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ABSTRACT

This study explores various speech data augmentation methods
for the task of noise-robust fundamental frequency (F0) estimation
with neural networks. The explored augmentation strategies are
split into additive noise and channel -based augmentation and into
vocoder-based augmentation methods. In vocoder-based augmenta-
tion, a glottal vocoder is used to enhance the accuracy of ground truth
F0 used for training of the neural network, as well as to expand the
training data diversity in terms of F0 patterns and vocal tract lengths
of the talkers. Evaluations on the PTDB-TUG corpus indicate that
noise and channel augmentation can be used to greatly increase
the noise robustness of trained models, and that vocoder-based
ground truth enhancement further increases model performance.
For smaller datasets, vocoder-based diversity augmentation can also
be used to increase performance. The best-performing proposed
method greatly outperformed the compared F0 estimation methods
in terms of noise robustness.

Index Terms— Speech analysis, F0 estimation, noise robust-
ness, data augmentation, deep learning

1. INTRODUCTION

Fundamental frequency (F0), which is the frequency of the quasi-
periodic oscillation of the vocal folds during voiced speech produc-
tion, is one of the most important features of speech. Humans can
modify F0 by varying the tension of the vocal folds and the sub-
glottal pressure [1]. The main information conveyed by F0 is related
to the prosody of speech, which in non-tonal languages is used to
convey information beyond the literal meaning of the message, such
as emphasis, emotion, and speaker characteristics. This makes F0 a
widely studied feature across all of speech science, including speech
synthesis, prosody, and linguistics.

F0 estimation from recorded speech (also known as pitch estima-
tion or pitch tracking) is thus itself a fundamental problem in speech
signal processing that has a wide range of applications. The tradi-
tional approach taken in F0 estimators is based on signal processing
techniques that aim to capture the periodicity of the analyzed sig-
nal frame (within the range of 30–50 milliseconds). Time domain
F0 estimation methods are based on, for example, the autocorrela-
tion function (e.g., YIN [2]) or normalized cross-correlation function
(e.g., RAPT [3]). Frequency domain methods utilize, for example,
the energy of the linear prediction residual harmonics (e.g., SRH
[4]) or instantaneous frequency (e.g., TEMPO [5]). In addition to
the methods that provide raw frame-level estimates of F0, multiple
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methods have been developed for candidate F0 selection and/or post-
processing of the raw F0 estimates for improved robustness (e.g.,
pYIN [6], YAAPT [7], and Nebula [8]).

In recent years with the spread of deep learning, neural estima-
tion of F0 has also been explored. For example, CREPE [9] has
produced state-of-the-art results in generic audio pitch tracking, and
single sinusoid regression [10] has improved the state-of-the-art F0
estimation performance in noisy conditions. The applicability of
neural networks for noise-robust F0 estimation is easy to understand:
As the neural network is trained for a regression or classification task
from a signal-level input to a known target F0 output, during train-
ing the input can be masked, for example, by additive noise which
makes the model learn to handle noisy inputs. The noise-corruption
of the model inputs during training can be seen as a form of data
augmentation, which is a staple method in training powerful image
recognition networks [11]. However, within the field of image recog-
nition, noise augmentation is a small subset of the available methods:
Most augmentation methods manipulate the image in such ways that
the individual pixels are transformed without affecting the human-
interpreted contents of the image. These transformations include,
for example, rotation, flipping, scaling, cropping, and translation.
Within the field of audio processing, similarly motivated augmen-
tation strategies have been proposed in [12], where time stretching,
pitch shifting, dynamic range compression, and background noise
augmentation were used to enhance the training of a convolutional
neural network (CNN) for audio scene classification. Within the field
of speech technology, vocal tract length perturbation (VTLP) [13]
has been successfully used to enhance automatic speech recognition
(ASR) system performance [14]. Despite these early efforts, the full
potential of data augmentation within the field of speech technology
has not yet been explored.

In this study, we explore the applicability of vocoder-based
modifications for speech data augmentation for neural network
estimation of F0. A vocoder is a speech analysis/synthesis sys-
tem, widely used in text-to-speech synthesis [15], that transforms a
speech signal into a parametric representation that can be synthe-
sized back into a speech signal. The vocoder parameters, which
include time trajectories for the F0 and spectral envelope of speech,
can be manipulated to modify the prosody or even the identity of the
speaker, while maintaining the linguistic information and yielding
perceptually acceptable quality to human listeners. Such transforma-
tions to the speech signal could be interpreted as speech processing
analogues to the image-processing augmentation strategies.

The main scope of this study is to explore the use of speech
data augmentation for F0 estimation given a fixed neural network
model. Section 2 describes the neural network model utilized in
the experiments, and Section 3 describes the proposed augmenta-
tion schemes in detail. We divide the augmentation into two main
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categories: additive noise and varying channel augmentation (Sec-
tion 3.1) and vocoder-based augmentation (Section 3.2). The exper-
iments, trained models, and used data sets are described in Section
4, and finally the results and discussion are presented in Sections 5
and 6, respectively.

2. NEURAL NETWORK F0 ESTIMATION METHOD

The neural network model utilized in this study is a CNN based on
the WaveNet [16] architecture presented in Figure 1. Key points
within the WaveNet architecture are the residual skip connections
that allow error gradients to flow more efficiently during the training
of deep networks, as well as the dilated convolutions that increase
the receptive field of the network. The network takes in stacked
raw microphone signal waveform frames as input with tensor di-
mensions (1, Nframes, wl), where Nframes is the number of frames in
the utterance to be processed and wl is the frame length (wl = 512
samples at Fs = 16 kHz is used within the present study). Fram-
ing is performed with a rectangular window and a 10-ms frame skip.
The target outputs are one-hot vectors of evenly distributed logF0
bins between the range [log F0min, log F0max] plus one bin for the
voiced/unvoiced decision. In this study, we used the values F0min =
50 Hz, F0max = 500 Hz, and Nbins = 351.

The input layer performs a linear transformation followed by
tanh activation to the input frames, yielding r = 128 feature chan-
nels to be processed by the residual module stack. The residual mod-
ule stack consists of eight residual modules illustrated in Figure 1
(b). Each residual module consists of a gated dilated convolution op-
eration and a skip connection that connects the module input directly
into the main output of the module. The 1D convolution operation
within the module is performed with varying levels of dilations over
the frame time axis to model the time structure of F0 contours. In
this study, the used dilations for the 8-layer residual module stack
are d = [1, 2, 4, 8, 1, 2, 4, 8], yielding (including the postnet) a re-
ceptive field of 71 frames with the selected filter length of 5 (current
frame plus 35 past frames and 35 future frames) that condition each
F0 estimate. The output of the convolution is passed through tanh
activation and multiplied by a gating activation produced by a sim-
ilar operation with the logistic sigmoid activation function. Finally,
the output of the gated convolution is split into skip output and main
output paths that each apply a linear transformation. The skip output
is fed directly to the end of the residual module stack, whereas the
main output is added back into the module skip connection to obtain
the final module output.

At the end of the residual module stack, each skip connection
and the final output connection (all of tensor shape (1, Nframes, r))
are combined with the addition operation (Figure 1 (a)), and a two-
layer postnet with a number of channels s = 256 is used to predict
the final logF0 bin activations that are normalized by the softmax
function. The corresponding F0 estimate of the frame is given by
simply taking the argmax of the activations. The total number of
trainable parameters within the neural network model is 2,256,351.

3. SPEECH DATA AUGMENTATION METHODS

3.1. Noise and channel augmentation

Humans can comprehend speech under adverse conditions, where
the signal-to-noise ratio (SNR) can be as low as -3 dB [17]. Further-
more, environmental noise that is common in speech communication
situations is not only additive noise from another point source (e.g.,
a car, another speaker), but also convolutional channel noise (e.g.,
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Fig. 1. Block diagram of the utilized neural network model. The
notation conv(x, y, z) denotes the 1D convolution operation with
’same’ padding performed over the second axis of the input tensor,
where x is the filter size, y the number of input channels and z the
number of output channels.

reverberation caused by the acoustic space, orientation of head w.r.t.
source). To mimic these conditions that the human auditory system
is adapted to, speech data is augmented both with additive noise and
with convolutional channel noise. This data augmentation is con-
ducted with random sampling from the NOISEX-92 database [18],
which includes various types of generated noise signals (e.g., white,
pink), as well as recorded noise samples (e.g., car, factory, bab-
ble). The channel noise augmentation is performed by convolving
the speech waveform with a randomly generated impulse response.

During training of the neural network model, noise augmenta-
tion is applied once per epoch for each input utterance as follows:
First, a coin is flipped separately whether to perform additive noise
and/or channel augmentation. Additive noise augmentation is per-
formed by sampling target global SNR (in dB) from uniform distri-
bution between [-5, 15], and adding a random sample from the NOI-
SEX database (with random starting location) to the input waveform,
scaled to match the sampled SNR. Channel noise augmentation is
performed by generating a random FIR filter of length 17 (Fs = 16
kHz) by sampling from a Gaussian distribution. Generated impulse
response is scaled with a random gain sampled from uniform distri-
bution between [0, 1]. Value of middle sample is set to 1.0, and the
input waveform is convolved with the generated filter.

3.2. Vocoder-based augmentation

For vocoder-based augmentation, we utilized GlottDNN [19], which
is a glottal vocoder based on the source-filter model of speech pro-
duction [1]. GlottDNN was selected as the vocoder for the current
study because it generates more realistic mixed phase characteristics
to the synthesized speech, as opposed to the minimum phase wave-
form generation used by conventional vocoders [19]. The source
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parameters of GlottDNN contain information about the glottal ex-
citation (F0, harmonic-to-noise ratio, spectral tilt) and the filter pa-
rameters represent the vocal tract transfer function. Using these pa-
rameters, the vocoder builds the speech signal in the synthesis part
frame by frame. In other words, each frame of speech is synthesized
to have the target F0. This property is effective in obtaining accurate
ground truth labels for F0 estimation, which we call ground truth
enhancement. Furthermore, as the GlottDNN vocoder’s parameters
are easily transformable, they can be modified to change the prosody
and the speaker identity. Adding new data based on this approach is
called diversity augmentation in this study.

Ground truth enhancement

In neural estimation of F0, the ground truth F0 is needed in the train-
ing phase of the estimator. One option is to use an existing F0 esti-
mation method for this task, in which case the F0 targets utilized in
training are affected by errors made by the selected method. If these
errors are small, this approach may still produce results better than
the original estimator.

Another strategy is to utilize parallel recordings of speech and
electroglottography (EGG) [10]. This approach, however, is limited
by difficulties in recording large amounts of such parallel data, and
by the fact that EGG might not give accurate F0 estimates due to,
for example, imperfect attachment of the EGG electrodes or inaccu-
racies of automated estimation algorithms [3]. Yet another approach
for obtaining ground truth labels is to use synthetic data, as is done
in the CREPE method [9], where synthesized audio pitch tracks are
used to train the neural model, thus circumventing the problem of
erroneous labels.

The vocoder-based analysis-synthesis procedure proposed in the
current study combines the benefits of using both synthetic and real
data: An existing F0 estimation method is first used to extract F0
trajectories of natural speech together with the glottal vocoder-based
parameterization of the signal. This is followed by vocoder-based
synthesis of the same speech sample by using the initial F0 estimate.
As a result, the synthesized speech signal still exhibits the natural
speech parameter trajectories obtained with the vocoder, but the pro-
cess enforces a consistent ground truth F0 due to the deterministi-
cally synthesized waveform. Within our experiments, the ground
truth enhancement (GTE) is performed with the default settings of
the GlottDNN vocoder using REAPER [20] as the F0 estimation
method applied to original clean training signals.

Diversity augmentation

Gender is one of the main markers of speaker identity. Compared
to female speech, male speech is characterized by relatively low F0
values (due to larger and heavier vocal folds) and lower formant fre-
quencies of the vocal tract transfer function (due to a longer vocal
tract) [1]. The vocoder parameters of a given speech sample can be
transformed to change the gender identity of the sample (or perform
something in between). In GlottDNN, these parameters are the F0
vector and the vocal tract warping coefficient, which are the manip-
ulated parameters in the present study.

Our method to perform diversity augmentation (DA) is fairly
simple: First, the F0 vector is modified by randomly sampling a tar-
get mean F0 for the utterance from a uniform distribution in range
[100 Hz, 350 Hz]. Next, we compute the ratio φ between the orig-
inal mean F0 and the new target, and scale the original F0 vector
according to φ. The vocal tract length manipulation is performed by
having a mismatch in the coefficient λ of the vocal tract filter be-

tween analysis and synthesis: during analysis, the coefficient is kept
at λan = 0.0, and during synthesis, its value is uniformly sampled
from λsyn ∈ [−0.05 − lnφ, 0.05 − lnφ]. The effect of φ to the
value of roughly mimics the properties of human physiology: If F0
is increased, the effective vocal tract length is, on average, propor-
tionally decreased (i.e., the voice is made more “female”), and vice
versa.

The tested DA method was kept simple in order to start from
simple and easily understandable modifications. Additional DA
methods could include more complex time trajectory modulations to
the vocoder parameters, and/or modifying the speech rate, sharpness
of the formant peaks, spectral tilt of the glottal excitation, etc.

4. EXPERIMENTS

4.1. Databases for training and evaluation

To keep the training and evaluation of the neural network models
fully separate, we utilized two distinct speech corpora for training
and evaluation. As a pre-processing step, all of the utilized speech
corpora were resampled to a 16 kHz sampling frequency.

For training the neural network models, we utilized the full
CSTR Voice Cloning Toolkit (VCTK) Corpus [21]. The CSTR
VCTK corpus contains high-quality speech recordings uttered by
109 English speakers (61 female, 47 male) with various accents.
Each speaker reads approximately 400 sentences from various
sources, yielding a total number of 44,257 utterances with a total
length of 44h2m46s. This translates to approximately 15.9 million
frames of training data at a frame rate of 100 frames per second, of
which approximately 36% are voiced. The size and high recording
quality of the CSTR VCTK corpus makes it ideal for F0 estimator
training, as conventional pitch extractors are expected to perform
well with the data to obtain high-quality ground truth labels.

For evaluation, we utilized the entire Pitch Tracking Database
from Graz University of Technology (PTDB-TUG) [22]. The
PTDB-TUG corpus contains parallel speech and EGG recordings
from 20 native English speakers (10 female, 10 male), who each
read a subset of 236 sentences from the TIMIT corpus [23]. This
yields a total size of 4720 recorded sentences, with a total length of
9h36min13s, of which approximately 24% are voiced. The ground-
truth F0 contours provided with the database have been extracted
from EGG with the RAPT method [3]. An important point in se-
lecting the evaluation database is that it does not contain the same
sentences as the training material, which means that memorizing
utterance-specific dynamics is not a viable strategy for the neural
network models.

4.2. Trained neural network models

For our experiments, we trained a total number of six neural F0 es-
timators with the architecture described in Section 2 with varying
training data augmentation methods. The ground truth F0 tracks
were estimated with the REAPER algorithm. For all trained meth-
ods, we randomly selected 1,000 utterances from the CSTR VCTK
corpus for a validation set, and used the rest of the corpus (or its
subset) for training. A full list of the trained models is presented in
Table 1.

For each model, the training was performed using stochastic gra-
dient descent (SGD) with the categorical cross-entropy loss function.
We used the Adam optimizer [24] with learning rate 10−4, and pa-
rameters β1 = 0.9, β2 = 0.99, and ε = 10−8 to perform SGD
updates. We used a variable batch size where each batch contained
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Table 1. Trained neural network models. NA=additive noise and
varying channel data augmentation, GTE=ground truth enhance-
ment, DA=diversity augmentation.

Model name Augmentation method(s) # Utterances of train data
BL0 none 43,257
BL1 NA 43,257
GteAug NA + GTE 43,257(GTE)
DivAug NA + GTE + DA 43,257(GTE) + 389,313(DA)
BL1 partial NA 4,326
DivAug partial NA + GTE + DA 4,326(GTE) + 38,934(DA)

all frames of a single utterance. Dropout with p = 0.3 was applied
to the second layer inputs. Each method was trained for 100 epochs,
and model from the epoch with the smallest validation loss was se-
lected for the experiments.

4.3. Evaluated methods

Four existing F0 estimation techniques were selected as reference:
YAAPT [7], REAPER [20], SRH [4], and CREPE [9]. YAAPT is
a widely used hybrid time- and frequency domain method that can
be run with varying levels of complexity. For our tests we have
used the ’full’ and ’very fast’ versions of YAAPT. REAPER is a
state-of-the-art time-domain approach for pitch tracking and glottal
closure instant detection, aimed mainly for high-quality data. SRH
is a frequency-domain pitch estimation method that aims for noise
robustness. CREPE is a well-known neural pitch estimator, whose
main application area is generic audio (e.g., music). Note that unlike
the other compared methods, CREPE does not produce voicing de-
cisions and therefore this aspect cannot be evaluated for the method.

4.4. Test setup

Methods were evaluated with corrupted speech of two noise types
(white, babble) with four different global SNR levels (15, 5, 0, and
-5 dB), and with clean speech. We used three standard performance
metrics taken from [4]: 1) voicing decision error VDE (%), the rel-
ative number of erroneous voicing detections, 2) gross prediction
error GPE (%), the relative number of gross errors (> 20%) in F0
estimates within the correctly detected voiced frames, and 3) fine
prediction error FPE (%), the standard deviation of non-gross errors
on voiced frames (in % relative to absolute F0). For the sake of con-
ciseness, we report average performance numbers across white and
babble noise, as qualitative differences between the two were minor.

5. RESULTS

The obtained results are presented in Figure 2. For clarity, we have
divided the result plots into two groups: the left column contains the
results for the trained neural network models, and the right column
contains the results for the evaluated methods in addition to the best
performing proposed model, GteAug. By analyzing the results of
the left column, we can see that any type of augmentation greatly in-
creases VDE performance over the BL0 system. The effect of GTE
further increases performance especially in the VDE and FPE cate-
gories over the otherwise second best performing system, BL1. The
effect of DA is perhaps most interesting: Expanding the full CSTR
VCTK corpus with DA does not increase F0 estimation performance
(see DivAug vs BL1), but with limited data, the DA strategy can be
seen to be beneficial (see DivAug partial vs BL1 partial).

Looking at the obtained results for the other methods, we can
see that the proposed method outperforms the other systems espe-
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Fig. 2. Averaged test results over white and babble noise on the
PTDB-TUG database.

cially in the VDE and GPE categories. Strikingly, the method seems
to have a flat GPE performance even at -5 dB. The counter-intuitive
behavior of the FPE curve for GteAug and SRH can be explained
by the increasing number of voicing errors: as more low-energy
frames, from which F0 is generally harder to detect, are classified
as unvoiced when SNR decreases, the number of frames from which
FPE is computed decreases. These results also compare favorably
against the DNN-based results recently reported on a subset of the
same PTDB-TUG corpus [10]. However, direct comparison is diffi-
cult, as the authors of [10] performed cropping of silence regions in
the signals before SNR calculation. Still, GPE in [10] is always sub-
stantially larger than in GteAug across the entire SNR range, while
FPE is similar to the now-proposed approach.

6. DISCUSSION

This study presented a neural network-based F0 estimation model
that was trained with varying strategies of speech data augmentation.
The data augmentation methods, divided into noise-based augmenta-
tion and vocoder-based augmentation categories, were presented in
detail, and a total number of six different neural F0 estimation meth-
ods were trained with varying modes of data augmentation. The ob-
tained objective results show that speech data augmentation can be
beneficial in training powerful, noise robust neural network models:
Vocoder-based speech analysis/synthesis can be used to enhance the
ground-truth labels used in supervised training, and for limited size
datasets vocoder-based diversity augmentation can be used to gain
performance. This suggests that vocoder-based augmentation could
be also applicable to other problems were data sparsity is more of
an issue than in standard F0 estimation. Finally, compared to the
pre-existing F0 estimation methods, the best performing proposed
method using noise- and ground truth enhancement yields consider-
able performance gains under adverse noise conditions. Our future
work consists of applying the proposed framework to coded tele-
phone speech.
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