Triangles in convex distance planes

Jussi Väisälä

Abstract

The article deals with a plane equipped with a convex distance function. We extend the notions of equilateral and acute triangles and consider circumcenters of such triangles.

Keywords: convex distance, bisector, central set, acute Mathematics Subject Classification: 52A10, 52A21

1. Introduction. A convex distance plane is a pair (E, K) where E is a 2-dimensional real vector space and $K \subset E$ is a compact convex set with $0 \in \operatorname{int} K$. The set K induces the convex distance function $d=d_{K}: E \times E \rightarrow \mathbb{R}$, defined by

$$
d_{K}(a, b)=\inf \{r \geq 0: b \in a+r K\}
$$

We write

$$
\begin{aligned}
& \bar{B}_{K}(a, r)=a+r K=\left\{x \in E: d_{K}(a, x) \leq r\right\} \\
& B_{K}(a, r)=a+r \operatorname{int} K=\left\{x \in E: d_{K}(a, x)<r\right\}
\end{aligned}
$$

for the closed and open discs with center a and radius r. The subscript K can be omitted if there is no danger of misunderstanding.

For the basic properties of convex distance functions, see e.g. [Ma, Chapters 1-2], [IKLM], [IKLMS] or [HMW, Chapter 1]. Instead of d_{K}, many authors make use of the gauge $\gamma_{K}: E \rightarrow \mathbb{R}$, defined by $\gamma_{K}(x)=d(0, x)$. If K is symmetric with respect to the origin, then γ_{K} is a norm, but in the general case $d(a, b)$ need not be equal to $d(b, a)$.

A triangle in E is a set $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ of three noncollinear points. Suppose first that E is equipped with a norm $\|x\|$. Let $m_{i}=\left(t_{j}+t_{k}\right) / 2$ be the midpoint of the side opposite to t_{i}, and let $s_{i}=\left\|t_{j}-t_{k}\right\| / 2=\left\|t_{j}-m_{i}\right\|=\left\|t_{k}-m_{i}\right\|$. The triangle T was called normacute in [AMS] and acute in [Vä] if $\left\|t_{i}-m_{i}\right\|>s_{i}$ for all $i=1,2,3$. It was proved that every such triangle has a circumcenter z, which means that $\left\|z-t_{1}\right\|=\left\|z-t_{2}\right\|=\left\|z-t_{3}\right\|$.

In this paper we extend this result to convex distance planes. However, if $J=[a, b]$ is a line segment in E, we may have $d(a, b) \neq d(b, a)$. Therefore we reformulate the definition of acuteness by replacing the length of J by the radius of J, defined in Section 2.

As a special case, we obtain the result for equilateral triangles.
The convex set $-K$ defines a convex distance function d_{-K}, and we have

$$
\begin{equation*}
d_{K}(a, b)=d_{K}(-b,-a)=d_{-K}(b, a)=d_{-K}(-a,-b) \tag{1}
\end{equation*}
$$

for all $a, b \in E$. Hence d_{K} is a metric iff $K=-K$, which means that K is symmetric with respect to the origin. In this case, $\|x\|=d_{K}(0, x)$ defines a norm in E.

The plane (E, K) and the function d_{K} are called strictly convex if $S=\partial K$ contains no line segment. We let $\left(e_{1}, e_{2}\right)$ denote the standard basis $e_{1}=(1,0), e_{2}=(0,1)$ of \mathbb{R}^{2}.

From now on we assume that (E, K) is a given convex distance plane.
2. The radius of a set. Suppose that $A \neq \varnothing$ is a compact set in E. The radius (called circumradius in [Ja1]) of A is the number

$$
\operatorname{rad}_{K} A=\operatorname{rad} A=\inf \{r>0: A \subset \bar{B}(x, r) \text { for some } x \in E\} .
$$

Clearly $\operatorname{rad} A=0$ iff A contains only one point. If A contains more points, then an easy compactness argument shows that there is at least one disc $\bar{B}(x, \operatorname{rad} A)$ containing A. Such a disc is called a minimal enclosing disc of A. Minimal enclosing discs in normed planes have been extensively studied in [AMS]. A set may have several minimal enclosing discs; see Example 11. However, if K is strictly convex, then the minimal enclosing disc of a compact set A is unique. More generally, we have the following result:
3. Lemma. Let $A \neq \varnothing$ be a compact set in E and let M be the locus of the centers of all minimal enclosing discs of A. Then M is a (possibly degenerate) line segment. If E is strictly convex, then M is a singleton.

Proof. We may assume that $\operatorname{rad} A=1$. We first show that M is convex. Let $x, y \in$ $M, x \neq y$, and let $z=\lambda x+\mu y$ where $0<\lambda, \mu<1$ and $\lambda+\mu=1$. If $a \in A$, then $a=x+u=y+v$ for some $u, v \in K$. Hence $a=\lambda a+\mu a=z+w$ where $w=\lambda u+\mu v \in K$. Consequently, $A \subset z+K$ and therefore $z \in M$. If E is strictly convex, the proof gives the contradiction $A \subset z+\operatorname{int} K$, and therefore M is a singleton.

It remains to show that $\operatorname{int} M=\varnothing$. This was done by T. Jahn in the recent paper [Ja2, Th. 4.7]. We give a slightly different proof. Assume that M contains a disc $p+s K$ with $0<s<1$. Set $\delta=\inf \{d(x, 0): x \in \partial K\}>0$. Then $d(x, p) \geq s \delta$ for all $x \in p+s \partial K$.

We show that

$$
\begin{equation*}
A \subset \bar{B}(p, 1-s \delta), \tag{2}
\end{equation*}
$$

which gives the contradiction $1=\operatorname{rad} A \leq 1-s \delta$. Let $a \in A$ and let $q \in p+s \partial K$ be the point for which $p \in[q, a]$. As $q \in M$, we have $a \in q+K$, and hence

$$
1 \geq d(q, a)=d(q, p)+d(p, a) \geq s \delta+d(p, a),
$$

which implies (2).
4. Remark. A similar proof in higher dimensions shows (with obvious terminology) that if (E, K) is a convex distance space with $\operatorname{dim} E=n$ and if M is the locus of the centers of all minimal enclosing balls of a compact set $A \subset E$, then M is a convex subset of an ($n-1$)-dimensional affine subspace of E.

From (1) we easily obtain:
5. Lemma. If $z \in E$ and $r>0$, then $\bar{B}_{-K}(-z, r)=-\bar{B}_{K}(z, r)$.
6. Lemma. For every line segment $J=[a, b]$ we have $\operatorname{rad}_{K} J=\operatorname{rad}_{-K} J$.

Proof. As rad is invariant in translations, we may assume that $a+b=0$ and thus $J=-J$. Consequently, if $J \subset \bar{B}_{K}(z, r)$, then $J \subset B_{-K}(-z, r)$ by Lemma 5 . The lemma follows.

Let conv A denote the convex hull of A. As discs are convex, each minimal enclosing disc of A is a minimal enclosing disc of $\operatorname{conv} A$, whence

$$
\operatorname{rad} \operatorname{conv} A=\operatorname{rad} A
$$

for every compact set $A \subset E$. In particular, $\operatorname{rad}\{a, b\}=\operatorname{rad}[a, b]$ for all $a, b \in E$. Since $b \in \bar{B}(a, d(a, b))$, we have

$$
\operatorname{rad}[a, b] \leq \min \{d(a, b), d(b, a)\} .
$$

However, there is no upper bound for $\min \{d(a, b), d(b, a)\}$ in terms of $\operatorname{rad}[a, b]$, as is seen from the following example: Let $R>1$ and let $K \subset \mathbb{R}^{2}$ be the solid triangle conv $\left\{t_{1}, t_{2}, t_{3}\right\}$ with Cartesian coordinates $t_{1}=(-R, 1-R), t_{2}=(R, 1-R), t_{3}=(0,1)$. Then $d\left(t_{1}, t_{2}\right)=$ $d\left(t_{2}, t_{1}\right)=2 R$ and $\operatorname{rad}\left[t_{1}, t_{2}\right]=1$.
7. Lemma. Let $a, b, z \in E$ with $a \neq b$ and let $r=\operatorname{rad}\{a, b\}$. Then:
(i) If $d(z, a)<d(z, b)$, then $r<d(z, b)$,
(ii) if $d(z, a) \leq d(z, b)=r$, then $d(z, a)=r$,
(iii) if $\bar{B}(z, r)$ is a minimal enclosing disc of $\{a, b\}$, then $d(z, a)=d(z, b)=r$.

Proof. (i) Assume that $d(z, b) \leq r$. Let $0<\varepsilon<d(b, z)$ and let $y \in[z, b]$ be the point with $d(y, z)=\varepsilon$. Now

$$
d(y, a) \leq d(y, z)+d(z, a)=\varepsilon+d(z, a)<d(z, b)
$$

for small ε. As $d(y, b)<d(z, b)$, we have $\{a, b\} \subset B(y, d(z, b))$. Hence $r<d(z, b) \leq r$, a contradiction.

Items (ii) and (iii) follow from (i).
8. Bisectors and central sets. Let $A \subset E$ be a set containing at least two points. The bisector of A is the set

$$
\operatorname{bis}_{K} A=\operatorname{bis} A=\{x \in E: d(a, x)=d(b, x) \text { for all } a, b \in A\} .
$$

The central set of A is the set

$$
\operatorname{cent}_{K} A=\operatorname{cent} A=\{x \in E: d(x, a)=d(x, b) \text { for all } a, b \in A\} .
$$

Thus $x \in$ cent A iff $A \subset \partial B(x, r)$ for some $r>0$. Points of cent A are called circumcenters of A in the literature. By (1) we have

$$
\begin{equation*}
\operatorname{bis}_{K} A=-\operatorname{bis}_{-K}(-A)=\operatorname{cent}_{-K} A=-\operatorname{cent}_{K}(-A) . \tag{3}
\end{equation*}
$$

If K is symmetric, then bis $A=$ cent A for all $A \subset E$. In interesting cases we have $\# A \leq 3$. This is because the bisector and the central set are usually empty for larger sets A.

The structure of the bisector bis $\{a, b\}$ of two points $a \neq b$ in E is well known; see e.g. [Ma, Section 2.1.1]. Indeed, if the unit circle $S=\partial K$ does not contain any line segment parallel to $[a, b]$, then bis $\{a, b\}$ is homeomorphic to a line. If S contains precisely one segment parallel to $[a, b]$, then bis $\{a, b\}$ consists of a closed cone C and a curve homeomorphic to a ray starting from the apex of C. If S contains two segments parallel to $[a, b]$, then bis $\{a, b\}$ consists of two closed cones and an arc joining the apexes of the cones. In view of (3) this implies:
9. Lemma. The sets bis $\{a, b\}$ and cent $\{a, b\}$ are connected for each pair of points $a \neq b$ in E.

By Lemma 7(iii) we have

$$
\begin{equation*}
\operatorname{rad}\{a, b\}=\inf \{d(x, a): x \in \operatorname{cent}\{a, b\}\} . \tag{4}
\end{equation*}
$$

for all $a \neq b$ in E.
10. Triangles. Recall from the introduction that a triangle is a set $T=\left\{t_{1}, t_{2}, t_{3}\right\} \subset E$ of three noncollinear points. For $\{i, j, k\}=\{1,2,3\}$ we let J_{i} denote the side $\left[t_{j}, t_{k}\right]$ of T opposite to t_{i}. We say that T is weakly acute if for each i there is a minimal enclosing disc $\bar{B}\left(z_{i}, r_{i}\right)$ of J_{i} such that $d\left(z_{i}, t_{i}\right) \geq r_{i}$. If this holds with $d\left(z_{i}, t_{i}\right)>r_{i}, T$ is strictly acute. Trivially, strictly acute implies weakly acute.

In these definitions, the minimal enclosing disc can be clearly replaced by any disk containing J_{i}.

Recall that in a normed plane E, a triangle T was called acute in [Vä] (norm-acute in [AMS]) if for each $i \in\{i, j, k\}=\{1,2,3\}$ the midpoint $m_{i}=\left(t_{j}+t_{k}\right) / 2$ of J_{i} satisfies the inequality

$$
\begin{equation*}
\left\|t_{i}-m_{i}\right\|>\left\|t_{j}-m_{i}\right\|=\left\|t_{k}-m_{i}\right\| \tag{5}
\end{equation*}
$$

Clearly acute implies weakly acute, but strictly acute does not imply acute in normed planes, because it suffices that (5) holds with m_{i} replaced by the center z_{i} of some minimal enclosing disc of of J_{i}. See Example 11 below. To avoid misunderstanding, we do not use the term "acute triangle" in convex distance planes which are not normed.
11. Example. See Fig. 1. Let $E=\mathbb{R}^{2}$ with the l_{∞}-norm $\|x\|=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}$ for $x=$ $\left(x_{1}, x_{2}\right)$, and let T be the triangle with vertices $t_{1}=-e_{1}, t_{2}=e_{1}, t_{3}=3 e_{2} / 4$. Then for $z_{3}=-e_{2} / 2$, the square $\bar{B}\left(z_{3}, 1\right)$ is a minimal enclosing disc of $J_{3}=\left[t_{1}, t_{2}\right]$, and $\left\|t_{3}-z_{3}\right\|>1$.

For $i=1,2$ and $z_{1}=\left(e_{1}+e_{2}\right) / 2, z_{2}=\left(-e_{1}+e_{2}\right) / 2$, the disc $\bar{B}\left(z_{i}, 1 / 2\right)$ is a minimal enclosing disc of J_{i}, and $\left\|t_{i}-z_{i}\right\|=3 / 2$. It follows that T is strictly acute.

On the other hand, as $m_{3}=0$, we have $\left\|t_{3}-m_{3}\right\|=3 / 4<1=\left\|t_{1}-m_{3}\right\|$, whence T is not acute.

Fig. 1. Example 11
12. Definition. A triangle T is called equilateral if all sides of T have equal radius.

In a normed space this means that all sides have equal length. By Lemma 6 we obtain:
13. Lemma. If a triangle is equilateral in (E, K), it is equilateral also in $(E,-K)$.
14. Theorem. Every equilateral triangle in a convex distance plane is weakly acute.

Proof. Assume that the triangle $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ is equilateral and let r be the common radius of the sides of T. Let $\bar{B}(z, r)$ be a minimal enclosing disc of the side $J_{3}=\left[t_{1}, t_{2}\right]$. Then $d\left(z, t_{1}\right)=d\left(z, t_{2}\right)=r$ by Lemma 7 (iii). If $d\left(z, t_{3}\right)<r$, then we can apply Lemma 7 (i) with $a=t_{3}, b=t_{1}$ and obtain the contradiction $r<d\left(z, t_{1}\right)$. Hence $d\left(z, t_{3}\right) \geq r$, and the lemma follows.
15. Example. Let $E=\mathbb{R}^{2}$ with the l_{1}-norm $\|x\|=\left|x_{1}\right|+\left|x_{2}\right|$. Then the triangle $T=$ $\left\{-e_{1}, e_{1}, e_{2}\right\}$ is equilateral but not acute. Observe that bis $T=\{(0, s): s \leq 0\}$.

The following result was in normed planes given in [AMS, Th. 6.1] for acute triangles. Other proofs were given in [Vä].
16. Theorem. If a triangle $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ is weakly acute, then $\operatorname{cent} T \neq \varnothing$.

Proof. For each $i=1,2,3$ there is a minimal enclosing disc $\bar{B}\left(z_{i}, r_{i}\right)$ of the side $\left[t_{j}, t_{k}\right]$ of T opposite to t_{i} such that

$$
\begin{equation*}
d\left(z_{i}, t_{i}\right) \geq r_{i} \tag{6}
\end{equation*}
$$

We may assume that $r_{3} \geq \max \left\{r_{1}, r_{2}\right\}$. By Lemma 7(iii) we have

$$
\begin{equation*}
d\left(z_{i}, t_{j}\right)=d\left(z_{i}, t_{k}\right)=r_{i} \tag{7}
\end{equation*}
$$

for all $\{i, j, k\}=\{1,2,3\}$. Hence $z_{3} \in \gamma:=\operatorname{cent}\left\{t_{1}, t_{2}\right\}$ and

$$
\begin{equation*}
d\left(x, t_{1}\right)=d\left(x, t_{2}\right) \geq r_{3} \tag{8}
\end{equation*}
$$

for all $x \in \gamma$. See Fig. 2.
Let A be the broken line with successive vertices $t_{1}, z_{2}, t_{3}, z_{1}, t_{2}$. Define continuous functions $f: \gamma \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ by

$$
f(x)=d\left(x, t_{3}\right)-d\left(x, t_{1}\right), \quad g(x)=d\left(x, t_{1}\right)-d\left(x, t_{2}\right) .
$$

As $g\left(t_{1}\right)<0, g\left(t_{2}\right)>0$ and A is connected, there is a point $y \in A$ with $g(y)=0$. Then $y \in \gamma$. By (6) and (7) we have $f\left(z_{3}\right) \geq r_{3}-r_{3}=0$. As γ is connected by Lemma 9 , it suffices to show that $f(y) \leq 0$.

We may assume that $y \in\left[t_{3}, z_{1}\right] \cup\left[z_{1}, t_{2}\right]$. If $y \in\left(z_{1}, t_{2}\right]$, then (7) implies that $d\left(y, t_{2}\right)<$ $d\left(z_{1}, t_{2}\right)=r_{1} \leq r_{3}$, which is impossible by (8). Hence $y \in\left[t_{3}, z_{1}\right]$. Now $d\left(y, t_{3}\right) \leq d\left(z_{1}, t_{3}\right)=$ $r_{1} \leq r_{3}$. As $d\left(y, t_{1}\right) \geq r_{3}$ by (8), we obtain $f(y) \leq 0$, and the theorem is proved.

By (3) we obtain:
17. Corollary. If a triangle T is weakly acute in $(E,-K)$, then $\operatorname{bis}_{K} T \neq \varnothing$.
18. Theorem. If T is an equilateral triangle, then $\operatorname{cent} T \neq \varnothing \neq \operatorname{bis} T$.

Proof. By Theorem 14 the triangle T is weakly acute and hence $\operatorname{cent}_{K} T \neq \varnothing$ by Theorem 16. By Lemma 13, T is equilateral also in ($E,-K$), and hence $\operatorname{bis}_{K} T \neq \varnothing$ by Corollary 17.
19. Remark. For normed spaces, Theorem 18 was proved in [MSp, Lemma 2.4] for strictly convex spaces and in [Ko, Prop. 1.2] for arbitrary spaces.
20. Example. The following example shows that $T h .16$ is not true if cent T is replaced by bis T. Let $K \subset \mathbb{R}^{2}$ be the solid triangle conv $\left\{y_{1}, y_{2}, y_{3}\right\}$ with

$$
y_{1}=-2 e_{1}+e_{2}, y_{2}=2 e_{1}+e_{2}, y_{3}=-3 e_{2}
$$

see Fig. 3. The triangle $T=\left\{t_{1}, t_{2}, t_{3}\right\}$ with

$$
t_{1}=-3 e_{1} / 2, t_{2}=3 e_{1} / 2, t_{3}=e_{2}
$$

is strictly acute. Indeed, the shaded triangles are minimal enclosing discs of the sides J_{1} and J_{2}, and conv $\left\{t_{1}, t_{2}, y_{3}\right\}$ is a minimal enclosing disc of J_{3}. However, $\operatorname{bis}_{K} T=\operatorname{cent}_{-K} T=\varnothing$.

Fig. 2. Proof of Th. 16

Fig. 3. Example 20

References

[AMS] J. Alonso, H. Martini, M. Spirova, Minimal enclosing discs, circumcircles, and circumcenters on normed planes (Part II), Comput. Geom. 45, 2012, 350-369.
[IKLM] C. Icking, R. Klein, N.-M. Lê, L. Ma, Convex distance functions in 3-space are different, Fund. Inform. 22, 1995, 331-352.
[IKLMS] C. Icking, R. Klein, N.-M. Lê, L. Ma, F. Santos, On bisectors for convex distance functions in 3-space, Proc. 11th Canadian Conf. Comp. Geom. Vancouver, 1999, 291-299.
[HMW] C. He, H. Martini, S. Wu, On bisectors for convex distance functions, Extracta Math. 28, 2013, 57-76.
[Ja1] T. Jahn, Extremal radii, diameter and minimum width in generalized Minkowski spaces, Rocky Mountain J. Math. 47, 2017, 825-848.
[Ja2] T. Jahn, Successive radii and ball operators in generalized Minkowski spaces, Adv. Geom. 17, 2017, 347-354.
[Ko] T. Kobos, An alternative proof of Petty's theorem for equilateral sets, Ann. Polon. Math 109, 2013, 165-175.
[Ma] L. Ma, Bisectors and Voronoi diagrams for convex distance functions, Dissertation, Fernuniversität Hagen, 1999.
[MSp] H. Martini, M. Spirova, Covering disks in Minkowski planes, Canad. Math. Bull. 52, 2009, 424-434.
[MSW] H. Martini, K.J. Swanepoel, G.Weiss, The geometry of Minkowski spaces - a survey, Part I, Expo. Math. 19, 2001, 97-142.
[Vä] J. Väisälä, Observations on circumcenters in normed planes, Beitr. Algebra Geom. 68, 2017, 607-615.

Matematiikan laitos, Helsingin yliopisto, PL 68, 00014 Helsinki, Finland email: jussi.vaisala@helsinki.fi

