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Abstract

Incomplete lineage sorting (ILS) can lead to biased divergence time estimates. To explore if and how ILS has 

influenced the results of a recent study of worldwide phylogeny of three-spined sticklebacks (Gasterosteus 

aculeatus), we estimated divergence times among major clades by applying both a concatenation approach 

and the multispecies coalescent (MSC) model to single-nucleotide polymorphisms. To further test the influence 

of different calibration strategies, we applied different calibrations to the root and to younger nodes in 

addition to the ones used in the previous study. Both the updated calibrations and the application of the MSC 

model influenced divergence time estimates, sometimes significantly. The new divergence time estimates were 

more ancient than in the previous study for older nodes, whereas the estimates of younger nodes were not 

strongly affected by the re-analyses. However, given the applied MSC method employs a simple substitution 

model and cannot account for changes in population size, we suggest that different analytical approaches and 

calibration strategies should be used in order to explore uncertainty in divergence time estimates. This study 

provides a valuable reference timeline for the ages of worldwide three-spined stickleback populations and 

emphasizes the need to embrace, rather than obscure, uncertainties around divergence time estimates.
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1. Introduction

The development of genome complexity reduction methods (such as restriction site associated DNA 

sequencing, RAD-seq), dropping sequencing costs and new analytical approaches have brought phylogenomics 

within the reach of most researchers. However, constructing phylogenies from multiple loci scattered along the 

genome poses serious challenges: different areas of the genome may undergo different sorting processes, 

resulting in individual gene trees that are in conflict with each other and with the true species tree (Maddison 

and Knowles, 2006). When lineage sorting is incomplete (ILS), phylogenetic analyses based on the 

concatenation of multiple unlinked loci may inflate statistical support, and in some cases lead to biases in 

branch lengths and divergence time estimates (Mendes and Hahn, 2016; Ogilvie et al., 2017). The multispecies 

coalescent (MSC) model incorporates incomplete lineage sorting, and may therefore often provide a better 

alternative for inferring phylogenies using multiple loci, yet most methods based on the MSC are 

computationally prohibitive to run on more than a few hundred loci and few tens of individuals. 

Stange et al. (2018) extended the MSC method implemented in SNAPP (Bryant et al., 2012) to allow Bayesian 

divergence time estimation with SNP (single nucleotide polymorphism) data and found that their approach can 

overcome biases resulting from ILS. However, to achieve feasible run times with SNAPP's computationally 

demanding MSC implementation, the model chosen by Stange et al. (2018) had to make a few simplistic 

assumptions, which may also introduce novel biases under certain conditions. For example, the model of 

Stange et al. (2018) assumes an identical population size (Θ) for all lineages, an assumption that is often 

violated (for example in repeated range expansions) and may lead to overestimating divergence time in smaller 

populations (Stange et al., 2018). Previous work has shown that short-term mutation rates decay exponentially 

to long-term substitution rates within a few hundred thousand to a few million years (Ho et al., 2011), and 

therefore the application of a strict molecular clock when lineages of very different ages are included in the 

analyses (for example representing a recent radiation) may overestimate divergence times of younger nodes. 

This time-dependency of rates is usually attributed to the fact that slightly deleterious mutations are removed 

by purifying selection over time (Ho et al., 2005; Burridge et al., 2008; Membrebe et al., 2019). It is therefore 

not clear how important this phenomenon is for RADseq data: while the sampled SNPs are unlikely to be under 

selection, it is likely that at least a portion of the sampled polymorphism is affected by linked background 

selection (Kern and Hahn, 2018). 

In a recent study, Fang et al. (2018) reconstructed the worldwide phylogenetic relationships and colonization 

history of three-spined stickleback Gasterosteus aculeatus, a key model organism in ecology and evolutionary 

biology, using relaxed molecular clock Bayesian analyses. A time-calibrated phylogeny was built using a 

supermatrix of 8,079 concatenated SNPs derived from RAD sequencing. The study identified three divergent 

major clades corresponding to the old Pacific lineage, a younger lineage including southern European 

populations and a third postglacial lineage including Northern European and Western Atlantic populations. 

Divergence times among these major clades were found to be far more recent than indicated by previous 

studies (Fang et al., 2018). Since the applied method using standard Bayesian inference in BEAST 2 did not 



account for ILS, it is possible, in light of Stange et al.’s (2018) findings, that estimates of divergence times 

between major lineages were biased. Stange et al. (2018) reported that when the age of the root is 

constrained, ILS may lead to overestimation of divergence times of younger nodes when concatenation is used. 

In Fang et al. (2018), the use of very recent calibration points could potentially have led to bias in the opposite 

direction in the presence of ILS, leading to an underestimation of divergence times for intermediate nodes. 

Three-spined sticklebacks have undergone rapid and repeated “adaptive radiation” towards various 

phenotypes while colonizing freshwater habitats since the Last Glacial Maximum (LGM, ca. 26.5–20 kya, 

thousands of years ago; Bell and Foster, 1994; McKinnon and Rundle, 2002; Clark et al., 2009). Hence, these 

recently diverged populations and lineages, such as Northern European populations, are likely to exhibit a large 

degree of incomplete lineage sorting (Maddison and Knowles, 2006; Fang et al., 2018). 

Here, we reanalyze a subset of the data from Fang et al. (2018) using Stange et al.’s (2018) method in order to 

test whether ILS may have led to biased estimates of divergence times. It should be noted that the assumption 

of a constant population size (Θ) across lineages is almost certainly not met in this system, since three-spined 

stickleback radiations have involved multiple bottlenecks (Taylor and McPhail, 1999, 2000), particularly when 

freshwater habitats were colonized. Depending on the strength of selection on genome-wide SNPs, we might 

expect heterogeneous mutation rates across lineages, reflective of the rapid exponential decay of mutation 

rate observed within the first few hundred thousands to millions of years (Ho et al., 2005). These biases could 

lead to underestimation or overestimation of the divergence times with respect to Fang et al.’s (2018) results 

when Stange et al.’s (2018) method is applied, depending on whether old or young nodes are calibrated. 

Furthermore, since the publication of Fang et al. (2018), the divergence time estimate between the outgroup 

taxon (G. nipponicus) and G. aculeatus has been refined from 2 mya to 0.68-1.0 mya (Ravinet et al., 2018), and 

this could affect divergence times within G. aculeatus. Therefore, the results of the extensive reanalysis 

conducted in this study, together with those from Fang et al. (2018), should present a range of minimum and 

maximum ages for worldwide stickleback populations, giving rise to a useful reference timeline for the research 

of the three-spined sticklebacks. 

2. Material and methods

The software SNAPP (Bryant et al., 2012) would require prohibitively long run-times for the analysis of the full 

dataset of Fang et al. (2018; see: Chifman and Kubatko, 2014). Therefore, a subset of 39 G. aculeatus 

individuals, originating from 19 different populations, as well as two individuals representative for the 

outgroup taxon G. nipponicus were extracted from the published dataset of Fang et al. (2018). These 

representative individuals were chosen so that the sampled populations covered the entire extant species 

distribution range (sampling locations given in Figure 1b). Only populations from which at least two individuals 

had been sequenced by Fang et al. (2018) were included as population size estimates could otherwise be 

unreliable. Within the sampled populations, we chose the two individuals sequenced from Fang et al. (2018) 

that had the highest sequencing depth to minimize missing data as SNAPP requires a SNP matrix in which each 

site has data in at least one individual per population. Divergence times were then estimated with the MSC 

model in SNAPP following Stange et al. (2018). We further estimated divergence times using concatenation as 



in Fang et al. (2018), applied to the same subset of individuals as used in MSC analyses, to allow a direct 

comparison of the estimates from the two approaches. In these analyses, we concatenated the same number 

of loci and used the same calibration strategies (see below) as in the MSC analyses.

2.1 Specification of calibration points

As for the root calibration point, we re-evaluated the divergence time between G. aculeatus and the outgroup 

taxon G. nipponicus. Fang et al. (2018) accepted 2 mya as the divergence time between the two species based 

on genetic divergence and geological information (Higuchi and Goto, 1996; Higuchi et al., 2014). However, a 

subsequent study redefined this estimate to 0.68-1.0 mya on the basis of multiple demographic analyses 

(Ravinet et al., 2018). Given these widely varying estimates, the root calibration point of 2 mya used by Fang et 

al. (2018) might have led to overestimation of divergence times of the major lineages. Therefore, we re-

evaluated the divergence times among different stickleback clades by considering three possible root 

calibration points (viz. 2 mya, 1 mya and 0.68 mya). 

In terms of geographic calibrations, Fang et al. (2018) initially used two calibration points which were the Black 

Sea (7 kya; Gökaşan et al., 1997; Ballard et al., 2000; Ryan and Pitman, 2000) and the Baltic Sea openings (10 

kya; Voipio, 1981; Nilsson et al., 2001; Leppäkoski et al., 2002). However, as we ran some initial analyses using 

the MSC approach we noticed that all calibrations schemes (except the Black Sea calibration) resulted in more 

ancient times of most recent common ancestor (TMRCA) of the Black Sea and Aegean Sea populations than 

that of the northern European populations. Although Fang et al. (2018) refuted a pre-Pleistocene origin of 

contemporary Black Sea sticklebacks on the basis of calibration-free phylogenetic analyses, the current Aegean 

Sea samples might not be the direct sister group of the Black Sea samples. Therefore, the divergence of current 

samples from the Aegean Sea and Black Sea could predate the origin of the Black Sea population. 

Consequently, the Black Sea calibration would not be applicable to the samples in this study, and therefore we 

omitted the Black Sea calibration point from the re-analyses. 

Hence, on the basis of the latest research and a re-evaluation of the previously applied geographic calibration 

points, we used the root divergence times 2 mya, 1 mya and 0.68 mya, and the TMRCA of Baltic Sea 10 kya, as 

calibration points. The four age constraints were implemented with normally distributed densities centered at 

2 mya (SD: 0.08 mya), 1 mya (SD: 0.08 mya), 0.68 mya (SD: 0.05), and 10 kya (SD: 0.00035), respectively. The 

standard deviations of each calibration were chosen so that 99% of the prior distribution for each of the three 

root calibration points would not overlap.. We first performed independent analyses with each one of the 

above four calibration points, and then combined each of the three root constraints separately with the young 

Baltic Sea age constraint in subsequent analyses. Consequently, seven sets of calibration schemes were 

applied, in parallel to the two approaches (MSC and concatenation).

2.2 Divergence time estimation

We subsampled 37 individuals representing 19 populations, as well as two individuals of the outgroup taxon G. 

nipponicus, using VCFtools v0.1.15 (Danecek et al., 2011). From a full dataset of 8,079 concatenated SNPs for 

128 samples (Fang et al., 2018), a set of 1,183 bi-allelic SNPs without any missing data was retained in variant 



call format (VCF). The genome-wide distribution of 1,183 SNPs is shown in Appendix Figure 1. The VCF file was 

converted to a PHYLIP format SNP-matrix using the Python script "vcf2phylip" 

(https://github.com/edgardomortiz/vcf2phylip), and the XML input file for SNAPP analyses was prepared using 

the Ruby script "snapp_prep.rb" (https://github.com/mmatschiner/snapp_prep).

The input for the Ruby script included the above SNP matrix, a starting tree, population information, 

biogeographic divergence-time constraints and the number of Markov-Chain Monte Carlo (MCMC) iterations. 

For the starting tree, we trimmed the full phylogenetic tree of 128 individuals (Fang et al., 2018) to 39 

individuals, and collapsed the trimmed tree into a tree of 19 monophyletic populations, using the R packages 

APE and BioGeoBEARS (Paradis et al., 2004; Matzke, 2013). To reduce computational demand, the tree 

topology was set to be fixed in the SNAPP analyses (as in Stange et al., 2018). All input files, pipelines and 

produced XML files for SNAPP analyses are available from the DRYAD repository (doi: xxx). 

The generated XML files were used for analyses with the SNAPP v.1.3.0 (Bryant et al., 2012) package in BEAST2 

v.2.4.7 (Bouckaert et al., 2014). For each calibration strategy, we ran two independent SNAPP analyses with 

100 million MCMC iterations. Stationarity and convergence of chains were visually checked in TRACER v1.6 

(ESS > 1000; http://beast.bio.ed.ac.uk/tracer/). The program DensiTree v.2.2.6 (Bouckaert, 2010) was used to 

visualize the SNAPP trees after discarding the first 10% of each MCMC chain as burn-in (Appendix Figure 1). A 

maximum-clade-credibility summary tree was generated with TreeAnnotator (Drummond et al., 2012) and 

visualized in FigTree v.1.4.3 (http://tree. bio.ed.ac.uk/software/figtree/) (DRYAD: doi xxx).

To compare divergence times estimates obtained from MSC and the concatenation approach, a subset of 1,183 

randomly selected RAD loci (the same number as the unlinked SNPs used in SNAPP) was concatenated from the 

iPyRAD “loci” output file from the Fang et al. (2018) using the R package Radami (Hipp et al., 2014). Employing 

the seven calibration schemes, the 1,183 concatenated loci of the same set of samples (39 individuals) were 

used for concatenation-based phylogenetic inference in BEAST2 v.2.4.7 as in Fang et al. (2018). 

In addition, to assess the possible effect of subsampling individuals, we performed the analyses described 

above to the full dataset (128 individuals) of Fang et al. (2018; i.e. phylogenetic inference based on 1,183 

concatenated loci of 128 individuals under seven calibration schemes). Comparison of the divergence times 

inferred from the full and the subsampled datasets suggested that the two sets of samples yielded similar 

divergence time estimates for all nodes, showing highly overlapping estimates (bounds of the 95% highest 

probability density, HPD) under all seven calibrations schemes (Appendix Figure 2). Hence, the subsample of 39 

individuals used in the study was considered to yield reliable and comparable divergence time estimates as the 

full dataset used by Fang et al. (2018).

3. Results and Discussion

The inferred divergence times were influenced both by the use of different calibration schemes and by the 

choice of analytical approach (concatenation vs. MSC; Figure 1a). Combining the estimates from the two 

approaches, the estimated TMRCA for the extant Northern European lineages (node C) varied from 11.3-18.3 

kya (single Baltic calibration under MSC) to 137.7-460.5 kya (single 2 mya root calibration under 

concatenation). The divergence time between the Atlantic and Pacific lineages (node B), on the other hand, 



was estimated ranging from 29.5-71.9 kya (single Baltic Sea calibration under concatenation) to 295.3-959.3 

kya (single 2 mya root calibration under concatenation). Moreover, the estimates for the TMRCA of all three-

spined sticklebacks (node A) varied between 36.9-96.7 kya (single Baltic Sea calibration under concatenation) 

and 383.1-1250.1 kya (single 2 mya root calibration under concatenation; Figure 1a). 

However, several of these estimates set the origin of the Baltic Sea populations to predate the LGM (Figure 1a), 

which is highly unlikely given the fact that the Baltic Sea did not exist during the LGM (Bell and Foster, 1994; 

McKinnon and Rundle, 2002; Clark et al., 2009; Stroeven et al., 2016; Fang et al., 2018). For instance, in the 

analyses using concatenated data, all the three strategies with single root calibration (in this case with age 

constraints at 0.68, 1 and 2 mya) produced divergence time estimates for the Baltic Sea population that 

predated the formation of the Baltic Sea. Stange et al. (2018) found that root calibration in combination with 

concatenated data can lead to extreme overestimation of young divergence times, and in light these known 

biases, we conclude that the divergence time estimates of young nodes based on analyses of concatenated 

data with root calibration are likely to be strongly biased. In the analyses performed under the MSC, on the 

other hand, only the application of the single most ancient root age constraint (2 mya) produced divergence 

times in conflict with known geological history (Figure 1a). Whenever both calibration points (root calibration 

and Baltic Sea) where used, both methods yielded similar (i.e. with overlapping HPD) divergence time 

estimates, though concatenation yielded always wider HPDIs. 

Using analytical approaches that are likely to under- or overestimate divergence times due to different 

potential biases, and using seven sets of calibrations reflecting uncertainty about the true divergence time 

between G. aculeatus and G. nipponicus, we can propose the range of divergence times among major three-

spined stickleback clades. We frame the divergence time ranges for nodes A, B and C, by casting the maximum 

and minimum divergence time among those estimates (HPDIs). If we exclude the analyses of concatenated 

data using only the root calibration, which have been shown by Stange et al. (2018) to overestimate young 

divergence times and produced in this study estimates that clearly conflict with the known geological history of 

the Baltic Sea, we conclude that the divergence among major clades (i.e. nodes A, B and C; Figure 1) of the 

three-spined sticklebacks occurred as follows: The TMRCA of all G. aculeatus populations is 36.9-346.5 kya, the 

divergence between Pacific and Atlantic lineages occurred 29.5-226.6 kya, and the TMRCA for the extant 

Northern European lineages is set at 11.3-95.2 kya.

The new TMRCAs for nodes A, B and C are older than the original estimates in Fang et al. (2018; Figure 1a). 

Likewise, the upper bounds of the new estimates are higher than those of the original estimates, with greater 

increments for older nodes. For nodes A, B and C, the upper bounds for the new estimates are 4.4 times (346.5 

vs.78.7 kya), 3.8 times (226.6 vs. 59.4 kya) and 2.5 times (95.2 vs. 38.0 kya) higher than the Fang et al (2018) 

estimates, respectively, while the lower bounds of the estimates are similar (node A: 36.9 vs. 37.3 kya; node B: 

29.5 vs. 31.3 kya; node C: 11.3 vs. 17.0 kya). As re-analyses of the dataset from Fang et al. (2018) using the 

same concatenation approach, but excluding the Black Sea age constraint, also produced older estimates 

(Appendix Figure 2), we conclude that not only the use of concatenation, but also the incorrect choice of one of 

the calibration points, may have biased previous estimates. However, it should also be noted that TMRCA 

estimates under MSC method in this study for all three-spined sticklebacks (node A), as well as for the Pacific 

and Atlantic lineages (node B), could be biased because the implemented model assumes a constant and equal 

population size across all lineages. This assumption is almost certainly violated as some of the stickleback 



lineages have undergone recent range expansions likely involving population size bottlenecks (McKinnon and 

Rundle, 2002). Nevertheless, our analyses confirm that the range expansion from which all sampled 

populations of G. aculeatus originate took place no earlier than ca. 1.25 mya. Under the assumption that the 

divergence between G. aculeatus and G. nipponicus took place 0.68 mya (Ravinet et al. 2018), the range 

expansion of G. aculeatus likely happened around 62.7-439.7 kya. This confirms the hypothesis put forth by 

Orti et al. (1994), and later corroborated by Fang et al. (2018), that extant Atlantic populations originate from a 

recent re-colonization event from the Pacific, and the Late Pliocene/Early Pleistocene Atlantic populations of G. 

aculeatus – for which there is fossil evidence (Bell and Foster, 1994; Foster, 1995) – had gone extinct before the 

Atlantic Ocean became re-colonized. 

The two analytical approaches (concatenation versus MSC) independently produced comparable but non-

identical TMRCA estimates, adding uncertainty to the results. As both methods have their specific 

shortcomings. As the two methods may bias age estimates in opposite directions when the model assumptions 

are violated, we argue that the application of both methods provides an opportunity to embrace the 

underlying uncertainties. Therefore, we suggests that in the absence of more realistic models for divergence 

time inference based on SNP data, analysis of directly comparable datasets with different models, each making 

different assumptions about the data, is the most reasonable approach to quantify the uncertainty in 

divergence time estimates. 
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Figure 1. Estimates of divergence times among major three-spined stickleback clades. (a) Summary of 

divergence time estimates derived from the multispecies coalescent-based and concatenation-based 

methods. Seven sets of calibration schemes were applied in the two methods in parallel. Calibration 

points included three root calibrations (0.68 mya, 1 mya and 2 mya; the divergence time between G. 

aculeatus and the outgroup taxon G. nipponicus) and one geographic calibration (10 kya, TMRCA of 

Baltic Sea populations). Different calibration settings are marked with different colors. The gray-

shaded regions denote periods of Bering Seaway existence, providing geographical reference relevant 

for the estimates of node B. Divergence time estimates are represented by mean ages (dots) and 95% 

highest posterior density (HPD) intervals (vertical lines). See statistical summary in Appendix Table 1. 

(b) Schematic globe showing the sampling locations. (c) SNAPP tree, as an example, inferred solely 

with the 1 mya root calibration point. The geographic regions of populations are given on the right, 

distinguished by colors corresponding to colored dots in (b).
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Highlights

1. This study provides refined and robust divergence time estimates among major clades of three-spined 

sticklebacks based on state-of-art methods.

2. Results confirm that the extant Atlantic Ocean populations originate from a recent re-colonization 

event from the Pacific Ocean.

3. Both the updated calibration schemes and the application of the multispecies coalescent model 

impacted upon the earlier divergence time estimates.

4. The new divergence time estimates are more ancient than in the previous study for older nodes, 

whereas the estimates of younger nodes were not strongly affected by the re-analyses. 

5. The study emphasizes the need of using multiple analytical frameworks (each one subject to different 

potential biases) and directly testing the effect of different calibration strategies to incorporate 

uncertainties in divergence time estimation.  


