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Abstract

The article deals with a plane equipped with a convex distance function. We ex-
tend the notions of equilateral and acute triangles and consider circumcenters of such
triangles.
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1. Introduction. A convex distance plane is a pair (E,K) where E is a 2-dimensional real
vector space and K ⊂ E is a compact convex set with 0 ∈ intK. The set K induces the
convex distance function d = dK : E × E → R, defined by

dK(a, b) = inf{r ≥ 0: b ∈ a + rK}.

We write

B̄K(a, r) = a + rK = {x ∈ E : dK(a, x) ≤ r},
BK(a, r) = a + r intK = {x ∈ E : dK(a, x) < r}

for the closed and open discs with center a and radius r. The subscript K can be omitted
if there is no danger of misunderstanding.

For the basic properties of convex distance functions, see e.g. [Ma, Chapters 1-2],
[IKLM], [IKLMS] or [HMW, Chapter 1]. Instead of dK , many authors make use of the
gauge γK : E → R, defined by γK(x) = d(0, x). If K is symmetric with respect to the
origin, then γK is a norm, but in the general case d(a, b) need not be equal to d(b, a).

A triangle in E is a set T = {t1, t2, t3} of three noncollinear points. Suppose first that
E is equipped with a norm ‖x‖. Let mi = (tj + tk)/2 be the midpoint of the side opposite
to ti, and let si = ‖tj − tk‖/2 = ‖tj −mi‖ = ‖tk −mi‖. The triangle T was called norm-
acute in [AMS] and acute in [Vä] if ‖ti −mi‖ > si for all i = 1, 2, 3. It was proved that
every such triangle has a circumcenter z, which means that ‖z− t1‖ = ‖z− t2‖ = ‖z− t3‖.

In this paper we extend this result to convex distance planes. However, if J = [a, b] is
a line segment in E, we may have d(a, b) 6= d(b, a). Therefore we reformulate the definition
of acuteness by replacing the length of J by the radius of J , defined in Section 2.

As a special case, we obtain the result for equilateral triangles.
The convex set −K defines a convex distance function d−K , and we have

(1) dK(a, b) = dK(−b,−a) = d−K(b, a) = d−K(−a,−b)

for all a, b ∈ E. Hence dK is a metric iff K = −K, which means that K is symmetric with
respect to the origin. In this case, ‖x‖ = dK(0, x) defines a norm in E.

The plane (E,K) and the function dK are called strictly convex if S = ∂K contains
no line segment. We let (e1, e2) denote the standard basis e1 = (1, 0), e2 = (0, 1) of R2.

From now on we assume that (E,K) is a given convex distance plane.
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2. The radius of a set. Suppose that A 6= ∅ is a compact set in E. The radius (called
circumradius in [Ja1]) of A is the number

radKA = radA = inf{r > 0: A ⊂ B̄(x, r) for some x ∈ E}.

Clearly radA = 0 iff A contains only one point. If A contains more points, then an easy
compactness argument shows that there is at least one disc B̄(x, radA) containing A. Such
a disc is called a minimal enclosing disc of A. Minimal enclosing discs in normed planes
have been extensively studied in [AMS]. A set may have several minimal enclosing discs;
see Example 11. However, if K is strictly convex, then the minimal enclosing disc of a
compact set A is unique. More generally, we have the following result:

3. Lemma. Let A 6= ∅ be a compact set in E and let M be the locus of the centers of
all minimal enclosing discs of A. Then M is a (possibly degenerate) line segment. If E is
strictly convex, then M is a singleton.

Proof. We may assume that radA = 1. We first show that M is convex. Let x, y ∈
M, x 6= y, and let z = λx + µy where 0 < λ, µ < 1 and λ + µ = 1. If a ∈ A, then
a = x+u = y + v for some u, v ∈ K. Hence a = λa+µa = z +w where w = λu+µv ∈ K.
Consequently, A ⊂ z + K and therefore z ∈ M . If E is strictly convex, the proof gives the
contradiction A ⊂ z + intK, and therefore M is a singleton.

It remains to show that int M = ∅. This was done by T. Jahn in the recent paper
[Ja2, Th. 4.7]. We give a slightly different proof. Assume that M contains a disc p + sK

with 0 < s < 1. Set δ = inf{d(x, 0) : x ∈ ∂K} > 0. Then d(x, p) ≥ sδ for all x ∈ p + s∂K.
We show that

(2) A ⊂ B̄(p, 1− sδ),

which gives the contradiction 1 = radA ≤ 1 − sδ. Let a ∈ A and let q ∈ p + s∂K be the
point for which p ∈ [q, a]. As q ∈ M , we have a ∈ q + K, and hence

1 ≥ d(q, a) = d(q, p) + d(p, a) ≥ sδ + d(p, a),

which implies (2). �

4. Remark. A similar proof in higher dimensions shows (with obvious terminology) that
if (E,K) is a convex distance space with dim E = n and if M is the locus of the centers
of all minimal enclosing balls of a compact set A ⊂ E, then M is a convex subset of an
(n− 1)-dimensional affine subspace of E.

From (1) we easily obtain:

5. Lemma. If z ∈ E and r > 0, then B̄−K(−z, r) = −B̄K(z, r). �

6. Lemma. For every line segment J = [a, b] we have radKJ = rad−KJ .

Proof. As rad is invariant in translations, we may assume that a + b = 0 and thus
J = −J . Consequently, if J ⊂ B̄K(z, r), then J ⊂ B−K(−z, r) by Lemma 5. The lemma
follows. �

Let conv A denote the convex hull of A. As discs are convex, each minimal enclosing
disc of A is a minimal enclosing disc of conv A, whence

rad conv A = radA
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for every compact set A ⊂ E. In particular, rad {a, b} = rad [a, b] for all a, b ∈ E. Since
b ∈ B̄(a, d(a, b)), we have

rad [a, b] ≤ min{d(a, b), d(b, a)}.

However, there is no upper bound for min{d(a, b), d(b, a)} in terms of rad [a, b], as is seen
from the following example: Let R > 1 and let K ⊂ R2 be the solid triangle conv {t1, t2, t3}
with Cartesian coordinates t1 = (−R, 1−R), t2 = (R, 1−R), t3 = (0, 1). Then d(t1, t2) =
d(t2, t1) = 2R and rad [t1, t2] = 1.

7. Lemma. Let a, b, z ∈ E with a 6= b and let r = rad {a, b}. Then:
(i) If d(z, a) < d(z, b), then r < d(z, b),
(ii) if d(z, a) ≤ d(z, b) = r, then d(z, a) = r,
(iii) if B̄(z, r) is a minimal enclosing disc of {a, b}, then d(z, a) = d(z, b) = r.

Proof. (i) Assume that d(z, b) ≤ r. Let 0 < ε < d(b, z) and let y ∈ [z, b] be the point
with d(y, z) = ε. Now

d(y, a) ≤ d(y, z) + d(z, a) = ε + d(z, a) < d(z, b)

for small ε. As d(y, b) < d(z, b), we have {a, b} ⊂ B(y, d(z, b)). Hence r < d(z, b) ≤ r, a
contradiction.

Items (ii) and (iii) follow from (i). �

8. Bisectors and central sets. Let A ⊂ E be a set containing at least two points. The
bisector of A is the set

bisKA = bis A = {x ∈ E : d(a, x) = d(b, x) for all a, b ∈ A}.

The central set of A is the set

centKA = cent A = {x ∈ E : d(x, a) = d(x, b) for all a, b ∈ A}.

Thus x ∈ centA iff A ⊂ ∂B(x, r) for some r > 0. Points of centA are called circumcenters
of A in the literature. By (1) we have

(3) bisKA = −bis−K(−A) = cent−KA = −centK(−A).

If K is symmetric, then bis A = cent A for all A ⊂ E. In interesting cases we have #A ≤ 3.
This is because the bisector and the central set are usually empty for larger sets A.

The structure of the bisector bis {a, b} of two points a 6= b in E is well known; see
e.g. [Ma, Section 2.1.1]. Indeed, if the unit circle S = ∂K does not contain any line
segment parallel to [a, b], then bis {a, b} is homeomorphic to a line. If S contains precisely
one segment parallel to [a, b], then bis {a, b} consists of a closed cone C and a curve
homeomorphic to a ray starting from the apex of C. If S contains two segments parallel
to [a, b], then bis {a, b} consists of two closed cones and an arc joining the apexes of the
cones. In view of (3) this implies:

9. Lemma. The sets bis {a, b} and cent {a, b} are connected for each pair of points a 6= b

in E. �

By Lemma 7(iii) we have

(4) rad {a, b} = inf{d(x, a) : x ∈ cent {a, b}}.

for all a 6= b in E.
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10. Triangles. Recall from the introduction that a triangle is a set T = {t1, t2, t3} ⊂ E

of three noncollinear points. For {i, j, k} = {1, 2, 3} we let Ji denote the side [tj , tk] of T

opposite to ti. We say that T is weakly acute if for each i there is a minimal enclosing disc
B̄(zi, ri) of Ji such that d(zi, ti) ≥ ri. If this holds with d(zi, ti) > ri, T is strictly acute.
Trivially, strictly acute implies weakly acute.

In these definitions, the minimal enclosing disc can be clearly replaced by any disk
containing Ji.

Recall that in a normed plane E, a triangle T was called acute in [Vä] (norm-acute in
[AMS]) if for each i ∈ {i, j, k} = {1, 2, 3} the midpoint mi = (tj + tk)/2 of Ji satisfies the
inequality

(5) ‖ti −mi‖ > ‖tj −mi‖ = ‖tk −mi‖.

Clearly acute implies weakly acute, but strictly acute does not imply acute in normed
planes, because it suffices that (5) holds with mi replaced by the center zi of some minimal
enclosing disc of of Ji. See Example 11 below. To avoid misunderstanding, we do not use
the term “acute triangle” in convex distance planes which are not normed.

11. Example. See Fig. 1. Let E = R2 with the l∞-norm ‖x‖ = max{|x1|, |x2|} for x =
(x1, x2), and let T be the triangle with vertices t1 = −e1, t2 = e1, t3 = 3e2/4. Then
for z3 = −e2/2, the square B̄(z3, 1) is a minimal enclosing disc of J3 = [t1, t2], and
‖t3 − z3‖ > 1.

For i = 1, 2 and z1 = (e1 + e2)/2, z2 = (−e1 + e2)/2, the disc B̄(zi, 1/2) is a minimal
enclosing disc of Ji, and ‖ti − zi‖ = 3/2. It follows that T is strictly acute.

On the other hand, as m3 = 0, we have ‖t3 −m3‖ = 3/4 < 1 = ‖t1 −m3‖, whence T

is not acute.

t2m3

z3

z2 z1

t3

t1

Fig. 1. Example 11

12. Definition. A triangle T is called equilateral if all sides of T have equal radius.
In a normed space this means that all sides have equal length. By Lemma 6 we obtain:

13. Lemma. If a triangle is equilateral in (E,K), it is equilateral also in (E,−K). �

14. Theorem. Every equilateral triangle in a convex distance plane is weakly acute.

Proof. Assume that the triangle T = {t1, t2, t3} is equilateral and let r be the common
radius of the sides of T . Let B̄(z, r) be a minimal enclosing disc of the side J3 = [t1, t2].
Then d(z, t1) = d(z, t2) = r by Lemma 7(iii). If d(z, t3) < r, then we can apply Lemma
7(i) with a = t3, b = t1 and obtain the contradiction r < d(z, t1). Hence d(z, t3) ≥ r, and
the lemma follows. �
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15. Example. Let E = R2 with the l1-norm ‖x‖ = |x1| + |x2|. Then the triangle T =
{−e1, e1, e2} is equilateral but not acute. Observe that bis T = {(0, s) : s ≤ 0}.

The following result was in normed planes given in [AMS, Th. 6.1] for acute triangles.
Other proofs were given in [Vä].

16. Theorem. If a triangle T = {t1, t2, t3} is weakly acute, then centT 6= ∅.

Proof. For each i = 1, 2, 3 there is a minimal enclosing disc B̄(zi, ri) of the side [tj , tk]
of T opposite to ti such that

(6) d(zi, ti) ≥ ri

We may assume that r3 ≥ max{r1, r2}. By Lemma 7(iii) we have

(7) d(zi, tj) = d(zi, tk) = ri

for all {i, j, k} = {1, 2, 3}. Hence z3 ∈ γ := cent {t1, t2} and

(8) d(x, t1) = d(x, t2) ≥ r3

for all x ∈ γ. See Fig. 2.
Let A be the broken line with successive vertices t1, z2, t3, z1, t2. Define continuous

functions f : γ → R and g : A → R by

f(x) = d(x, t3)− d(x, t1), g(x) = d(x, t1)− d(x, t2).

As g(t1) < 0, g(t2) > 0 and A is connected, there is a point y ∈ A with g(y) = 0. Then
y ∈ γ. By (6) and (7) we have f(z3) ≥ r3 − r3 = 0. As γ is connected by Lemma 9, it
suffices to show that f(y) ≤ 0.

We may assume that y ∈ [t3, z1]∪ [z1, t2]. If y ∈ (z1, t2], then (7) implies that d(y, t2) <

d(z1, t2) = r1 ≤ r3, which is impossible by (8). Hence y ∈ [t3, z1]. Now d(y, t3) ≤ d(z1, t3) =
r1 ≤ r3. As d(y, t1) ≥ r3 by (8), we obtain f(y) ≤ 0, and the theorem is proved. �

By (3) we obtain:

17. Corollary. If a triangle T is weakly acute in (E,−K), then bisKT 6= ∅. �

18. Theorem. If T is an equilateral triangle, then centT 6= ∅ 6= bis T. �

Proof. By Theorem 14 the triangle T is weakly acute and hence centKT 6= ∅ by
Theorem 16. By Lemma 13, T is equilateral also in (E,−K), and hence bisKT 6= ∅ by
Corollary 17. �

19. Remark. For normed spaces, Theorem 18 was proved in [MSp, Lemma 2.4] for strictly
convex spaces and in [Ko, Prop. 1.2] for arbitrary spaces.

20. Example. The following example shows that Th. 16 is not true if centT is replaced
by bis T . Let K ⊂ R2 be the solid triangle conv {y1, y2, y3} with

y1 = −2e1 + e2, y2 = 2e1 + e2, y3 = −3e2,

see Fig. 3. The triangle T = {t1, t2, t3} with

t1 = −3e1/2, t2 = 3e1/2, t3 = e2

is strictly acute. Indeed, the shaded triangles are minimal enclosing discs of the sides J1 and
J2, and conv {t1, t2, y3} is a minimal enclosing disc of J3. However, bisKT = cent−KT = ∅.
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K
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Fig. 2. Proof of Th. 16 Fig. 3. Example 20
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