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Abstract

Non-invasive prenatal testing (NIPT) enables accurate detection of fetal chromosomal triso-

mies. The majority of publicly available computational methods for sequencing-based NIPT

analyses rely on low-coverage whole-genome sequencing (WGS) data and are not applicable

for targeted high-coverage sequencing data from cell-free DNA samples. Here, we present a

novel computational framework for a targeted high-coverage sequencing-based NIPT analy-

sis. The developed framework uses a hidden Markov model (HMM) in conjunction with a sup-

plemental machine learning model, such as decision tree (DT) or support vector machine

(SVM), to detect fetal trisomy and parental origin of additional fetal chromosomes. These

models were developed using simulated datasets covering a wide range of biologically rele-

vant scenarios with various chromosomal quantities, parental origins of extra chromosomes,

fetal DNA fractions, and sequencing read depths. Developed models were tested on simu-

lated and experimental targeted sequencing datasets. Consequently, we determined the

functional feasibility and limitations of each proposed approach and demonstrated that read

count-based HMM achieved the best overall classification accuracy of 0.89 for detecting fetal

euploidies and trisomies on simulated dataset. Furthermore, we show that by using the DT

and SVM on the HMM classification results, it was possible to increase the final trisomy classi-

fication accuracy to 0.98 and 0.99, respectively. We demonstrate that read count and allelic

ratio-based models can achieve a high accuracy (up to 0.98) for detecting fetal trisomy even if

the fetal fraction is as low as 2%. Currently, existing commercial NIPT analysis requires at

least 4% of fetal fraction, which can be possibly a challenge in case of early gestational age

(<10 weeks) or high maternal body mass index (>35 kg/m2). More accurate detection can be

achieved at higher sequencing depth using HMM in conjunction with supplemental models,

which significantly improve the trisomy detection especially in borderline scenarios (e.g., very

low fetal fraction) and enables to perform NIPT even earlier than 10 weeks of pregnancy.
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Introduction

It is well known that chromosomal aneuploidies are the leading cause of spontaneous miscar-

riages and congenital disorders in humans [1,2]. At least 10% of all clinically confirmed pregnan-

cies are aneuploid [3]. It is assumed that the majority of fetuses with chromosomal abnormalities

are spontaneously aborted during the earliest stages of pregnancy [3]. The most common aneu-

ploidies are trisomies, which are characterized by the presence of an additional chromosome

and caused by segregation errors, mainly occurring during meiotic divisions. In the case of chro-

mosome 21 trisomy, approximately 5% of extra chromosomes have been determined to be of

paternal origin and more than 90% are of maternal origin [4–9]. Despite routinely performed

prenatal screenings in most developed countries, more than 0.1% of all live births are trisomic

and the corresponding risk continues to rise with increasing maternal age [10].

Advanced non-invasive methods for prenatal screening using cell-free DNA (cfDNA) have

considerably improved the detection of fetal aneuploidies [11]. The most commonly used tech-

nique, whole-genome sequencing (WGS) based non-invasive prenatal testing (NIPT) enables

to estimate the ploidy of each chromosome by counting the sequencing reads aligned to each

chromosome [12,13]. Although NIPT offers increased accuracy compared to the first trimester

serum screening and ultrasound, due to its high cost, it is usually not part of the conventional

prenatal screening in the majority of countries. Due to the latter and also to overcome some

technical challenges (e.g. high uncertainty in trisomy detection in case of low fetal fraction),

WGS-based NIPT related experimental and computational methods are continuously being

developed and improved [14].

Moreover, alternative NIPT techniques also have the potential to reduce the cost related limi-

tations of NIPT, for example by using targeted sequencing approach [15–17]. Instead of low-cov-

erage WGS-based NIPT, only certain genomic regions are analyzed at high coverage. Targeting

involves the use of hybridization-based capture or multiplex PCR amplification to enrich the

genomic regions of interest [15,16]. Compared to the WGS-based methods, targeted approaches

require less cfDNA, enable to study more samples in parallel and can enable confident interro-

gation of smaller relevant genetic markers (e.g. known microdeletion loci), making it possibly a

cost-efficient alternative or complementary method [17]. A few already available targeted solu-

tions rely on sequencing single nucleotide polymorphisms (SNPs). In these cases, the allelic dis-

tribution of heterozygous SNPs serves as an extra source of information for inferring fetal

aneuploidies [18]. For example, NATUS software, developed by Natera, Inc., considers parental

genotypes and crossover frequency data to calculate the expected allele distributions for SNPs

and possible fetal genotypes based on recombination sites in the parental chromosomes [19].

The algorithm compares predicted allelic distributions with measured allelic distributions by

employing a Bayesian-based maximum likelihood approach to determine the relative likelihood

of chromosomal copy number hypothesis. The likelihoods of each sub-hypothesis are summa-

rized and the hypothesis with the maximum likelihood is the chromosome copy number in the

fetal DNA fraction (FF). Although feasible, this method is proprietary and not available to the

rest of the community. An alternative approach is to model a chromosome as a hidden Markov

model (HMM) of sequential loci and determine the most likely chromosomal copy number sta-

tus at each locus and consequently the overall chromosomal ploidy. Kermany and colleagues

used HMM to detect fetal trisomy using high-density SNP markers from a trisomic individual

and one parent [20], and similar HMM-based approaches have been previously used to detect

both full and sub-chromosomal aneuploidies using binned read counts [21,22].

Motivated by these previously discussed challenges and recent developments in targeted

sequencing methods, we aimed to develop a publicly available and open source framework for

targeted (and also SNP-based) NIPT analysis. In the current study, we present a novel
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statistical framework for detecting fetal trisomy and possibly the parental origin of the trisomy

from targeted high-coverage sequencing data of pregnant women’s cfDNA. The framework

incorporates three different HMMs that utilize read counts of targeted loci, allelic ratios of tar-

geted SNP variants, or both in combination with a decision tree (DT) or support vector

machine (SVM)-based trisomy detection, without requiring any prior knowledge of parental

genotypes. We provide a comprehensive evaluation of the performance and limitations of

these models on simulated datasets generated for a wide range of biologically and technically

relevant scenarios. These results can be used as guidelines for appropriate study design and

feasibility analysis for future NIPT studies using targeted sequencing approach. Furthermore,

we provide proof-of-concept results from an experimental assay with targeted sequencing

dataset of normal euploid and in vitro generated trisomy samples that were analyzed with the

read count (RC) model, demonstrating the feasibility of the developed computational

framework.

Materials and methods

Sequencing data simulation

A total of 1,800 training and testing datasets with different conditions were generated to

mimic the targeted sequencing data of pregnant women’s cfDNA samples. Simulated datasets

varied in the context of (1) fetal condition–euploidy, maternally or paternally originated tri-

somy characteristic to meiosis I segregation failure; (2) sequencing read depth (RD)–ranging

from 500 to 15,000 at increments of 500; and (3) FF–ranging from 1 to 20% at increments of

1%. Each training dataset incorporated 100 simulated chromosomes with 1,000 targeted loci

for each of the conditions (for different fetal fraction, sequencing depth and fetal chromosomal

condition values) to train our models. Then, we use a test dataset of 10,000 chromosomes with

our models and methods to classify the target loci (and whole chromosomes) again for all the

1,800 simulated conditions, followed by the model accuracy (ACC) evaluations.

As the cfDNA of a pregnant woman contains both maternal and fetal DNA, we started the

simulation with the formation of parental chromosomes. For both parents, we generated two

sets of 1,000 SNPs representing a pair of homologous chromosomes. Each SNP was biallelic

and both alleles had an equal likelihood of occurrence (MAF = 0.5). Before creating a fetal set

of chromosomes, parental homologous chromosomes underwent a chromosomal crossover by

exchanging a random number of homologous alleles. The resulting recombined chromosomes

were used to form a set of fetal chromosomes according to the fetal conditions.

In addition, we generated allele counts for each SNP according to the mean sequencing cov-

erage and FF of the dataset. One might assume that all reads in a given region would follow a

Poisson distribution with a mean proportional to the copy number of the region. However,

due to the various technical biases, the process is over-dispersed and the simulation distribu-

tion followed the negative binomial distribution with a variance-to-mean ratio of 3 [23]. Since

spurious sequencing errors or missing data should not have considerable consequences in case

of high coverage targeted sequencing data (even if not appropriately excluded by assay and

platform-specific quality control procedures) and our AR and RCAR models only consider

sequencing reads that are present and have the expected SNP alleles (which are known from

the assay design phase), spurious sequencing errors and missing values were not considered in

our simulations.

Allelic ratio calculation

Based on the simulated data, we calculated the allelic ratio for every “informative” SNP. Only

SNPs which were heterozygous in mother and/or fetus were considered as informative.
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If both alleles have an equal likelihood of occurrence (MAF = 0.5), on average 75% of SNPs

are informative in case of maternally originated trisomy and the proportion of informative

SNPs is even higher in the case of paternally originated trisomy as both paternal alleles contrib-

uted to heterozygosity independently. The allelic ratio is defined as the number of sequencing

reads carrying a major allele for a certain variant divided by the number of sequencing reads

carrying a minor allele.

Fetal fraction calculation

FF shows the proportion of cell-free fetal DNA in total cfDNA. We estimated the FF of a

cfDNA sample using the allelic counts of the sample’s reference chromosome. First, we filtered

the informative SNPs on the reference chromosome, where the mother was homozygous and

the fetus was heterozygous (allelic ratio > 2.5). In this subset, the major allele count was the

sum of maternal allele counts and 1/2 of the fetal allele count. The minor allele count was pro-

portional to 1/2 of the fetal allele count. The FF was calculated as the median value of the ratios

between 2 × minor allele counts and the sum of major and minor allele counts. The FF of a

sample was calculated using the following formula:

FF ¼ median
2�mini

maxi þmini

� �

;

where FF denotes the fetal fraction, maxi−the major allele count of SNP i, and mini−the minor

allele count of SNP i. The median value over all informative SNPs was considered as estimated

FF of a sample, which showed high similarity to actual FF (S1 Fig).

Used computational classification methods

Machine learning algorithms, in general, can be considered as mathematical functions, which

will take a number of values and often map it into a single value or label (e.g. certain chromo-

somal state). For example, given the total number of sequencing reads per studied chromo-

some, machine learning algorithm could map it with a label “euploidy” (as for normal diploid

chromosomal euploidy) or “trisomy” (as for chromosomal trisomy), given that the algorithm

has been trained before to recognize these two chromosomal states based on sequencing read

data.

Hidden Markov model (HMM) works in a similar manner as the above example, but values

given to HMM are no longer a number of sequencing reads per studied chromosome, but a

successive sequence of values. In this example, it could be the number of sequencing reads per

studied locus along a studied chromosome and the task is to assign a label (chromosomal

state) “euploidy” or “trisomy” to each measurement (locus) in the sequence of studied values.

While assigning a label to each locus, the HMM algorithm also considers the chromosomal

state (label) of the preceding measurement (locus) and can be allowed (through a transition

probability) to be either conservative or liberal in regard to assigning a state that is different

from the previously assigned one. Importantly, an HMM-based implementation of chromo-

somal state inference can also facilitate the detection of smaller, sub-chromosomal fetal aberra-

tions. Given that the chromosomes of interest are sufficiently covered, it is visually possible (or

by using a suitable computational sub-routine) to detect longer chromosomal alterations from

the plotted chromosomal state-informative data of a studied sample.

Decision tree is a supervised learning model which uses conditional control statements in a

tree-like structure to classify observations into different categories. Observations follow a tree-

like graph, where each internal node represents a test on a studied attribute (e.g. a number of

sequencing reads) and each branch represents the outcome–assigned category–of the test. If
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an observation ends up in a leaf node, it is classified by the category label of that node. In this

example, we used RD, FF, and the HMM state proportions of classified loci per chromosome

to classify each sample into one of the three (through the max_depth parameter value set to 3)

different categories labeled as “euploidy”, “maternal trisomy”, or “paternal trisomy”.

Support vector machine (SVM) is a supervised learning model that, given a set of training

examples builds a model that is then used to assign new studied samples into one of the previ-

ously observed categories. An SVM model is a representation of a used training data set (e.g.

chromosomes with different category labels like “euploidy” or “maternal trisomy” or “paternal

trisomy”) as points in space, mapped in a way that samples belonging to the different underly-

ing categories are divided by a hyperplane and clear gap around that, which is as wide as possi-

ble. New, studied samples are then mapped into that same space and based on which side of

the hyperplane they fall (based on their RD, FF, HMM state proportions of classified loci per

chromosome), predicted to belong to a certain category, (i.e. “euploidy”, “maternal trisomy”

or “paternal trisomy”).

Hidden Markov model

For the detection of fetal trisomy and the parental origin of the trisomy, we implemented

HMM in Python (version 3.6.2) using the hmmlearn (version 0.2.0) package. First, we created

three distinct models based on the observed measurements of sequential SNPs–(1) read counts

(S2A Fig), (2) allelic ratios (S2B Fig), and (3) the combination of both read counts and allelic

ratios (S2B Fig). Second, we estimated the parameters for the models empirically using the

training samples. Finally, we used the Viterbi algorithm to find the most likely underlying fetal

condition behind each SNP. The developed models and estimated model parameters are avail-

able at https://github.com/cchtEE/cfDNA-simulation/tree/master/models.

Read count model. The read count (RC) model is a 2-state HMM which enables detection

of underlying fetal conditions of sequential target loci using read counts (S2A Fig). The possi-

ble outcome states of the model are “euploidy” and “trisomy”. The RC model is based on the

hypothesis that the mean coverage of a given region is proportional to the copy number of the

region. In the case of fetal trisomy, there is an extra chromosome and therefore we would

expect to see a 1/2 increase in fetal read counts compared to the euploid chromosome.

Allelic ratio and combined models. The allelic ratio (AR) model and the combined

model of read count and allelic ratio (RCAR) are both 7-state HMMs, which enable the detec-

tion of underlying fetal conditions and the parental origin of SNPs (S2B Fig). The AR model

uses allelic ratios of sequential informative SNPs as inputs. The RCAR model incorporates

sequential read counts and allelic ratios as inputs. Both models classify loci into seven catego-

ries by the allelic pattern. The allelic pattern depends on the maternal and fetal genotypes and

the fetal condition (S1 Table). The possible outcome states of the model are “euploidy”, “tri-

somy”, and “paternal trisomy”. Although the “trisomy” condition includes loci typical to both

maternally and paternally originated trisomy, here we associated “trisomy” with maternally

originated trisomy to avoid over-estimation of paternally originated trisomy.

Parameter estimation. In all three HMMs, no prior distribution of the initial state was

assumed. Each possible state had an equal likelihood of occurrence. The HMM transition

probability was set to state-to-state stay-switch ratio of 10, which means that the observation

stays 10 times more likely in the previous state than to switch to a state with a different fetal

condition. The emission probabilities were obtained using the training datasets of 100 cfDNA

samples with corresponding FF and sequencing coverage. In our models, the emission proba-

bilities were approximated to a Gaussian distribution. The distribution parameters (available

for all states and simulated scenarios at https://github.com/cchtEE/cfDNA-simulation/tree/
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master/models) were obtained for each state by calculating the mean and variance of the read

counts and allelic ratios of the training samples.

Fetal condition estimation

The chromosomal condition of a cfDNA sample was determined by the most frequently

occurring underlying condition of targeted loci using the RC, AR, and RCAR models. If no

condition was prevalent, the cfDNA sample was marked as unclassified.

To improve the fetal condition estimation, especially in the case of paternally originated tri-

somy, we applied HMM mode (the most frequently occurred state of classified loci), DT, and

SVM on HMM-classified state proportions of the targeted loci. The DT and the SVM methods

were implemented in Python (version 3.5.5) using scikit-learn (version 0.19.1). The DT was

used with default parameters, except the maximum depth of the tree was set to three and the

random state generator to 123. The SVM also used default parameters and the random state

generator was set to 123. As the DT and SVM are supervised learning models, we used the

training samples to fit the models. Eventually, each cfDNA sample was classified using both

models by the following features–RD, FF and HMM state frequencies. The possible classifica-

tion output values were identical to HMM.

To evaluate the models, we used accuracy (abbreviated as ACC). Accuracy measures how

correctly the model classifies the true fetal chromosomal condition excluding a given condi-

tion. The metric can be calculated when the prevalence of fetal chromosomal condition is

known as in our simulated datasets. It incorporates both specificity and sensitivity, which are

often used to evaluate NIPT, not favoring one over another and is a preferred metrics as it

enables a direct comparison of trisomy detection using both euploidy and trisomy samples.

Aneuploidy detection accuracy with different number of targeted loci

In order to measure the effect of the number of targeted loci on classification accuracy, we

used a subset of the simulated dataset of test samples with RD fixed to 1,000 and FF fixed to

low (3%) and medium (10%) levels. Different number of targeted loci (50, 100, 200, 500, and

1,000) were sampled from each cfDNA sample of 1,000 targets and classified by the RC model.

Resulting class frequencies were further classified by HMM mode, DT, and SVM. The classifi-

cation accuracy of each model was measured over 10,000 cfDNA samples (S3 Fig).

The MAF-dependent proportion of informative variants

First, we simulated chromosomes carrying 1000 variants, whereas at each variant locus alterna-

tive alleles were introduced randomly with the frequency of the corresponding studied minor

allele frequency (MAF) of 1, 5, 10, 20, 30, 40 and 50%. Pairs of randomly selected chromo-

somes were combined and then, by considering two randomly selected individuals as parents,

the number of resulting genotypes across the pairs of chromosomes were counted and the

number of informative variants was calculated. This procedure was repeated 100 times for

each MAF value and the average proportion of informative variants was calculated across

these repeated simulations (S4 Fig). Theoretical proportion of informative variants was calcu-

lated considering unrelated parents with independent diploid chromosomes carrying variants

with a given minor allele frequency.

Experimental targeted sequencing data

We used TAC-seq targeted sequencing data of experimentally controlled trisomy samples

(N = 12) as described in [17] to evaluate the RC model. In the aforementioned in vitro
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experiment, different proportions of genomic DNA from a non-trisomy 21 cell line

(GM01359) were mixed with a genomic DNA from a trisomy 21 cell line (GM04616) to imitate

different proportions of FF (0, 10, 20, and 100%), each in three replicas. Genomic DNA was

sheared by sonication to mimic 160–180 bp cfDNA. DNA fragments were hybridized and

sequenced using TAC-seq detector probes specifically designed to target only the reference

chromosomes 2 (68 targeted loci) and chromosome 3 (60 targeted loci), and studied chromo-

some 21 (99 targeted loci). Read counts of targeted loci (mean sequencing read coverage of

~3600 across all targeted loci and samples) were converted to absolute molecular counts using

unique molecular identifiers with the threshold of one to reduce the PCR amplification bias

[24]. Obtained absolute molecule counts (mean coverage of ~523 across all targeted loci and

samples) of each sample were filtered by interquartile range to remove outlier target loci, leav-

ing 69 to 86 targeted loci for chromosome 21 analyses with FF of 0, 10, 20, and 100%. Resulting

absolute molecule counts (with a mean coverage of ~527 reads across all loci and samples) for

each target locus were used as the input data for the RC model to classify each targeted locus as

“euploidy” or “trisomy”.

Results and discussion

We developed three novel HMM-based statistical models to detect fetal chromosomal triso-

mies from targeted sequencing assays. In addition to a naïve HMM-based frequentist approach

for trisomy detection, we applied two machine learning (ML) methods to infer fetal trisomy

(see “Used computational classification methods” in Materials and Methods). While consider-

ing a wide range of biologically and technically motivated conditions, we simulated datasets

mimicking cfDNA sequencing assays and used these data to perform a comprehensive evalua-

tion of our proposed computational methods (Fig 1). We also applied the RC model on tar-

geted sequencing dataset of experimentally controlled in vitro trisomy samples.

Novel HMM-based methods for trisomy detection

By considering the sequencing read counts (the RC model) of targeted loci, allelic ratios (the

AR model) of targeted SNPs, or both (the RCAR model), the developed HMM models were

used to classify consecutive targets on a (simulated) studied chromosome into pre-defined

underlying states. In the 2-state RC model, these unique states represented fetal euploidy and

trisomy (S2A Fig). In the case of the 7-state AR and RCAR models, these different states can

occur with fetal euploidy or maternally/paternally originated trisomy (S2B Fig). Consequently,

the proportion of loci classified into these distinct states can be used to infer the fetal condition

of each studied chromosome (see “Fetal condition estimation” in Materials and Methods).

And although such naïve classification works relatively well in case of high sequencing read

depth (RD) and fetal fraction (FF) scenarios, the proportion of loci classified into these under-

lying states can be fairly similar and thus difficult to distinguish unambiguously in the case of

some RD and FF ranges (Fig 2).

Therefore, an accurate calculation of FF is also crucial in order to control the precision and

uncertainty of fetal trisomy detection and sequencing-based NIPT assays. Notably, in the case

of the RC model and autosomal chromosomes there is no information that could be used to

infer the FF of the studied sample so that corresponding (optimal) model parameters could be

used. One possible solution to overcome this challenge is to use the expected median FF of

10% [25]. In the case of the AR and RCAR models, we used informative polymorphic SNPs

with heterozygous alleles in mother and/or fetus to infer the sample-specific FF (S1 Fig), simi-

larly to previous studies [26–29]. Additionally, in the case of the AR and RCAR models, allelic

count data at informative SNPs can be used to calculate allelic ratios, distinguishing maternally
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and paternally originated trisomies (see “Allelic ratio calculation” in Materials and Methods)

according to their distinct allelic patterns (S1 Table). On the other hand, these models only

consider informative targeted SNPs that are polymorphic in a given sample, reducing the total

number of analyzed SNP variants at least by 25%.

The latter was also demonstrated by theoretical and simulation-driven calculations, consid-

ering SNPs with variable minor allele frequency (S4 Fig). Although simplified to a certain

level, these analyses demonstrate that the proportion of informative variants slowly decreases

together with lower MAF of targeted variants, therefore also decreasing the trisomy detection

accuracy with the AR and RCAR models. On the other hand, the proportion of informative

SNP variants is relatively high (~50%, or more) down to MAF of 20% and human

Fig 1. Overview of the study. The computational framework included three steps: (1) simulation of cell-free DNA samples imitating pregnancy with fetal

euploidy, maternally or paternally inherited trisomy; (2) classification of loci by sample using hidden Markov model (HMM)-based read count (RC), allelic

ratio (AR), and combined (RCAR) models; and (3) classification of chromosome using HMM mode, decision tree (DT), or support vector machine (SVM)

on locus classification results.

https://doi.org/10.1371/journal.pone.0209139.g001
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chromosomes carry variants with various allele frequencies. Although a relevant consideration,

this can be relatively easily mitigated through an appropriate target variant selection proce-

dure, considering the population and ethnicity-specific MAF (e.g. through data resources such

as ExAC [30], gnomAD [31], or 1000 Genomes Project [32]) and minimizing the proportion

of possible non-informative SNPs.

Supplemental methods for trisomy detection

Because in case of some trisomy scenarios (such as paternally originated trisomy), the previ-

ously described HMM-based method could not unambiguously detect the underlying fetal

condition (Fig 2), we developed two additional “supplemental” machine learning (ML)-based

methods to improve trisomy classification accuracy. These supplemental methods–decision

tree (DT) and support vector machine (SVM), which take HMM-classified state proportions

of each studied chromosome as input and perform an enhanced stratification into fetal

euploidy or trisomic states, significantly improved the sample classification accuracy (S2

Table). The gain in classification accuracy was more significant in situations where the

Fig 2. The proportion of correctly classified targets in the simulated datasets with different levels of fetal DNA fraction (FF). The simulated datasets

of fetal euploidy, maternally and paternally inherited trisomy (on the horizontal panels) were classified by three hidden Markov models (on the vertical

panels)–the read count (RC), the allelic ratio (AR) and the combined (RCAR) model. The sequencing read depth of a sample was fixed to a mean of 1,000

reads per reference loci. Each data point represents 10,000 cell-free DNA samples with 1,000 SNPs and the classification results for fetal euploidy,

maternally and paternally inherited trisomy are represented respectively by green, red and blue color.

https://doi.org/10.1371/journal.pone.0209139.g002
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proportion of loci inferred into one or the other HMM state was unambiguous (not an obvious

majority) and where the naïve frequentist approach did not work (Tables 1 and S2).

All three HMMs (RC, AR, and RCAR) independently and conjointly with the supplemental

methods (DT and SVM) were tested on the same collection of simulated cfDNA datasets rep-

resenting all combinations of different fetal chromosomal conditions (euploidy, maternally

and paternally originated trisomy) and FFs (1–20%), sequenced with various RDs (500–15,000

reads), feasible for targeted sequencing assays.

Read count (RC) model

The RC model enables detection of fetal euploidy and trisomy by using sequencing read counts

in successive (targeted) regions along the chromosome of interest. As read count data alone

cannot be used to infer the FF of a studied sample, we assumed FF as 10% in this testing

model. Nevertheless, the HMM method showed excellent accuracy (ACC� 0.99) in detecting

fetal euploidy (Fig 3). On the other hand, this method was ineffective for detecting fetal tri-

somy if the FF was lower than 6% (ACC = 0.11) and increasing the RD induced only a minor

increase in detection accuracy (S2 Table). It is also important to note that since there is no

direct method to distinguish between paternally and maternally inherited alleles, the read

count model does not allow determining the parental origin of trisomies. On the other hand,

since it uses only sequencing read count information to detect fetal trisomies, it is straightfor-

ward to integrate this model with any targeted sequencing-based NIPT solutions.

Applying supplemental ML methods significantly improved the RC model-based classifica-

tion at lower FFs (Table 1). The DT method allowed accurate detection of fetal euploidy and

trisomy even if the FF was as low as 3%; the SVM method successfully lowered that limit even

further, allowing accurate detection of fetal trisomies at FF 2%, with a small trade-off in detect-

ing aneuploid chromosomes (Fig 3). Unexpectedly, DT trisomy detection improved at a lower

read coverage. This can be explained by the strictly set maximum depth (max_depth = 3) of

the DT, which prevented overfitting of the model; on the other hand, this method was not suit-

able for classifying a wide range of FF values. This shortcoming is due to the fixed FF parame-

ter rather than the properties of the DT (Figs 3 and S5).

Additionally to the effect of different FFs and RDs, we simulated aneuploidy detection accu-

racy with the different number of targeted loci. These calculations demonstrate that in case of

robustly working target loci (providing homogeneous sequencing coverage across the studied

chromosome) and FF of 10%, only 50 target probes are required to achieve relatively high tri-

somy and euploidy detection accuracy (ACC� 0.99) with RD of 1000 (S3 Fig). Furthermore,

according to these simulations, as few as 200 robustly working targeted loci per chromosome

Table 1. Summarized fetal euploidy and trisomy classification accuracy with different computational models and methods. Each value represents an average classifi-

cation accuracy across 3,600,000 simulated cell-free DNA samples within a given range of fetal fraction, with fetal euploidy, maternally, and paternally inherited trisomy at

the different sequencing depth intervals (500–15,000 reads).

Fetal fraction RC RC (with fixed FF) AR RCAR

HMM DT SVM HMM DT SVM HMM DT SVM HMM DT SVM

1–5% 1.00 1.00 1.00 0.56 0.93 0.95 0.34 0.69 0.69 0.49 0.91 0.90

6–10% 1.00 1.00 1.00 1.00 1.00 1.00 0.54 0.92 0.92 0.65 1.00 1.00

11–15% 1.00 1.00 1.00 1.00 1.00 1.00 0.63 0.98 0.98 0.67 1.00 1.00

16–20% 1.00 1.00 1.00 1.00 1.00 1.00 0.65 0.99 0.99 0.67 1.00 1.00

total 1.00 1.00 1.00 0.89 0.98 0.99 0.54 0.89 0.90 0.62 0.98 0.98

RC–read count; AR–allelic ratio; RCAR–read count and allelic ratio; HMM–hidden Markov model; DT–decision tree; SVM–support vector machine; FF–fetal fraction

https://doi.org/10.1371/journal.pone.0209139.t001
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of interest will provide relatively high accuracy (ACC = 0.98) for trisomy detection even with

FF of 3% (S3 Fig).

Allelic ratio (AR) model

The AR model uses counts of sequencing reads containing one or the other allele at informa-

tive SNP loci along the chromosome of interest to estimate if the studied sample has euploid,

maternally or paternally originated trisomy and to infer the FF of the corresponding sample.

The AR model showed excellent accuracy (ACC� 0.99) detecting fetal euploidy even at an FF

of 1% and an RD of 500 (S6 Fig) and reasonable accuracy to detect maternally originated tri-

somy if FF was� 6% and RD was higher than 10,000 (Fig 4). In contrast to the DT and the

SVM methods, it was unable to detect paternally originated trisomy in a given range of FF and

RD (S6 Fig).

Compared to the read count data, allelic ratio information was used to estimate the FF of a

sample using specific allelic patterns (S1 Table). In addition, allelic ratio data were used to sep-

arate maternally and paternally originated trisomies. As for the HMM, the inability to detect

Fig 3. Classification accuracy of the read count (RC) model with fixed fetal fraction in conjunction with the

machine learning models on simulated datasets. The simulated datasets of fetal euploidy and trisomy (vertical

panels) were first classified by RC model and the resulting class frequencies were further classified by hidden Markov

model (HMM) mode, decision tree (DT) and support vector machine (SVM) (horizontal panels). Each panel includes

cells with different fetal DNA fractions (x-axis) and sequencing read coverages (y-axis). Each cell includes 10,000 cell-

free DNA samples and the color represents the model classification accuracy.

https://doi.org/10.1371/journal.pone.0209139.g003
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paternally originated trisomy can be explained by the overlapping emission distributions of

the allelic ratios of maternally and paternally originated trisomies.

In general, the supplementary methods increased the detection accuracy for the AR model

significantly (Table 1), especially in the case of paternally originated trisomy (S2 Table and S6

Fig). In the case of maternally originated trisomy, all three methods had similar characteristics

as the detection accuracy was positively correlated with both sequencing RD and FF (Fig 4).

The read count had a stronger impact on the AR model, whereas the RC model was mostly

affected by FF. The DT had a slight fetal trisomy detection improvement compared to the

HMM, and the SVM, in turn, had a slight advantage over the DT. The DT methods also

showed very high accuracy (ACC� 0.99) in detecting fetal euploidy. Unlike the other meth-

ods, the SVM showed slightly better maternally originated trisomy detection accuracy

(ACC = 0.71) and consistently good results (ACC = 0.92) if the read coverage was low

(RD = 500); on the other hand, the SVM had poor results (ACC = 0.27) detecting fetal euploidy

if the read coverage was low (RD = 500). The SVM’s failure in case of euploidy and excellent

results for maternally originated trisomy at low read coverage contradicted each other, which

was a sign of maternally originated trisomy over-estimation. In the case of paternally origi-

nated trisomy, the DT and SVM had excellent (ACC� 0.99) detection accuracy (S2 Table).

Combined (RCAR) model

Finally, we studied the RCAR model, which incorporates both read count and allelic ratio infor-

mation to predict fetal euploidy or trisomy. Furthermore, it utilizes informative SNPs, which

enables separation of maternally and paternally originated trisomy by allelic patterns (S1 Table)

and estimated FF. The RCAR model showed excellent results (ACC� 0.99) in detecting fetal

euploidy (S7 Fig). Compared to the HMM, the supplemental methods were inefficient

Fig 4. Classification accuracy of the allelic ratio (AR) and the combined (RCAR) model in conjunction with the machine learning models on the

simulated dataset of maternally originated trisomy. The simulated dataset of maternally originated trisomy was first classified by the AR and RCAR

models (horizontal panels) and the resulting class frequencies were further classified by hidden Markov model (HMM) mode, decision tree (DT) and

support vector machine (SVM) (vertical panels). Each panel includes cells with different fetal DNA fractions (x-axis) and sequencing read coverages (y-

axis). Each cell includes 10,000 cell-free DNA samples and the color represents the model classification accuracy.

https://doi.org/10.1371/journal.pone.0209139.g004
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(ACC< 0.83) to detect fetal euploidy when the FF and read coverage was low (RD� 1,500;

FF� 3%). All three methods showed a positive correlation between detection accuracy, RD and

FF, while the HMM detection accuracy was substantially lower (ACC = 0.62) as compared to

the supplemental methods (ACC = 0.98). In the case of maternally originated trisomy, the DT

and the SVM had better detection accuracy (ACC = 0.93) than HMM (Fig 4). In the case of

paternally originated trisomy, the DT had excellent detection accuracy (ACC� 0.99) followed

closely by the SVM (S2 Table). However, the HMM was unable to detect paternally originated

trisomy in any give range of FF and read coverage (S7 Fig).

The RCAR model showed significantly higher accuracy in conjunction with supplemental

methods (Table 1). Compared to the HMM, the supplementary methods increased the detec-

tion accuracy in the case of fetal trisomies (S7 Fig). As for the HMM, the inability to detect

paternally originated trisomy can be explained by the overlapping emission distributions (alle-

lic ratios) of maternally and paternally originated trisomy. Similarly to the AR model, the over-

all accuracy of the RCAR model was affected by both FF and sequencing RD, whereas the RC

model was mostly affected by FF (Figs 3 and S5).

Experimental targeted sequencing data

To evaluate our HMM model with experimental targeted sequencing data, we designed a sim-

ple proof-of-concept experiment by using previously published and newly generated targeted

sequencing data (see “Experimental targeted sequencing data” in Materials and Methods). We

applied the RC model on the absolute molecule counts of targeted loci on chromosome 21 to

categorize consecutive target loci to fetal euploidy and trisomy (Fig 5). The results of these

analyses demonstrate the feasibility of our approach even with a relatively low sequencing cov-

erage (on average, 527 reads per target locus in each sample) and a small number of targeted

loci (from 69 up to 86 after locus-wise quality control procedures) per studied chromosome.

This experiment also demonstrated the necessity of robustly working target probes (each

probe interrogating a specific intended locus) and sequencing assay, providing homogeneous

sequencing coverage across the studied chromosome. Otherwise, target loci with systematically

lower (or possibly higher) sequencing coverage can be consequently in some occasions classi-

fied to the wrong chromosomal state (S8 Fig).

The next step with any actual targeted sequencing assay and platform (in conjunction with

our computational methods) would be its experimental testing (followed by assay/target set

optimization, e.g. to replace/exclude incorrectly reporting targets) and finally, depending on

its intended use, (clinical) validation with an independent set of samples from pregnant

women, including sensitivity and specificity estimates for different targeted chromosomes.

Conclusions

Targeted sequencing approaches have the potential to reduce the price of NIPT and improve

the quality of healthcare. In the current study, we present HMM-based models in conjunction

with supplemental methods (DT and SVM), which enabled the detection of fetal trisomy and

the parental origin of an extra chromosome using targeted sequencing-based prenatal (NIPT)

assays. The developed methods were tested on simulated datasets generated for a wide range of

biologically and technically motivated scenarios to determine the functional feasibility and

limitations of each approach.

We determined that regardless of the computational method used, the most challenging

factor in fetal trisomy detection is low FF. In our study, the RC model in conjunction with

ML-based supplemental methods can detect fetal trisomy at 2% FF, which in turn enables ear-

lier confident NIPT testing. Although the RC model can be easily incorporated into all targeted
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sequencing based NIPT workflows, the RCAR model is the recommended choice in case of

SNP-based targeted assays for its high accuracy and ability to determine the parental origin of

the trisomy and to accurately estimate the studied sample FF.

We provide a proof-of-concept results from an experimental assay with targeted sequencing

dataset, demonstrating the feasibility of our models and the developed computational frame-

work. As the computational framework and methods presented in the current study are

sequencing platform and assay agnostic, these are in principle usable for a wide selection of

different existing and future targeted NIPT assays and platforms.

Supporting information

S1 Fig. Difference between estimated and simulated fetal fraction (FF). The simulated FF

was subtracted from the estimated FF for each simulated cell-free DNA sample to determine

the FF difference (y-axis). The differences were grouped as boxplots by sequencing read depth

Fig 5. Classification of targeted loci using the read count (RC) model on experimental targeted sequencing data. Experimentally controlled in vitro
trisomy samples were created by mixing different proportions of genomic DNA from a non-trisomy 21 cell line with a genomic DNA from a trisomy 21

cell line to imitate different proportions of FF (horizontal panels), each in three replicas. Genomic DNA was sheared by sonication to mimic 160–180 bp

cfDNA. DNA fragments were hybridized and sequenced using TAC-seq detector probes specifically designed to target only the reference chromosome 2

(68 targeted loci) and chromosome 3 (60 targeted loci), and the studied chromosome 21 (99 targeted loci). Read counts of targeted loci were converted to

absolute molecular counts using unique molecular identifiers with the threshold of one to reduce the PCR amplification bias. Obtained absolute molecule

counts of each sample were filtered by interquartile range to remove outliers and used as input to RC model to classify each targeted locus as “euploidy”

(green color) or “trisomy” (red color). Proportions of classified loci per chromosome per sample are visualized as horizontal bars.

https://doi.org/10.1371/journal.pone.0209139.g005
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(x-axis). The results show a positive correlation between sequencing read depth and FF estima-

tion accuracy.

(TIF)

S2 Fig. The architecture of 2- and 7-state hidden Markov models (HMMs). (A) The 2-state

HMM classified sequential single nucleotide polymorphisms (SNPs) into 2 underlying states,

which represent fetal euploidy (white) and trisomy (grey), using read counts. (B) The 7-state

HMM classified SNPs into 7 underlying states, which represent fetal euploidy (white), mater-

nally (white-grey) and paternally originated trisomy (grey-white), using allelic ratios with or

without read counts.

(TIF)

S3 Fig. Classification accuracy of the read count (RC) model in conjunction with the

machine learning models on simulated datasets depending on the number of targeted loci.

The simulated datasets of fetal euploidy and trisomy (horizontal panels) were first classified by

RC model and the resulting class frequencies were further classified by the hidden Markov

model (HMM) mode, decision tree (DT) and support vector machine (SVM) at 3% and 10%

fetal fraction (vertical panels). The sequencing read depth of a sample was fixed to a mean of

1,000 reads per reference loci. Each data point represents 10,000 cell-free DNA samples. The

classification accuracy of each model was measured with the different number of targeted loci

(x-axis).

(TIF)

S4 Fig. The proportion of informative SNP variants in case of the different minor allele

frequencies (MAFs). The proportion of informative variants (y-axis) in case of MAF of 1, 5,

10, 20, 30, 40 and 50% (x-axis) in 100 simulations with each MAF are represented with the

box plots. The theoretical proportion of informative variants is denoted next to corresponding

box plots for each MAF.

(TIF)

S5 Fig. Classification accuracy of the read count (RC) model in conjunction with the

machine learning models on simulated datasets. The simulated datasets of fetal euploidy and

trisomy (vertical panels) were first classified by RC model and the resulting class frequencies

were further classified by hidden Markov model (HMM) mode, decision tree (DT) and sup-

port vector machine (SVM) (horizontal panels). Each panel includes cells with different fetal

DNA fractions (x-axis) and sequencing read coverages (y-axis). Each cell includes 10,000 cell-

free DNA samples and the color represents the model classification accuracy.

(TIF)

S6 Fig. Classification accuracy of the allelic ratio (AR) model in conjunction with the

machine learning models on simulated datasets. The simulated datasets of fetal euploidy,

maternally and paternally trisomy (vertical panels) were first classified by the AR model and

the resulting class frequencies were further classified by hidden Markov model (HMM) mode,

decision tree (DT) and support vector machine (SVM) (horizontal panels). Each panel

includes cells with different fetal DNA fractions (x-axis) and sequencing read coverages (y-

axis). Each cell includes 10,000 cell-free DNA samples and the color represents the model clas-

sification accuracy.

(TIF)

S7 Fig. Classification accuracy of the combined (RCAR) model in conjunction with the

machine learning models on simulated datasets. The simulated datasets of fetal euploidy,

maternally and paternally trisomy (vertical panels) were first classified by RCAR model and
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resulting class frequencies were further classified by hidden Markov model (HMM) mode,

decision tree (DT) and support vector machine (SVM) (horizontal panels). Each panel

includes cells with different fetal DNA fractions (x-axis) and sequencing read coverages (y-

axis). Each cell includes 10,000 cell-free DNA samples and the color represents the model clas-

sification accuracy.

(TIF)

S8 Fig. Classification of targeted loci using the read count (RC) model on experimental tar-

geted sequencing dataset. Experimentally controlled in vitro trisomy samples were created by

mixing different proportions of genomic DNA from a non-trisomy 21 cell line with a genomic

DNA from a trisomy 21 cell line to imitate different proportions of FF (horizontal panels),

each in three replicas. Genomic DNA was sheared by sonication to mimic 160–180 bp cfDNA.

DNA fragments were hybridized and sequenced using TAC-seq detector probes specifically

designed to target only the reference chromosome 2 (68 targeted loci) and chromosome 3 (60

targeted loci), and the studied chromosome 21 (99 targeted loci). Read counts of targeted loci

were converted to absolute molecular counts using unique molecular identifiers with the

threshold of one to reduce the PCR amplification bias. Obtained absolute molecule counts of

each sample were filtered by interquartile range to remove outliers and used as input to RC

model to classify each targeted locus as “euploidy” (green color) or “trisomy” (red color).

Sequentially classified targeted loci per sample are visualized as colored dots.

(TIF)

S1 Table. Allelic patterns. Allelic ratio depends on fetal chromosomal condition, and mater-

nal and fetal genotype.

(DOCX)

S2 Table. Fetal trisomy classification accuracy with different computational models and

methods. Each value represents an average classification accuracy over 1,200,000 simulated

cell-free DNA samples with fetal (maternally or paternally inherited) trisomy at the different

sequencing depth intervals (500–15,000 reads).

(DOCX)
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