that M contains a disc p + sK with 0 < s < 1. Set $\delta = \inf\{d(x, 0) : x \in \partial K\} > 0$. Then $d(x, p) \ge s\delta$ for all $x \in p + s\partial K$. We show that

We show that

(2)
$$A \subset \overline{B}(p, 1 - s\delta),$$

which gives the contradiction $1 = \operatorname{rad} A \leq 1 - s\delta$. Let $a \in A$ and let $q \in p + s\partial K$ be the point for which $p \in [q, a]$. As $q \in M$, we have $a \in q + K$, and hence

$$1 \ge d(q, a) = d(q, p) + d(p, a) \ge s\delta + d(p, a),$$

which implies (2). \Box

4. Remark. A similar proof in higher dimensions shows (with obvious terminology) that if (E, K) is a convex distance space with dim E = n and if M is the locus of the centers of all minimal enclosing balls of a compact set $A \subset E$, then M is a convex subset of an (n-1)-dimensional affine subspace of E.

From (1) we easily obtain:

- **5. Lemma.** If $z \in E$ and r > 0, then $\overline{B}_{-K}(-z,r) = -\overline{B}_K(z,r)$. \Box
- **6. Lemma.** For every line segment J = [a, b] we have $\operatorname{rad}_K J = \operatorname{rad}_{-K} J$.

Proof. As rad is invariant in translations, we may assume that a + b = 0 and thus J = -J. Consequently, if $J \subset \overline{B}_K(z, r)$, then $J \subset B_{-K}(-z, r)$ by Lemma 5. The lemma follows. \Box

Let conv A denote the convex hull of A. As discs are convex, each minimal enclosing disc of A is a minimal enclosing disc of conv A, whence

$$\operatorname{rad}\operatorname{conv} A = \operatorname{rad} A$$

for every compact set $A \subset E$. In particular, rad $\{a, b\} = rad [a, b]$ for all $a, b \in E$. Since $b \in \overline{B}(a, d(a, b))$, we have

$$\operatorname{rad}[a,b] \le \min\{d(a,b), d(b,a)\}.$$

However, there is no upper bound for $\min\{d(a,b), d(b,a)\}$ in terms of rad [a,b], as is seen from the following example: Let R > 1 and let $K \subset \mathbb{R}^2$ be the solid triangle conv $\{t_1, t_2, t_3\}$ with Cartesian coordinates $t_1 = (-R, 1-R), t_2 = (R, 1-R), t_3 = (0,1)$. Then $d(t_1, t_2) = d(t_2, t_1) = 2R$ and rad $[t_1, t_2] = 1$.

7. Lemma. Let $a, b, z \in E$ with $a \neq b$ and let $r = rad \{a, b\}$. Then:

- (i) If d(z, a) < d(z, b), then r < d(z, b),
- (ii) if $d(z, a) \le d(z, b) = r$, then d(z, a) = r,
- (iii) if $\overline{B}(z,r)$ is a minimal enclosing disc of $\{a,b\}$, then d(z,a) = d(z,b) = r.

Proof. (i) Assume that $d(z,b) \leq r$. Let $0 < \varepsilon < d(b,z)$ and let $y \in [z,b]$ be the point with $d(y,z) = \varepsilon$. Now

$$d(y,a) \le d(y,z) + d(z,a) = \varepsilon + d(z,a) < d(z,b)$$

for small ε . As d(y,b) < d(z,b), we have $\{a,b\} \subset B(y,d(z,b))$. Hence $r < d(z,b) \le r$, a contradiction.

Items (ii) and (iii) follow from (i). \Box

8. Bisectors and central sets. Let $A \subset E$ be a set containing at least two points. The bisector of A is the set

$$bis_K A = bis A = \{x \in E \colon d(a, x) = d(b, x) \text{ for all } a, b \in A\}$$

The *central set* of A is the set

$$\operatorname{cent}_{K} A = \operatorname{cent} A = \{ x \in E \colon d(x, a) = d(x, b) \text{ for all } a, b \in A \}.$$

Thus $x \in \text{cent } A$ iff $A \subset \partial B(x, r)$ for some r > 0. Points of cent A are called circumcenters of A in the literature. By (1) we have

(3)
$$\operatorname{bis}_{K} A = -\operatorname{bis}_{-K}(-A) = \operatorname{cent}_{-K} A = -\operatorname{cent}_{K}(-A).$$

If K is symmetric, then bis $A = \operatorname{cent} A$ for all $A \subset E$. In interesting cases we have $\#A \leq 3$. This is because the bisector and the central set are usually empty for larger sets A.

The structure of the bisector bis $\{a, b\}$ of two points $a \neq b$ in E is well known; see e.g. [Ma, Section 2.1.1]. Indeed, if the unit circle $S = \partial K$ does not contain any line segment parallel to [a, b], then bis $\{a, b\}$ is homeomorphic to a line. If S contains precisely one segment parallel to [a, b], then bis $\{a, b\}$ consists of a closed cone C and a curve homeomorphic to a ray starting from the apex of C. If S contains two segments parallel to [a, b], then bis $\{a, b\}$ consists of two closed cones and an arc joining the apexes of the cones. In view of (3) this implies:

9. Lemma. The sets bis $\{a, b\}$ and cent $\{a, b\}$ are connected for each pair of points $a \neq b$ in E. \Box

By Lemma 7(iii) we have

(4)
$$\operatorname{rad} \{a, b\} = \inf\{d(x, a) \colon x \in \operatorname{cent} \{a, b\}\}.$$

for all $a \neq b$ in E.

10. Triangles. Recall from the introduction that a triangle is a set $T = \{t_1, t_2, t_3\} \subset E$ of three noncollinear points. For $\{i, j, k\} = \{1, 2, 3\}$ we let J_i denote the side $[t_j, t_k]$ of T opposite to t_i . We say that T is weakly acute if for each i there is a minimal enclosing disc $\overline{B}(z_i, r_i)$ of J_i such that $d(z_i, t_i) \geq r_i$. If this holds with $d(z_i, t_i) > r_i$, T is strictly acute. Trivially, strictly acute implies weakly acute.

In these definitions, the minimal enclosing disc can be clearly replaced by any disk containing J_i .

Recall that in a normed plane E, a triangle T was called *acute* in [Vä] (norm-acute in [AMS]) if for each $i \in \{i, j, k\} = \{1, 2, 3\}$ the midpoint $m_i = (t_j + t_k)/2$ of J_i satisfies the inequality

(5)
$$||t_i - m_i|| > ||t_j - m_i|| = ||t_k - m_i||.$$

Clearly acute implies weakly acute, but strictly acute does not imply acute in normed planes, because it suffices that (5) holds with m_i replaced by the center z_i of *some* minimal enclosing disc of of J_i . See Example 11 below. To avoid misunderstanding, we do not use the term "acute triangle" in convex distance planes which are not normed.

11. Example. See Fig. 1. Let $E = \mathbb{R}^2$ with the l_{∞} -norm $||x|| = \max\{|x_1|, |x_2|\}$ for $x = (x_1, x_2)$, and let T be the triangle with vertices $t_1 = -e_1$, $t_2 = e_1$, $t_3 = 3e_2/4$. Then for $z_3 = -e_2/2$, the square $\bar{B}(z_3, 1)$ is a minimal enclosing disc of $J_3 = [t_1, t_2]$, and $||t_3 - z_3|| > 1$.

For i = 1, 2 and $z_1 = (e_1 + e_2)/2$, $z_2 = (-e_1 + e_2)/2$, the disc $\overline{B}(z_i, 1/2)$ is a minimal enclosing disc of J_i , and $||t_i - z_i|| = 3/2$. It follows that T is strictly acute.

On the other hand, as $m_3 = 0$, we have $||t_3 - m_3|| = 3/4 < 1 = ||t_1 - m_3||$, whence T is not acute.

Fig. 1. Example 11

12. Definition. A triangle T is called *equilateral* if all sides of T have equal radius. In a normed space this means that all sides have equal length. By Lemma 6 we obtain:

13. Lemma. If a triangle is equilateral in (E, K), it is equilateral also in (E, -K). \Box

14. Theorem. Every equilateral triangle in a convex distance plane is weakly acute.

Proof. Assume that the triangle $T = \{t_1, t_2, t_3\}$ is equilateral and let r be the common radius of the sides of T. Let $\overline{B}(z, r)$ be a minimal enclosing disc of the side $J_3 = [t_1, t_2]$. Then $d(z, t_1) = d(z, t_2) = r$ by Lemma 7(iii). If $d(z, t_3) < r$, then we can apply Lemma 7(i) with $a = t_3$, $b = t_1$ and obtain the contradiction $r < d(z, t_1)$. Hence $d(z, t_3) \ge r$, and the lemma follows. \Box

15. Example. Let $E = \mathbb{R}^2$ with the l_1 -norm $||x|| = |x_1| + |x_2|$. Then the triangle $T = \{-e_1, e_1, e_2\}$ is equilateral but not acute. Observe that bis $T = \{(0, s) : s \leq 0\}$.

The following result was in normed planes given in [AMS, Th. 6.1] for acute triangles. Other proofs were given in [Vä].

16. Theorem. If a triangle $T = \{t_1, t_2, t_3\}$ is weakly acute, then cent $T \neq \emptyset$.

Proof. For each i = 1, 2, 3 there is a minimal enclosing disc $\overline{B}(z_i, r_i)$ of the side $[t_j, t_k]$ of T opposite to t_i such that

$$(6) d(z_i, t_i) \ge r_i$$

We may assume that $r_3 \ge \max\{r_1, r_2\}$. By Lemma 7(iii) we have

(7)
$$d(z_i, t_j) = d(z_i, t_k) = r_i$$

for all $\{i, j, k\} = \{1, 2, 3\}$. Hence $z_3 \in \gamma := \text{cent} \{t_1, t_2\}$ and

(8)
$$d(x,t_1) = d(x,t_2) \ge r_3$$

for all $x \in \gamma$. See Fig. 2.

Let A be the broken line with successive vertices t_1, z_2, t_3, z_1, t_2 . Define continuous functions $f: \gamma \to \mathbb{R}$ and $g: A \to \mathbb{R}$ by

$$f(x) = d(x, t_3) - d(x, t_1), \quad g(x) = d(x, t_1) - d(x, t_2).$$

As $g(t_1) < 0$, $g(t_2) > 0$ and A is connected, there is a point $y \in A$ with g(y) = 0. Then $y \in \gamma$. By (6) and (7) we have $f(z_3) \ge r_3 - r_3 = 0$. As γ is connected by Lemma 9, it suffices to show that $f(y) \le 0$.

We may assume that $y \in [t_3, z_1] \cup [z_1, t_2]$. If $y \in (z_1, t_2]$, then (7) implies that $d(y, t_2) < d(z_1, t_2) = r_1 \le r_3$, which is impossible by (8). Hence $y \in [t_3, z_1]$. Now $d(y, t_3) \le d(z_1, t_3) = r_1 \le r_3$. As $d(y, t_1) \ge r_3$ by (8), we obtain $f(y) \le 0$, and the theorem is proved. \Box

By (3) we obtain:

17. Corollary. If a triangle T is weakly acute in (E, -K), then $bis_K T \neq \emptyset$. \Box

18. Theorem. If T is an equilateral triangle, then cent $T \neq \emptyset \neq \text{bis } T$. \Box

Proof. By Theorem 14 the triangle T is weakly acute and hence $\operatorname{cent}_K T \neq \emptyset$ by Theorem 16. By Lemma 13, T is equilateral also in (E, -K), and hence $\operatorname{bis}_K T \neq \emptyset$ by Corollary 17. \Box

19. *Remark.* For normed spaces, Theorem 18 was proved in [MSp, Lemma 2.4] for strictly convex spaces and in [Ko, Prop. 1.2] for arbitrary spaces.

20. *Example.* The following example shows that Th. 16 is not true if cent T is replaced by bis T. Let $K \subset \mathbb{R}^2$ be the solid triangle conv $\{y_1, y_2, y_3\}$ with

$$y_1 = -2e_1 + e_2, \ y_2 = 2e_1 + e_2, \ y_3 = -3e_2,$$

see Fig. 3. The triangle $T = \{t_1, t_2, t_3\}$ with

$$t_1 = -3e_1/2, t_2 = 3e_1/2, t_3 = e_2$$

is strictly acute. Indeed, the shaded triangles are minimal enclosing discs of the sides J_1 and J_2 , and conv $\{t_1, t_2, y_3\}$ is a minimal enclosing disc of J_3 . However, $\text{bis}_K T = \text{cent}_{-K} T = \emptyset$.

Fig. 2. Proof of Th. 16

Fig. 3. Example 20

References

- [AMS] J. Alonso, H. Martini, M. Spirova, Minimal enclosing discs, circumcircles, and circumcenters on normed planes (Part II), Comput. Geom. 45, 2012, 350-369.
- [IKLM] C. Icking, R. Klein, N.-M. Lê, L. Ma, Convex distance functions in 3-space are different, Fund. Inform. 22, 1995, 331-352.
- [IKLMS] C. Icking, R. Klein, N.-M. Lê, L. Ma, F. Santos, On bisectors for convex distance functions in 3-space, Proc. 11th Canadian Conf. Comp. Geom. Vancouver, 1999, 291-299.
- [HMW] C. He, H. Martini, S. Wu, On bisectors for convex distance functions, Extracta Math. 28, 2013, 57-76.
- [Ja1] T. Jahn, Extremal radii, diameter and minimum width in generalized Minkowski spaces, Rocky Mountain J. Math. 47, 2017, 825-848.
- [Ja2] T. Jahn, Successive radii and ball operators in generalized Minkowski spaces, Adv. Geom. 17, 2017, 347-354.
- [Ko] T. Kobos, An alternative proof of Petty's theorem for equilateral sets, Ann. Polon. Math 109, 2013, 165-175.
- [Ma] L. Ma, Bisectors and Voronoi diagrams for convex distance functions, Dissertation, Fernuniversität Hagen, 1999.
- [MSp] H. Martini, M. Spirova, Covering disks in Minkowski planes, Canad. Math. Bull. 52, 2009, 424-434.
- [MSW] H. Martini, K.J. Swanepoel, G.Weiss, The geometry of Minkowski spaces a survey, Part I, Expo. Math. 19, 2001, 97-142.
- [Vä] J. Väisälä, Observations on circumcenters in normed planes, Beitr. Algebra Geom. 68, 2017, 607-615.

Matematiikan laitos, Helsingin yliopisto, PL 68, 00014 Helsinki, Finland email: jussi.vaisala@helsinki.fi