
antibiotics

Article

The Fate of Bacteriophages in Recirculating
Aquaculture Systems (RAS)—Towards Developing
Phage Therapy for RAS

Gabriel M.F. Almeida 1 , Kati Mäkelä 1, Elina Laanto 1,2 , Jani Pulkkinen 3, Jouni Vielma 3 and
Lotta-Riina Sundberg 1,*

1 Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä,
40014 Jyväskylä, Finland; gabriel.m.almeida@jyu.fi (G.M.F.A.); kati.j.makela@jyu.fi (K.M.);
elina.laanto@jyu.fi (E.L.)

2 Faculty of Biological and Environmental Sciences, Molecular and Integrative Biosciences Research
Programme, University of Helsinki, 00014 Helsinki, Finland

3 Natural Resources Institute Finland, Production Systems, 40500 Jyväskylä, Finland;
jani.t.pulkkinen@luke.fi (J.P.); Jouni.Vielma@luke.fi (J.V.)

* Correspondence: lotta-riina.sundberg@jyu.fi

Received: 8 October 2019; Accepted: 21 October 2019; Published: 24 October 2019
����������
�������

Abstract: Aquaculture production has increased tremendously during the last decades, and new
techniques have been developed, e.g., recirculating aquaculture systems (RAS). In RAS, the majority
of water volume is circulated via mechanical and biological filters and reused in the tanks. However,
the prevention and treatment of diseases in these systems are challenging, as the pathogens spread
throughout the system, and the addition of chemicals and antibiotics disrupts the microbiome of
the biofilters. The increasing antibiotic resistance has made phage therapy a relevant alternative for
antibiotics in food production. Indeed, as host-specific and self-replicating agent they might be optimal
for targeted pathogen eradication in RAS. We tested the survival and spread of Flavobacterium columnare
-infecting phage FCL-2 in recirculating aquaculture fish farm with rainbow trout (Oncorhynchus mykiss)
in a fully controlled study. After a single addition, phage persisted in water samples collected from
tank, fixed bed, moving bed, and aeration unit up to 14 days, and in the water of rearing tanks,
rainbow trout mucus, and bioreactor carrier media from the fixed and moving bed biofilters for
21 days. Furthermore, phage adsorbed preferentially to moving bed carrier media, which contained
biofilm attached and from which higher phage numbers were recovered. This study shows phages as
a potent strategy for maintaining biosecurity in RAS systems.

Keywords: aquaculture; bacteriophage; biofilter; disease; phage therapy; RAS; recirculating aquaculture
systems

1. Introduction

Aquaculture production is an important source of a protein destined for human consumption.
It is an expanding industry with many strategies employed to improve efficiency and environmental
impact. During recent years, a growing interest in recirculating aquaculture systems (RAS) has
appeared [1,2]. Water in RAS is reused after being treated, dramatically reducing the amount of water
needed for fish farming in aquaculture sites. Confining large populations of aquatic animals are a risk
factor when considering infectious diseases, and aquaculture rearing units have been shown to favor
pathogens and virulence increase [3–5]. The reuse of water in RAS may pose a biosecurity challenge
for infectious diseases, as the removal of pathogens or chemical residues from the tanks is difficult,
increasing the unnecessary exposure of aquatic animals to both [6]. Many of the pathogens that
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threaten aquaculture are bacteria, and the diseases are treated with antibiotics. Antibiotic leakage to the
environment can lead to environmental and health issues (i.e., alterations in microbial communities and
selection for resistance against antibiotics) [7]. For example, antibiotic resistance genes are enriched in
sediments associated with aquaculture sites [8,9]. Thus, means to implement the One Health approach
(https://www.who.int/features/qa/one-health/en/) in aquaculture production need to be developed.

One possible alternative to antibiotics and a solution to the antimicrobial resistance crisis and One
Health approach is the use of (bacteria) phage therapy. Phages are viruses that specifically infect only
bacteria, without causing harm to surround microbiota or eukaryotic cells. Phage therapy is not a novel
concept, as it has been used for almost a century to treat bacterial infections in humans [10,11]. It has
also been applied to aquaculture related bacterial pathogens, experimentally, and in practice [12,13].
So far, there is no information about phage use in RAS, but this type of system can be considered
an ideal environment for phage therapy applications [14]. The water recirculation process is an
advantage for phage delivery since, in theory, phage would remain in the system for long time
periods for being small enough to pass through filters and other barriers, recirculating freely with
the water. This would enable prolonged protection via extending the time animals are exposed to
phage, while also favoring phage evolution in response to phage-resistant bacteria, which has been
documented in open aquaculture systems [15]. In addition, whereas chemicals and antibiotics might
influence the microbiome composition of biological filters [16], host-specific phages infect only their
target bacteria. However, phage stability over time on RAS farms, phage distribution in the tanks,
and how the different treatment units affect phage survival have not been tested.

In this work, we investigated phage dynamics in RAS research fish farm with rainbow trout
(Oncorhynchus mykiss). As a model, we used Flavobacterium columnare -infecting phage FCL-2, which has
been isolated from the same fish farm years earlier and shown to be suitable for phage therapy in
our earlier studies [12,17]. Phage solution was added to the water of three rearing tanks, and phage
numbers were measured over time from different locations of each system, on the fish mucus, and on
plastic carrier media used to collect biofilm in the moving and fixed-bed bioreactors. We demonstrate
phage persistence in a RAS for three weeks after a single phage exposure. Phage concentration was
highest in the plastic carrier media, indicating that bacterial biofilm might be a substrate where phage
preferentially enrich. Additionally, phage presence did not alter water quality parameters nor resulted
in fish mortality. The use of phage therapy on RAS can be effective since only one phage dose is
sufficient for persistence and spread over the whole system without being destroyed by the water
treatment processes.

2. Results

2.1. Phages Persist in RAS for Up to Three Weeks

Phages were recovered from all sampled components of the RAS system up to 14 days, and from
the water from rearing tanks, fish mucus and carrier media from the fixed and moving bed biofilters
for 21 days after a single phage exposure (Figure 1A–G). In all samples, a similar trend was observed
with the phage numbers decaying faster in the first days then becoming more stable at the end. Phage
titers were higher in filter carrier media samples, suggesting that bacterial biofilm may have a role in
phage enrichment. On day seven, the phage presence on fish gills was tested. Phage titers in gills were
similar to the ones found in mucus and slightly lower than in water (Figure 1H). No infective phage
particles appeared in samples taken from the control tanks over the course of the experiment.

https://www.who.int/features/qa/one-health/en/
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Table 1. Mean (±SD) water quality parameters of recirculating aquaculture system (RAS) control units 
and phage-treated units. TAN = total ammonia nitrogen, NO2-N = Nitrite, NO3-N = Nitrate, TOC = 
total organic carbon. 
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TAN (mg·L−1) 1.31 ± 0.11 1.20 ± 0.23 
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O2 (mg·L−1) 7.3 ± 1.0 8.7 ± 0.9 
TOC (mg·L−1) 14.4 ± 4.6 17.6 ± 4.0 

 
Figure 1. Phage persistence over time in the recirculating aquaculture system (RAS) tanks and fish. 
Phage FCL-2 titers (pfu/mL) on (A) the fish tank water, (B) the moving bed water, (C) the fixed-bed 
water, (D) the aeration unit water, (E) fish mucus, (F) the moving bed plastic carrier media, (G) the 

Figure 1. Phage persistence over time in the recirculating aquaculture system (RAS) tanks and fish.
Phage FCL-2 titers (pfu/mL) on (A) the fish tank water, (B) the moving bed water, (C) the fixed-bed
water, (D) the aeration unit water, (E) fish mucus, (F) the moving bed plastic carrier media, (G) the
fixed-bed plastic carrier media, (H) on fish gills (seven days after phage exposure). In A, B, C, and
D, each tank was sampled once until day seven and in triplicates from day nine onwards. In E, three
fish per tank were sampled in the first and fifth day, then three fish per control tank, and ten fish per
phage-treated tank were measured from day seven onwards. In F and G, five carrier media pieces per
tank were sampled in all time points. In H, three fish from each control tank and ten fish from each
phage treated tank were measured.

No phages capable of infecting Flavobacterium columnare strain B185 were detected from water or
mucus samples collected at time zero. Also, no F. columnare was isolated from fish gills sampled at time
zero. These negative controls, allied to the data from control tanks, support the idea that phages found
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over time were derived from the original lysate and not from the environment or natural infections
during the course of the experiment.

Water parameters were measured over the course of the experiment, and no significant changes
were detected between control and phage treated RAS (Table 1). No fish mortalities nor decreased feed
intake rate were observed in the RAS units treated with phage.

Table 1. Mean (±SD) water quality parameters of recirculating aquaculture system (RAS) control units
and phage-treated units. TAN = total ammonia nitrogen, NO2-N = Nitrite, NO3-N = Nitrate, TOC =

total organic carbon.

Parameter Control Units Phage-Treated Units

TAN (mg·L−1) 1.31 ± 0.11 1.20 ± 0.23
NO2-N (mg·L−1) 0.53 ± 0.01 0.57 ± 0.05
NO3-N (mg·L−1) 42.4 ± 0.2 43.1 ± 1.2

pH 7.2 ± 0.0 7.2 ± 0.0
T (◦C) 15.5 ± 0.3 15.2 ± 0.3

O2 (mg·L−1) 7.3 ± 1.0 8.7 ± 0.9
TOC (mg·L−1) 14.4 ± 4.6 17.6 ± 4.0

2.2. Attachment of Phages to Filter Pellets Is Dependent on Biofilm

As the data collected from the RAS experiment indicated, phages were preferentially enriched
in the plastic carrier media of fixed and moving bed biofilters. Therefore we decided to test phage
adsorption in this material in vitro directly. Sterile carrier media and media collected from control
(no phage) tanks were exposed to phage, and the number of free phages was determined in the
supernatant. It should be noted that the media collected from fish tanks were colonized by biofilms,
while autoclaved media were clean and sterile. The percentage of attached phage was calculated
from the titer (pfu/mL) of the free phage particles in the water at each time point (which in turn was
used to calculate the corresponding number of phage particles attached to the pellets). (Figure 2).
Although phage inactivation was not tested, it is unlikely to have affected the results since phage
FCL-2 is considerably stable over time. It is clear that phage adsorbed preferentially to moving bed
bioreactor media. After six hours, more phages were adsorbed to moving bed than to fixed bed
media and sterile media (p = 0.011 and p = 0.000033, respectively). This persisted up to 24 hours after
exposure (p = 0.000013 when compared to fixed-bed filters and p < 0.000001 when compared to sterile
carrier media).
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3. Discussion

Bacterial disease epidemics need antibiotic treatment also in fish production, but the legislation
related to antibiotic use in aquaculture differs between countries. Nevertheless, antibiotic use influences
microbial ecology and resistance evolution also outside fish farming [7,18,19], affecting environmental
and food safety. At the time of the ‘post-antibiotic era’ declared by the WHO, interest towards
sustainable tools that reduce the need for antibiotics is increasing. Phages infecting aquaculture
pathogens such as Flavobacterium and Vibrio species have already been isolated [14,20,21].

The use of RAS is advantageous to other aquaculture methods when considering water use and
nutrient discharges. However, it is also a vulnerable environment for outbreaks of infectious diseases.
RAS has been considered to be an optimal environment for the use of phage therapy against bacterial
diseases [14], but so far, phage distribution and stability have not been tested on these systems. Here
we show that after a single phage addition, the phage can be re-isolated from the RAS units at a
fish farm for up to three weeks. Phages were re-isolated from water collected from different points
in the system, from fish mucus and gills, and also from plastic carrier media used in biofilter units.
Phage persistence was longest in the rearing tank water, fish mucus, and biofilm media. This indicates
that interactions with the tank microbiome or with filtration and water treatment systems are not
deleterious for phage presence. Furthermore, and perhaps more importantly, phage addition did not
cause alterations in water quality nor in fish health, demonstrating it is a safe treatment in the fish
farming system. However, detailed knowledge of the applied phage needs to be available to consider
its suitability as a treatment [22].

Phage retention in animal mucus has been shown previously and associated with the presence of
Ig-like domains in the phage structural proteins [23]. We have already shown that phages FCL-2 and
T4 are held for up to a week in rainbow trout mucus in open flow-through systems, and that FCL-2
retention has a protective effect against Flavobacterium columnare infections [17]. Since in this study,
phage FCL-2 was present in the water at all time points due to water recirculation in the system, phage
enrichment in mucus was not evident although it lasted longer than in the flow-through systems [17].
Longer persistence of phages in mucus and water suggest that protection against infections will also
be maintained for longer periods, which could reduce or delay the need for antibiotic treatments.

The rearing water quality in RAS systems relies on the capacity of biofilters to remove ammonia,
yet a vast portion of bacteria species in the biofilters are other, mainly heterotrophic bacteria [24,25].
Surprisingly, the plastic media colonized by biofilms in the moving and fixed bed biofilters contained
more phages than the rest of the RAS system. Indeed, in vitro testing revealed that biofilm was
needed for phage retention in the pellets. While we did not explore this adhesion in more detail,
it may be caused by unspecific interactions with the extracellular matrix (mainly exopolysaccharides)
protecting the biofilm [26], similarly to what was observed to occur between phages and mucins.
Yet, the mechanism by which the phages attach to the microbial biofilm remains unclear. Another
possibility could be the presence of the Flavobacterium host in the biofilter microbiome. Previous studies
on the RAS biofilter microbiome have shown the presence of Flavobacterium spp in the biofilters [24],
but, although this possibility cannot be excluded, we did not detect F. columnare during the experiment.
However, our in vitro results suggest a specific microbiome plays a role in phage adhesion in biofilters,
as adhesion was significantly higher in moving bed carrier media compared to fixed bed media.
This may have also been caused by quantitative differences in the biofilm of these two filter materials.

In conclusion, we have shown that a phage can persist in RAS units for extended periods of
time, and the water treatment processes or system components are not a threat to viral particles or
vice versa. Components of the system such as biofilter carrier media and fish mucus may have a
positive impact in phage persistence, by selectively enriching phages compared to the water, and slowly
releasing them over time. This might be enough to delay the onset of a bacterial disease outbreak
by keeping the infective bacterial doses low due to phage infections. Furthermore, by selecting
phages targeting unwanted contaminants (pathogens or other bacteria), this approach could be used in
developing phage-based techniques in managing the RAS biofilter microbiome. For example, geosmin
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compounds accumulate in fish tissue, causing unwanted earthy taste and odor [27]. Phages infecting
geosmin-producing Streptomyces species have already been shown to be capable of reducing geosmin
production [28] and could be used in RAS systems to control product quality.

4. Material and Methods

4.1. Experimental Site

This study was performed at the Laukaa fish farm of the Natural Resources Institute Finland.
Six individual RAS units were used, each containing of a 500 L fish tank, a swirl separator, a drum filter,
a 150 L fixed and a moving bed biofilter (each filled with 70 L of plastic carrier media, RK Bioelements),
and a trickling filter for carbon dioxide removal. In fixed-bed bioreactors, the carrier media lies static in
the bottom of the reactor, whereas in moving bed bioreactors, the carrier media is agitated continuously
with air. Each RAS unit had a total water volume of 890 liters, with a water flow of 720 liters per hour
and water renewal of 150 liters per day (resulting in the turnover rate of the entire water volume in six
days). Each tank was stocked with 270–280 rainbow trout (Oncorhynchus mykiss) (mean 50 g), and fish
were fed 300 g·d−1. Fish health and feed intake rate were monitored daily. The location of the fish
farm and an example of the RAS system (fish tank, solids removal units, and moving and fixed bed
bioreactors) can be seen in Figure 3.
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Finland. (B) Fish tank (in green) and solids removal units. (C) Fixed and moving bed biofilters.

4.2. FCL-2 Phage

FCL-2, a myophage infecting Flavobacterium columnare, was used as the model. It has been isolated
from the same fish farm where this experiment was performed and shown to be efficient as a phage
therapy agent in laboratory conditions [12,17,29]. The phage stock used was prepared by infecting host
cultures supplemented with mucin, as described previously [17]. Briefly, the supernatant of overnight
F. columnare strain B185 cultures made in 0.5× Shieh media supplemented with 0.1% purified porcine
mucin (Sigma, USA) were transferred to sterile flasks and infected with FCL-2. Twenty-four hours
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later, the whole cultures were centrifuged, and the supernatant filtered to obtain a sterile high-titers
phage lysate.

Phages were quantified by the double-agar overlay method. Three hundred microliters of
overnight cultures of F. columnare strain B185 were added to three milliliters of soft-Shieh agar
supplemented with 0.1% mucin, and the mixture was added to the top of Shieh-agar plates. Then,
dilutions of the samples were added as drops to the top of the mixture and phage plaques were counted
two days later.

4.3. Phage Treatment and Sampling

Before starting the experiment, water and fish mucus samples were collected and tested to
guarantee that no pre-existing F. columnare or phage capable of infecting F. columnare were already
present at the systems. Fish gills were also sampled to test for the presence of F. columnare. Phage
presence was verified by plating the samples on fresh lawns of F. columnare strain B185 made in
soft-agar-Shieh while F. columnare presence was verified by plating the water samples in Shieh-agar
containing tobramycin.

For phage treatment, water flow was stopped in six RAS units. Then 470 milliliters of phage
FCL-2 lysate (2 × 1010 pfu/mL) was added to the fish tanks (n = 3). The final phage concentration in
each tank was 1 × 107 pfu/mL at time zero. An equal volume of sterile media was added to control
tanks (n = 3). After one hour, water samples were collected, and water flow was restarted. Tank water,
fish mucus, and plastic carrier media from moving and fixed beds were sampled periodically. Water
samples were taken from the fish tank and from the moving and fixed beds and from the trickling
filter (aeration unit). Fish were removed from the tanks, euthanatized with an overdose of benzocaine,
and skin mucus was scrapped with a glass slide. Sterile water was added to the mucus samples, to a
final volume of one milliliter. Plastic media from the moving and fixed beds were collected and kept in
falcon tubes immersed in water from the respective bed. All samples were preserved by the addition
of chloroform until being processed.

4.4. Ethics

Fish handling was conducted according to the Finnish Act on the Use of Animals for Experimental
Purposes, under permission ESAVI/8187/2018 granted for Lotta-Riina Sundberg by the National Animal
Experiment Board at the Regional State Administrative Agency for Southern Finland.

4.5. Water Quality Monitoring

Water quality was monitored in the fish tanks with an online monitoring system consisting of a
spectrometer probe measuring total organic carbon, a pH probe, and an optical oxygen probe. Total
ammonia nitrogen (TAN), nitrite, and nitrate were analyzed spectrophotometrically once a week from
the tank outlet water.

4.6. Adsorption Tests on Plastic Carrier Media

Clean autoclaved plastic media and media collected from the moving and fixed beds of control
(no phage) fish tanks were used for testing phage adsorption and retention in vitro. The media were
added to 50 mL falcon tubes and covered with nine ml of tank water. After one hour gently shaking,
1 ml of a phage solution (2 × 105 pfu/mL) was added, and the tubes returned to the shaker. 10 µL
samples were collected from the tubes periodically, and added into 990 µL of Shieh medium and a
drop of chloroform, and maintained on ice until the phage titers were determined.

4.7. Statistical Analysis

Data analysis was made using the GraphPad software version 8.0.1 (GraphPad Software, San Diego,
USA). Unpaired t-tests were employed for comparing tested conditions in the appropriate datasets.
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5. Conclusions

Although other phage species must be tested and the effect of phage held in the system on bacterial
outbreaks evaluated, our results highlight the relevance of phage-based techniques in developing
healthy RAS systems. Phages could be applied as a treatment to ongoing infections in a conventional
phage therapy approach, but the potential for preventive phage therapy could be more interesting.
By enriching the RAS tanks with the right type of phage, aquatic animal farmers could achieve
long-term protection from common aquaculture bacterial diseases, protecting their production while
at the same time avoiding the costs and risks of antibiotic use.
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