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Introduction and aims. Multiple different neurobiological alterations have been hypothesized to underlie Major 

Depression Disorder (MDD), but no unifying theory exists to explain the mechanisms of the disorder. The aberrant 

brain dynamics in MDD can be seen in the alterations of long-range temporal correlations (LRTCs), which have 

been proposed to be an indication of criticality in healthy brain. Alterations in LRTCs have been suggested to reflect 

deficiencies in excitation-inhibition (E/I) balance, neuromodulation or connectivity patterns, which have also been 

proposed to be the underlying mechanisms of MDD. There has been controversy whether the pathology is related to 

attenuated or increased LRTCs, and the sources of altered brain dynamics have not yet been localized.  

The aim of this study was to find in which frequency bands and where in the brain the neuronal LRTCs are altered in 

MDD on source level. In addition to analyzing the correlations between neuronal LRTCs and depression severity in 

parcel level, we studied correlations in functional networks to get a better understanding of the system level 

alterations in MDD. We also studied whether behavioral LRTCs correlate with depression severity or with behavioral 

performance. 

Methods. We investigated the long-range temporal correlations in a cohort of 19 depressed subjects by using 

magnetoencephalography (MEG) for recording brain activity during resting state and response inhibition task and 

performed DFA analysis on the amplitude envelopes of cortical oscillations. The depression severity was measured 

with BDI-21 questionnaire 

Results and conclusions. We found the LRTCs to be positively correlated with depression severity in the alpha 

frequency band (8–12Hz) predominantly in the limbic system that underlies emotional control. This result was 

supported by the parcel level analysis in which correlations between alpha band LRTCs and depression severity 

were observed in the orbitofrontal cortex and temporal pole, indicating that the hyper-activation of limbic system 

could explain the negative bias characteristic to depression. Positive correlations were also found in frontoparietal, 

ventral, and dorsal attentional networks that support cognitive control. 

Alpha band LRTCs correlated also with behavioral LRTCs during both resting state and task conditions. However, 

we observed more wide-spread correlations between alpha range LRTCs and depression severity than between 

neuronal LRTCs and behavioral LRTCs. Behavioral LRTCs correlated with depression severity, but not with 

behavioral performance. These results indicate that depression is characterized by vast alterations in the brain 

dynamics and imply that the wide range of different symptoms in MDD could be explained by alterations in the 

excitation/inhibition balance in the limbic system and cognitive networks. 
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Tausta ja tavoitteet. Masennuksen (Major Depression Disorder, MDD) taustalla on ehdotettu olevan 
lukuisia eri neurobiologisia häiriöitä mutta yhtenevää sairauden mekanismeja selittävää teoriaa ei ole 
pystytty luomaan. Aivojen poikkeava toiminta masennuksessa voidaan havaita muutoksina 
pitkäkestoisissa ajallisissa korrelaatioissa (Long Range Temporal Correlations, LRTC:t). LRTC:iden 
muutoksien on ehdotettu heijastavan häiriöitä eksitaatio/inhibitio -tasapainossa, neuromodulaatiossa tai 
konnektiivisuudessa. Aikaisempien tutkimustuloksien perusteella on epäselvää, liittyykö masennukseen 
vähentyneitä vai lisääntyneitä LRTC:itä. Dynamiikan muutoksia on toistaiseksi tutkittu ainoastaan 
sensoritasolla eikä niitä ole paikannettu aivoissa.  
 
Tämän tutkimuksen tavoite oli selvittää missä taajuuskaistoissa ja millä aivoaluilla LRTC:t ovat 
häiriintyneet masennuksessa. Erillisten aivoalueiden lisäksi LRTC:iden ja masennuksen vakavuuden 
välistä korrelaatiota tutkittiin myös toiminnallisissa verkostoissa, pyrkimyksenä lisätä ymmärrystä 
masennukseen liittyvistä systeemitason häiriöistä aivoissa.  Myös reaktioaikojen LRTC:iden mahdollista 
yhteyttä masennukseen ja suoritustasoon selvitettiin.  
 
Menetelmät. Yhdeksäntoista koehenkilön aivokuoren oskillaatioita mitattiin lepotilan ja toiminnan 
estämistä mittaavan tehtävän aikana magnetoenkefalografian (MEG) avulla ja pitkäkestoisia ajallisia 
korrelaatioita tutkittiin DFA-analyysin avulla. Koehenkilöiden masennuksen vakavuutta mitattiin BDI-21 -
masennuskyselyllä.  
 
Tulokset ja johtopäätökset. LRTC:iden havaittiin korreloivan positiivisesti masennuksen vakavuuden 
kanssa alpha-taajuudella (8–12Hz) pääasiallisesti limbisessä järjestelmässä, joka vastaa tunteiden 
säätelystä. Tulosta tukee erillisten aivoalueiden tasolla tehty analyysi, jossa alpha-taajuuskaistan 
LRTC:iden huomattiin korreloivan masennuksen kanssa orbitofrontaalisessa aivokuoressa ja 
temporaalisessa lohkossa. Tämä osoittaa, että limbisen järjestelmän yliaktiivisuus saattaa selittää 
masennuksessa ilmenevän negatiivisen vääristymän ajattelussa. Positiivisia korrelaatioita havaittiin 
lisäksi frontoparietaalisessa verkostossa, sekä ventraalisessa ja dorsaalisessa tarkkaavaisuudesta 
vastaavissa verkostoissa, jotka tukevat kognitiivista säätelyä. 
 
Alpha-taajuuskaistan LRTC:t korreloivat myös reaktioaikojen LRTC:iden kanssa lepotasomittauksen ja 
tehtävän aikana. Korrelaatioita alpha-taajuuskaistan LRTC:iden ja depression välillä havaittiin kuitenkin 
laajemmalla alueella kuin alpha-taajuuskaistan LRTC:iden ja reaktioaikojen LRTC:iden välisiä 
korrelaatioita. Lisäksi reaktioaikojen LRTC:t korreloivat masennuksen kanssa mutta korrelaatiota ei 
havaittu reaktioaikojen LRTC:iden ja suoritustason välillä.  
Näiden tuloksien perusteella voidaan päätellä, että masennukseen liittyy laajoja muutoksia aivojen 
toiminnan dynamiikassa, ja että taudin erilaisten oireiden kirjo voidaan selittää eksitaation ja inhibition 
välisen tasapainon muutoksilla limbisissä ja kognitiivisissa verkostoissa.  
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1. Introduction 
  

1.1 Long-range temporal correlations and criticality 
 

Everyday life requires constant adaptation to the environment. Things like reacting to 

external stimuli require a flexible system that is capable of changing constantly. On the 

other hand, stability is required as the brain must be able to learn and form long-term 

memories that allow us to make predictions about the world. Hence the brain must operate 

in a state where it is capable of both reacting to changing stimulus and remembering 

things. It has been shown that neuronal oscillations show long-range temporal 

correlations, indicating that the brain dynamics are indeed not random but that there are 

temporal correlations on different time (Linkenkaer-Hansen, K., Nikouline, Palva, & 

Ilmoniemi, 2001) , possibly explaining our capability to both adapt and remember things 

simultaneously. 

 

It has been suggested based on  that the optimal information capacity and transmission in 

the brain are obtained in a critical state (Linkenkaer-Hansen et al., 2001; Shew, Yang, Yu, 

Roy, & Plenz, 2011). One of the fundamental properties of critical systems is that the 

interaction between simple components causes the emergence of long-range 

spatiotemporal correlated patterns. In these systems the behavior of the individual 

components is no longer only determined by the neighboring components, but also by the 

behavior of the population as a whole (Chialvo, 2010).  

 

The two-way effect between individuals can be seen for example in the behavior of flocks 

of starlings. The collective behavior of the flock is not obtained through a leader, but 

through scale-free correlations across the whole group. Each individual affects even the 

furthest member of the flock through the information transfer that emerges from 

interindividual interactions, and each individual is affected by the behavior of the flock. 

Consequently, the flock can respond to changing environmental demands, such as a 

predator, as one. The correlations between the behavior of the individuals are referred as 

scale-free, because the length of the correlations is not limited to a specific group size, but 

the correlations can be seen in groups of all sizes (Cavagna et al., 2010). 
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This kind of self-organized scale-free dynamics have been shown to emerge 

spontaneously in many phenomena in the nature, such as in the species evolution, 

bacterial populations and forest fires (Bak, 1997; Gregoire & Prigogine, 1977; Malamud, 

Morein, & Turcotte, 1998).  

 

1.2 Neuronal avalanches and long-range temporal correlations 
 

It has been shown that the brain has scale-free dynamics, suggesting that it might operate 

close to a critical state. On a small scale, scale-free dynamics have been shown to exist in 

neuronal populations. In so called avalanches the activity of one neuron activates 

surrounding neurons causing a network effect. The probability of a small avalanche is 

higher than the probability of big avalanche, as the propagating activity does not always 

cause a network level effect, and the sizes of avalanches have been shown to follow an 

inverse power law in in vivo cortical slices. This suggests that the avalanches arise as a 

consequence of critical branching which optimizes the information transmission in a feed-

forward network without the risk of runaway excitation (Beggs & Plenz, 2003). 

 

On the level of bigger neuronal populations, the activity can be studied in the form of 

oscillations recorded with electro- and magnetoencephalography (M/EEG). Both MEG and 

EEG can be used to obtain temporally accurate information about the brain activity. EEG 

signals are produced by the electrical field potentials produced by active pyramidal cell 

populations, whereas MEG signals are produced by the changes in the magnetic fields, 

caused by the same electrical activity. MEG is not sensitive to radially oriented currents 

and this limits its use in the recording of signals originating from the top of the gyri, but it 

has slightly better spatial resolution than EEG, because the magnetic fields are not 

influenced by the changes in the electric conductivity between the brain, skull and scalp 

(Peter Hansen, Morten Kringelbach, Riitta Salmelin, 2010).  

It has been shown that on long time scales (100 − 103 seconds) the amplitude envelopes 

of spontaneous neuronal oscillations recorded with M/EEG are scale-free and have long-

range temporal correlations (LRTCs) (Linkenkaer-Hansen et al., 2001). The scaling 

exponents of the neuronal LRTCs and avalanches have been shown to be correlated 

(Palva et al., 2013; Zhigalov, Arnulfo, Nobili, Palva, & Palva, 2015) and it has been 

suggested both M/EEG amplitude fluctuations and avalanches emerge from an E/I 
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balance and share a common neural basis (Poil, Hardstone, Mansvelder, & Linkenkaer-

Hansen, 2012). The human alpha band LRTCs in the visual and parietal cortices can be 

manipulated by pharmacological administration of catecholaminergics, and computational 

simulations suggest that these alterations in scale-free dynamics happen due to an 

increase in excitatory activity in relation to inhibitory activity (Pfeffer et al., 2018). 

Furthermore, it has been shown in cortical cultures that balanced excitation/inhibition (E/I) 

ratio allows the system to operate near criticality and maximizes the information 

processing capacity (Shew et al., 2011).  

 

The scaling laws of LRTCs are not unique for M/EEG recordings, but slow fluctuations in 

blood oxygenation level-dependent (BOLD) signals recorded with functional magnetic 

resonance imaging (fMRI) have corresponding scale free properties (He, B. J., 2011). 

Furthermore, behavioral performance fluctuations follow power laws (Gilden, Thornton, & 

Mallon, 1995) and behavioral LRTCs in audiovisual threshold stimulus detection tasks 

have been shown to correlate with both neuronal avalanches and LRTCs derived from 

M/EEG in both resting state and task condition, as well as with LRTCs from a task that is 

based on a different sensory modality (Palva et al., 2013). LRTCs have been shown to be 

consistent in individuals between different measurements (Nikulin & Brismar, 2004) and 

the inter-subject variability has been shown to correlate with genetic differences 

(Linkenkaer-Hansen, Klaus et al., 2007).  Altogether these results indicate that the 

fluctuations are endogenous and do not only reflect the brain activity that is related for 

example to motor responses during a task (Palva et al., 2013).  

 

1.3 Altered LRTCs in depression 
 

Alterations in LRTCS have been linked to several psychological and brain disorders such 

as epilepsy (Parish et al., 2004), Alzheimer’s disease (Montez et al., 2009), schizophrenia 

(Nikulin, Jönsson, & Brismar, 2012) and migraine (Hodkinson, Lee, Becerra, & Borsook, 2019). 

Several studies have also studied the role of aberrant LRTCs in Major Depression 

Disorder (MDD), but the results have been conflicting. Both increased and attenuated 

LRTCs have been observed in depressed patients in comparison to healthy controls 

(Table 1 in Supplementary Materials), and both negative and positive correlations between 
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LRTCs and depression severity have been found in varying frequency bands. The analysis 

has been restricted to sensor level and no source level analysis has been reported.  

 

The first observations of altered LRTCs in MDD indicated a negative correlation between 

MEG resting state LRTCs and depression severity (Linkenkaer-Hansen, Klaus et al., 2005). In 

this cohort, the depressed subjects had LRTCs close to 0.5, suggesting very low temporal 

correlations in the 5–100 seconds time range, whereas healthy controls had significantly 

higher values. Analysis was restricted to occipitoparietal and temporocentral regions, and 

only gradiometers were analyzed. Attenuated theta (3-7 Hz) band LRTCs were observed 

in the MDD group in comparison to the healthy controls (HC) in all of the analyzed areas, 

whereas differences in beta (15–29 Hz) band LRTCs were seen only in the temporocentral 

regions. Furthermore, depression severity was also shown to have a negative correlation 

with theta LRTCs in the left temporocentral region. In contrast, a slight positive correlation 

with alpha LRTCs in the occipitoparietal region was observed. It was later suggested by 

the authors that the attenuated values of theta and beta band LRTCs might be due to 

decrease in attention during the relatively long 16-minute resting state recording (Gärtner et 

al., 2017) and most of the following studies have shown a positive correlation between 

depression severity and increased LRTCs. 

A positive correlation between depression severity and broad band (0.6–46 Hz) LRTCs 

was observed over most of the cortex in a five-minute eyes-closed resting state EEG 

measurement in a cohort of 11 medication-free MDD subjects (Lee et al., 2007). The LRTCs 

were also significantly higher in the patient group in comparison to the healthy controls in 

temporal regions on both hemispheres and left hemisphere structures.  

 

In addition, MDD patients (N=71) have been shown to have increased theta (4–7 Hz) band 

LRTCS in eyes-closed resting state in mid and left frontal as well as left temporal electrode 

sites in comparison to healthy controls (N=25) (Gärtner et al., 2017). Improvements in the 

symptoms after a two-week mindfulness meditation treatment were correlated with the 

reduction in the post-treatment theta frequency LRTCs. The changes were observed in the 

central and temporal regions, especially on the left hemisphere. Another subgroup of the 

patients went through a stress-reduction treatment and this decreased the LRTCs in the 
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fronto-parietal midline region, but the change was not correlated with decrease in 

symptoms. 

 

Broad band (1–40 Hz) and theta (3–7 Hz) band LRTCs have been shown to be related to 

depression severity also in sub-clinically depressed subjects (Bornas, Fiol-Veny, Balle, 

Morillas-Romero, & Tortella-Feliu, 2015). Correlations with depression severity were found in 

broad band LRTCs in central and parietal areas, and in the theta LRTCs in the parietal 

sites. In contrasts, alpha (8–13 Hz) band LRTCs were observed to have negative 

correlations with depression severity in the frontal, central, occipital and temporal regions. 

In addition, negative emotion regulation strategies, such as brooding and thought 

suppression, were shown to have positive correlation with broad band LRTCs and 

negative correlation with theta and alpha band LRTCs. No differences were found between 

sub-clinically depressed subjects and non-depressed subjects. The measurement 

consisted of eight-minute resting state measurement with alternating two-minute periods of 

eyes-closed and -open intervals. Clinically depressed participants were excluded.  

Aberrant broad band and theta LTRCs have previously been shown to have positive 

correlations with maladaptive emotion regulation strategies by the same authors (Bornas et 

al., 2013), and the conflicting results between the two studies were hypothesized to be 

explained by the inadequate screening of depression symptoms in the earlier study. 

Similarly, the use of maladaptive emotion regulation strategies in healthy control groups 

might explain why significant difference between MDD and healthy controls is always not 

observed, as was the case in a cohort of 45 MDD subjects and 45 HC in a five-minute 

resting state data (Hosseinifard, Moradi, & Rostami, 2013). In this study it was observed that 

alpha band power and correlation dimension are more effective ways of classifying MDD 

patients and HC than LRTCs. 

A variety of time windows ranging from 0.1s–6 seconds to 5–100 seconds was used in the 

different studies. Short time windows can bias the estimates of the LRTCs (Hu, Ivanov, 

Chen, Carpena, & Stanley, 2001; Kantelhardt, Koscielny-Bunde, Rego, Havlin, & Bunde, 2001) 

and this might explain the conflicting results. Some of the differences can also probably be 

explained by the different methods that were used to obtain the data, as the studies 

contain both EEG and MEG data and the number of EEG channels varied between the 

studies. 
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1.4 Altered excitation-inhibition balance in depression 

 
Depression has been linked to a wide range of different underlying neurobiological 

mechanisms, such as altered neurotransmission, HPA axis abnormalities in response to 

stress, inflammation, reduced neuroplasticity and network dysfunction (Dean & Keshavan, 

2017). We will here concentrate on alterations in excitation-inhibition (E/I) balance as it not 

only underlies alterations in LRTCs but has also been suggested to be one of the core 

neurobiological mechanisms of depression.  

A wide range of studies done in both mice and people supports the role of E/I balance in 

MDD. In a cohort of 33 MDD subjects and 38 controls proton magnetic resonance 

spectroscopy was used to show that there is a decrease in the GABA concentration and 

increase in glutamate concentration in the occipital cortex of MDD subjects in comparison 

to healthy subjects (Sanacora et al., 2004). Only occipital cortex was investigated because 

of technical limitations. This was a replication of earlier results with a smaller cohort 

(Sanacora et al., 1999) and indicates that there is an imbalance between excitatory and 

inhibitory neurotransmitter levels in the cortex of MDD patients. Later it has been shown 

that the alterations extend also to dorsomedial/dorsal anterolateral prefrontal and 

ventromedial prefrontal areas (Hasler et al., 2007), and that the GABA levels stay low even 

after recovery in the occipital and anterior cingulate cortex (Bhagwagar et al., 2008).  

Genetic post-mortem studies on depressed suicide victims support GABA’s role in MDD. 

The expression of GABAAR subunit transcripts has been shown to be altered in suicidal 

subjects in comparison to subjects who died because of natural causes (Luscher, Shen, & 

Sahir, 2011). The subunit expression levels can also be altered by epigenetic 

mechanisms. It has been shown in rodent models that both enhanced and decreased 

maternal care affects the GABAA receptor mRNA subunit expression in brain regions that 

regulate stress responses, including amygdala, prefrontal cortex, hippocampus, and locus 

coeruleus (Caldji, Diorio, & Meaney, 2003).  

GABA subunit alterations have also been shown to have a causative effect on depression, 

as global and forebrain-specific heterozygous inactivation of the gamma2 subunit gene in 

the mouse embryos increased the corticosterone concentration and anxious-depressive 

behavior (Shen et al., 2010). Furthermore, it has been observed that pharmacological 
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administration of antidepressant Rebotexine (selective norepinephrine reuptake inhibitor) 

to stressed male rats reduces GAD67 mRNA in the central limbic stress circuits (Herman, 

Renda, & Bodie, 2003), indicating that one of the mechanisms of antidepressants could be 

the normalization of the altered E/I balance.  

The E/I balance theory of MDD is also well in line with the neurotrophic hypothesis of 

MDD, just looking at the same phenomena from a different perspective. The neurotrophic 

hypothesis states that MDD is associated with decreased levels of neuronal plasticity, and 

the effects of antidepressants take place via increasing the BDNF levels and neuronal 

plasticity (Bus & Molendijk, 2016). On the other hand, BDNF has been shown to alter the 

E/I balance in the rodent hippocampus and prefrontal cortex by increasing the 

phosphorylation, activity, and cell-surface stability of GABAA receptors within minutes of 

application (Jovanovic, Thomas, Kittler, Smart, & Moss, 2004). Antidepressant Fluoxetine 

has also been shown to reorganize inhibitory circuits in the amygdala by increasing the 

expression of a plasticity related form of neural cell adhesion molecule (PSA-NCAM) 

(Carceller, Perez-Rando, Castren, Nacher, & Guirado, 2018).  

These results suggest that both plasticity and inhibitory networks are altered in depression 

and that they can be modified by antidepressant Fluoxetine at least in rodents. The 

changes have been localized to the areas in the limbic system, suggesting that the 

alterations in E/I balance in systems that regulate emotions might be one of the underlying 

mechanisms of depression. 

 

1.5 Study aims 

 
Both depression and altered LRTCs have been suggested to share the same underlying 

mechanism, and alterations in LRTCs have been shown to characterize MDD. However, 

the results so far have been conflicting, giving support for both attenuated and increased 

LRTCs in MDD.  

The aim of this study was to find in which frequency bands and where in the brain the 

neuronal LRTCs are altered in MDD on source level. In addition to analyzing the 

correlations between neuronal LRTCs and depression severity in parcel level, we wanted 

to study correlations in functional networks to get a better understanding of the system 
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level alterations in MDD. We also wanted to know whether behavioral LRTCs correlate 

with depression severity or with behavioral performance. 

 

2. Materials and Methods 
  

2.1 Participants 
 

22 participants were recruited in cooperation with Helsinki University Hospital (HUS) via 

Mental Hub (www.mielenterveystalo.fi), and social media. Resting state data was analyzed 

for 19 subjects and task data for 18 subjects. Three subjects had to be excluded from the 

data analysis because of missing MRIs that were required for source localization and one 

subject was excluded from the task analysis because of missing answers. The experiment 

was undertaken with the understanding and written consent of each subject, and the 

experiment was approved by the ethical committee of HUS. The study was performed 

according to the Declaration of Helsinki (World Medical Association).  

 

The participants were 19–45 years old (12 female; 19 right-handed; 14 had antidepressant 

medication, mean age 33.5 and range 19–45) and the severity of their depression was 

evaluated by using a BDI-21 questionnaire (Beck & Beamesderfer, 1974). Participants 

who did not fulfil the depression criteria (BDI-21 score less than ten) at the time of 

registration or who had current suicidal intentions were excluded from the study. 

Participants were also screened for comorbidities, including alcohol abuse, anxiety 

disorder, bipolar disorder, borderline personality disorder and mania, but these were not 

used as exclusion criteria. The participants’ demographics and clinical data are 

summarized in Table 1. Depression scores at the time of MEG-measurements ranged 

from four to 38 (Figure 1). 
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Figure 1. BDI-21 score distribution. Suicidal participants were excluded, and the cohort 

does not include the extreme end of the severe depression, the maximum score being 38. 

One sub-clinical participant was included in the cohort, as he/she fulfilled the depression 

criteria at the time of the requirement. 

 

2.2 Cognitive Go/NoGo task 
 

The MEG session consisted of a ten-minute eye-open resting state recording and two 18-

minute cognitive Go/NoGo response inhibition tasks. The order of the response-inhibition 

tasks was counterbalanced between the participants. Only resting state and FB condition 

data were analyzed in this this study.  

 

In the Go/NoGo FB task blue and yellow squares were projected on the screen in 1s 

intervals. The target was visible for 100 milliseconds and the participants were instructed 

to maintain fixation to a fixation cross between the stimuli. The participants were instructed 

Sex (female/male) 12/7

Age (mea [range]) 33.5 [19,45]

BDI-21 (mean [range]) 23.8 [4,38]

Table 1. Demographic information.

BDI-21:  21-item Beck Depression Inventory (Beck & Beamesderfer, 1974), 

scoring from 0 to 63
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to lift their right index finger when they saw a blue square and to ignore the yellow 

squares.  

Correct responses to the Go stimuli were defined as hits and responses following NoGo 

stimulus were defined as false alarms (FA).  

 

 

 

Fig 2. Go/NoGo FB paradigm. Task consisted of Go and NoGo signals that were 

presented in 1s intervals and the participant had to response to the Go signals and inhibit 

the response when NoGo signal was presented. 

 

2.3 MEG and MRI recordings 
 

The MEG recordings were performed in BioMag laboratory of the Helsinki University 

Hospital with a 306 channel Elekta TRIUX Neuromag MEG instrument composed of 204 

planar gradiometers and 102 magnetometers at 600 Hz sampling rate. Eye movement was 

recorded with electro-oculogram (EOG) for artefact control.  

 

T1-weighted anatomical MRIs for cortical surface reconstruction were obtained for each 

subject at a resolution of a 1 × 1 × 1 -mm3 (MP-RAGE) with a 1.5 Tesla MRI scanner 

(Siemens). The flip angle was set to eight, echo time to 2.47, and repetition time to 2200.  

 

 

2.4 Signal processing 
 

MRIs were processed with Freesurfer software (http://surfer.nmr.mgh.harvard.edu/). This 

included automatic volumetric segmentation of the data, surface reconstruction, cortical 

http://surfer.nmr.mgh.harvard.edu/
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parcellation, and labeling with the Destrieux atlas (Dale et al., 2000; Destrieux, Fischl, 

Dale, & Halgren, 2010; Lin, Belliveau, Dale, & Hämäläinen, 2006) Three-layer boundary 

element models (BEMs), cortically constrained source models, MEG-MRI- co-localization 

and preparation of the forward and inverse operators (Gramfort et al., 2014; Hämäläinen & 

Ilmoniemi, 1994) were made with MNE software 

(http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php).  

 

MEG data was processed with LabVIEW-based (National Instruments) neuroinformatics 

platform. Bad channels were removed by using the Elekta Neuromag MaxFilter(TM) 

(version 2.2.15) (Taulu, S. & Simola, 2006; Taulu, Samu & Kajola, 2005). Head position 

indicator (HPI) coil signals were not filtered from the data as should have been done in this 

step, and the non-filtered data was used for the current study.  

 

Components associated with eye movements/blinks and cardiac artefacts were identified 

and removed using FieldTrip MATLAB toolbox independent component analysis (ICA) 

(Oostenveld, Fries, Maris, & Schoffelen, 2011). The pre-processed MEG time series from 

each separate channel were transformed into time-frequency domain using the continuous 

wavelet transform with Morlet wavelets into 38 bands (m=5, 3–143Hz).  

 

To measure noise levels in each experiment, noise covariance matrices (NCMs) were 

computed by using broad band filtering (nominal frequency 225Hz). Synthetic events were 

added in five second intervals to the resting state data and these events were used to 

compute NCMs. In the Go/NoGo data one-minute resting state preceding the task was 

used for the NCM. The same filters were also used for creating fidelity weighted inverse 

operators.  

 

Forward and inverse modelling was obtained to approximate the sources of the signals. 

Each sensor receives signals from multiple sources and one signal can be seen in multiple 

sensors. Hence a model is needed for approximating the original sources of the signals 

that are seen on the sensor-level. A forward model is used for creating a simulation of 

sensor-level activation. This is then used for creating a model that approximates the 

original source-level activation. The predictions of the model are compared to the original 

source-level activation, and each sensor is given a fidelity weight ranging from zero to one 

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/sofMNE.php
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based on its predictive power. The fidelity weighted inverse model is then created by using 

the best sensors (Hansen et al., 2010).  

 

Source time series were collapsed into optimized cortical parcellations of 400 patches 

(Korhonen, Palva, & Palva, 2014), hereafter referred as parc2009 400AFS parcellation. 

Parcels were also morphed to Yeo7 functional networks which have been defined with 

fMRI (Thomas Yeo et al., 2011). The networks include visual, somatomotor, dorsal 

attention, ventral attention, limbic, frontoparietal, and default networks, and their 

topography is shown in Figure 5B.  

 

2.5 DFA analysis 
 

The LRTCs for cortically reconstructed source time series and reaction time -time series 

were quantified using detrended fluctuation analysis (DFA). 

 

In the DFA analysis the timeseries is normalized to zero mean and integrated. The 

integrated signal is then segmented into multiple time windows with varying sizes ∆t. Each 

segment of integrated data is then locally fitted to a linear function y∆t and the mean-

squared residual F(∆t) is computed:  

 F(∆t) = √
1

𝑁
∑ [𝑦(𝑘) − y∆t(k)]2𝑁

𝑘=1   

Where N is the length of the time series. 

 

The slope of the linear regression of the function F(∆t) in log-log coordinates can be used 

as a measure for LRTCs. Values close to 0.5 are associated with uncorrelated white noise 

and higher values of LRTCs are a sign for stronger temporal dependencies. 

 

Neuronal LRTCs were obtained by applying DFA to the amplitude envelope of the 

processed MEG signal for each cortical patch and frequency band separately in the resting 

state and Go/NoGo condition. Window sizes from 1 to 225 seconds were used.  

 

DFA analysis of the behavioral data on the Go/NoGo task was done by following the 

pipeline of Simola, Zhigalov, Morales-Muñoz, Palva, & Palva (2017). Both hits and false 
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alarms were included into the RT timeseries, as it was previously shown that removing 

FAs did not change the scaling exponents effectively (Simola, Zhigalov, Morales-Muñoz, 

Palva, & Palva, 2017). Extreme RT values (<150 ms and >800ms) were excluded as was 

done previously. 

 

2.6 Correlation with clinical symptoms and behavioral performance 
 

The correlations of the neural fluctuation scaling law exponents with BDI-21 scores, FA 

rates and RT scaling exponents were analyzed separately in resting state and Go/NoGo 

condition. A one-tailed Spearman rank correlation was used to determine significant 

correlations in both parc2009 400AFS parcels and parc2011 Yeo7 functional networks 

(p<0.05). FDR (alpha=0.05) was used for correcting the statistics for multiple testing.  

 

Correlations were calculated for each frequency band separately. The highest fraction of 

significant correlations between neural LRTCs and depression severity after correction for 

multiple testing with FDR was observed in the frequencies within the alpha band (8.14, 

9.02, 9.83, 10.92 and 11.89 Hz) (Figure 4), and alpha band was chosen for further 

analysis based on this. 

 

The correlations were visualized on an inflated cortical surface with PySurfer software 

(https://pysurfer.github.io/). The colors indicate the average of the significant (p<0.05, FDR 

corrected) one tailed Spearman rank correlations between the LRTCs in the alpha band 

frequencies and BDI-21 score, reaction time LRTCs and FAs.  

 

 

3. Results 
 

3.1 Depression severity has a negative correlation with False alarm rate and 

positive correlation with reaction time LRTCs 
 

False alarm rates were found to have a negative correlation with BDI-21 scores (rho=-

0.49, p=0.04, two-tailed Spearman rank correlation) (Figure 3A). FA did not correlate 

https://pysurfer.github.io/
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significantly with age (rho=-0.10, p=0.68, two-tailed Spearman rank correlation) or years of 

education (rho=-0.10, p=0.69, two-tailed Spearman rank correlation).  

 

Signal detection theory was used to rule out the role of differences in tendency to respond, 

and no significant correlations between criterion values and depression severity was found 

(rho=0.326, p=0.160, two-tailed Spearman rank correlation), indicating that the relationship 

between depression severity and performance cannot be explained with decreased risk-

taking or decreased motor activity levels in depression. 

This study was conducted as part of a depression gaming study, and hence also the 

average weekly gaming hours were recorded. However, the better performance of the 

severely depressed participants was not explained by experience in gaming, as there was 

no significant correlation between gaming hours and FA rate (rho=0.14, p=0.59, two-tailed 

Spearman rank correlation).  

 

Reaction time LRTCs were found to correlate with BDI-21 scores (rho=0.48, p=0.045, two-

tailed Spearman rank correlation) (Figure 3B). Mean reaction times or hit rates were not 

found to correlate with depression severity (rho= -0.09, p=0.71 and rho=0.09, p=0.72 

respectively, two-tailed Spearman rank correlation). 

 

It should also be noted that the significant correlations between BDI-21 and FA rate and 

RT LRTCs are lost if corrected for multiple comparison when testing the correlations with 

other questionnaires. In addition, RT LRTCs did not correlate significantly with FA rates 

(rho=-0.25, p=0.32, two-tailed Spearman rank correlation).  
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Figure 3. BDI-21 score correlations with False alarm rate and reaction time LRTCs in the 

Go/NoGo task. A) FA rate has a negative correlation with BDI-21 score (rho=-0.49, 

p=0.04, two-tailed Spearman rank correlation), indicating that severe depression is linked 

to lower level of errors. B) RT LRTCs have a positive correlation with depression severity 

(rho=0.48, p=0.045, two-tailed Spearman rank correlation). 

 

3.2 Alpha band LRTCs correlate with depression severity in limbic system 

and ventral visual attention network 
 

The correlations of LRTCs with BDI-21 score were first analyzed in parc2009 400AFS 

parcels. In both conditions, the highest fraction of significant correlations was in the alpha 

range (8–12Hz) frequencies (p<0.05, FDR corrected, one-tailed Spearman rank 

correlation). In resting state the highest fraction of significant correlations was 0.0975 

(freq=9.83 Hz) and in Go/NoGo it was 0.1575 (freq=9.83Hz) (Figure 4A). 

 

Almost half (47%) of the parcels where significant correlations were found in resting state 

reached significance also in the Go/NoGo task. The parcels where alpha band LRTCs 

correlated with BDI-21 scores in both conditions were predominantly located in the 

occipital, temporal, parietal and orbital areas, and parts of the insula. Interestingly, some 

areas, such as occipital-temporal regions in the right hemisphere had significant 

correlations with depression severity in the resting state, but not during the task condition. 

In the inhibition task, also parts of anterior cingular cortex, right dorsal precuneus, and 
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parts of occipital, occipital-temporal lobe and frontal areas in the left hemisphere correlated 

with depression severity (Figure 5A). 

 

Correlations were also studied in the Parc2011Yeo7 functional networks (Thomas Yeo et 

al., 2011). In both conditions, the highest fraction of significant correlations was in the alpha 

range frequencies (p<0.05 and FDR corrected, one-tailed Spearman rank correlation). In 

resting state the highest fraction of significant correlations was 0.0625 (freq=9.83, 10.92 

and 30.8 Hz) and in the Go/NoGo data it was 0.1875 (freq=10.92 Hz) (Figure 4B). 

 

Alpha band LRTCs were found to be significantly correlated with BDI-21 scores in the 

Parc2011Yeo7 limbic system and ventral visual attention network in the right hemisphere 

during both resting state and Go/NoGo task. During the Go/NoGo task alpha LRTCs 

correlated with BDI-21 scores also in the left frontoparietal and dorsal visual attention 

networks (Figure 5B).  
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Figure 4. Fraction of significantly correlating parcels and networks in different frequencies 

in both conditions (p<0.05, FDR CORRECTED, one-tailed Spearman rank correlation). A) 

Fraction of significant correlations between source time series and BDI-21 scores. 

Significant correlations were found predominantly in the frequencies in the alpha range (8–

12Hz). B) Fraction of significant correlations between source time series and Go/NoGo 

reaction time time series. Significant correlations were found in the frequencies in the 

alpha range (8–12Hz) in the parc2009 400AFS parcels in both conditions, but not in Yeo7 

functional networks. Also, gamma band frequencies had a high fraction of significantly 

correlating parcels. C) Fraction of significant correlations between source time series and 

false alarm rate in the parc2009 400AFS parcels. The highest fraction was observed in the 

low and high gamma bands, but significant correlations were found also in the alpha band 

in the Go/NoGo task. No significant correlations were found in the Yeo7 networks. 
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Figure 5. Average of the significant correlations between alpha band LRTCs and 

depression severity (p<0.05, FDR corrected, one-tailed Spearman rank correlation) during 

resting state and Go/NoGo task. Conjunction indicates the areas that reached significance 

in both conditions. A)  Significant correlations in Parc2009 400AFS parcels in different 

conditions. Correlations were observed predominantly in occipital, temporal, parietal and 

orbital areas, and parts of the insula in both conditions. B) Significant correlations in 

Parc2011 Yeo7 functional networks in different conditions. Highest correlations were 



19 
 
 

observed in both conditions in the limbic system and ventral visual attention network in the 

right hemisphere. Prefrontal and dorsal attention networks in the left hemisphere 

correlated with BDI-21 in the Go/NoGo inhibition task but did not reach significance in 

resting state.  

 

3.3. Alpha band LRTCs correlate with reaction time LRTCs in superior 

temporal area, circular insula, and right sub-central area 
 

LRTCs in both conditions correlated also with the behavioral reaction time LRTCs in alpha 

band in the parc2009 400AFS parcels. No correlations were found in the Yeo7 functional 

networks. In the resting state the highest fraction of significant correlations was observed 

in the low-gamma band, but the analysis was restricted to alpha band frequencies based 

on the other comparisons where alpha band reached the highest fraction. 

 

The highest fraction of significant correlations in alpha band was 0.035 (freq=10.92) 

(Figure 4B). The alpha band correlations in resting state were dominantly in the right 

hemisphere temporal and insular areas (Figure 6). In the Go/NoGo task, alpha band had 

the highest fraction of significant correlations, the highest being 0.045 (freq= 10.92 and 

11.89 Hz) (Figure 5). In the inhibition task correlations were observed more in the left-

hemisphere, concentrating on the temporal, orbital, parietal, occipital lobe and insular 

areas (Figure 6). Only 26% of the significant parcels in the resting state were also 

significant in the Go/NoGo task. These parcels were located on both hemispheres in the 

superior temporal area and circular insula, and in the right sub-central area (Figure 6).  

 

 



20 
 
 

 

Figure 6. Average of the significant correlations between alpha band LRTCs and reaction 

time LRTCs (p<0.05, FDR corrected, one-tailed Spearman rank correlation,) during resting 

state and Go/NoGo task in the Parc2009 400AFS parcels. Conjunction reflects the areas 

that reached significance in both conditions. In the resting state correlations were mostly 

observed in the right hemisphere whereas in the inhibition task they were located more in 

the left hemisphere. Parcels in the superior temporal area and circular insula, and in the 

right sub-central area had significant correlations in both conditions.   

 

3.4 Alpha LRTCs had a negative correlation with FA rates in the precuneus, 

cuneus, and parietal and occipital regions in Go/NoGo task.  
 

Resting state LRTCs correlated with FA only in the beta/low-gamma band, the highest 

fraction of significant correlations being 0.015 (freq=31.5 Hz). In the Go/NoGo task, the 

highest fraction of significant correlations, 0.255, was also seen in the higher frequencies 

(freq=59.3, 78, 85.92 Hz), and in the alpha range the maximum fraction was 0.06 

(freq=9.83 and 10.92 Hz) (Figure 4C). The parcels that correlated with alpha band 

frequencies were located in the precuneus, cuneus, and parietal and occipital regions. 

No significant correlations with resting state LRTCs were found in Yeo7 functional 

networks in either of the conditions. 
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Figure 7. Average of the significant correlations between alpha band LRTCs and FA rates 

(p<0.05, FDR corrected, one-tailed Spearman rank correlation) Go/NoGo task in the 

Parc2009 400AFS parcels. Significant correlations were found in precuneus, cuneus, and 

parietal and occipital regions. No correlations in resting state alpha LRTCs and FA rates 

were found.  

 

3.5 Alpha band LRTCs correlate with both depression severity and 

behavioral fluctuations in the insular, orbital, and temporal regions 
 

There was overlap between the areas where alpha band LRTCs showed significant 

correlations with depression scores and RT LRTCs. In resting state, in 32% of the parcels 

where alpha LRTCs correlated with RT LRTCs, correlations with BDI-21 scores were also 

found. These parcels were predominantly located in the temporal areas.  

In Go/NoGo, in 55% of the parcels where alpha band LRTCs correlated with RT LRTCs 

correlations with BDI-21 scores were also observed. These parcels were predominantly 

located in the orbital, insular and temporal regions.   

 

Resting state alpha frequencies did not correlate with FA rates, but 28% of the parcels 

where alpha LRTCs correlated with FA rate in Go/NoGo task had correlations with BDI-21 

scores. These parcels included parietal and occipital regions and parts of precuneus.  
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Figure 8. Parcels where alpha band LRTCs had significant correlations with depression 

severity and behavioral performance. Shared parcels are marked as purple. A) Parcels 

where alpha LRTCs correlated with BDI-21 and RT LRTCs. Shared parcels were found 

predominantly in the temporal regions in resting state and orbital, insular and temporal 

regions in Go/NoGo. B) Parcels where alpha LRTCs correlated with BDI-21 and FA rates 

in Go/NoGo task. Shared parcels were located in parietal and occipital regions and parts 

of precuneus.  

 

4. Discussion 
 

4.1 Increase in alpha band LRTCs in the limbic system is related to 

depression severity  
 

We measured MEG resting state and Go/NoGo task activity from 19 depressed subjects 

and analyzed the correlations between depression severity (measured with BDI-21 

questionnaire) and neural LRTCs on the source level in parc2009 400AFS parcels and 

Yeo7 functional networks. The correlations between LRTCs and depression were 

investigated in all frequencies and highest fraction of significant correlations after 

correction for multiple testing with FDR was observed in the alpha band (8–12Hz). 

We found an increase in the alpha band LRTCs to be linked to depression severity in the 

limbic system that underlies emotional control. This could indicate that the limbic system 
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might be hyper-activated in depression, which could explain the negative bias 

characteristic to depression. The participants reported negative feelings especially during 

the Go/NoGo task, such as frustration towards the task and themselves, which could be 

reflected by the strong LRTCs in the limbic system even in the absence of emotional 

stimuli.  

The Yeo7 limbic system includes orbitofrontal cortex and temporal pole, in which 

correlations between depression severity and alpha band LRTCs were also found on the 

analysis done on parcel level. In addition, alterations in the occipital, parietal and insular 

areas were associated with depression severity both during resting state and response 

inhibition. Depression has been previously shown to be linked to decreased gray matter 

volume in the orbitofrontal cortex, insula and temporal regions (Harada et al., 2016). Insula 

metabolism has been shown to be linked to responsiveness to selective serotonin 

reuptake inhibitor and cognitive behavior therapy (McGrath et al., 2013), and reduction in 

orbitofrontal activity and increased connectivity between OFC and posterior insula during 

loss has previously been linked to higher depression symptoms (Jin et al., 2017). The role 

of temporal pole dysfunction in depression is supported by observations of altered 

functional connectivity of temporal pole in medication-free MDD subjects (Zhang, Wu, Xu, 

& Shang, 2018) and by the effect of short mindfulness intervention which attenuated 

depression symptoms and decreased theta band LRTCs in the temporal region (Gärtner et 

al., 2017). 

Our observations of the alterations in alpha band LRTCs in the limbic system, and in 

parcels located in the temporal pole, OFC, and insula, are in line with the previous findings 

about the depression-related functional and anatomical alterations in these regions that 

take part in the regulation of emotions.   

 

4.2 Alterations also in the attentional and frontoparietal networks  
 

In our study, positive correlations were also found in the frontoparietal network and ventral 

and dorsal attention networks that support cognitive control. Functional connectivity in 

frontoparietal network has previously been shown to be altered in MDD especially in non-
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medicated depression, and medication was shown to return the connectivity to control 

levels (He, Y. et al., 2017). Frontoparietal network subsystems have been shown to control 

the default mode network and attention networks (Dixon et al., 2018), and the alterations in 

functional connectivity and our observation in the increased alpha band LRTCs indicate 

that alterations in top-down control of attention and emotion might be a key component in 

MDD.  

Functional connectivity within ventral attentional networks has also been shown to be 

increased in adolescent depression, possibly explaining the attentional bias towards 

negative things in MDD (Liu et al., 2019). Neither of our conditions involved negative 

stimulus, but it can be hypothesized that the LRTCs might not always reflect the activity of 

the network in response to specific events, such as negative stimuli, but they might be 

more of a sign of the general deficits in these networks, such as the proposed deficits in 

E/I balance. Hence these alterations can also be seen in the absence of the stimuli that 

would normally activate for example ventral attentional network.  

 

4.3 Alpha band LRTCs correlate with behavioral LRTCs but are more related 

to depression than increase in task performance 

 
We also found correlations between alpha band LRTCs and reaction time LRTCs. It 

should be considered that the relationship between higher alpha LRTCs and depression 

severity could be explained by having cognitively well-performing severely depressed 

individuals in the cohort, as behavioral performance correlated with depression severity in 

our study and increase in behavioral LRTCs has previously been shown to have a positive 

correlation with behavioral performance in the Go/NoGo task (Simola et al., 2017). 

However, no correlation between reaction time LRTCs and FA rate was found in our study, 

indicating that the increase in alpha LRTCs is more linked to depression than increase in 

task performance.  

High behavioral LRTCs in depression could possibly be explained by traits such as 

perfectionism or over-achieving that could lead to increased concentration in the more 

severe depression. However, the correlations between RT LRTCs and alpha LRTCs were 

also observed in the resting state, indicating that the variability in behavioral LRTCs stems 
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from the power-law guided brain dynamics as has been suggested by Palva et al. (2013), 

and the increase in RT LRTCs is probably not explained by increase in concentration but 

explained by the intrinsic brain dynamics. 

 

4.4 Stronger link between alpha band LRTCs and depression severity during 

the Go/NoGo task than during resting state especially on the left hemisphere 
 

Interestingly there were more significant correlations on left hemisphere in the Go/NoGo 

condition than in the rest condition in all comparisons. It has previously been shown that 

Go/NoGo task activates the brain bilaterally, but more in the left hemisphere frontal and 

parietal networks (Rubia et al., 2001). However, others have argued that the activation is 

more prominent in the right hemisphere, localizing to frontal areas, anterior insula, and  

parietal lobe (Garavan, Ross, & Stein, 1999) and prefrontal area (Konishi et al., 1999). In 

addition, orbitofrontal activation has been linked to behavioral and emotional inhibition in 

lesion studies in humans (D.T. Stuss & D-F. Benson, 1986; J.M. Fuster, 1989; Malloy, Bihrle, 

Duffy, & Cimino, 1993; Rolls, Hornak, Wade, & McGrath, 1994). We observed differences 

between resting state and Go/NoGo task LRTCs correlations with RT LRTCs in the left 

hemisphere temporal, orbital, parietal and insular areas, and differences in correlations 

with depression severity were found in the left hemisphere frontal areas. The role of these 

areas in the inhibition of movement might partly explain why there were more correlations 

in these areas in the Go/NoGo conditions in comparison to the rest condition.  

In general, the fraction of significant correlations was higher in the Go/NoGo task than in 

the resting state in all comparisons, and it is logical that there are more correlations in the 

Go/NoGo task alpha LRTCs with the measurements that are related to the task, such as 

the reaction time LRTCs and FA rate. It is interesting however, why a larger fraction of 

significant correlations of alpha LRTCs with depression severity was found in the Go/NoGo 

task in comparison to the resting state. It can be argued that maybe it is due to the 

relationship between depression severity and behavioral LRTCs, that in turn are related to 

brain LRTCs, and more so during the Go/NoGo task. However, participants reported 

negative feelings, such as frustration, only during the task condition, and hence it is also 

possible that the task condition activated networks that are related to difficulties in 
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emotional and cognitive processing in MDD, and more so especially in the participants 

with severe depression.  

Alpha LRTCs in the Go/NoGo task had a negative correlation with FA rate, but not in the 

resting state. Correlations were found in the precuneus, cuneus, and parietal and occipital 

regions. Increased grey matter volume in cuneus and parietal lobule has been shown to 

correlate with better inhibitory control in Bipolar Disorder, type I (BDI) patients(Haldane, 

Cunningham, Androutsos, & Frangou, 2008). The authors speculate that the increase in grey 

matter in these areas might be a compensatory method to overcome the deficits in other 

networks in BDI, and the same might apply for our depression cohort. 

Even though the alpha LRTCs correlated with the behavioral LRTCs and FA rate, it should 

be noted that the brain LRTCs had more significant correlations with BDI-21 score than 

with the behavioral measurements. This could indicate that depression is more of a 

network level disease, whereas the movement inhibition activity is more localized to 

certain areas, or that the task related activity is more affected in other frequency bands 

that were limited outside this study. Based on these results it can be argued that altered 

LRTCs in the alpha band are a good indication of depression severity. Alterations in 

LRTCs have been linked to imbalance between excitation and inhibition, connectivity and 

neuromodulation, and based on our results we can speculate that these mechanisms are 

altered especially in the limbic system, frontoparietal network and attentional networks, 

possibly also explaining the alterations in emotional regulation and cognitive control in 

MDD.  

 

4.5 Comparison to other studies  
 

Our data indicated that the highest fraction of significant correlations between neural 

LRTCs and depression severity was in the alpha frequency band and that the correlation 

was positive. Previous studies have found both increased and decreased LRTCs in MDD, 

and within varying frequency bands. Linkenkaer-Hansen et al. (2005) observed a slight 

positive correlation between alpha band LRTCs and depression severity in a cohort of 12 

MDD subjects, and Bornas et al. (2014) found a negative correlation with depression 
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scores in a group of 28 sub-clinically depressed undergraduates. Our results support the 

findings of Linkenkaer-Hansen et al. (2015), and the conflicting result in the sub-clinical 

group might be explained by the differing brain dynamics in sub-clinical depression in 

comparison to MDD. In addition, the use of short window lengths in DFA analysis (0.1 – 

6.0 seconds) might bias the scaling exponents (Hu et al., 2001; Kantelhardt et al., 2001) 

and this might explain the absence and conflicting direction of the significant alterations in 

the alpha band LRTCs in some of the previously done studies. Longer time windows (1 – 

225 seconds) were used in our study in order to obtain more accurate estimates for the 

LRTCs. We also observed a higher number of significant correlations in the Go/NoGo task 

in comparison to the resting state. This might be one explanation why observations of 

altered alpha band LRTCs have been sparse in other studies, as others have only 

measured resting state activity.  

Alterations have been previously shown to exist in the theta band and broad band (Bornas 

et al., 2015; Gärtner et al., 2017; Lee et al., 2007; Linkenkaer-Hansen et al., 2005), and 

our data also indicates that theta band LRTCs correlated with depression severity, but to a 

lesser extent than alpha. In addition to positive correlations, also a negative relationship 

has been observed in the theta and beta band (Linkenkaer-Hansen et al., 2005). However, 

it was later argued by the authors that the reduced LRTCs in MDD group could maybe be 

explained by the long duration of the eyes-closed state, as this might cause more 

alterations in the EEG because of increased sleepiness (Gärtner et al., 2017). Our data 

also indicated that there would be correlations between beta and low-gamma band LRTCs 

and depression severity, and these frequencies could be explored in the future.  

 

The sources of the altered LRTCs have not been localized in the previous studies. The 

alterations have been observed in the sensors all over the cortex and the variation from 

study to study is vast. However, there were significant alterations in the temporal cortex in 

all of the studies where alterations were found, and temporal regions had significant 

correlations consistently also in our source-level analysis. This supports the role of the 

temporal cortex in MDD. In addition, we showed that on the level of functional networks 

the alterations are localized in the limbic system, attentional networks and frontoparietal 

network. We also showed that the increased LRTCs persist during task performance, and 
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that they can also be seen in the behavioral fluctuations, further supporting the link 

between increased LRTCs and MDD.   

 

4.6 Study limitations 
 

The sample size in this study was quite small (N=19) and the data contained noise that 

could not be explained or filtered. In addition, the HPI-signals were not filtered from the 

current data, and even if their signals are in very high frequencies, the effect of the signals 

to the alpha band cannot be excluded. In the current study, use of antidepressants or 

comorbidities such as anxiety and bipolar disorder were not used as exclusion criteria, and 

their effects on the results cannot be excluded. Antidepressant medication has previously 

been shown to not to affect LRTCs in MDD (Gärtner et al., 2017), but it should be noted 

that the effect might depend on the used antidepressants and the length of use. In 

addition, suicidal individuals were left out from the study, and hence the results do not 

reflect extreme stages of depression.  

We are currently processing data from a bigger cohort with 28 new subjects and it will be 

interesting to see whether our results can be later verified. It has been estimated that a 

cohort of 400 depressed subjects would be required to reach 50% reproducible results in 

fMRI studies with heterogenic population (Xia et al., 2019) , and the same problem most 

likely also applies to MEG recordings. Collecting a cohort of 400 depressed subjects is 

hardly realistic with the current resources, so one possibility for restricting the variability 

would be to exclude all comorbidities and medication. However, this would make data 

collection extremely challenging. 

This study was also limited by the variation in the timing of the questionnaires, because it 

was tied to the playing of a game that was tested as another part of the study. This 

problem has been corrected in the currently ongoing study. To verify the link between 

alterations in alpha band LRTCs and depression, differences between control group and 

depression cohort should be tested. However, people cannot be strictly grouped into 

depressed and healthy individuals, as the symptoms vary a lot from person to person and 

even “healthy” people experience depressive symptoms every now and then. Hence it can 
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be argued that it is also useful to test correlations between the altered dynamics and 

severity of the pathology.  

Correlations with specific symptoms, such as anhedonia and rumination should be tested 

in the future, as MDD is a heterogenic pathology, and different symptoms are likely to have 

different neurobiological mechanisms. However, it can also be argued that the very basic 

mechanism that underlies the different symptoms is the same, but only manifests 

differently in different individuals based on intrinsic and timing dependent vulnerabilities, 

such as the stage of development during traumatic events, and experiences. Differences 

in the inhibition-excitation balance could be one of these mechanisms underlying the 

different symptoms, and as alterations in LRTCs have been suggested to be related to 

alterations in this balance, it can be argued that they are also good for studying a 

heterogenic cohort of depressed subjects.  

 

5. Conclusions  
  

These results indicate that depression is related to increased alpha band (8–12Hz) LRTCs 

and also increased behavioral LRTCs. However, interestingly depression severity also 

correlated with better performance in the Go/NoGo task in our cohort. It has been 

previously shown that increase in behavioral LRTCs in linked to better performance in 

Go/NoGo task (Simola et al., 2017), and we cannot say whether the increase in the alpha 

LRTCs is more related to depression severity or if more severely depressed individuals 

happened to have good cognitive capabilities in comparison to the moderately depressed 

subjects and hence also had higher LRTCs. However, there was more alpha range LRTCs 

correlations with BDI-21 score than with RT LRTCs, and no significant correlations were 

observed between RT LRTCs and FA rate. This indicates that the altered neural and 

behavioral LRTCs were more related to depression than to good performance.  

 

Alpha band LRTCs were found to correlate with depression severity in the limbic system, 

frontoparietal network and ventral and dorsal attentional networks. This could be 

interpreted the way that moderate levels of alpha LRTCs would be more beneficial to the 

functioning of the networks, and that all alterations from the optimal level are bad for the 
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individual in general, leading to difficulties in regulating one’s emotions because both 

emotional and top-down cognitive networks are altered. It could also be speculated that 

increased LRTCs are related to increased activity stemming from the imbalance between 

excitation and inhibition and that depressive symptoms, such as emotional reactivity to 

negative things, are related to the hyper-activity of the limbic system that regulates 

emotional control. Task performance correlated with depression severity in our cohort, so 

the increased LRTCs in the frontoparietal and attentional networks could also be an 

indication of better functionality of these cognitive networks in this specific cohort. 

 

Altogether, depression seems to be linked to alterations in the alpha band LRTCs.  

Same mechanisms, such as imbalance between inhibition and excitation, changes in 

connectivity, and neuromodulation, have been suggested to underlie both MDD and 

alterations in brain LRTCs, and based on our results it can be argued that studying LRTCs 

can bring new insights into our understanding of the neurobiology of depression and 

hopefully new targets for intervention. 

 

 

 

Figure 9. Summary of the correlations between depression severity, LRTCs in the brain 

dynamics and behavioral fluctuations, and behavioral performance. Depression severity 

had positive correlations with alpha band LRTCs and reaction time LRTCs, and negative 

correlations with FA rate, indicating that severe depression was related to better 

performance and higher LRTCs on both behavioral and brain activity level. Alpha LRTCs 

had negative correlations with FA rate and positive correlations with reaction time LRTCs. 

No significant correlations between RT LRTCs and FA rate were found, indicating that the 
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positive correlations between LRTCs and depression cannot be explained by good 

behavioral performance in the more severely depressed subjects.  
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