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c/ Federico Garćıa Lorca 18, 33007 Oviedo, Spain
dInstituto Universitario de Ciencias y Tecnoloǵıas Espaciales de Asturias (ICTEA),

Calle de la Independencia, 13, 33004 Oviedo, Spain

E-mail: oscar.henriksson@helsinki.fi, hoyoscarlos@uniovi.es,

niko.jokela@helsinki.fi

Abstract: We revisit the large-Nc phase diagram of N = 4 super Yang-Mills theory at

finite R-charge density and strong coupling, by means of the AdS/CFT correspondence. We

conjecture new phases that result from a black hole shedding some of its charge through

the nucleation of probe color D3-branes that remain at a finite distance from the black

hole when the dual field theory lives on a sphere. In the corresponding ground states

the color group is partially Higgsed, so these phases can be identified as having a type

of color superconductivity. The new phases would appear at intermediate values of the

R-charge chemical potential and we expect them to be metastable but long-lived in the

large-Nc limit.

Keywords: D-branes, Gauge-gravity correspondence, Spontaneous Symmetry Breaking,

Holography and quark-gluon plasmas

ArXiv ePrint: 1907.01562

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP09(2019)088

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/237212471?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:oscar.henriksson@helsinki.fi
mailto:hoyoscarlos@uniovi.es
mailto:niko.jokela@helsinki.fi
https://arxiv.org/abs/1907.01562
https://doi.org/10.1007/JHEP09(2019)088


J
H
E
P
0
9
(
2
0
1
9
)
0
8
8

Contents

1 Introduction 1

2 R-charged N = 4 SYM 4

2.1 Field theory 5

2.2 Dual geometry 7

3 Thermodynamics 8

3.1 Phase diagram 10

4 Effective potential for probe color D3-branes 12

5 Brane nucleation instability 19

6 Discussion and outlook 22

A Derivation of thermodynamic quantities 23

B Single nonzero chemical potential 27

1 Introduction

The original and one of the most studied examples of the AdS/CFT correspondence [1–3]

builds on the SU(Nc) N = 4 super Yang-Mills theory (N = 4 SYM). In the Nc →∞ and

strong ’t Hooft coupling limits N = 4 SYM has been conjectured to be dual to type IIB

superstring theory in AdS5×S5. This geometry results as the near horizon limit of a stack

of Nc D3-branes. The conjecture has passed a number of non-trivial tests (see, e.g., [4])

and it has also found applications in diverse fields [5–8].

One of the applications of the duality has been to use it as a playing ground for studying

thermodynamics of strongly coupled gauge theories, starting with the seminal work of

Witten [9]. In Witten’s work, it was argued that when, e.g., the N = 4 SYM theory is put

on a spatial three-sphere, there will be a phase transition from a “confined” phase at low

temperatures where the expectation value of the Polyakov loop vanishes to a “deconfined”

phase at high temperatures where the expectation value is non-zero. Although the volume

is finite, a phase transition is possible because Nc →∞ acts as a thermodynamic limit. In

the gravity dual, the phase transition is manifested as the Hawking-Page transition [10],

from empty global AdS5 space to a black hole geometry. Soon thereafter, the analysis was

extended to study the thermodynamic properties of states with R-charge dual to black holes

with angular momentum along the S5 directions [11–15]. In the N = 4 SYM theory there

are three independent R-charges corresponding to the rank of the global R-symmetry group
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SU(4)R. Chemical potentials for each of the three charges can be introduced independently,

although typically only a few symmetric cases have been considered, with charges that are

either vanishing or equal to each other. In this paper we will give explicit results for the

case of all chemical potentials equal (µ1 = µ2 = µ3 = µ) and for only one non-zero chemical

potential (µ1 = µ, µ2 = µ3 = 0), although most of our computations apply generally.

In [16–18], the results from the AdS/CFT calculation were compared with the phase

diagram of N = 4 SYM theory at weak coupling. The weak coupling analysis showed

that above a critical value of the chemical potential Lµ > 1 (in units of the radius of the

three-sphere L), the theory does not have an obvious ground state, although there is a

metastable deconfined phase that survives up to larger values of the chemical potential

before becoming unstable. The value of Lµ where the deconfined phase becomes unstable

was seen to increase with the temperature. The analysis of [19, 20] indicated that on the

gravity side, black hole solutions at Lµ > 1 were also metastable and will decay through the

emission of D3-branes, a process which was dubbed “brane fragmentation”. In the context

of holographic applications to condensed matter physics this has also been called “Fermi

seasickness” [21]. In both the weak coupling and gravity dual description, the decay of

the metastable state is exponentially suppressed ∼ e−Nc in the large-Nc limit. In the weak

coupling calculation, there is an effective potential for the eigenvalues of N = 4 SYM scalars

that is unbounded from below but has a local minimum [18]. On the gravity side, D3-branes

can lower their energy by escaping from the black hole, however this process is mitigated by

a potential barrier between the region close to the horizon and the asymptotic region [20].

Although the gravity and field theory descriptions match qualitatively, it should be noted

that the precise mechanism by which the black hole will lose its angular momentum has

not been discussed in detail. We will not delve more into this issue, but assume that such

mechanism exists and refer to it as “brane nucleation”.

In this paper we will revisit the strong coupling phase diagram and in particular

scrutinize the nature of metastable phases in the Lµ > 1 region. In the original analysis of

the nucleation instability, the effective potential for D3-branes was considered with fixed

angular velocity. Because of this, the D3-brane experienced a centrifugal force that tended

to expel it towards the boundary and which became the dominant effect for large enough

rotation. Thus, it was observed that branes were expelled to the boundary as soon as some

critical value of the velocity was reached. However, this would require that brane nucleation

occurs in such a way that the angular momentum of the brane changes depending on the

distance to the black hole horizon, eventually diverging as the asymptotic far region is

reached. In this case the probe approximation should break down at asymptotically large

distances from the horizon.

We believe that this picture is not complete. Even in the grand canonical ensemble

we expect the nucleation to be dominated by processes that conserve the total angular

momentum of the black hole plus the emitted probe branes. The reasoning stems from the

observation that the angular momentum is a conserved quantity for the D3-brane effective

action, due to the isometries of the black hole geometry. A brane that nucleates from the

stack will carry as much angular momentum as that lost by the black hole and will not

affect to the asymptotic form of the geometry as long as it remains at a finite distance
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from the black hole. On the other hand, a process where the total angular momentum

changes requires an exchange with the AdS boundary and will imply a modification of the

geometry throughout the whole space. Although both types of processes might be possible,

the latter is likely to be more suppressed.

Armed with these insights, we therefore expect the nucleation to happen first gradually

through the emission of D3-branes with fixed angular momentum in such a way that the

total angular momentum is preserved. This is a valid description as long as the timescales

involved are short in comparison to those relevant for processes where the total angular

momentum would change. Indeed, as we show in the body of the paper, the effective

potential for D3-branes with fixed angular momentum is qualitatively different than the

one for D3-branes with fixed angular velocity. In particular, when the N = 4 SYM theory

is on a sphere, the effective potential always increases at distances far away from the

horizon thus preventing the nucleating branes from escaping to the asymptotic region.

This allows for metastable configurations where a few D3-branes are localized at a finite

distance from the black hole horizon. From the point of view of the field theory dual, this

corresponds to a situation where some D3-branes are separated from the main stack. From

the D3-brane effective theory vantage point, this is tantamount to having non-vanishing

expectation values of some of the N = 4 SYM scalar fields. This Higgses the gauge group

SU(Nc) → SU(Nc − n) × U(n), for n coincident branes localized outside the horizon, so

there are new phases with spontaneously broken color symmetry. It should be noted that

this type of phase is not to be understood on par with the standard description of a

color superconductor phase in QCD [22], which is described at weak coupling by a quark

condensate and involves a locking between flavor and color symmetries. Nevertheless, in

both cases there is a spontaneous breaking of the gauge group.

Our analysis also allows us to be more precise about the onset of this brane nucleation

instability. While we recover the result that the instability is always present for Lµ > 1, we

argue that it will be greatly suppressed in a large part of this region of the phase diagram.

The reason is that for large temperatures compared to the chemical potentials, a brane

needs to have an exceedingly large angular momentum to nucleate in the bulk. However,

we expect the Nc spinning branes sourcing the background geometry to share the total

angular momentum equally, with deviations from the average exponentially suppressed in

the large-Nc limit. For large T/µ, a typical brane does not have enough angular momentum

for it to nucleate, and thus the geometry is effectively stable. For the special case where

the three chemical potentials are taken equal, this result is shown in the phase diagram of

figure 1. There, stable charged black holes exists between the black and red dashed curves,

corresponding to the Hawking-Page transition and the onset of thermodynamic instabilities,

respectively. The colored blue region indicates where brane nucleation instability will not

be suppressed by these statistical considerations. The full details of the phase diagram will

be carefully explained in sections 3 and 5.

In summary, we improve the analysis of the brane nucleation instability in backgrounds

dual to finite density states of N = 4 SYM on a sphere, and in the process find novel

metastable color superconducting phases: the color superconducting matter is in a spatially

homogeneous Higgs phase where the gluonic degrees of freedom obtained masses. We note
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Figure 1. Phase diagram in the grand canonical ensemble for three equal chemical potentials.

Susceptibilities diverge at the black thick curve, and black hole solutions exist only in the region

outside the curve. The red dashed curve marks the onset of the instability for the symmetric phase

(IS) at higher values of the chemical potential. The blue dashed curve at Lµ = 1 separates the

unstable symmetric (IIS) and asymmetric (A) phases. The black dashed curve corresponds to

the Hawking-Page transition. The colored region shows where the black hole is unstable to brane

nucleation. Outside that region and to the right of the Lµ = 1 line the probe D3-brane effective

potential has a minimum away from the horizon, but the nucleation instability is suppressed due

to the mechanism described in the text (typical branes in the stack do not spin fast enough).

that this is a prime and particularly clean example of a color superconducting phase in a

top-down framework; for earlier interesting works in this context, see [23–27].

We have organized the paper as follows. In section 2 we will review both the field

theory and the spacetime geometry of spinning D3-branes. In section 3 we review the

phase diagram focusing on the case with three equal chemical potentials. Then in section 4

we will compute the effective potential for color probe D3-branes in the black hole geometry.

In section 5 we discuss the nucleation instability and the color superconducting phases. In

section 6 we summarize and discuss future developments of our work. Finally, appendix A

contains derivation of the thermodynamic quantities through holographic renormalization,

necessary details behind the conclusions in section 3. In appendix B we discuss the case

where only one chemical potential is nonzero.

2 R-charged N = 4 SYM

The U(Nc) N = 4 SYM theory is the low energy effective description of a stack of Nc D3-

branes in type IIB string theory. The SO(6) symmetry of rotations in the space transverse

to the D3-branes maps to the SO(6) ∼= SU(4) global R-symmetry acting on N = 4 SYM

fields. The AdS/CFT correspondence maps the (finite temperature) SU(Nc) N = 4 SYM

– 4 –



J
H
E
P
0
9
(
2
0
1
9
)
0
8
8

theory to the near-horizon (black) 3-brane geometry ∼ AdS5 × S5, with Nc units of five-

form flux. The R-symmetry can be identified with the SO(6) rotations of the S5 component

of the geometry, while the directions along the D3-brane worldvolume are embedded in the

AdS5 geometry. Following this map, introducing a nonzero R-charge in the N = 4 SYM

theory translates into a geometry with nonzero angular momentum along the S5 directions.

2.1 Field theory

We follow the conventions of [17, 18] in the parametrization of N = 4 SYM fields and chem-

ical potentials. The N = 4 SYM theory involves a gauge field Aµ, four Weyl fermions ψi,

i = 1, . . . , 4, and six scalars φa, a = 1, . . . , 6, all in the adjoint representation of the SU(Nc)

group. The gauge field is a singlet of the global SU(4)R symmetry, while the fermions

and scalars furnish a fundamental 4 and an antisymmetric 6 irreducible representation,

respectively. In the absence of chemical potentials or temperature, there is a moduli space

that in an appropriate gauge is spanned by commuting constant values of the six scalars

[φa, φb] = 0 , ∂µφa = 0 , ∀ a, b = 1, · · · , 6 . (2.1)

A basis can be chosen such that all the scalar fields are diagonal, so the moduli space is

parametrized by the eigenvalues of the six scalars λaα, α = 1, . . . , Nc. In the large-Nc

limit, one can usually apply a saddle-point approximation such that the ground state is

characterized by an eigenvalue distribution. To each of the scalars one associates a direction

in an R6 space. The distribution is defined as

ρ(~λ) =

Nc∑
α=1

δ(6)(~λ− ~λα), ~λ ∈ R6 . (2.2)

Thus, the integral of the distribution over a region in R6 determines the number of eigen-

values of the six scalars that fall inside. In the large-Nc limit the distribution can be

approximated in many cases by a continuous function if the distance between the eigenval-

ues on R6 is small. In the dual gravity description, a continuous distribution determines

the geometry (see e.g. [28]), while a single isolated eigenvalue corresponds to a probe brane

embedded in the geometry. In general, at nonzero temperature and/or chemical potential,

the moduli space is lifted. Nevertheless, it is useful to consider the free energy for config-

urations where the scalar fields take constant values and to use eigenvalue distributions as

a way to characterize the ground state in the large-Nc limit.

The six scalars can be combined in three complex combinations ΦA, A = 1, 2, 3,

Φ1 =
1√
2

(φ1 + iφ2) , Φ2 =
1√
2

(φ3 + iφ4) , Φ3 =
1√
2

(φ5 + iφ6) . (2.3)

Each of the fields is charged under a single component of the Cartan subalgebra, for which

we introduce a chemical potential µ1, µ2, µ3. The fermions couple to a combination of

these, see [17, 18] for details. Chemical potentials can be introduced as background fields

in the N = 4 SYM action. We focus on the quadratic part of the scalar contribution, in
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Euclidean signature:

Lφ2 =
1

2g2
YM

tr

(
3∑

A=1

(Dµφ2A−1− iµAδµ,0φ2A)2 +

3∑
A=1

(Dµφ2A + iµAδµ,0φ2A−1)2+
1

L2

6∑
a=1

φ2
a

)
+ . . .

Lφ2 =
1

g2
YM

3∑
A=1

tr

(
DµΦ†ADµΦA +

(
1

L2
− µ2

A

)
Φ†AΦA

)
+

3∑
A=1

µAJ
0
A + . . . (2.4)

The contribution of the scalars to the R-charge density can be read from the terms linear

in the chemical potentials in the action

J0
A =

i

g2
YM

tr

(
Φ†A
←→
D0 ΦA

)
+ fermions . (2.5)

The mass term is present due to the coupling of the scalars to the curvature of the spatial

S3 with radius L. The chemical potentials add effectively a negative mass contribution,

so in the absence of interactions the system is unstable when any of the chemical po-

tentials becomes equal to 1/L. Quantum corrections introduce additional terms in the

effective potential, so that additional local minima may appear. In this case there can be

metastable configurations where the eigenvalue distribution has support localized around

those minima.

The terms depending on the chemical potential can be formally removed by factoring

out a time-dependent phase of the scalar fields

ΦA = eiµAtΦ̃A . (2.6)

Assuming Φ̃A is time-independent, the R-charge becomes

J0
A = −2µA

g2
YM

tr
(

Φ̃†AΦ̃A

)
. (2.7)

Neglecting for a moment the contribution to the effective potential due to the curvature of

the S3, the classical potential for the rescaled Φ̃A fields is the same as the potential for the

original set of scalars in the absence of a chemical potential. Non-zero R-charge ground

states would then be characterized by a distribution of rotating eigenvalues in R6, with

angular velocities determined by the chemical potentials.

Note that in the large-Nc limit, a continuous distribution of rotating eigenvalues can

still be stationary if it is rotationally invariant around the origin of the moduli space. In

this case, the dual geometry would then be stationary as well. On the other hand, isolated

eigenvalues contributing to the R-charge density will enter as probe branes rotating in

the internal directions associated to the R-symmetry. It is natural in this case to identify

the angular velocities of the rotating branes in the internal space with the velocities of

eigenvalues in the angular directions of R6. The distance to the horizon of the probe

branes in the dual geometry should map to the distance from the origin of the moduli

space of the isolated eigenvalues, at least qualitatively. Therefore, the effective potential

for the probe branes that we will compute in section 4 could be interpreted as the effective

potential for the eigenvalues of the scalar fields.
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2.2 Dual geometry

The rotating black brane solutions were introduced in [29, 30]; here we review their main

characteristics. The metric in ten dimensions can be written as

ds2
10 = ∆̃1/2ds2

5 +R2∆̃−1/2
3∑
i=1

X−1
i

{
dσ2

i + σ2
i

(
dφi +R−1Ai

)2}
, (2.8)

where R is the AdS radius, (R/ls)
4 = 4πgsNc, and

∆̃ =

3∑
i=1

Xiσ
2
i . (2.9)

The scalar fields Xi satisfy X1X2X3 = 1, and the three σi satisfy
∑

i σ
2
i = 1. The σi can

be parametrized with the angles on a two-sphere as

σ1 = sin θ , σ2 = cos θ sinψ , σ3 = cos θ cosψ . (2.10)

The 5D asymptotically-AdS metric ds2
5 can be written as

ds2
5 = −H(r)−2/3f(r)dt2 +H(r)1/3

[
f(r)−1dr2 + r2dΩ2

3,k

]
, (2.11)

where

f(r) = k − M

r2
+
( r
R

)2
H(r) (2.12)

H(r) = H1(r)H2(r)H3(r) (2.13)

Hi(r) = 1 +
q2
i

r2
. (2.14)

The coordinate r is the usual holographic coordinate such that the boundary is at infinity.

Here the parameter k can take values 0, 1, or −1. This corresponds to the horizon geometry

being R3, S3, or H3, respectively. We are interested in the cases k = 0 and k = 1, and so

we specialize to these values of k from now on. In particular, we will consider the limiting

case when the theory defined on a sphere approaches flat space. The unit metric dΩ2
3,k

is then

dΩ2
3,k =

{
dx2 + dy2 + dz2

dψ2
AdS + sin2 ψAdSdθ

2
AdS + sin2 ψAdS sin2 θAdSdφ

2
AdS

for k = 0

for k = 1 .
(2.15)

We will adopt the conventions such that when r → ∞ the metric approaches its

canonical AdS5 form:

k = 0 : ds2
5 '

R2

r2
dr2 +

r2

R2
ηµνdx

µdxν

k = 1 : ds2
5 '

R2

r2
dr2 +

r2

R2
(−dt2 + L2dΩ2

3) ,

(2.16)
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where L is the radius of the sphere in the dual field theory. This limiting procedure needs

to be supplemented with the following rescalings

k = 0 : (x, y, z)→ R−1(x, y, z)

k = 1 : r → (L/R)r , t→ (R/L)t .
(2.17)

We will use these transformations when we compute thermodynamic variables in the dual

theory, but for the moment we will continue using the original form of the metric (2.11).

The horizon radius rH is defined to be the largest root of f(r). Using this condition

we eliminate the parameter M in favor of rH :

M = r2
H

(
k +

r2
H

R2
H(rH)

)
. (2.18)

The bulk scalars and gauge fields in these solutions are given by

Xi(r) = H(r)1/3/Hi(r) (2.19)

and

Ai =
qi

r2
H + q2

i

√
k(r2

H + q2
i ) +

r4
H

R2
H(rH)

(
1−

r2
H + q2

i

r2 + q2
i

)
dt . (2.20)

It is important that all the temporal gauge potentials vanish at the horizon, as in (2.20).

The self-dual 5-form field strength can be written in terms of the scalar field and 1-form

gauge potentials as G5 + ?10G5, with

G5 = (2/R)
∑
i

(
X2
i σ

2
i − ∆̃Xi

)
ε5 + (R/2)

∑
i

(∗5 d lnXi) ∧ d(σ2
i )

+(R2/2)
∑
i

X−2
i d(σ2

i ) ∧
(
dφi +R−1Ai

)
∧ ∗5Fi . (2.21)

Here Fi = dAi, ∗5 denotes the Hodge dual with respect to the 5D metric ds2
5, and ε5 is the

corresponding 5D volume form. Using the solutions for the scalar and gauge fields we can

find a 4-form potential C4 such that dC4 = G5:

C4 =

[
r4

R
H(r)2/3∆̃−

r6
H

R

∑
i

H(rH)

r2
H + q2

i

σ2
i

]
dt ∧ ε3

+
∑
i

qi

√
k R2(r2

H + q2
i ) + r4

HH(rH) σ2
i (Rdφi) ∧ ε3 . (2.22)

Here ε3 is the volume 3-form associated with dΩ2
3,k.

3 Thermodynamics

In this section we review the phase diagram of spinning D3-branes, that was studied pre-

viously in several works [11–14]. In general, the nucleation instability will only be relevant

in the regions of the phase diagram where the classical supergravity description predicts

a thermodynamically stable phase. The reader is therefore asked to pay attention to this

– 8 –
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regime when entering the later sections of this paper. To streamline the discussion, we have

relegated the derivation of the thermodynamic quantities to appendix A. In the following,

we present all the thermodynamic quantities in terms of parameters:

flat space : xi =
qi
rH

, T0 =
rH
πR2

; (3.1)

sphere : xi =
R

L

qi
rH

, T0 =
rH
πR2

, (3.2)

where L is the radius of the S3. On the sphere, the temperature T , chemical potentials

and charges µi, Qi, i = 1, 2, 3, and the entropy density s are

µi = πT0xi

 1
L2π2T 2

0
+
∏
j 6=i

(
1 + x2

j

)
1 + x2

i

1/2

(3.3)

T = T0

(
1 +

1

2L2π2T 2
0

+
1

2

3∑
i=1

x2
i −

1

2

3∏
i=1

x2
i

)
3∏
j=1

(
1 + x2

j

)−1/2
(3.4)

Qi = N2
c

π

4
T 3

0 xi

 1 + x2
i

L2π2T 2
0

+
3∏
j=1

(
1 + x2

j

)1/2

=
N2
c

4
T 2

0 µi(1 + x2
i ) (3.5)

s = N2
c

π2

2
T 3

0

3∏
i=1

(
1 + x2

i

)1/2
. (3.6)

The energy density is

ε =
3

8
N2
c π

2T 4
0

(
3∏
i=1

(1 + x2
i ) +

1

L2π2T 2
0

(
1 +

2

3

3∑
i=1

x2
i

)
+

1

4L4π4T 4
0

)
. (3.7)

The flat space values are recovered by sending LπT0 →∞ while keeping xi and T0 fixed.

The energy density has a contribution that only depends on the radius of the sphere

and that can be identified with the Casimir energy [31]

εCasimir =
3N2

c

32π2

1

L4
. (3.8)

After subtracting the Casimir energy contribution, the remainder can be identified with

the internal energy density

u =
3

8
N2
c π

2T 4
0

(
3∏
i=1

(1 + x2
i ) +

1

L2π2T 2
0

(
1 +

2

3

3∑
i=1

x2
i

))
. (3.9)

The energy density is a function of the entropy density and the charges. The temperature

and chemical potential are obtained by taking thermodynamic derivatives of the internal

energy. One can check that the following relations are satisfied by the expressions we have

derived

T =
∂u

∂s
, µi =

∂u

∂Qi
. (3.10)
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The phase structure of the grand canonical ensemble is dictated by the Landau free energy

density, which we will refer to as the grand canonical potential Ω:

Ω = u− Ts−
3∑
i=1

µiQi . (3.11)

The grand canonical potential is a function of temperature and the chemical potentials. In

the flat space limit LπT0 →∞, the grand canonical potential is equal to minus the pressure

and coincides with the renormalized on-shell action of the gravitational theory. However,

the three quantities are in general different when they are computed on the sphere.

We will not do a general analysis of thermodynamics but restrict to the case where the

chemical potentials are all equal.1 Interestingly, there are two possible ways for the system

to have the same total charge Q = Q1 + Q2 + Q3 when µ1 = µ2 = µ3 = µ. Either all the

charges are equal Q1 = Q2 = Q3 = Q/3 with x1 = x2 = x3 = x or one of the charges is

different from the other two Q1 = Q2 6= Q3, achieved by the following choice of normalized

variables

x1 = x2 = x, x3 =
1

xLπT0

(
1 + (LπT0)2(1 + x2)

1 + x2

)1/2

. (3.12)

We will refer to the phase with three equal charges as the symmetric phase and the phase

with one unequal charge as the asymmetric phase. There are thus at least two different

branches of solutions corresponding to two possible phases in the dual theory. The grand

canonical potential is different in each case

ΩS = −N2
c

π2

8
T 4

0

(
(1 + x2)3 − 1

L2π2T 2
0

)
(3.13)

ΩA = −N2
c

π2

8
T 4

0

(
(1 + x2)3 +

1

L2π2T 2
0

)
, (3.14)

where the subscripts of the potentials refer to “symmetric” and “asymmetric” phases,

respectively. Note that the definition of the variable x is different in each case, so equal

values of x do not correspond to equal values of temperature and chemical potential for

the two different branches. The dominant branch will be the one with lower value of the

potential at the same value of temperature and chemical potential.

3.1 Phase diagram

In the grand canonical ensemble we use as thermodynamic variables the dimensionless

temperature and chemical potential, written in units of the sphere radius as LπT and Lµ.

It is convenient to parametrize their values in terms of t0 = LπT0 ≥ 0 and x ≥ 0 using the

expressions in (3.3)–(3.7).2 The results are summarized in figure 1, where we also plot the

results from the study of the nucleation instability that we discuss in the next sections. In

the following we explain in more detail how it is derived.

1We examine the case where only a single chemical potential is nonzero in appendix B.
2Sending x→ −x would flip the sign of the chemical potential and the charges, but the phase diagram

is symmetric, so it is enough to consider positive values.

– 10 –



J
H
E
P
0
9
(
2
0
1
9
)
0
8
8

To start with, we observe that there are several values of (x, t0) that yield the same

values of (Lµ,LπT ), indicating several possible competing phases. The phase with lower

grand canonical potential will be the one dominating the thermodynamics, while other

coexisting phases will then be either metastable or (thermodynamically) unstable. We will

determine the thermodynamic stability from the matrix of susceptibilities

χ = L2∂ (s,Q1, Q2, Q3)

∂ (T, µ1, µ2, µ3)

∣∣∣
µ1=µ2=µ3=µ

, (3.15)

where the L2 factor is introduced to make a dimensionless combination. In order for the

phase to be thermodynamically stable, all of the eigenvalues of the susceptibility matrix

should be positive. The phase structure is summarized as follows.

• Symmetric phase (S)

Black hole solutions exist outside the region around the origin of the (Lµ,LπT ) plane

surrounded by the curve

(Lµ)2 +
1

2
(LπT )2 = 1 . (3.16)

The are two branches of solutions that we label IS and IIS. IIS is thermodynamically

unstable and only exists for Lµ ≤ 1. Notice that these solutions are continuously

connected with the small Schwarzschild-black holes at µ = 0 and they play an inter-

esting role in the microcanonical ensemble [32–37]. IS is thermodynamically stable

at lower values of the chemical potential but becomes unstable at the curve

(Lµ)2 − 4(LπT )2 = 1 . (3.17)

The hyperbola approaches the straight line Lµ=2LπT , therefore for planar solutions,

the symmetric phase becomes unstable for µ > 2πT . At the limiting curve (3.16)

susceptibilities diverge to detχ→ ±∞, with the sign depending on the branch.

• Asymmetric phase (A)

Black hole solutions exist for Lµ ≥ 1 and for any value of LπT . They are thermody-

namically unstable in all their domain of existence.

There are thermodynamically stable black hole solutions in the region of the phase

diagram between the curves (3.16) and (3.17). Among the stable phases, there are two

competing states, the black hole and global (thermal) AdS5 without horizons. In order to

determine which phase is dominant, we have to compare the value of the grand canonical

potential for each phase. The global AdS5 solution has Ω = 0 to leading order in the large-

Nc limit, so the black hole phase will be favored for ΩS < 0 and considered metastable

otherwise.

We have plotted the grand canonical potential as a function of the chemical potential

at different values of the temperature in figure 2. We use dashed curves for the unstable or

metastable phases. We see there that the limiting curves do not coincide with the Hawking-

Page transition in general, which will be localized at the points where the grand canonical

potential of the thermodynamically stable phase vanishes. For µ = 0 this happens at

– 11 –
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Figure 2. Grand canonical potential as function of the chemical potential for different values

of the temperature. Dashed lines correspond to unstable or metastable phases. The black curves

are symmetric phases (S) and the blue curve is for the asymmetric phase (A). The symmetric

branch with larger values of Ω corresponds to the unstable phase (IIS), while the lower branch

(IS) is metastable until it reaches Ω = 0, which corresponds to the Hawking-Page transition.

Susceptibilities diverge at the point where the two symmetric branches touch. At high enough

temperatures, LπT > 3/2, the Hawking-Page transition goes away and the stable symmetric phase

dominates at low values of the chemical potential. In all cases, at large enough values of the chemical

potential, the symmetric phase becomes unstable when the asymmetric phase becomes dominant.

LπT = 3
2 , and above this temperature the stable black hole phase is always dominant. In

figure 2, the blue curve corresponding to the asymmetric phase eventually crosses the solid

curve and the symmetric phase becomes unstable.

4 Effective potential for probe color D3-branes

As we mentioned previously, the rotating geometry corresponds to the near horizon limit

of a stack of spinning D3-branes whose low energy description is N = 4 SYM with non-

zero R-charge. In the absence of R-charge, and at zero temperature, there is a moduli

space associated to the location of the D3-branes in the transverse space. If a single or

few D3-branes are separated from the stack, this has a dual description as a single or few

D3-branes inside the AdS5×S5 geometry, that are treated as probes. The worldvolume of

the D3-branes should be parallel to the ones forming the stack, so the branes are localized

in the S5 and radial AdS5 directions and extended along the directions parallel to the

AdS5 boundary. For the case of global AdS5 this actually means that the worldvolume

wraps an S3 and has finite volume. At non-zero R charge and temperature, typically the

moduli space is lifted, and probe branes in the dual geometry experience a force along the

radial AdS5 direction. We will now study the effective potential of probe branes in the

holographic duals to R-charged states.

As we saw, the background solutions have three independent charges, corresponding

to three mutually commuting U(1) ⊂ SU(4) R-symmetries. From the 10D point of view,

these charges can be viewed as angular momenta: the branes are spinning in the S5. Probe

branes in these backgrounds will be dragged along with the black hole rotation. Hence,

we must allow them to rotate in (some of) the internal directions. The question of how
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to fix the angular velocity of the brane is then important. In [20] the probe brane was

taken to spin with the angular velocity of the horizon, independently of the radial position.

This, however, does not yield an accurate picture of the dynamics of the probe. A probe

inserted at some radius will in general experience a force pushing it to larger or smaller

radius. When this happens, the quantities that stay constant are not the angular velocities

but the angular momentum of the probe. Thus, we will improve on the results of [20] by

writing down expressions for the conserved quantities, which also include the energy of the

probe. From this we construct the effective radial potential that the probe feels. This will

allow us to make a more detailed analysis of possible instabilities.

We start from the action of a (probe) D3-brane,

SD3 = −T3

∫
d4ξ
√
− det g4 + T3

∫
Ĉ4 , (4.1)

where g4 is the pullback of the 10D metric (2.8), Ĉ4 is the pullback of C4 (2.22) to the brane

worldvolume, and T3 = 1/((2π)3gsl
4
s).

3 Recall that the dilaton is constant, so we omit it

in the expression (4.1). We parametrize the timelike direction of the worldvolume of the

brane by its proper time τ , and denote the spacetime coordinates by capital letters Xµ(τ).

Allowing the brane to move in time, in the radial coordinate, and in the φi coordinates,

the 10-velocity of the brane can be written as

U ≡ dXµ

dτ
∂µ = Ṫ (τ)∂t + Ṙ(τ)∂r +

3∑
i=1

Φ̇i(τ)∂φi , (4.2)

where the dot denotes a derivative with respect to τ . Since τ is the proper time, the

10-velocity squares to minus one,

UµU
µ = −Ṫ 2gtt + Ṙ2grr +

3∑
i=1

(
2Ṫ Φ̇igtφi + Φ̇2

i gφiφi

)
= −1 . (4.3)

Here and below gµν denote components of the 10D metric (2.8), with an extra minus sign in

the definition of gtt such that it is positive. The induced metric on the brane worldvolume is

ds2
4 = −

[
Ṫ 2gtt − Ṙ2grr −

3∑
i=1

(
2Ṫ Φ̇igtφi + Φ̇2

i gφiφi

)]
dτ2 +

3∑
i=1

gχiχidχ
2
i , (4.4)

where we call the spatial coordinates χi. The pullback of C4 becomes

Ĉ4 =

[
(C4)tṪ +

3∑
i=1

(C4)φiΦ̇i

]
dτ ∧ ε3 , (4.5)

3We will use dimensionless worldvolume coordinates.
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where (C4)t and (C4)φi are the dt ∧ ε3 and the dφi ∧ ε3 components of C4 in (2.22),

respectively. The action we find is thus

SD3 = −T3

∫
d4ξ
√
− det g4 + T3

∫
Ĉ4

= −T3

∫
d4ξ

{
√
gΩ

[
Ṫ 2gtt − Ṙ2grr −

3∑
i=1

(
2Ṫ Φ̇igtφi + Φ̇2

i gφiφi

)]1/2

−(C4)t Ṫ −
3∑
i=1

(C4)φiΦ̇i

}
≡
∫
d4ξ L . (4.6)

The action does not depend on T or Φi explicitly, only their derivatives, making them cyclic

variables. Thus, we can find the corresponding conserved energy and angular momentum

densities using Noether’s theorem:

E ≡ − 1

T3

∂L
∂Ṫ

=

√
gΩ

(
gttṪ −

∑3
i=1 gtφiΦ̇i

)
√
Ṫ 2gtt − Ṙ2grr −

∑3
i=1

(
2Ṫ Φ̇igtφi − Φ̇2

i gφiφi

) − (C4)t

=
√
gΩ

(
gttṪ −

3∑
i=1

gtφiΦ̇i

)
− (C4)t (4.7)

Ji ≡
1

T3

∂L
∂Φ̇i

=

√
gΩ

(
gtφi Ṫ + gφiφiΦ̇i

)
√
Ṫ 2gtt − Ṙ2grr −

∑3
i=1

(
2Ṫ Φ̇igtφi − Φ̇2

i gφiφi

) + (C4)φi

=
√
gΩ

(
gtφi Ṫ + gφiφiΦ̇i

)
+ (C4)φi . (4.8)

We have simplified these expressions with the help of (4.3).

It is now possible to use (4.3), (4.7), and (4.8) to eliminate Ṫ and Φ̇i and write an

expression for the energy in terms of the angular momenta Ji and background quantities:

E = −(C4)t −

(
3∑
i=1

gtφi
Ji − (C4)φi

gφiφi

)

+

√√√√(gtt +

3∑
i=1

g2
tφi

gφiφi

)(
gΩ

(
1 + grrṘ2

)
+

3∑
i=1

(Ji − (C4)φi)
2

gφiφi

)
. (4.9)

Note that since (4.3) is quadratic in Ṫ and Φ̇1, there are two possible solutions; we have

picked the one that has Ṫ > 0. Furthermore, note that we have reduced the system at

hand to an effectively one-dimensional problem, depending only on the radial coordinate.

As a last step, to get the effective potential that we are after, we set Ṙ = 0 in the previous

expression Veff ≡ E|Ṙ=0:

Veff = −(C4)t −
3∑
i=1

gtφi
Ji − (C4)φi

gφiφi
+

√√√√(gtt +
3∑
i=1

g2
tφi

gφiφi

)(
gΩ +

3∑
i=1

(Ji − (C4)φi)
2

gφiφi

)
.

(4.10)
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This is the general expression for the effective potential of a probe brane in this family

of background solutions. In the following we analyze the effective potential separately for

the spherical (k = 1) and flat (k = 0) horizon geometries given in (2.15), corresponding

to global AdS or the Poincaré patch, respectively. Although the formulas for the potential

are valid in general geometries, we will focus on the ensemble with three equal chemical

potentials. As we reviewed in section 3, the phase which is thermodynamically stable has

three equal charges and we denoted it by IS. Consequently, branes emitted by the black

hole are expected to rotate with equal speeds in the three independent angles along the

S5. This lets us relate the three independent angular momenta in terms of one quantity,

the total angular momentum J1 + J2 + J3 = JT . With this choice the dependence on the

angles of the S5 drops out. In the case that the brane is wrapping a S3 we additionally

integrate over the volume to obtain the total energy. The total charge carried by the D3

brane is

QD3 = T3JT . (4.11)

For convenience, we will introduce QD3 = R−3QD3/Nc in units of charge density.

Global AdS. Setting k = 1 in the black hole solutions we find that the effective potential

always grows as r2 for large radii (with the angular momenta held fixed). This can be

understood from the fact that the radius of the S3 that the D3-brane wraps grows with r.

Since the D3-brane has a nonzero tension, increasing its volume translates in an increase

in energy and eventually this growth becomes more important than the centrifugal force

produced by the rotating geometry. It is interesting to compare this with the results of

Yamada [20] where, as already mentioned, the probe was taken to rotate uniformly, with

the same angular velocity as the horizon irrespective of the radial position. In that paper

it was found that the coefficient of the r2 term changed to negative for chemical potentials

above some critical value µc (independent of temperature), implying that branes would

escape to the AdS boundary. We argue that one should instead consider differentially

rotating probes, in which case we find that the instability takes a somewhat different form.

It is convenient to introduce the dimensionless effective potential Veff ≡ RVeff/r
4
H and

angular momentum JT ≡ JT /(r3
HR) = 2QD3/(πT

3
0 ), as well as the similarly dimensionless

quantities t0 ≡ LπT0, x = Q/rH , and ρ ≡ r/rH , and then do the rescaling (2.17). We then

arrive at the expression

Veff =
1− ρ2

x2 + ρ2

(
dJT − t−2

0 x2 − x6 +
(
1 + 3x2

)
ρ2 + ρ4

)
+

1

x2 + ρ2

[ (
1− ρ2

) (
x6 −

(
1 + 3x2

)
ρ2 − ρ4 − t−2

0 ρ2
)

×
( (
t−2
0 x2 − 2 dJT

) (
1 + x2

)
+ J 2

T +
(
x2 + ρ2

)3
+ x2

(
1 + x2

)3 )]1/2

, (4.12)

where we have introduced the shorthand

d ≡ x

√
t−2
0 + (1 + x2)2

1 + x2
. (4.13)
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Figure 3. Probe brane effective potentials for k = 1 and all charges equal, varying the chemical

potential (left), the temperature (center), and the angular momentum of the probe (right).
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Figure 4. The minimum of the effective potential for k = 1 as a function of LT (red), Lµ (orange),

and L3QD3/80 (green), when the other two values are kept fixed to unity. The solid parts of the

curves correspond to minima of the effective potential, whereas dashed ones are the maxima. In all

the cases the minimum radial coordinate is at a finite distance away from the horizon as there is

always a potential barrier for the brane nucleation. Notice also that we have included the analytic

result (4.14) in the limit of large QD3 as the dashed black curve.

In figure 3 we plot this dimensionless effective potential for the IS phase in global AdS, as

we vary the chemical potential, the temperature, and the probe brane angular momentum.

We note that the potential always goes to zero (from above) at the horizon — this is true in

general, and signals the correct gauge choice for the four-form potential. At large radii, we

notice the aforementioned r2 growth. In between there is typically a local minimum. When

this minimum dips below zero, it becomes a global minimum for the effective potential,

and the system is then susceptible to the brane nucleation instability.

In figure 4 we have studied how the minimum of the effective potential moves as

parameters µ, T,QD3 of the theory are varied. We learn that the minimum is always at a
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finite radial coordinate in the bulk. This is another manifestation of the fact that there

is a potential barrier above the horizon for brane nucleation. The potential minimum is

pushed asymptotically towards the boundary when QD3 or T−1 is increased without bound

along curves where the other two parameters are kept fixed. Interestingly, the minimum is

approaching the horizon as the chemical potential is increased.

Interestingly, one can find an analytic expression for the minimum of the potential in

the limit of large angular momentum of the brane. To obtain this, we use the fact that the

minimum resides at large values of the radial coordinate and expand the effective potential

for ρ → ∞. Solving for the derivative ∂ρVeff |ρ→∞ = 0, in the limit of large L3QD3, yields

the remarkably simple result

ρmin =

√
2π

t0

√
QD3 +O(1/

√
QD3) , LT, Lµ = fixed . (4.14)

We have depicted this curve in the same figure 4 with numerical data and it is spot on.

Remarkably, in the limit where the black hole carries a very large charge, it is also pos-

sible to find a simple analytic expression for the location of the minimum of the potential.

The large charge limit in the symmetric case can be reached by taking

LπT0 = t0 →∞, x1 = x2 = x3 = x =
√

2

(
1− π

2
√

3

τ

t0

)
, (4.15)

with the parameter τ kept fixed, in the equations (3.5) and (3.4). The chemical poten-

tial (3.3) is large as well. More precisely, to leading order the temperature and chemical

potential are

LT ' τ +O(1/t0), Lµ '
√

6t0 +O(1) . (4.16)

The charge density of the black hole becomes

L3Q

N2
c

' 9

2π2

√
3

2
t30 +O(t20) . (4.17)

We are interested in configurations where the charge of the D3-brane is of the order of

Q/Nc. We can achieve this by taking QD3 ∼ L3Q/N2
c . A convenient normalization is

QD3 =
9

4π2

√
3

2
t30χ3 . (4.18)

We evaluate the potential (4.12), rescale the radial coordinate as ρ = t0u and expand

for t0 →∞. We find

Veff '
u2

2
+

243

16

χ2
3

t20

1

u2
+ V0 , (4.19)

where the constant piece is

V0 '
27

2
(1− χ3) +O(τ/t0, 1/t

2
0) . (4.20)

The potential has a minimum at

umin =

(
35

23

)1/4√
χ3

t0
' 3

√
3

2

√
χ3

Lµ
. (4.21)
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Figure 5. The minimum of the effective potential at fixed temperature and with the D3-brane

charge fixed to QD3 = 9
4π2

√
3
2 t

3
0χ3 as in (4.18). We have chosen to present the curves for χ3 = 1 and

LT = 10, 5, 2, 1 (top-down). The dashed black line is the analytic result rmin

rH
' 3

2

√
Lµ (see (4.24))

for the gap in the large R-charge limit. Notice that the gap goes to a finite value in the opposite

limit of small R-charge, in precise agreement with solving (4.25) numerically.

The τ/t0 corrections to the potential only contribute to the constant part, so the location

of the minimum is independent of the temperature in this limit. The value of the potential

at the minimum is

Veff(umin) =
27

2
(1− χ3) +O(1/t0, τ/t0) . (4.22)

We see that the minimum of the potential is below its value at the horizon for

χ3 > 1 +O(1/t0, τ/t0) . (4.23)

Therefore, χ3 ∼ 1 and the location of the minimum has the following dependence with the

chemical potential or the charge

ρmin = t0umin '
3

2

√
Lµ ∼ (L3Q/N2

c )1/6 . (4.24)

In the opposite limit of small R-charge, the chemical potential is small, and x ≈ 0. In

this case the effective potential reads

Veff(ρ) = 1− ρ4 +
1

ρt0

√
ρ2 − 1

√(
1 + t20(1 + ρ2)

)(
ρ6 +

243χ2
3

8

)
+O(x) . (4.25)

One straightforwardly finds from solving the minimum from this potential that it is at a

finite radius ρ > 1 for any temperature. In figure 5 we have depicted the minimum of

the potential as a function of chemical potential for various temperatures. The numerical

results match precisely the obtained analytic results presented above.

In the dual field theory one expects ρmin to be proportional to the distance from

the origin to a minimum of the effective potential for the eigenvalues of the scalar fields.

It would be interesting to check if a field theory calculation will give a similar chemical

potential dependences, in particular that of ∼ √µ in the limit of large R-charge.
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Figure 6. The effective potential for k = 0 and all charges equal, varying µ/T (left) and the

angular momentum of the probe (right).

Poincaré patch. It is also interesting to study the Poincaré patch of AdS, corresponding

to putting the field theory in flat space. These results can be obtained easily by taking the

limit t0 → ∞ (corresponding to taking the 3-sphere radius L large) in (4.12), or else by

starting from (4.10) and setting k = 0 in (2.15). Figure 6 shows the effective potential in

this case for the IS phase, while varying µ/T and the probe angular momentum. While in

global AdS the potential always grew as r2 for large radii, in the Poincaré patch it always

asymptotes to a constant value.

5 Brane nucleation instability

The effective potential found in the previous section indicates that a probe brane placed

at some radius will feel a force pulling it in towards the horizon or pushing it out towards

infinity. The probe can minimize its energy by moving to the global minimum of the

potential, which can be either at the black hole horizon, meaning the brane tends to fall

into the hole, or at some point outside the horizon (including all the way out to the

boundary).

Since the background is in fact sourced by a stack of D3-branes, the probe D3 effective

potential can be used to detect instabilities. More precisely, a global minimum at the

horizon signals that the geometry is stable; take a brane out of the stack and put it

somewhere outside the horizon, and it wants to fall right back in. A global minimum

outside the horizon, however, would imply that the geometry is only metastable; the system

can minimize its energy by “emitting” branes from the black hole. Since these branes are

the source of the Nc units of flux corresponding to the rank of the gauge group, this type

of instability would lead in the holographic dual to a spontaneous symmetry breaking of

the gauge group SU(Nc)→ SU(Nc− 1)×U(1). When this happens in our nonzero density

states, we interpret it as the onset of color superconductivity.

We find that the nucleation instability appears for µ > µc = 1/L, in agreement

with [20]. However, unlike the analysis at fixed angular velocity, the potential minimum is

in this case at a finite distance from the horizon, instead of at infinity. Furthermore, this
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instability only occurs when the probe brane has a total angular momentum higher than

a certain critical angular momentum Jc(T, µ). Above Jc(T, µ), the greater the angular

momentum of the probe, the further away from the horizon is this minimum, and the more

negative it is. Indeed, if we would allow the angular momentum of the probe to grow as

a function of the radius as r2, instead of being constant, we could reproduce the results

of [20]. However, we expect that individual branes nucleating outside the horizon would

have a fixed angular momentum, and would thus end up at some finite radius.

There are a few caveats to the discussion of the instability above. First, in general we

find that when there is an instability, with a global minimum outside the horizon, there

is also a potential barrier not far from the horizon. This is clearly seen in figure 3. If we

want to think of the branes as being emitted from the horizon, then this would only be

allowed quantum mechanically, and would thus be suppressed in the large-Nc limit. We

also note that the potential barrier in general grows with growing angular momentum,

further suppressing the emission of large angular momentum branes. On the other hand,

beyond the minimum there is a repulsive force, while anti-D3 branes would always feel

an attractive force. This means that there could be an instability related to Schwinger

pair production in the region between the maximum and the minimum of the potential,

although there will also be some additional suppression related to the larger volume of

branes further away from the horizon.

Second, since we are in the probe limit, we must remember to be careful when taking

quantities such as the probe angular momenta large. If they are on the order of the total

angular momenta of the background, the probe approximation will surely break down.

Thus, if Jc(T, µ) is of order Nc, which can happen for very large temperatures LT ∼ Nc,

we can no longer go to our effective potential for guidance.

Third, nucleation of large angular momentum branes seems unlikely for the following

reason: we could think of the nucleation as a semi-classical tunneling event, where a brane

in the stack sourcing the background geometry takes a quantum leap from behind the

horizon to region outside the horizon. There are Nc of these branes, sharing a total angular

momentum of order N2
c . By standard statistical physics arguments we would expect the

angular momentum to be evenly distributed over these branes, meaning each of them

carries on average an angular momentum Qavg = Q/Nc ∼ O(Nc), with a relative variance

that scales as N
−1/2
c . If the critical angular momentum density Qc = T3R

−3Jc(T, µ)/Nc is

larger than Qavg = R−3Qavg/Nc, the nucleation probability should be highly suppressed.

Taken together, this analysis suggests that the instability will be strongly suppressed

when Nc is large, and when the critical angular momentum Jc(T, µ) is larger than the

average angular momentum of a brane in the stack, which should be Qavg = Q/Nc. In

figure 7 we plot QD3/Qavg, where QD3 = T3R
−3JT /Nc is proportional to the total angular

momentum of the probe, as a function of radius for the all-charges-equal solution. The

curves shown correspond to values of QD3/Qavg where the effective potential crosses zero,

signaling a global minimum outside the horizon. If the curve stays above 1, we interpret it as

saying that a typical brane in the stack does not have enough angular momentum to tunnel

into the global minimum. The instability is therefore present, but strongly suppressed.
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Figure 7. The curves show the angular momentum where the effective potential crosses zero as a

function of radius, for backgrounds with k = 1 and all charges equal.

When the curve dips below 1, which happens as we increase the chemical potential and/or

lower the temperature, a typical brane does have enough angular momentum to prefer

to sit at a global minimum in the bulk. Note that at large Nc the tunneling is still

suppressed, however. In figure 1 we display the region of the phase diagram where the

angular momentum for a typical brane of the stack is greater or equal to Qc.

In the flat space limit there are some qualitative changes relative to the finite volume

case. The effective potential can now dip below zero for any value of the chemical potential

or the temperature (or more precisely, for any value of the single dimensionless ratio µ/T ).

The analysis in the previous subsections still applies, however. In particular, for small

values of µ/T , the probe needs angular momentum much larger than the expected average

angular momentum Qavg of a typical brane of the background color stack. Because of this,

and the fact that also here the near-horizon potential barrier grows for large probe angular

momentum, the instability is likely heavily suppressed in a large part of parameter space.

More precisely, we find such suppression for µ/T > 2
√

2π/3 ≈ 2.96. In figure 8, we again

plot the values of QD3/Qavg where the effective potential crosses zero as a function of radius.

Regarding the field theory interpretation of nucleation of probe branes, a possible

picture could emerge from considering the expectation value of scalar fields of N = 4

SYM. At zero temperature and chemical potential there is a moduli space for the scalars

and vacuum states in the large-Nc limit that can be characterized by a distribution of

eigenvalues of the scalar fields on the moduli space. At nonzero temperature and chemical

potential this description is still useful, even though most of the moduli space is lifted by

an effective potential. In this case, stable or metastable states would be characterized by

an eigenvalue distribution that would be localized around minima of the effective potential.

The initial black hole state would correspond to an eigenvalue distribution that is localized

in a region around the origin of the moduli space. Within states of the same charge,

and at fixed chemical potential, there are other configurations where some weight of the

distribution is taken from the region around the origin to another location further away

(in the moduli space), in such a way that the free energy is lowered. These would be
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Figure 8. The curves show the angular momentum where the effective potential crosses zero as a

function of radius, for backgrounds with k = 0 and all charges equal. Each curve is at a fixed value

of µ/T .

the new metastable phases described by probe branes outside the black hole. Eventually,

there would be phase transitions where the total charge is changed and the weight of the

eigenvalue distribution moves to asymptotically far regions where the effective potential is

unbounded from below.

6 Discussion and outlook

Due to the prominent role that it plays in digesting the AdS/CFT correspondence, the

SU(Nc) N = 4 supersymmetric Yang-Mills theory has been the focus of immense number

of investigations. Fascinatingly, there are still secrets to be unlocked. In this paper, we

have provided evidence of new phases of cold and dense matter that are expected at strong

coupling.

An obvious objective of our endeavors is to construct the ground state for color su-

perconducting matter. This is both interesting and important in order to understand the

phase structure of N = 4 SYM. However, the more pressing motivation is to make con-

tact with phases of matter of QCD. To this end, in the near future we will report on

our studies of a more realistic top-down holographic model, the so-called Klebanov-Witten

model [38]. This model also shares the brane nucleation instability at low temperature in

comparison to the baryon chemical potential [39] and we plan to further explore the model

by introducing an explicit breaking of conformal invariance by turning on masses to the

hypermultiplets. This has the advantage that the model becomes increasingly closer to

QCD and the phase diagram depending on ratios of both the temperature and the chemi-

cal potential to the new scale. We address where the color superconducting matter is the

dominant homogeneous phase.

From our analysis it can be observed that the curvature of the spatial three-sphere

acts as a stabilizing force for the probe branes in the bulk, impeding them from escaping
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to the AdS boundary. It would be interesting to find a similar stabilizing mechanism when

the spatial directions are flat. This could potentially be achieved by attaching strings

between the nucleating branes and the black hole horizon. They would be expected to give

a contribution to the effective potential that grows with the separation between the probe

brane and the black hole, thus potentially creating a global minimum at finite distance

from the horizon.

Having established the true color superconducting ground state of a holographic model

akin to QCD, there are many interesting repercussions to be followed. The regime of high

density and small temperatures is very challenging for theoretical modeling, yet it is at

the heart of contemporary high energy physics. The observation of gravitational waves of

a coalescence of neutron stars [40] has not only opened up a new observational window

to astrophysics, but also enabled theorists to finding clues to pending questions on the

behavior of dense matter. The key characteristic is the Equation of State which receives

direct input through constraints on the mass-radius relationship, via tidal deformability,

uncovered in GW170817. The ballpark estimates of neutron star bulk properties from

holographic models have been highly successful [41–47], so we are optimistic that this

continues to be the case also for more exotic phases such as paired quark matter.
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A Derivation of thermodynamic quantities

We can extract the value of thermodynamic variables from the expansions of the 5D gauge

field and metric at the boundary and the horizon. First we do the rescalings (2.17) to

fix the boundary metric to its correct form. The chemical potential is determined by the

expansion of the gauge field at the boundary

µi =
qi
R2


∏
j 6=i

(
1 +

q2j
r2H

)
1 +

q2i
r2H


1/2

. (A.1)

The temperature is most easily extracted by performing a Wick rotation on the 5D metric

to Euclidean signature and demanding that the geometry is smooth at the horizon

T =
rH
πR2

(
1 +

1

2

3∑
i=1

q2
i

r2
H

− 1

2

3∏
i=1

q2
i

r2
H

)
3∏
j=1

(
1 +

q2
j

r2
H

)−1/2

. (A.2)
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The charge densities can be computed using holographic renormalization

Qi = − lim
r→∞

R

16πG5

√
−ggttgrr∂rAi t =

R

16πG5

(H1H2H3)2/3

X2
i

r3

R2
∂rAi t . (A.3)

In the last step we have used the fact that the electric flux remains constant along the

radial coordinate. Introducing the explicit form of the solution in the equation above, the

result for the charge densities is

Qi =
qir

2
H

8πG5R3

3∏
j=1

(
1 +

q2
j

r2
H

)1/2

. (A.4)

The overall factor can be expressed in terms of the radius of AdS and the number of colors

using the AdS/CFT dictionary
R3

G5
=

2N2
c

π
. (A.5)

Then, the charge densities are

Qi =
N2
c

(2π)2

qir
2
H

R6

3∏
j=1

(
1 +

q2
j

r2
H

)1/2

. (A.6)

The entropy density is computed as the area of the black hole in Planck units, divided by

the volume of the spatial directions along the boundary

s =
ABH

4G5V3
=
N2
c

2π

r3
H

R6

3∏
i=1

(
1 +

q2
i

r2
H

)
. (A.7)

We can follow the same steps to compute the chemical potential, temperature, and

charge densities in the case where the field theory lives on a sphere. The results are

µi =
R

L

qi
R2


R4

L2r2H
+
∏
j 6=i

(
1 + R2

L2

q2j
r2H

)
1 + R2

L2

q2i
r2H


1/2

(A.8)

T =
rH
πR2

(
1 +

R4

2L2r2
H

+
1

2

R2

L2

3∑
i=1

q2
i

r2
H

− 1

2

3∏
i=1

R2

L2

q2
i

r2
H

)
3∏
j=1

(
1 +

R2

L2

q2
j

r2
H

)−1/2

(A.9)

Qi =
N2
c

(2π)2

R
L qir

2
H

R6

 R4

L2r2
H

+
∏
j 6=i

(
1 +

R2

L2

q2
j

r2
H

)1/2(
1 +

R2

L2

q2
i

r2
H

)1/2

(A.10)

s =
N2
c

2π

r3
H

R6

3∏
i=1

(
1 +

R2

L2

q2
i

r2
H

)1/2

. (A.11)

Let us define the variables

flat space : xi =
qi
rH

, T0 =
rH
πR2

; (A.12)

sphere : xi =
R

L

qi
rH

, T0 =
rH
πR2

, (A.13)
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in terms of which the thermodynamic quantities take a somewhat simpler form. In flat

space we have

µi = πT0xi

∏j 6=i

(
1 + x2

j

)
1 + x2

i

1/2

(A.14)

T = T0

(
1 +

1

2

3∑
i=1

x2
i −

1

2

3∏
i=1

x2
i

)
3∏
j=1

(
1 + x2

j

)−1/2
(A.15)

Qi = N2
c

π

4
T 3

0 xi

3∏
j=1

(
1 + x2

j

)1/2
=
N2
c

4
T 2

0 µi(1 + x2
i ) (A.16)

s = N2
c

π2

2
T 3

0

3∏
i=1

(
1 + x2

i

)1/2
. (A.17)

In the sphere the expressions are similar, but there is an additional dependence on the

dimensionless combination LπT0:

µi = πT0xi

 1
L2π2T 2

0
+
∏
j 6=i

(
1 + x2

j

)
1 + x2

i

1/2

(A.18)

T = T0

(
1 +

1

2L2π2T 2
0

+
1

2

3∑
i=1

x2
i −

1

2

3∏
i=1

x2
i

)
3∏
j=1

(
1 + x2

j

)−1/2
(A.19)

Qi = N2
c

π

4
T 3

0 xi

 1 + x2
i

L2π2T 2
0

+

3∏
j=1

(
1 + x2

j

)1/2

=
N2
c

4
T 2

0 µi(1 + x2
i ) (A.20)

s = N2
c

π2

2
T 3

0

3∏
i=1

(
1 + x2

i

)1/2
. (A.21)

The flat space values (A.14)–(A.17) are recovered by sending LπT0 →∞ while keeping xi
and T0 fixed.

The energy density and pressure are determined by the expectation value of the energy-

momentum tensor, which can be computed from the Brown-York tensor. For a radial slice,

the induced metric and extrinsic curvature are

γµν = Gµν , Kµν =
1

2
√
Grr

∂rGµν . (A.22)

The Brown-York tensor is

πµνBY = Kµν − γµνK , (A.23)

where the indices of the extrinsic curvature are raised with the induced metric and the trace

is K = γαβKαβ . The expectation value of the energy momentum tensor is obtained from

the r → ∞ limit of the BY tensor with appropriate factors and the addition of boundary

counterterms to cancel the divergent contributions [48]:

〈Tµν〉 =
1√
−h

lim
r→∞

r2

R2

[
− 1

8πG5

√
−γπµνBY +

δSct
δγµν

]
, (A.24)
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where the boundary metric has been defined as

hµν = lim
r→∞

R2

r2
γµν . (A.25)

In this case to cancel the divergence we need just one counterterm, proportional to a

boundary cosmological constant Sct ∼
∫ √
−γΛ. However, for a generic solution of the

gravitational action, the scalar fields will have a different behavior at the boundary, corre-

sponding to turning on the non-normalizable modes. In the more general case additional

counterterms proportional to masses for the scalar fields at the boundary are needed, and

they should be kept even when the non-normalizable modes are turned off, as it is the case

for the solutions we are studying. A counterterm action that contains both the cosmological

constant and scalar mass terms is

Sct = − 1

8πG5

∫
d4x
√
−γ 2

R

3∑
i=1

X−1
i . (A.26)

The result, for the planar black hole, is

〈
T 00
〉

= ε ,
〈
T ij
〉

= pδij =
ε

3
δij , (A.27)

where the energy density is

ε =
3

8
N2
c π

2T 4
0

3∏
i=1

(1 + x2
i ) . (A.28)

In the sphere the calculation is similar, but one needs to add a further counterterm pro-

portional to the Ricci scalar of the induced metric

Sct = − 1

8πG5

∫
d4x
√
−γ

(
2

R

3∑
i=1

X−1
i −

R

2
R[γ]

)
. (A.29)

In this case the components of the energy-momentum tensor are

〈
T 00
〉

= −εh00 ,
〈
T ij
〉

= phij =
ε

3
hij . (A.30)

The energy density takes the form

ε =
3

8
N2
c π

2T 4
0

(
3∏
i=1

(1 + x2
i ) +

1

L2π2T 2
0

(
1 +

2

3

3∑
i=1

x2
i

)
+

1

4L4π4T 4
0

)
. (A.31)

The flat space limit can be found by taking the LπT0 → ∞ limit of ε while making

hµν → ηµν .
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Figure 9. Phase diagram in the grand canonical ensemble for a single nonzero chemical potential.

Susceptibilities diverge at the black thick curves, and black hole solutions exist only in the region

between the curves. The blue dashed line at Lµ = 1 separates the unstable branches II and III.

The black dashed line marks the location of the Hawking-Page transition. Notice that there is no

nucleation instability in this case.

B Single nonzero chemical potential

For a single charge or chemical potential µ1 = µ, Q1 = Q, µ2 = µ3 = 0, Q2 = Q3 = 0 we

can set normalized charge variables to be x1 = x, x2 = x3 = 0. Then, the grand canonical

potential is

Ω1 = −N2
c

π2

8
T 4

0

(
1 + x2 − 1

L2π2T 2
0

)
. (B.1)

In the grand canonical ensemble black hole solutions exist in a region of the (Lµ,LπT )

plane limited by the black curves in figure 9, which are determined by the conditions

1

t20
=

1

2

(
1 + 2x2 ±

√
8x2 + 9

)
. (B.2)

One curve (with a plus sign in (B.2)) interpolates between (LπT,Lµ)+ = (
√

2, 0) for x→ 0

and (LπT,Lµ)+ = (1, 1) for x → ∞. The other curve is defined for x >
√

2 and starts

at (LπT,Lµ)− = (1, 1) when x → ∞ and approaches a straight line Lµ = LπT/
√

2 in

the limit x→
√

2. At these curves susceptibilities diverge and black hole solutions do not

exist outside the region delimited by the two curves. Therefore, planar black hole solutions

exist only for µ < 1√
2
πT . In the region where solutions exist there are three branches,

one thermodynamically stable (I) and the other two unstable (II and III). Each of the

unstable branches exists only for either Lµ < 1 (II) or Lµ > 1 (III), while the stable

branch covers the whole allowed region. The value of the grand canonical potential for

each branch is represented in figure 10, with dashed curves corresponding to unstable or

metastable phases. As in the case of three equal chemical potentials, the Hawking-Page

transition is localized away from the limiting curves and for LπT > 3/2 the stable solution
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Figure 10. Grand canonical potential as function of the chemical potential for different values of the

temperature. Dashed curves correspond to unstable or metastable phases. The branches with larger

values of Ω correspond to the unstable phases, II and III, while the lower branch (I) is metastable

until it reaches Ω = 0, which corresponds to the Hawking-Page transition. Susceptibilities diverge

at the point where the two symmetric branches touch. At high enough temperatures, LπT > 3/2,

the Hawking-Page transition goes away and the stable black hole phase dominates at low values of

the chemical potential. In all cases, at large enough values of the chemical potential, the black hole

phases disappear.

is the dominant phase at small values of the chemical potential. For large enough values

of the chemical potential the stable and unstable branches merge and black hole solutions

stop existing. Finally, we note that in the entire region where black hole solutions exist,

the brane nucleation instability is suppressed since typical branes in the stack do not have

enough angular momentum to nucleate in the bulk. In the region where one would have

expected it to be unsuppressed, i.e., for large µ/T there are no black hole solutions, see

figure 9.
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