

Action-Oriented Programming Model: Collective Executions and Interactions in the Fog

Journal Pre-proof

Action-Oriented Programming Model: Collective Executions and
Interactions in the Fog

Niko Mäkitalo, Timo Aaltonen, Mikko Raatikainen,
Aleksandr Ometov, Sergey Andreev, Yevgeni Koucheryavy,
Tommi Mikkonen

PII: S0164-1212(19)30166-9
DOI: https://doi.org/10.1016/j.jss.2019.110391
Reference: JSS 110391

To appear in: The Journal of Systems & Software

Received date: 18 May 2018
Revised date: 27 June 2019
Accepted date: 7 August 2019

Please cite this article as: Niko Mäkitalo, Timo Aaltonen, Mikko Raatikainen, Aleksandr Ometov,
Sergey Andreev, Yevgeni Koucheryavy, Tommi Mikkonen, Action-Oriented Programming Model: Col-
lective Executions and Interactions in the Fog, The Journal of Systems & Software (2019), doi:
https://doi.org/10.1016/j.jss.2019.110391

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Inc.

https://doi.org/10.1016/j.jss.2019.110391
https://doi.org/10.1016/j.jss.2019.110391

Highlights

• The paper introduces six qualities for human-centric Fog Computing

• The qualities help improving how humans experience multi-device

computing

• Based on the qualities, we redesign our Action-Oriented Programming

model (AcOP)

• The AcOP was complemented with the novel concept of collective execu-

tions

• We describe in details the coalescence and disintegration of the collective

execution

1

Action-Oriented Programming Model:
Collective Executions and Interactions in the FogI

Niko Mäkitaloa,1,∗, Timo Aaltonenb,2,, Mikko Raatikainena,1,,
Aleksandr Ometovb,3,, Sergey Andreevb,3,, Yevgeni Koucheryavyb,3,,

Tommi Mikkonena,1,

aPietari Kalmin katu 5, 00014 Helsingin yliposto, Finland
bKorkeakoulunkatu 10, 33720 Tampere, Finland

Abstract

Today’s dominant design for the Internet of Things (IoT) is a Cloud-based

system, where devices transfer their data to a back-end and in return receive

instructions on how to act. This view is challenged when delays caused by

communication with the back-end become an obstacle for the IoT applications

with e.g., stringent timing constraints. In contrast, Fog Computing

approaches, where devices communicate and orchestrate their operations

collectively and closer to the origin of data, lack adequate tools for

programming secure interactions between humans and their proximate devices

at the network edge. This paper fills the gap by applying Action-Oriented

Programming (AcOP) model for this task. While originally the AcOP model

was proposed for Cloud-based infrastructures, presently it is re-designed

around the notion of coalescence and disintegration, which enable the devices

to collectively and autonomously execute their operations in the Fog by

serving humans in a peer-to-peer fashion. The Cloud’s role has been

I5 years after perspective on the original Action-Oriented Programming model [1].
∗Corresponding author
Email addresses: niko.makitalo@helsinki.fi (Niko Mäkitalo),

timo.aaltonane@tuni.fi (Timo Aaltonen), mikko.raatikainen@helsinki.fi
(Mikko Raatikainen), aleksandr.ometov@tuni.fi (Aleksandr Ometov),
sergey.andreev@tuni.fi (Sergey Andreev), yk@cs.tut.fi (Yevgeni Koucheryavy),
tommi.mikkonen@helsinki.fi (Tommi Mikkonen)

1University of Helsinki, Department of Computer Science
2Tampere University, Laboratory of Computing
3Tampere University, Laboratory of Electronics and Communications

Preprint submitted to Journal of Systems and Software August 7, 2019

minimized—it is being leveraged as a development and deployment platform.

Keywords: Fog Computing, Edge Computing, Socio-Technical Systems,

Programming Model, Proximity-based Computing

1. Introduction

The field of computing is amid a significant disruption. It is estimated that

around 50 billion devices will be connected by 2020 [2]. In the coming years,

advanced wireless infrastructures will enable computation on any networked

entity. From the software development perspective, this means that a single

computing system no longer consists of a single computer but instead of

multiple increasingly capable and connected computing units. Continuous

connectivity enables these dissimilar devices to perform tasks for one another

in the background, connect and share data with other devices, and even be

controlled by other user’s devices.

From the end-user perspective, computing-enabled objects in the immedi-

ate surroundings become an inseparable part of human’s lives as envisioned by

Weiser in the early 1990s [3]. These devices aid with everyday matters: enter-

tainment, socializing with friends, as well as capturing and sharing personal

events. Despite the desire that owning and operating multiple devices should

be casual, fluid, and hassle-free for the user [4], a transition to multi-device

ownership is however riddled with many problems [5, 6]. Numerous devices

and their connectivity options call for a new breed of multi-device applications

that enable coordinated interaction between nodes in a pervasive manner.

There are ways to facilitate such coordinated behavior and interaction

between said devices. Over the past decade, such approaches have chiefly been

based on (Mobile) Cloud Computing, which in its simplest form refers to

accessing Cloud Computing resources from a mobile device [7], but often

assumes the ability to share services among devices in the same Cloud [8]. For

instance, a photo taken by a mobile phone is typically uploaded to the Cloud

nowadays, thus becoming accessible and editable in the user’s other devices, as

3

well as shareable with friends.

Thus far, Cloud Computing has offered virtually unlimited storage and

processing capabilities but may reach its limits sooner or later. In fact, even

though the Cloud may be scaled up to store and process all relevant data,

other limits may be reached: an increasing number of services are

latency-sensitive, wherein the delay in transferring data to the Cloud and back

might become prohibitive [9]. This becomes especially pronounced in enabling

software executions where multiple devices collectively and autonomously

interact and cooperate with each other and with humans. All of the above

points toward Edge Computing, where intelligence descends from the remote

Cloud to proximate Edge computers [10].

As another step forward, the Fog Computing4 In particular, there is one

aspect that may lead to such confusion: mobile phone – the most popular edge

device – is actually a widely used smart gateway at the same time. In this paper,

we assume the latter interpretation. takes its niche, where intelligence disperses

from the centralized Cloud to everywhere within the networked environment

around the user – network edge devices, smart gateways and routers, network

nodes, and yet part of said intelligence remains in the Cloud. Generally, the

notion of the Fog Computing was coined by Cisco to refer to having multiple

layers of processing between the device(s) and the Cloud, as opposed to having

a single intermediary between the device(s) and the Cloud [12].

The software development challenges in the context of Fog arise from the

distributed nature of the system as well as the intermittent, unreliable

connectivity and varying latencies that depend on the network topology and

conditions. Furthermore, the numbers of participating devices in various

executions may also vary dynamically. This potentially unpredictable and

4 It has been repeatedly argued that the distinction between Edge Computing and Fog

Computing is not always clear – either the Fog Computing is defined similar to Edge Com-

puting, or regarded as a combination of Cloud Computing, Edge Computing, and all of the

options in between [11].

4

highly dynamic nature of executions places an additional burden on the

developers, which can only be addressed by shifting the focus from

constructing sequentially-run applications to defining collective interactions

that take place between the computers. Enablement of such Fog-based

scenarios requires further efforts, especially when compared with traditional

programming models, since the related constructs do not directly support the

necessary primitives, such as actions and triggers.

In this work, we study how this kind of collective intelligence can be

developed so that it can deployed and executed anywhere in the Cloud, at the

Edge, or over the Fog. To this aim, we outline an Action-Oriented Program-

ming model that enables efficient, on-the-fly development of coordinated,

proactively and pervasively initiated, multi-device programs, which employ

actions as their basic building blocks. This approach is inspired by our earlier

work in the context of the Cloud; here, the focus is on decomposing the

executions that previously took place in a centralized Cloud into collaborative

operations executed securely by the Edge and Fog devices. In particular, our

earlier APSEC 2013 paper [1] laid a foundation that this contribution extends

toward new domains. Further, we discuss the characteristics of wireless

infrastructure that needs to realize the Action-Oriented Programming model,

so that it responds to the main challenges of Fog Computing software develop-

ment. As a concrete example of such an infrastructure, we outline our recently

redesigned and implemented Edge and Fog Computing infrastructure [13], as

well as compare it with the original Cloud-based infrastructure [14].

Figure 1 depicts the original architecture where most operations took place

in the Cloud. Different Cloud-based services of our system were then

observing social media services (phase 1, in Figure 1) and devices (A, B, C, D,

E, F) were streaming their raw data to our Cloud-based services like

Proximity Server (phase 2) and State Server component. Based on the changes

in this data (phase 3), a Cloud-based Controller-component was observing the

proximity of the devices (phases 4 and 5) and then trying to find device

configurations based on their streamed state (phases 6 and 8). Finally, when a

5

� � � �� � � � �� � � �� �� � � �� � � � � �� � � � � � � � � � � �

Figure 1: Original Cloud-based implementation of the Action-Oriented Programming model

was presented in 2013 at the APSEC conference [1].

proper configuration was composed (phase 9), the Controller was initiating a

rather long-lasting interactive application between the devices

Orchestrator-component (phase 10). This Cloud-based component was also

coordinating the remote operations on the devices (phases 11 and 12). After

many years of research, it is now clear that such an approach was full of flaws.

In this paper, we introduce a more sophisticated approach that allow the

computations to take place where these make the most sense, and sharing data

and coordinating the operations directly with local device-to-device (D2D)

communication [15] between trusted set of devices.

6

The rest of this paper is structured as follows. In Section 2, we provide the

necessary background for this work and envision how future software could

behave in the Fog Computing era. In Section 3, we offer an abstract-level

example usage of our programming model, which helps us in describing our

programming model in the remainder of the paper. In Section 4, we introduce

our programming model for the collective executions and coordination of

interactions. In Section 5, we describe the new architecture and

implementation in details. We also discuss how safe and secure device

coalitions can be formed for the communication that takes place behind the

collective executions. In Section 6, we contribute our redesigned approach and

compare it with the earlier Cloud-based alternative. We also evaluate the new

approach and the overhead it causes. In Section 7, we review the related work.

Finally, Section 8 draws the main conclusions of this study.

2. Background: Qualities of Human-Centric Fog Computing

In many past multi-machine use cases, computers have been communicating

and interacting remotely in online collaboration tools, email and Internet usage,

file transfer, etc. While all of these remain very popular and important use cases

in our daily lives, a whole new way of using multiple computers and computing-

enabled objects emerges where they are utilized at the same time and often in

the same space5.

The vertical dimension in Figure 2 represents today’s dominant design trend

for the IoT. Here, we depict a Cloud-based system where devices stream their

5Broadly speaking, multi-machine experience with humans can be divided into three cat-

egories: (i) sequential use (one user, multiple devices, sequential use), (ii) simultaneous use

(one user, multiple devices, parallel use for different tasks or roles), and (iii) collaborative use

(multiple users and devices, the same software used in collaboration) [16]. In this paper, we

address all these categories as we discuss multi-machine experiences. Hence, it becomes ev-

ident that more and more interactions between computers take place near the edge of the

network, where people and their devices are actually located, as has been illustrated at the

bottom of Figure 2.

7

� � � �� � �

�
��
�
��
��
��

��
��
��
��

��
��
��

�
��

�

Social W
orldPh

ys
ica

l W
orld

Virtual World

People

Things Services

� � �
 � � �� � � � �	 �� � � � � � � � � �� �
 � � � � � � � �

� � �
 � � �� � � � �	 �� � � � � � � � � �� �
 � � � � � � � �

� � � � � �
 �� � � �� � � � � � � � �

Personal and non-personal devices
able to collect data and actuate with
the physical world. Can also
communicate directly with other
devices (without intermediary).

� � � � � � �
 �� � � �� � �

Used for transferring data and
actuation instructions between
cloud and devices. Becoming
increasingly capable and can
be used for computation.

� � � � �� � � � � � �
 �� � � �� � � � � � �
Scalable computation and
storage services are provided by
many companies. Easy to set up,
scale, backup support, etc.
Users’ privacy may be at risk in
some cases.

� � � � �
 �� � � �� � � �� � � � � � � � � � �
People, Things and Services
which interact in Physical World,
Social World, and Virtual World.

� � � � � � � � � � � �� � � �� � � � � � � � � � � �
Fog Computing enables performing the computations
closer the data’s origin, and coordination closer to
the location where the actuation and interactions take place.

sensation anticipation

action adaptation

The World The Self
� � � � � � � � � � �� � � �� � � � � � � � � � �
An interaction can be considered
as a process that consists of
sensation (input from the world),
anticipation (what input is expected),
adaptation (how to react to
unforeseen events), and
action (output to the world).
Altogether, these give a meaning for
the interaction.

Figure 2: Fog Computing and related interactions.

8

data all the way up to the back-end services and in return receive instructions

on how to act. In previous non-colocated multi-machine scenarios, such design

is appropriate since the physical distance between the users covers the lag in

communication. A common denominator for the corresponding software stands

from the end-user perspective – the interaction follows similar principles as those

in the early days of computing:

A human gives an input command to a machine, which the

machine then executes, provides an output, and waits for the next

human input. Thus, the interactions are user-initiated, requiring

constant active participation, much attention, and switching

between the apps.

Disrupting what has become the status quo in computing, one has to rethink

the software execution and the very role of interactions in computing.

Fortunately, in modern Fog Computing environments, all of the entities are

interconnected on various levels (consider the vertical and horizontal

dimensions in Figure 2) either directly with each other, or via an intermediary

node and perhaps over some infrastructure networks. Leveraging

computing-enabled entities across the entire network unlocks numerous

opportunities for near-the-edge computations, which helps reduce the

communication latency as well as improve other aspects of software execution

like privacy, security, and functional safety.

Inspired by these opportunities to improve multi-machine experiences that

emerge along with Fog Computing as well as accounting for the fact that

interactions increasingly occur near the edge of the network, we identified six

crucial qualities of the modern Fog Computing environments that we consider

instrumental to disrupt the status quo.6 We believe that these qualities,

6These qualities are partially inspired by our previous work on the Internet of People [4].

However, we have reconsidered the original Internet of People Manifesto to better fit Fog

Computing environment.

9

namely—be concerted, be proactive, be inclusive, be social, be adaptive, and be

humane—have the potential to make future computing more human-centric

and user-friendly as well as help the developers leverage the many

opportunities that Fog Computing can offer since it does make sense to place

the software executions closer to where the interactions primarily take place

and where the lag matters more from the multi-machine experience

perspective. In what follows, we take a closer look at these six qualities:

Quality 1: Be concerted. In Fog Computing, executions often hinder

upon orchestrating the operations in real-time. The user experience highly

depends on the network and location where these instructions to act come

from. Presently, several technologies enable global Internet-based (e.g.,

MQTT, WebSockets, WebRTC) as well as local (essentially, BLE and WiFi

Direct) D2D communication. Many of today’s IoT platforms (e.g.,

Node-RED) further simplify this coupling. From the developer’s perspective,

programming with these approaches is highly communication-oriented and

shifts the focus from developing collective activities where computers serve

humans. Hence, clear programming concepts are required to abstract away the

complexity of dealing with a large number of heterogeneous entities and

exploiting their resources.

Quality 2: Be proactive. As discussed above, present-day computing

requires a lot of manual user interventions. In Fog Computing, software

execution and behavior of computers, as well as the interactions with them,

should become proactive to make the computers serve humans better. This

requires the software to be able to anticipate the events (sensations) coming

from the world (digital or physical), and then react to these events with

actions that are the outputs to the world. Ideally, the software can also adapt

if an unforeseen event takes place. This proactive nature of the software makes

the computers initiate interactions with each other and with humans. While

there are multiple risks with such executions, we believe that proactivity is the

key capability for a new type of computing that can genuinely serve humans.

Quality 3: Be inclusive. Since individuals are also creatures of habit,

10

everyone has their own way of doing computing. Hence, the inclusive quality

requires that the user preferences and content are collectively reflected in the

executions. Technologically, such a personalized nature of executions requires

collecting, observing, maintaining, and extracting the insights from various

sources about the participating people, across both digital and physical

worlds. The harnessed information and content can then be used, e.g., for

enriching the interactions and experiences with computers and with other

people. From the developer’s perspective, this quality requires novel

communication infrastructures and related programming constructs for

controlling how the preferences and content are shared collectively and safely.

Quality 4: Be social. In Fog Computing, the ownership of entities

becomes an important premise, and therefore the social relationships between

the entities and their owners need to be reflected in the executions. For

example, it is essential to consider which entities are allowed to interact and

which content is allowed to be shared among them. Presently, Bluetooth and

WiFi service discovery and beacon transmission techniques can potentially be

utilized for sensing the entities in proximity. The relationship-related

information in social media may be employed for defining how these entities –

or their owners – are socially related to each other. It forms a social network

between the entities in the physical world, which the underlying execution

environment should reflect by ensuring that the data is only dispatched to the

authorized entities.

Quality 5: Be adaptive. The software (and its execution) should follow

the user. However, the Fog Computing principles may imply that the swarm

around the user changes frequently: the entities (and thus their resources) do

not remain the same and also other people move nearby. For this reason, the

executions have to be able to adapt to these continuous changes and recover

whenever contingencies occur. Primarily, the executions need to choose the

best entities for performing a particular task. This selection can be based on

the hardware and software resources of the entities as well as on their quality.

Additionally, other properties of an entity, e.g., battery status or processing

11

power, may affect the selection process.

Quality 6: Be humane. Computers communicate with each other in a

very different way than humans do. The inputs and outputs are fundamentally

different in the human world. Fortunately, the interactions with humans can

be augmented by leveraging new hardware and software resources (e.g., digital

assistants like Amazon Echo and Apple’s Siri) that are available on some of

the devices within the execution environment. In certain contexts, these novel

modalities have unraveled potential to make interactions more natural for

humans. However, when the resources are being used collectively, e.g., for user

input and output, the lag in communication may affect the user experience by

degrading the levels of how natural the human feels the interaction to be. This

becomes especially visible when integrating full-fledged and highly-constrained

computing devices.

In the remainder of this paper, we present and discuss our Action-Oriented

Programming model that has been redesigned to operate in the Fog – in a

decentralized manner – but yet to consider all of the human-centered qualities

of Fog Computing.

3. Abstract-Level Example: Photo Sharing

To exemplify the executions as discussed above, we introduce the following

example that we use throughout this paper.

A group of friends had an enjoyable party recently, and presently they meet

at Alice’s home. Each person has taken pictures, some of which are stored on

their mobile devices and some are uploaded to the Cloud, shared on social media,

and so on [17]. Their devices proactively suggest a photo session, where each

participant may share pictures with all of the devices that are participating in

it collectively. They all agree to start a joint photo sharing session. The utilized

devices range from smartphones and tablets to Alice’s 65-inch smart TV. Photos

are shared among everyone, but since the viewing experience with the TV is the

best, most of the people use their own devices to only select pictures for viewing.

12

Physical World

� � � � �� �

� � � � � � � � � �� � �� � � � � � � �� �

� � � � � � �� � � � � � � � �� �

� � � � � � � �� � ��� � �� � � �� �

5071c4b5-3c27-4ad7-b0b4-51a46743e45f dc948bd2-7
c4

7-
42

60
-b

5d
c-

f1
2b

344b1f05

��
��

��
��
���

�Broadcasting

Virtual W
orld

So
cia

l W
orld

People Services

Social W
orldVi

rtu
al

World

PeopleServices

Figure 3: Preparation for interactions.

In addition to people, the collective execution can also adapt and behave

differently when the environment has various interacting capabilities. For

instance, if the room has smart lighting (e.g., Phillips HUE), the atmosphere

can be changed when the photo sharing sessions begin and end. Similarly,

another collective execution (e.g., collective music listening) may then adjust

the lighting based on the song being played.

Behind the scenes, the following events take place. First, the devices sense

that they are in close proximity and start interacting. They exchange contex-

tual information with each other and notice that the same group was together

at a party a while ago. Jointly, the devices deduce that now is the appropriate

time to suggest a photo session. They prepare fluid user experience by

proactively sharing the required pieces of data as well as by establishing

optimized connections between the devices as demonstrated in Figure 3.

4. Programming Model for Collective Executions in the Fog

Action-Oriented Programming (AcOP) has its roots in coordination

languages [18, 19] and the theory of joint actions [20]. Previously, we studied

AcOP in the context of Cloud Computing [1]. In this work, the goal is to move

the executions from the centralized Cloud to anywhere in the Fog, as well as to

13

Device Registry

action

Sensations

collective execution

Deploy
interaction
components
to devices in
the Fog

Coordinator

Store

D3
-state

u3
-state

D4
-state

u4
-state

capability

capability

capability

D1
-state

u1
-state

D2
-state

u2
-state

D5
-state

u5
-state

Figure 4: Co-located devices executing Photo Sharing application.

determine and solve the associated challenges. In particular, these include the

localization of actions to edge devices and network nodes, dynamic

establishment and deletion of groups of devices that collaborate, and

human-friendly, non-invasive executions. A complete programming model

calls for two separate yet compatible entities [18]: a computation model and a

coordination model. The former allows for specifying computational activities

while the latter is used for binding the separate activities together. We

introduce the computation model of the Action-Oriented Programming by

describing its key concepts.

4.1. Computation Model

4.1.1. Key Concepts

In the following we introduce the key concepts of AcOP. On a general level,

these concepts and how these fit to the huamn-centric Fog Computing has

been depicted in Figure 4. The key concepts of AcOP and their relation are

represented in Figure 5.

A device can be shared or personal. It always has an owner, who can be

an individual user, a group of users, or an organization.

A user is a person who can own one or multiple devices, and may have

social relationships with other users.

14

aggregates

has

subset of

observes

schedules
Collective
Execution

changes states Sensation

defines behaviorconsists of

consist of

uses

consists of

defines

Action

Capabilities

owns

has
User

User state

participates in

provides

generates

has

Device

Device state

participates in

participates in

Collective
execution state

requires

defines conditions for

RoleGuard

Body

subset of

AcOP-Concepts https://www.draw.io/#G1zgchjU_IK1eQCfHR8Q_75PwDfIhvfqIy

1 of 1 3/18/2019, 10:17 PM

Figure 5: The conceptual model of AcOP

Collective Execution is the concept at the heart of the new programming

model. It is an aggregating unit with the primary task of scheduling actions

between machines and humans in the Fog. To some extent, collective execution

is another term for the concept of an app in mobile (and web) computing.

However, this kind of collective execution differs from the traditional app – it is

targeted to run on multiple devices at the same time, and it is inclusive, that is,

considers many people and their preferences simultaneously. Figure 4 illustrates

a basic collective execution where multiple users’ devices are running the same

software.

A state is a temporal mode or condition of being, which is distributed across

the Fog. It can be divided into the following three categories:

15

• A user state is a profile that can be regarded as a timeline of all the data

and actions collected by the sensors of the user devices along with the

information that can be inferred from them, i.e., user preferences, links

to the digital content, social relationships, activities, mood, profession,

goals, etc.

• A device state comprises the status of its resources.

• A collective execution state includes a set of participating devices and their

owners in the same collective execution, as well as a relevant subset of the

participating device and user states. In addition, a collective execution

incorporates the application-specific state (e.g., which photo the devices

are currently showing, or which photos have already been shown). The

entire collective execution state is shared and synchronized among all of

the participating devices in the same collective execution.

An action defines the joint behavior of machines and humans in collective

executions. Informally, it is a modular unit that determines how several partic-

ipating devices interact with each other over a specified period. It can be par-

alleled to a task or a part of behavior of an app by realizing the output as an

observed behavior of a collective execution. An action consists of

• A guard related to collective execution state, which must evaluate to true

for the action to be executed

• Roles, which define the required capabilities and which the devices can

participate in, and

• A body, which models joint behavior of roles by utilizing the capabilities

as well as the basic programming logic.

The modularity of actions helps make them more generic, so that they may

be exploited in many different collective executions.

Capabilities are integrated into the devices for them to be able to carry

out their responsibilities during the action execution. This means that actions

16

employ the capabilities of the participating devices in the assigned roles when

executing. Capabilities are used and realized by the resources of the devices.

A capability is a mean to act and produce output to the world. The device

capabilities may be utilized by many actions that can be used in different

collective executions.

A sensation is an input to the collective execution state coming from the

physical, virtual, or social world. It is instrumental to our model to observe

various events coming from other worlds, and then act upon these events. In

this model, the observed events are named sensations. The abstraction level of

the sensations may vary, and in addition to observing the physical world’s

phenomena the processes in the virtual and social worlds can be monitored as

well. A concrete example of a sensation is the changed sensor value, while a

more abstract sensation is, e.g., when a friend is nearby, which combines data

from different worlds (e.g., Facebook friendship and Bluetooth signal strength

values). Awareness of a sensation is shared during the participation in a

collective execution.

As a summary, collective executions yield scheduling actions based on

predefined sensations coming from the world. The participating devices are

selected for their roles from the set of devices in the same execution instance

on the basis of device capabilities and other resources. Moreover, before an

action is executed the shared state is evaluated. This results in actions being

timely, concerted operations for the devices. For instance, it is better to

reschedule an action than to use an eternal loop inside one.

4.1.2. Conceptual Example

An example illustrating a collective execution on the conceptual level is

shown in Figure 6. This collective execution has two state variables of its own:

currentPhoto and currentPhotoOwner, which are both initialized to null

meaning that they do not exist. These variables acquire a value after someone

has selected a new photo to be shared with other devices of the same collective

execution. Then the variable currentPhoto is assigned to a newly selected

17

collective execution PhotoSharing is

currentPhoto: Photo := null;

currentPhotoOwner: Device := null;

action sharePhoto(source: Device, {sinks}: Device)

when ∃ currentPhoto ∧
source = currentPhotoOwner ∧
∀ sink ∈ sinks : sink.photoSharing.readyToView

do

sinks.photoSharing.setCurrentPhoto(currentPhoto);

currentPhoto := null;

currentPhotoOwner := null;

end;

. . .

end photoSharing;

Figure 6: Photo sharing example of an action.

photo and the photo owner’s device is assigned to the variable

currentPhotoOwner. The collective execution includes an action sharePhoto,

which can be invoked after someone has selected a photo in their device, i.e.,

currentPhoto and currentPhotoOwner have a value. The action has two

roles, source and sinks. The former is the device, which owner has shared

the photo, and the latter is a set of all devices to which the photo is being

shared. The guard of the action consists of three conjuncts. The first one

ensures that there is a new photo to be shared, the second one ties the owner

device to the role source, and the last one allows only the devices, which are

ready to view a new image, to participate in the role of sinks. In the body,

the newly selected photo is delivered to all of the sinks and the collective

execution state is reset. The rest of the actions are omitted.

If more than one action can be executed at the same moment of time, selec-

18

tion of the actions is non-deterministic.

4.2. Coordination Model

The coordination model is adapted to the distributed setup as follows.

Each running collective execution has a coordinator, which tasks are two-fold:

managing the collective execution state collaboratively and, based on the

changes in the state, scheduling the actions.

The enabling conditions—the so-called guards—of the actions should be

evaluated every time when there is a state change in the system, which is not

feasible for obvious reasons. Therefore, we introduced a notion of sensations

that can be generated by any device of the collective execution if it detects a

vital state change. The rules for defining the changes that are essential parts

of the logic of an action; ultimately, the programmer decides, which changes

are important.

Sensations are attached to actions, of which guards might evaluate to true

due to the state change. In the case of photo sharing, a newPhotoSelected

sensation can be generated by a device, the owner of which selects a new image

through the UI.

A coordinator of the running collective execution captures the sensations.

When the coordinator receives a sensation, it attempts to find devices with the

roles according to all the actions associated with the sensation; then it evaluates

the guards of the actions and executes one of the enabled ones. In the simplest

case, the coordinator can be implemented as a Cloud service. The drawback of

such a solution is that the coordinator becomes a single point of failure and the

amount of traffic might become excessive as the number of devices grows.

Because of the limitations of the Cloud-based IoT coordination, we followed

a different approach. An edge device, e.g., mobile phone or a smart gateway, is

selected to act as the coordinator by voting. Over the years, many algorithms in

distributed systems have been developed for such purposes that can be applied

when coalescence or disintegration take place. This voting procedure can also

be complemented with an attributes that help selecting the best coordinator for

19

each case (as we discuss later in Subsection 5.2).

4.3. Coalescence and Disintegration

Collective executions are run on the user devices continuously. The basic

setup is depicted in Figure 7 (a), which considers one user (u1) who owns two

devices (D1 and D2). Referring to the PhotoSharing example, the state of the

collective execution includes the set of the executing devices, the current photo,

and all of the previously viewed photos. The devices have their local state, which

includes the battery charge level as well as the lists of actions and capabilities.

Capabilities offer the means to access the device resources, like reserving the

screen for an action.

When a collective execution receives a sensation indicating that new devices

are in proximity, it can evaluate who is present, and then try to schedule a joint

action for this new set. The beginning of a collective execution means merging

two or more executions into one, wherein the actions are the union of the actions

in the collective executions, and all of the devices are the potential participants

in them. In the technical sense, this means that the collective executions begin

to exchange state information with one another. This happens by dispatching

the data to the selected coordinator, which then forwards the same data to

all of the participants in this collective execution. When a collective execution

disintegrates, the dispatching between disintegrated entities and the coordinator

stops.

Figure 7 (c) illustrates how two PhotoSharing collective executions (devices

D1, D2, and D3 on the left, and devices D5 and D6 on the right) are coalesced,

which means that the two running collective executions are merged into a sin-

gle execution. Therefore, a new collective execution state must be consolidated

based on the previously disjoint states. In the PhotoSharing example, the

current photo is replaced with the most recent one. A collective execution

schedules actions like currentPhotoChanged, when photoSelected sensation is

generated – for instance, when someone selects a new photo from their album

to be displayed, or timeout occurs that triggers a change of the picture.

20

(a) Single user, multiple devices

(c) Coalescence and disintegration

(d) Performing actions (e) Roaming between devices

(b) Loading interaction components

D3
-state

u3
-state

D1
-state u1

-state

D2
-state

Store

u2
-state

D1
-state u1

-state

D4
-state

u4
-state

D3
-state

u3
-state D2

-state

u2
-state

D5
-stateD3

-state

u3
-state

ShowPhoto

D2
-state

u2
-state

D4
-state

u4
-state

D1
-state

u1
-state

D1
-state u1

-state

D3
-state

u3
-state

D4
-state

u4
-state

D5
-state

u5
-state

u2
-state

D2
-state

u1
-state

D2
-state

D1
-state

Figure 7: The new coordination model for collective, autonomous execution. (a) Two devices

of a single user are executing the same software collectively. (b) If a device lacks a component

that prevents it from cooperating with others, this component can be loaded dynamically.

(c) New users and devices join and leave the collective execution by dispatching their state

information to others. (d) Devices are selected for specific roles and then coordinated to

perform these roles. (e) The user state can be transferred from one device to another for

seamless usage.

21

More formally, two executions can be coalesced when they appear close to

each other in an application-specific n-dimensional space. Typical dimensions

are the following:

• Physical distance of the collective executions. The distance between

ColExeci and ColExecj is the shortest Euclidean distance between the

devices di ∈ ColExeci and dj ∈ ColExecj . For example, the distance

between the two collective executions in Figure 7 (c) is the physical

distance between D2 and D4.

• Social distance of the users.

– Its definition is based on a (pair-wise) taxonomy: family members,

friends, a friend of a friend (FoF), workmates, colleagues, etc.

– Application-specific distance: a collective execution can request

that all the pairs of users belong to one or more specific classes in

taxonomy. In the PhotoSharing example, the users are required to

be friends or FoFs.

– User-specific distance: users can adjust their profile to approve only

the selected classes (or even exclude the selected users).

– Value of social distance between the collective executions is 0 if all of

the application- and user-specific requirements are satisfied, and 100

otherwise.

• User willingness (distance): A value (0 ≤ willingness ≤ 100) reflects how

eager the user is to participate in an activity. The value of 0 means that

the user is willing and 100 shows that there is no desire to participate.

This is analogous to distance as above. The default value can come from

a system recommendation, or the user can set it dynamically.

The dimensions of the n-dimensional coordinate system need to be

transformed to commensurate. For example, the physical distance is measured

in meters, whereas the social dimension and the user willingness can be

22

considered as described above. We define the distance for two collective

execution instances: DE
C (p, q) := max(disti(p, q)), where p and q are the

instances of the collective execution E and disti is their mutual distance along

the dimension of i. As the value of the distance is the maximum, it is the

so-called Chebyshev distance [21] between the instances.

For two collective execution instances to coalesce, it is a necessary but not

a sufficient condition that the instances are close enough to each other (the

threshold may be an application-specific value). Also, other application-specific

external conditions must hold. Let us return to the PhotoSharing example in

Figure 7 (c). The condition “time is between seven and nine” transforms to

Delta to epoch, where epoch is the time range between t1 and t2, while Ω is the

current time. Hence, delta to epoch is defined as follows:

• 0, if t1 ≤ Ω ≤ t2,

• t1 − Ω, if Ω < t1,

• Ω− t2, if Ω > t2.

Let the coalescence threshold tPhotoSharingc = 20. In Figure 7c, the users u1,

u2, and u3 are already at Alice’s home and their PhotoSharing executions have

already coalesced to ColExec1; Users u4 and u5 have already met on the way

to Alice, hence their executions have also coalesced to ColExec2. The time is

6:50pm when the users u4 and u5 arrive together at Alice’s. The devices D2 and

D4 are the physically closest device pair and their physical distance is 19 meters.

Therefore, the distance between ColExec1 and ColExec2 is 19. Now we can

calculate Dc(ColExec1, ColExec2) = max({pd, sd, w}) = max({19, 0, 0}) = 19,

where pd is the physical distance, sd is the social distance, and w is willingness.

The same coalescence threshold is used for delta to epoch, which evaluates to 10

(at ten to seven). Since the coalescence threshold is 20, two collective executions

coalesce as depicted in the figure.

As opposed to coalescence, a collective execution is said to disintegrate

when a set of the executing devices is split into two or more subsets. The

23

disintegration occurs when the devices alienate from each other in the

n-dimensional space for more than a predefined application-specific

disintegration threshold tEd . To prevent oscillation, tEd > tEc . After

disintegration, the devices continue the collective execution in the subsets, and

the state is either copied or split depending on the nature of the collective

execution. Let tPhotoSharingd = 30. Assuming that users u1, u2, · · · , u5 stay at

Alice’s and remain friends, our example collective execution disintegrates

totally at 9:30pm, because the delta to epoch grows larger than the threshold.

Previously, concepts like Liquid Software introduced the notion of a

roaming state meaning that the application and its state follow the user from

device to device [22]. When it comes to AcOP, such roaming means that the

collective executions related to two devices are coalesced first and that they

are disintegrated immediately after. This is illustrated in Figure 7 (e), where

the user u2 has first used Device D2, but later has changed it to device D5.

Before roaming, the device D2 belonged to the same collective execution as the

devices D1, D3, and D4, but the device D5 did not. However, the collective

execution installed in device D5 means that it has been running on the device.

After the user has decided to change the device, the collective execution by

only the device D5 has coalesced to the bigger execution. Immediately after

the coalescence, the disintegration takes place, so that the device D2 is no

more a part of the aggregate execution.

4.4. Programming with Actions

We described above the AcOP computation model together with our

PhotoSharing example on the conceptual level. In the following, the same has

been realized in Figures 8 and 9, as well as explained below.

The scheduling is based on sensations, which can be internal or external.

For example, a currentPhotoChanged sensation is generated when a user

chooses a photo in the PhotoSharing collective execution. Figure 8 (lines

15–16) prepare the collective execution to receive such a sensation. After the

PhotoSharing collective execution receives a sensation, it attempts to schedule

24

1 var pubsub = r e q u i r e (’ t o o l s . j s ’) . pubsub () ;

2 var Act ion = r e q u i r e (’ t o o l s . j s ’) . Ac t i on ;

3

4 module . expo r t s = {
5

6 // Opt i ona l p r e f e r e n c e s a r e s e t by the u s e r when c o l l e c t i v e e x e c u t i o n s t a r t s

7 p r e f e r e n c e s : [compan ionDev ice Id] ,

8

9 s chedu l i n gLog i c : f u n c t i o n () {
10

11 // I n i t i a l i z e the sha r e photo a c t i o n

12 var a c t i o n = Act ion . c r e a t e (’ PhotoShareAct ion ’) ;

13 var c o lE x e cS t a t e = { ’ c u r r en tPho to ’ : nu l l ,

14 ’ cur rentPhotoOwner ’ : n u l l } ;
15 var t r i g g e r i n g S e n s a t i o n s = [’ cur rentPhotoChanged ’] ;

16 ColExec . a c t i o n s . add (t r i g g e r i n g S e n s a t i o n s , co lExecS ta t e , a c t i o n) ;

17

18 // Rest o f the a c t i o n i n i t i a l i z a t i o n s omi t ted f o r b r e v i t y

19 }
20 } ;

Figure 8: PhotoSharing collective execution initializing the scheduling of the PhotoShareAc-

tion.

a PhotoShareAction. For this, it first executes the casting method of the

action (lines 7–14 in Figure 9) that picks the sensation sender for the role of

the source. It then sets the devices with the required capabilities and in the

correct state as to the roles of the sinks. Further, the coordinator executes the

action guard method (lines 17–21 in Figure 9) to in order to make sure that

the casting was successful and that the context is correct. Finally, the runtime

executes the body part of an action (lines 24–35 in Figure 9), which comprises

the actual synchronization and coordination logic.

Typically, actions are relatively short in time and incorporate the coherent

collective operations of multiple devices. As defined by JavaScript, the execution

of actions can take place in various locations. What is common though is that

one device then acts as a coordinator for the other devices participating to the

same collective execution.

25

1 f u n c t i o n c o n s t r u c tA c t i o n (ColExec , S en s a t i o n) {
2

3 var t ha t = new Act ion (’ PhotoShareAct ion ’) ;

4

5 t ha t . r o l e s = { s ou r c e : nu l l , s i n k s : n u l l } ;
6

7 t ha t . c a s t i n g = f u n c t i o n (ColExec , S en s a t i o n) {
8 r o l e s . s ou r c e = Sen s a t i o n . s ende r ;

9 r o l e s . s i n k s = ColExec . d e v i c e s

10 . h a s C a p a b i l i t y (’ PhotoShar ing ’)

11 . i s I n S t a t e (’ PhotoShar ing . isReadyToView ’)

12 . no tEqua l s ([r o l e s . s ou r c e]) ;

13 r e t u r n ;

14 } ;
15

16

17 t ha t . guard = f u n c t i o n (r o l e s) {
18

19 r e t u r n (ColExec . cu r r en tPho to &&

20 ColExec . f o r A l l (r o l e s . s i n k s , s i n k . pho toSha r i ng . isReadyToView)) ;

21 } ;
22

23

24 t ha t . body = f u n c t i o n (r o l e s) {
25

26 var i ;

27 f o r (i = 0 ; i < r o l e s . s i n k s . l eng th , i++) {
28

29 r o l e s . s i n k s [i] . pho toSha r i ng . s e tCu r r en tPho to (ColExec . cu r r en tPho to) ;

30

31 }
32

33 ColExec . cu r r en tPho to = n u l l ;

34

35 } ;
36

37 r e t u r n t ha t ;

38 } ;

Figure 9: SharePhotoAction defined with JavaScript.

26

5. Runtime for Collective Executions

A complete programming model needs a runtime environment implementa-

tion [23]. Previously, we studied two different approaches to implementing the

AcOP runtime. In the first one [1], a centralized Cloud service maintains the

states of all the devices and another Cloud service continuously evaluates the

preconditions of the AcOP actions by accessing the state information. If a

precondition of some action is evaluated to true, the execution is then

continued by yet another Cloud service via running the action body (as was

described already the very beginning of this article in Figure 1).

The second Cloud-based implementation [24] was more lightweight: AcOP

is complemented with a new app concept. At that time, the apps were small

programs observing the states with common patterns, such as

Publish/Subscribe. However, scheduling operations in this approach required

making similar queries to a similar state registry as in the first

implementation, since only seldom did a single event describing a change in

the state contain enough information for scheduling an action. Needless to say,

both of these approaches are not optimal solutions. In this section, we

introduce the new Fog Computing based runtime implementation and describe

how it operates in a decentralized heterogeneous infrastructure.

5.1. Architecture of the New Fog Computing based AcOP Runtime

The new AcOP runtime – depicted in Figure 10 – enables collective

executions where the participants can be placed anywhere in the topology. In

the vertical direction, the architecture is divided into three layers that also

provide horizontal communication and interaction.

The Cloud layer is the first layer from the top in the vertical dimension.

Typical of this layer is to hold the AcOP components allowing the devices to

download them (similarly to how today’s web browsers download web page

components). Another important role of the Cloud in this new architecture is

to manage and distribute the identities of the devices, so that trusted device

27

���� � � � � � � � � � �� � � � � � � � � �� � � � � � � � ���

Co
lle

ct
iv

e
Ex

ec
ut

io
n

Fr
am

ew
or

k

Co
or

di
na

to
r M

an
ag

er

Co
m

po
ne

nt
 M

an
ag

er

Co
lle

ct
iv

e
Ex

ec
ut

io
n

Fr
am

ew
or

k

Co
or

di
na

to
r M

an
ag

er

Co
m

po
ne

nt
 M

an
ag

er

Co
lle

ct
iv

e
Ex

ec
ut

io
n

Fr
am

ew
or

k

Co
or

di
na

to
r M

an
ag

er

Co
m

po
ne

nt
 M

an
ag

er

Tr
us

te
d

D
ev

ic
e

Co
al

iti
on

W
LA

N
LT

E
Bl

ue
to

ot
h

W
iF

i D
ire

ct

SoMe 1

SoMe 2

� ��� �� � � �� � �

Resource 1 Resource 2 Resource 3

U
se

r S
ta

te
 S

yn
ch

ro
ni

ze
r

D
ev

ic
e

St
at

e
Sy

nc
hr

on
iz

er

A
pp

lic
at

io
n-

sp
ec

i�
c

st
at

e

Device Resource Manager

Action
Executor

State
Observers

U
se

r S
ta

te
 S

yn
ch

ro
ni

ze
r

D
ev

ic
e

St
at

e
Sy

nc
hr

on
iz

er

A
pp

lic
at

io
n-

sp
ec

i�
c

st
at

e

U
se

r S
ta

te
 S

yn
ch

ro
ni

ze
r

D
ev

ic
e

St
at

e
Sy

nc
hr

on
iz

er

A
pp

lic
at

io
n-

sp
ec

i�
c

st
at

e

Action
Executor

State
Observers

Action
Executor

State
Observers

Coalescence &
Disintegration

Handler

Coalescence &
Disintegration

Handler

Coalescence &
Disintegration

Handler

� ��� �� � � �� � �

Capability B

Capability A

Capability B

Capability A

Capability B

Capability A

��
��
�
��
�
��
��
��
��
��
��
��

��
��
�
��
�
��
��
��
��
�

��
��
��
�

��
��
��
�

Co
lle

ct
iv

e
Ex

ec
ut

io
n

St
at

e
Co

lle
ct

iv
e

Ex
ec

ut
io

n
St

at
e

Co
lle

ct
iv

e
Ex

ec
ut

io
n

St
at

e

Se
ns

at
io

ns
Se

ns
at

io
ns

Se
ns

at
io

ns

W
A

N
W

A
N

LT
E

W
iF

i

Tr
us

te
d

D
ev

ic
e

Co
al

iti
on

AcOP Components
� � � � � � � � � � �� � � � � � �

� � � � � � � ��� � � � � � �� �

	 � � �� �� � �
Tr

us
te

d
D

ev
ic

e
Co

al
iti

on
Two-way communication
via coalition framework

Sensation synchronization
via coalition framework

Communication between
coalition frameworks on
di�erent devices

Capability invocation
from network

AcOP framework internal
event handling

Pushing new/updated
AcOP component

Distributing group secrect
for the trusted coaliton

� � � � � � �� � � �� � � �� � � � � � � � � � � � �

Accessing device resources
and Cloud services via
resource manager

Figure 10: Architecture of our Fog Computing based prototype implementation of AcOP.

28

coalitions can be formed. Further, the Cloud can naturally act as a coordinator

by running the Collective Execution framework (as depicted in the figure) but

this is not the optimal solution in most cases. Most importantly, it is not

necessary to use the Cloud in the AcOP programs, since the devices can execute

the AcOP programs collectively without connecting to the Cloud.

The network layer is the middle layer in the vertical dimension. The new

runtime enables collective executions on the network level, and horizontally

there can be multiple networked devices that collectively execute the same

AcOP programs. For AcOP programs, the network layer is often the optimal

location from where to allocate the coordinator, since many edge-layer devices

are in any case connected to the same wireless local area network (WLAN).

The network layer also provides important horizontal inter-connectivity for

other networked devices, such as smart home gateways. While such devices

might also be reached directly from other edge devices through the Internet

connection, such a topology increases the communication overheads and

introduces possible backdoors as well as other security risks. Also, the

infrastructure devices typically have a fixed Internet connection and power

supply, which may be demanded by some AcOP programs.

The network edge layer is the bottom layer of the new AcOP runtime in

the vertical dimension 7. This is the layer that is closest to people and their

devices; hence, it makes sense to locate collective executions as close to these

7 Note that it can be argued where the line between the network and network edge layers

goes. Today’s mobile phones are also portable gateways since they are directly connected to

many other types of devices, like wearable gadgets, cars, and home appliances (but also other

mobile devices). Mobile phones can also act as mobile hotspots, thus acting similar to simple

WLAN routers. In our model, the mobile phone is considered to belong to the network edge

layer for two main reasons. First, mobile phones are portable devices, which separates them

from the fixed network infrastructures, thus allowing people to be continuously “connected”

in any location. Second, humans directly and continuously interact with these devices. Hence,

we consider this bottom layer as the layer for the interaction to take place as was depicted

already at the begging of this article in Figure 2.

29

devices as possible. The new runtime enables the leveraging of multiple edge

devices for collective executions, either directly (in device-to-device topologies)

or indirectly (with the above layers of the architecture), or alternatively by

leveraging, e.g., cellular connections. Therefore, it is possible and sometimes

optimal to collectively execute the AcOP programs without the above network

or Cloud layers. For instance, in some areas there may be security risks for

the public WLANs, or the network (infrastructure devices) may be too busy

to serve as a coordinator. Other examples include cases where, for instance,

content is held only in the possession of trusted edge devices.

5.2. Details of New Runtime Framework

The state is the key construct in building human-centric and user-friendly

interactions—breaking the ‘status quo’ : The qualities suggest that the

executions must be inclusive—each user has a state, but yet social—all of the

user states are utilized collectively. Being able to access the state becomes a

precondition for proactive executions, as confirmed by our previous implemen-

tations. These requirements set challenges for the programming model, its

runtime environment, and the communication framework. To resolve these

challenges, AcOP interactions are now based on the notion of collective

executions. Because of the coalescence and disintegration, implementing joint

activities becomes intuitive and much more straightforward, since direct access

to all of the relevant and most recent state information is available (see line 29

in Figure 9). Communication-wise, the propagation of all the collective

execution states is handled by our coalition framework, which operates behind

the collective executions. Figure 10 depicts how the application-specific state

variables, as well as the user and device states, are synchronized by different

components of the framework that leverage the trusted device coalition. All of

this empowers the developer to focus on implementing the actual behavior.

The coalescence requires being able to merge the application-specific

state variables as well as the user and device states with each other when the

distance (whether physical, social, or other) is short enough. The actual

30

Sensation

Coordinator
action

collective execution

D1

-state u1

-state
D2

-state

u2

-state

D3

-state

u3

-state

D4

-state

u4

-state

D5

-state

u5

-state

collective execution

D1

-state u1

-state
D2

-state

u2

-state

D3

-state

u3

-state

D4

-state

u4

-state

D5

-state

u5

-state

collective execution

D1

-state u1

-state
D2

-state

u2

-state

D3

-state

u3

-state

D4

-state

u4

-state

D5

-state

u5

-state

collective execution

D1

-state u1

-state
D2

-state

u2

-state

D3

-state

u3

-state

D4

-state

u4

-state

D5

-state

u5

-state

� � � � � � � �� � � � � � �� � � � � � � � �

Sensation

Sensation

Collective Execution framework
can run in the Fog: on device,
network node, or in the Cloud

Trusted Device Coalition framework
allows devices synchronize the state

Figure 11: Updating distributed state with Trusted Device Coalition Framework.

merging can be implemented in various ways. Figure 11 indicates our

preferred option and Figure 10 shows that there is a dedicated component for

observing the threshold for coalescence and disintegration (as was discussed

above in Subsection 4.3). When coalescence or disintegration is to take place,

the component notifies the Coordinating Manager component to arrange new

elections for choosing a new coordinator. Here, one entity is first chosen as a

coordinator, and the state changes are relayed and merged with the state of

the coordinator; then, they are broadcasted to the coalesced entities. On the

other hand, disintegration means that the state values are no longer relayed to

the disintegrated entities. Compared with many real-time collaborative

applications, somewhat up-to-date state information is sufficient, since one

entity at a time is using it for scheduling the actions. Previously, keeping the

application state up-to-date has been studied for example in [25].

The role of the coordinator means that one entity, whether a network

edge device, a Cloud service, or a network node, is in charge of the collective

execution and scheduling actions. Figure 10 illustrates how the coordinator

selection is performed with the new AcOP framework. Selecting an entity for

the role of the coordinator is done by voting. When the Coalescence &

Disintegration Handler notifies the Coordinating Manager component that

coalescence or disintegration is taking place, and the Coordinating Manager

31

notices that the coordinator is missing, it arranges elections by sending a

message to others. The Coordinating Managers in the other devices then reply

with an election message. In the classic Bully algorithm [26], simply a device

with the biggest id number is elected to act as the coordinator, which in some

situations offers a decent solution. However, the election messages can also be

accompanied with a quality attribute describing the entity’s qualification for

acting as coordinator.

In AcOP, it is natural to pick the device with better connectivity support for

the role of the coordinator – in other words, the device that acts as the group

owner in a trusted device coalition. Another option is to select the entity with

the most computing power available and having a fixed power supply. (In our

current prototype setup, we have WiFi routers where Raspberry Pi 3 computers

are cabled to represent the Fog Computing infrastructure). In cases where

portable devices need to select a coordinator, the one with the most remaining

battery life is selected, or in some cases (when the Internet connectivity is not

available), the one that already has the most recent versions of the required

AcOP components loaded from the store. Going further, we expect that the

coordinator may also be selected based on the role of the entity in action: if

some entity has a central role or requires faster coordination than the others, it

should then act as coordinator.

Allocating resources for interactions in the Fog environment is handled

by the Device Resource Manager component of the new framework (depicted in

Figure 10). The manager detects which device resources (e.g., a screen, speaker,

or microphone) are not reserved by any other process or the AcOP capability.

With our past implementations, we learned that the devices and their resources

continuously appear and disappear; hence, it cannot be ensured that specific

resources remain allocated for the desired purpose over a long time. Also, the

user and the device must be enabled to take control over the resources when

desired (e.g., an incoming call to a mobile phone requires specific resources).

For the above reasons, we come to a conclusion that reserving the resources

for interactions has to be considered holistically. Hence, the new framework

32

follows the policy:

1. Reserve resources only during the action execution. Joint interactions are

now ephemeral to ensure the required resources for the interaction.

2. An action execution is aborted if the resources are lost.

3. An action can be re-scheduled when the required resources are

available again.

In the new implementation of AcOP, it is typically not a problem to abort

an action execution, since the actions are targeted to be ephemeral (consider the

above example action that aims to set a specific photo on the device screens). In

the previous AcOP implementations, the actions were rather long-lasting (e.g.,

the entire photo sharing session was one action). This caused many issues while

canceling the action executions. To recover from these issues, we experimented

with transactions and counter-actions to undo the effects caused by the aborted

actions. However, implementing such transactions was challenging and this

approach was thus abandoned. In the new AcOP, aborted actions can instead

be re-scheduled when the resources are available again.

We acknowledge that enforcing the resource allocation policy above requires

the developers to follow certain guidelines:

1. Action’s casting method makes sure that devices with adequate and free

resources have been cast in their roles.

2. Action’s body part (joint operations that require device resources) should

be kept as ephemeral as possible. The abstract joint behavior of the

devices should remain on the collective execution level.

3. Ultimately, it is the action’s guard responsibility to ensure that the

appropriate resources are free for the interaction.

4. The framework will abort the action execution if the required resources

are lost. Aborted action can be re-scheduled when the resources are

available again.

33

Coordinating the interactions is done by executing the actions. Since

interactions with other devices are programmed with the JavaScript defined

AcOP capabilities, this allows the developer to focus on the actual business

logic and user experience. In the traditional mobile application development,

the programming is rather communication-oriented since the developer is

required to implement communication and state handling separately. In

AcOP, the programmability is achieved with the runtime’s entity stubs that

represent the entities and their current states as well as take care of handling

the capability method calls through the coalition framework.

Deploying the components to the Edge and network devices proceeds via

a centralized Cloud-based store with the Component Manager of the framework.

This resembles current web applications, but instead of webpage components,

the store keeps AcOP interaction components, actions, and capabilities. When

coalescence takes place, missing AcOP components can be pulled from the store

on the user device (depicted in Figure 7 (b). To facilitate the development, we

are integrating to the store a Web-based environment that allows the developers

to implement AcOP components with JavaScript. Since many of the capabilities

need to use the native programming language of a device for accessing the

hardware, the Web IDE must then support generating stubs that make it a

straightforward copy-paste as we have done in our previous implementations8.

5.3. Establishing Trusted Device Coalitions for Collective Executions

The PhotoSharing collective execution considered in this work provides a

demonstrative example of how the Fog operation may be facilitated in a real-

life scenario. One aspect left behind is how to make this execution more secure,

or enable communication in cases where the operator network is not reachable.

From the information security perspective, the network operator is

considered as a trusted authority responsible for initial security-related

8https://vimeo.com/89557849

34

actions [27]. The recently-standardized solution named ProSe [28] already

allows maintaining the coalition factor not only for the logically grouped users

at a distance from each other but also for the users in proximity, which can

technically utilize direct short-range links instead of expensive cellular

connections (from the operator’s perspective). This mode of cooperation is

known as D2D capability [29].

The main difference between the conventional peer-to-peer and D2D

communication is the presence of the centralized “orchestrator” in the latter

case [30, 31]. The Cloud control is responsible for managing the connectivity

and security of the executions, i.e., assisting in locating the matching users in

proximity to the selected user; initializing and maintaining short-range

connections; distributing security-related information; and considering user

mobility [32]. Most of the functions of the orchestrator are already integrated

into the cellular (3GPP LTE) core, but security management remains

unclear [33].

Conventionally, centralized systems are controlled by utilizing Public Key

Infrastructure (PKI) solutions that generate and redistribute the secret and

public keys for continuous operation while under the network coverage [34].

Since the network functionality at the cell edge may be unstable [35], these

traditional approaches should be enhanced to fulfill the connection reliability

requirements even in cases where one or more collaborating devices lost their

connection to the coordinator.

Operation in cases of unreliable connectivity to the orchestrator leaves us

with three scenarios based on the user connectivity type, as it is shown

in Figure 12.

Fully under network coverage. In this scenario, all the users have a

stable connection to the Cloud that has full knowledge of the system opera-

tion. Here, rebuilding or modifying the coalition from the information security

perspective is fairly straightforward and to be managed by the infrastructure

network. The users can group for collective executions, by including new users

and excluding the unnecessary ones. While creating the coalition, the

35

Proximity photo sharingProximity photo sharing

Access via relay

Cloud accessRemote cloud access

� � � � �� � � � � � ��
� � � �� � � � � �

No connectivity

Figure 12: Structure of trusted device coalitions operating behind collective executions of

AcOP.

orchestrator generates the group secret and distributes it between the current

coalition users. This further allows them to ‘vote’ inside the group to, for

example, let a new user join the photo sharing group or make any other

collective decision requiring the approval of the significant proportion of users

within the group. The so-called secret ‘shares’ allow users to continue with

collective executions both in proximity (using short-range wireless interfaces)

and remotely (using cellular or other longer links) if required.

Unreliable connectivity. In case one or more users accidentally leave

cellular coverage but are still in proximity with at least one user with a reliable

connection, they can keep the execution running via the device with an active

network connection as a relay. Such operation requires additional work related

to ensuring the relaying node trust [36, 37]. For simplicity, we imply that all

the remote user’s sensitive data can be tunneled directly to the coordinator [38].

Therefore, the logical operation of the coalition remains similar to the first case.

Isolated operation. In the case where the centralized network is not

reachable by any of the devices in the group, the executions, connections, and

security management are delegated to the devices themselves [39]. This

36

scenario requires much higher levels of device involvement from both

computational and user perspectives. In the first place, the users are now

responsible for deciding if a new user is eligible and trustworthy to be accepted

to an existing group. The social tier may help automate this process to some

extent [40]. Since the connection to the orchestrator is not available anymore,

D2D connectivity is supposed to operate in ad hoc mode where the decision

making is distributed among the coalition users. The previously generated

coalition secret should be kept unchanged for the subsequent proofs of the

coalition validity after any of the active nodes reach network coverage.

Trust between entities. Trust in our system is based on the well-known

PGP concept [41]. Generally, the level of trust of a selected pair (device 1-

device 2) is represented in numerical form as a variable distributed between

zero and one. It could be obtained as multiplication of trust levels for already

known devices as t = w01w11 + w0,2w1,2, where wi,j is the level of known trust

between i and j devices. Therefore, if t =< 1, then the new device is assumed

to be trusted. By this means, each device of the network can build a tree of

trust based on other known trust relations of the devices.

Since our system was designed to be fair in terms of voting by default and

is based on Lagrange polynomial mechanism, each device has one vote per

potential coalition. On the other hand, there may be situations when the

weight should be variable – especially for more complex systems with a must

for flexible decision making. Thus, our system is equipped with a mechanism

allowing to have more than one vote per device, i.e., allowing to bring more

impact on the coalition decision. The following set of voting mechanisms could

be implemented in our framework: (1, n) – any individual device can make a

decision for the entire group; (n, n) – all devices are needed to make a decision;

(k, n) – any k devices can make a decision; and weighted (k, n) – where k votes

are needed to make a decision.

Therefore, the ultimate trust in our system is only set for the centralized

trusted authority, which is only present during the device coalition initialization.

If the connection to the centralized authority is reliable during the operations

37

with other devices, the trust relations should be obtained through the authority.

On the other hand, the devices can operate and form their own trust trees

afterwards based on their observations. After forming its own tree of trust, the

device in our framework may automatically decide if the other node is trusted

or not. More details on trust related to our framework are detailed in [42].

We developed and tested this solution first in lab environment [43] and later in

a live cellular core by showing the possibility of maintaining the coalitions on

the fly [44].

It should be possible to run collective executions not only in cases of

continuous network availability but also when the infrastructure becomes

unavailable due to various factors. Assisting such connectivity from the social

proximity perspective is a key enabling technology for collective executions

and coalescence.

6. Evaluation and Discussion

In this section, we evaluate the proposed AcOP model and discuss how it

meets the qualities that we identified in Section 2. We also discuss how AcOP

responds to the Fog Computing challenges presented by Bermbach et al. in [11].

Moreover, we provide a comparison with the old model presented over five years

ago in APSEC [1].

6.1. Comparison with Original AcOP

Changing the execution from centralized Cloud services to a decentralized

and distributed regime performed by the devices in the Fog environment has a

dramatic impact on our programming model. In Table 1, we describe how the

most essential concepts have been changed in the original Cloud Computing

based AcOP model [1] compared with the current Fog Computing based

AcOP model [13].

Table 1: Comparison between Cloud Computing based AcOP [1] and

re-designed Fog Computing based AcOP [13] models.

38

Concept Description and Comparison

Collective

Execution

The original AcOP did not have this concept. Instead, the

executions took place on several Cloud-based services, each of

which focused on a specific task (e.g., scheduling, orchestration,

etc.). As the name suggests, collective executions are done

jointly by the devices in decentralized and distributed manner.

Coalescence /

Disintegration

The original AcOP did not have these concepts since the

system did not have the notion of collective execution.

Trusted device

coalition

The original AcOP did not have the concept of trusted device

coalitions. Instead, all the data was communicated from device

to Cloud and the action-related instructions came from Cloud

to devices. In the Fog, the devices form coalitions with other

devices that can be trusted.

Action

Action is used for modeling joint operations between multiple

machines and humans. While originally the actions contained

much business logic, now they are rather short-lived

operations. However, the main difference is how the action is

composed, see below.

Action

precondition

Previously, an action precondition had an important role as

these were evaluated continuously to check if the action can be

executed. Presently, this functionality is achieved by observing.

Action role

The participants of an action are variables into which the

devices need to be assigned. This concept has remained the

same.

Device

From the developer’s perspective, the device is a set of

capabilities that are owned by a person or an organization.

The concept has not changed much since the original AcOP.

Device

capability

The ability of a device to carry out the task or functionality

associated with the capability. This concept has not changed.

However, now the operations of capabilities suffer less from lag

since communication happens directly between devices.

39

Trigger

Previously, AcOP had a data structure named a trigger for

relaying the scheduling-related information between the Cloud

services. Currently, there is no such concept, since the

scheduling is done differently.

Scheduling

The task of attempting to start the execution of an action;

aims to find a set of devices and assign them to the action

roles, so that the action precondition is satisfied. Scheduling

still has the same goal, but the implementation is

fundamentally different with the new concepts of perception,

casting, and guard.

Sensations

(Dynamic

information)

In the original AcOP, all the important raw data was reported

to the remote Cloud, and it did not have the concept of

sensations. Presently, the data is refined on the devices to

sensations and the changes are shared directly among the

trusted devices.

6.2. Revisiting Qualities of Human-Centric Fog Computing

Table 2 revisits the qualities of human-centric Fog Computing identified in

Section 2. We discuss and evaluate how the Fog Computing-based AcOP model

meets these qualities.

Table 2: Revisiting qualities of human-centric Fog Computing.

Quality Evaluation

1: Be concerted

With its clear programming constructs, AcOP leads the developers

away from today’s communication-oriented programming for the IoT.

Actions and capabilities are especially targeted for defining joint

operations between multiple devices and humans. On the other hand,

device coalitions make sure that the actions and sensation sharing take

place only between trusted entities.

40

2: Be proactive

The developers can now program the collective executions to anticipate

the events – sensations produced by the devices – and then define how

to react upon these events by scheduling actions. Events that are not

known by the system can be inspected with exception handlers, but

this support is limited to what the developer has programmed the

execution for while an exception or error occurs. Hence, it is hard to

prepare for all types of unexpected events in any other ways except

perhaps warning the user, re-scheduling the action, or scheduling

another action.

3: Be inclusive

As the name implies, the fundamental idea of collective executions is

that a trusted set of devices together execute the same application.

Hence, it includes the data (sensations) and preferences of each owner

and device that takes part in the execution.

4: Be social

The distance in physical and social dimensions (as well as in any

other dimension) are the key factors of how the collective executions

behave. The distances define when coalescence or disintegration takes

place, which again reflects on the trusted device coalitions underneath.

5: Be adaptive

Collective executions are designed to adapt to the changes in the

computing environment. Coalescence and disintegration are the key

phenomena in this process since these enable the devices to start

sharing the sensations and preferences with their surroundings.

Furthermore, the sensations that trigger actions then cause a selection

of the best set of devices and resources for specific roles of the action

with the casting methods.

6: Be humane

The re-designed AcOP enables direct communication between all types

of devices, and all the raw data is not communicated to the Cloud as

in most IoT-centric programming approaches. Hence, the interactions

suffer from minimal communication lag. This is important since it

improves the interactions between the computers and humans, as well

as makes the user experience much more fluent (consider, for instance,

human reaction time, which is around 150 ms for visual stimulus).

6.3. Discussion on Key Research Challenges of Fog Computing

Bermbach et al. in [11] introduce eight high-level research challenges for

discussing the state of the Fog Computing research. Here, we employ these

challenges to discuss the status of our AcOP model.

RC1: New abstractions. According to Bermbach et al., middle-ground

abstractions that expose sufficient details on the distribution and physical lo-

cations are needed. Our aim with the proposed AcOP model is to specifically

41

aim for offering such abstractions that enable programming applications for

the Fog Computing that can leverage its full potential. Bermbach et al.

propose Serverless Computing approaches to this task. Our AcOP model

offers a similar method for coordinating the devices with the high abstraction

level capability concept. Although a capability can also be implemented with

the existing Serverless Computing framework (e.g., AWS Lambda) on some

entity, this is not what we prefer [45]: the idea is to leverage the users’ own

devices to act as smart gateways and perform the coordination on them, while

using the Cloud for heavy computation when the data is already located there.

RC2: Capacity management. The second challenge in [11] is managing

the resources of the devices compared with Cloud Computing, where the

computation power is typically considered nearly infinite. In our present work,

the particular meaning of the collective execution is this capacity

management: while each device only computes sensations and sends this high

abstraction-level information to other participants of the collective execution,

the load is minimal for these devices. The role that is the heaviest in terms of

computation belongs to the coordinator. As described, the coordinator is

selected via elections, and the quality attributes are used in the task. This

helps balance the load.

RC3: Modularization. Bermbach et al. suggest that microservice-based

approaches are for the future Fog applications (as opposed to the

service-oriented Cloud Computing architectures) [11]. The introduced AcOP

can be seen as a special form of the microservice architecture. Alternatively, it

can be considered that the actual implementation operates on top of

microservices: each collective execution is regarded as a microservice that uses

capabilities, which can be considered as a microservice as well. Hence, the

modularity in our approach is similar but has more abstract-level building

blocks for defining how the interaction and perception coordination can be

implemented using microservices. In the actual implementation, we tested the

use of Docker containers for deploying the AcOP components to Raspberry Pi

as well as to AWS EC2 instances.

42

RC4: Fluidity. To leverage the full potential of the Fog, Edge, and

Cloud, it becomes obvious that the programming model needs to embrace the

notion of fluidity, that is, the ability to start/stop and liquidly move the

application modules across the nodes, as well as clone these modules as has

also been discussed by Bermbach et al. in their paper [11]. As a possible

solution, Bermbach et al. mention: “A convenient way to address this fluidity

challenge is to strictly separate stateful and stateless components.” This kind

of separation and fluidity is a crucial factor in our AcOP model9.

RC5: Graceful degradation and fault-tolerance. Bermbach et al. say

that fault-tolerance becomes challenging in Fog Computing compared to Cloud

Computing [11]. We agree that with multiple nodes that connect and disconnect

to each other freely, there are more potential failure points in the system. On

the other hand, Fog Computing also offers opportunities to support functional

safety: if one device fails, other devices can then stand in. Naturally, this type

of recovery actions may not always be suitable, especially if a critical service

node fails. In AcOP, we offer contingency handlers (essentially JavaScript try-

catch block with access to the collective execution state) for detecting errors

both on the device-end as well as in the coordinator. These handlers can then

be used for recovering from misbehavior, replacing a node with another node,

rescheduling an AcOP action, or trying a different action. As a final precaution,

the handler can be used for notifying the user(s) if the recovery fails.

RC6: Benchmarking and testing. We agree with Bermbach et al. as

they claim that testing and benchmarking in Fog Computing is highly

challenging [11]. Naturally, arranging tests in controlled experiments can be

conducted, but this hardly gives a realistic idea of how the system will operate

in real-life situations. We acknowledge that testing our approach is hard, since

9It is worth mentioning that our research team has strong experience in liquid multi-device

software, where the fundamental idea is that the software follows the user [22]. The same

ideology stands behind AcOP, as the idea is that the AcOP components can be dynamically

loaded at the entities around the user by enabling interaction and perception.

43

the interactions take place proactively in an ad hoc manner and are not fixed

to any location. Hence, the network quality has a high impact on the quality

of service and the quality of experience. For the purposes of testing our

system, we implemented an engine that runs on a mobile device and generates

input data to the collective executions. While this may not be fully sufficient,

it helps to test the proactivity of the system in various locations and

situations.

RC7: Security. There are certain security issues related to Fog

Computing, as discussed in [46], and Bermbach et al. mention them as one of

the research challenges in Fog Computing. The main reason behind these Fog

Computing related issues is that direct communication between the devices

without a trusted authority, or any other trusted entity standing between the

devices, makes it challenging to trust the entities. An alternative view on the

collective executions is via the trusted device coalitions that operate behind

the scenes and underneath the collective executions. For this purpose, we

introduced the trusted device coalition framework, which enables forming

direct D2D connections proactively and based on the social relationships

between the owners of the involved devices.

RC8: Privacy. According to Bermbach et al., Fog Computing brings

challenges and opportunities that are related to privacy. Indeed, the latter is

cumbersome in ever-changing environments, where different devices come and

go nearby. Fortunately, we have the trusted device coalition framework

operating behind the collective executions. This means that connections

between entities are established only if they can be trusted. Additionally, the

framework allows considering the social relationships between the owners,

which further supports the developers as they can schedule an action only

when certain social relation criteria are met.

6.4. Overhead Analysis

The overhead of the collective executions can be viewed from two

44

perspectives, the software perspective, and the communication perspective.

The software is used for controlling the communication, and hence most of the

overhead originates from the communication and device coalition

management. In what follows, we discuss the details of our implementation

that cause overhead, where the overheads reflect the programming model side.

6.4.1. Coalescence and Disintegration Overheads

A crucial feature of collective executions is the ability to coalescence, that

is, to merge the ongoing executions’ state and data, which is achieved with

trusted device coalitions. Coalescence allows the devices to join while

disintegration permits them to leave trusted device coalitions. Naturally, this

process causes some overheads. From the framework implementation

perspective, coalescence and disintegration require reconstructing a new secret

for the coalition devices and then reconstructing the coalition with this new

secret. The overhead caused by reconstructing the secret depends on the

number of new devices joining the coalition, or the number of devices to be

excluded from it. To investigate this, we conducted measurements with

modern non-restricted smartphones. The respective results are visualized in

Figure 13, where one can observe that it takes up to 100ms to produce another

point for a newly-joining device or for excluding an existing device from the

coalition if the number of devices required to participate is higher than 50%.

It directly affects the trust factor of the coalition as a trade-off between the

system operation complexity and the selected threshold proportion of devices

required to participate in the coalition reconstruction procedure. The time of

device inclusion/exclusion may vary dramatically as a result of the desired

level of trust between the voting devices.

Clearly, it is possible to implement a much more lightweight

communication framework by leveraging e.g., plain WiFi connections (as we

did in some of our previous work [47]). However, trust is a crucial factor of

collective executions, which is instrumental to share one’s data with other

45

5
10

20
0

40

60

Re
qu
ire
d
pe
rc
en
to
fd
ev
ic
es

80

100

100

Number of devices Time needed to
reconstruct the coalition, ms

0 5 10 15 20
Number of devices

0

20

40

60

80

100

120

Ti
m
en

ee
de
d
to
re
co
ns
tru
ct
th
ec

oa
lit
io
n,
m
s

Required for reconstruction
percent of devices

100%
75%
50%
25%

50
15 0

Figure 13: Dependence of coalition reconstruction time on the required proportion of devices.

devices and users securely [13].

6.4.2. Fog Computing Environment Overheads

The Fog Computing environment comprises various types of devices, from

mobile gadgets to powerful full-fledged computers, which means that their

computing power varies significantly. We performed tests in a real-life

environment to evaluate the operation of our framework in terms of timing

overheads. For the server side, a CentOs virtual machine with two virtual

processors Intel(R) Xeon(R) CPU X5472 both running 3.00GHz, 6MB cache

size was used. As a mobile device, a smartphone with a Qualcomm

Snapdragon 400 1.4 GHz dual-core processor (8930AA) was selected. A

comparison to the experimental results employing the RSA algorithm using

OpenSSL is summarized in Table 3.

Table 3: Execution time of security primitives.

Primitive Powerful node, µs Mobile device, µs

RSA 512 public key 7.28 109.3

RSA 512 private key 99.95 1157.8

RSA 1024 public key 19.57 305.81

RSA 1024 private key 352.38 5991.61

RSA 2048 public key 66.83 953.56

RSA 2048 private key 2158.89 35987

Random variable generation 7.23 24.95

46

The results obtained with a more powerful server-side processor are

approximately 10 times better than those produced on the edge device.

Moving computation to a more powerful device may generally reduce the

overall delays experienced by the user. The results clearly indicate how the

computing power and the level of security cause different amounts of overhead.

Since security is another critical element of collective executions, it is essential

to enable various levels of encryption in different applications as well as

consider which devices are more likely to participate in collective execution.

Table 4: Coordination latency samples with various devices and communication

technologies.

∆ti Android (BT4) Public WiFi Private WiFi 3G iOS (BLE)

1 55 77 83 429 59

2 57 91 83 421 71

3 57 73 84 448 43

4 58 72 73 530 67

5 60 74 77 579 63

6 57 75 79 420 62

7 61 70 74 422 46

8 56 71 136 458 48

9 57 80 77 432 55

∆t 57.4 75.2 84.9 457.7 58.4

σ 1.84 6.46 18.39 53.70 10.06

6.4.3. Coordination latency

The Fog Computing environment provides various communication

technologies for direct D2D as well as for indirect connectivity, where data

travels via the network infrastructure (e.g., LAN or Internet). We tested how

these technologies affect the coordination process and the respective latency.

In these tests, one device was selected for the role of a coordinator to manage

another device (e.g., a mobile phone). The coordinated device was responding

to the coordinator immediately and only plotted timestamps in these tests.

47

Table 4 represents a sample of ten coordinated events with each communication

technology under consideration. The results show that, on average (∆t), there is

not much difference when using regular Bluetooth (with Android) or Bluetooth

Low Energy based communication (with iOS). However, there is much more

lag in coordination when the coordinator is located in the network. When data

travels over the 3G network, the delay becomes a problem for many applications

and there is much more variation (σ). Therefore, it is vital for the trusted

device coalition framework to provide direct D2D communication, even though

establishing such connections may cause some overhead as described above.

6.4.4. State and Data Synchronization Overhead

The primary function of collective execution is to enable the sharing and

synchronize the state. As described above, this feature is achieved with trusted

device coalitions that allow for exchanging data – or sensations – between the

devices in the same execution. Transferring such data requires communication

resources, whereas keeping the up-to-date data causes overhead.

However, the idea is to only have the relevant subset of the participating

device and user states to be synchronized between the participating entities.

Moreover, the data is shared and synchronized first while coalescence takes

place, and then only when the state changes. Compared with our previous

implementation and many other similar stream processing IoT approaches, the

overhead is now much smaller as there is no need to transfer all of the data to

the Cloud continuously.

Similarly, the new concept of sensation significantly reduces the

communication overhead, since the computing approach is now edge-oriented

rather than Cloud-based computing. The devices are now responsible for

analyzing, combining, and generating meaningful sensations from the raw data

all by themselves, and these sensations are then synchronized with other

devices with the trusted device coalition framework.

As a concrete example, consider forming the social proximity graph – a very

48

central feature of collective executions and coalescence. Previously, the devices

communicated their situational data to the Cloud service. In the environment

where five devices are constantly broadcasting such data (BLE UUIDs and RSSI

values in JSON format), this means approximately 221 Bytes per a chosen

interval (how often the graph is to be updated). If the data were updated once

in five seconds, this would mean transferring 0.16 MB over an hour by each

device. This quickly makes the Cloud a bottleneck since there can be numerous

devices communicating such data.

Presently, the devices themselves combine Facebook and other social media

data by directly generating a more meaningful social proximity graph, where the

distances between entities are characterized by the physical distance as well as

by the social distance. When a change in the graph takes place, this generates

a sensation, and only such sensations are shared and synchronized between the

devices. As an example, if the social proximity graph comprises five devices (the

device id together with the social and physical distances), and it changes every

5 seconds, synchronizing this graph over one hour should require the transfer of

approximately 0.08 MB of JSON data between the collective executions. Hence,

the payload size is about a half and it already contains the necessary information

about the distances. Moreover, there is rarely a significant change in distance

sensations every 5 seconds, which reduces the communication even more.

Together with synchronizing and sharing, using the subset of device and

user states is a much-improved strategy for reducing the communication over-

head. Previously, the constant streaming of the situational data to the Cloud

drained the battery of the mobile device fast, also causing unnecessary con-

sumption of communication resources. Naturally, there is still some overhead

and redundancy in the synchronization between different AcOP programs. In

the future, we will investigate how such overhead may be further reduced.

6.5. Feedback and Experiences from Developers

The described framework in its present form remains under active

development and it has not been made available for other developers yet.

49

However, our explicit goal is that at their conceptual level, the models and

ideas as well as the facilities of the tool will be similar to those of the previous

generations of the system. Hence, we expect that the developers’ experience

will be in-line with our previous studies which we have summarized in Table 5.

To pinpoint the differences between the proposed system and its earlier

version that has been evaluated by developers, consider the following. At the

implementation level, the difference in the toolchain is that our previous work

on developer experiences has used a central repository as the means of

deployment. With the next-generation tools, we aim to enable more

fine-grained deployment, which takes into account the specific features of the

Edge and the Cloud.

Table 5: Summary of developer experiences from the perspective of human-centric

Fog computing qualities.

Summary of the experiment and observa-

tions

Preliminary Conclusions

Q
u
a
li

ty
1
:

B
e

c
o
n
c
e
rt

e
d We hired a team of software engineering students

in order to study how developers adopt the AcOP

approach [48]. All study participants agreed that

the overall idea of AcOP was easy to grasp and

communicate. Furthermore, participants with de-

velopment background found that the used tech-

nology was rational and easy to deploy to prac-

tice, to the extent that they started hands-on

development immediately without waiting until

the end of the presentation. The participants

found it straightforward to coordinate the devices

with the help of the AcOP framework and the

communication with the devices was made very

easy. They believed that this kind of approach

to coordinate all the types of devices around the

users could be utilized in several other systems, in

which device coordination is needed. The partic-

ipants approved of the methods that AcOP pro-

vides for implementing interactions.

• The programming model offers ap-

propriate abstractions for developers.

• AcOP offers appropriate means for

coordinating functionalities between

several devices.

• The programming concept of action

is a clear unit of modularity.

50

Beńıtez, a junior-level developer, also agreed

that the AcOP provided the required program-

ming concepts and tools for implementing ap-

plications [49]. However, he found the biggest

challenge to be the minimal documentation, and

hence he wrote a tutorial that guides build-

ing five different applications with the AcOP

model. The tutorial has been useful for other

developers later on (http://orchestratorjs.org/

tutorial.pdf). Also, a new video tutorial was

later on created by the authors (http://vimeo.

com/nikkis/gadgeteer).

• Developers who start experiment-

ing with new programming approaches

prefer tutorials, and these should be

provided.

• An open community is important

since the developers can support and

help each other.

• AcOP does not yet have an online

community, but it does have tutorials.

Q
u
a
li

ty
2
:

B
e

p
ro

a
c
ti

v
e Jarusriboonchai et al. used Action-Oriented Pro-

gramming model to conduct Wizard-of-Oz user

studies, a typical method in HCI research [50].

The researchers wished to create a controlled en-

vironment to study how humans perceive novel,

proactive and human-like interactions with mo-

bile devices. Behind the scenes, the researchers

were manually triggering or allowing the system

to trigger specific interactions between the de-

vices and humans and then observing the situa-

tions with cameras. The participants were also

interviewed afterward. The study proved that

AcOP could also be used for testing proactive in-

teractions, which often is a very challenging task.

• Testing proactive interactions with

IoT is challenging.

• AcOP enables studying proactive

interactions with Wizard-of-Oz user

studies.

Proactivity vs. reactivity of AcOP interactions

was studied by Palvilainen et al. [51] in a lab-

oratory setting by observing and interviewing

the participants. They tested two versions of a

game: One that they started manually, and one

that was proactively started. 74% of the partic-

ipants said that they rather manually start the

game than have it started proactively. The par-

ticipants, however, also took the proactive ver-

sion also positively, and the only negative re-

sult related to the game being considered embar-

rassing since the game was controlled by voice

(actually by yelling, as demonstrated in https:

//youtu.be/T3sL3JYjCEM). In some other types of

applications, proactive interactions were consid-

ered to be very useful. For instance, proactively

sharing one’s sports data with friends devices was

received very positively by the participants.

• The developer must consider what

types of interactions should be started

proactively, and in which interactions

are manual triggering by the user pre-

ferred instead.

• AcOP supports implementing both,

reactive and proactive interactions.

51

Designing and implementing proactive interac-

tions with physical objects without any comput-

ing capabilities with AcOP was tested by a senior

level developer. This previously unreported ex-

periment was done by simply tagging such phys-

ical objects with Bluetooth beacons which al-

lows them to broadcast their presence. As an

example application, the developer implemented

MedicineReminder app, where a mobile device is

used for audio and dialog based input and output,

and where the actual medicine jar is equipped

with a Bluetooth beacon. The application re-

minds elderly people to take their medicine while

they are near their medicine jar and it is about

time to take their medicine. Moreover, if the el-

derly person does not take medicine for some rea-

son, the relatives (or a doctor) can proactively be

informed about this.

• Bluetooth beacon is simple and in-

expensive, but yet powerful tool for

turning interactions with a physical

object proactive.

• AcOP can be used with plain Blue-

tooth beacons.

Q
u
a
li

ty
3
:

B
e

in
c
lu

si
v
e Beńıtez has implemented five different appli-

cations with the Action-Oriented Programming

model, which are inclusive in the sense of Qual-

ity 3, and enable extracting insights from social,

physical, and cyber worlds [49]. The basic idea

of the applications is similar: devices first inter-

act by exchanging some pieces of information that

their owners have specified about their personal

interests. With this information, the devices then

try to find matches and help their owners to con-

nect and interact within the cyber world.

• The AcOP provided the required

programming concepts for developing

inclusive social applications that lever-

age users social media content.

In [1], we introduced PhotoSharing application

which was implemented with AcOP by a MSc stu-

dent in a couple of days. The idea of the app is

to show how content shared in the virtual world

can be shared in the physical world, and its social

situations, when we actually meet our friends and

family: The devices then proactively initiate and

suggest a photo sharing session for their owners

when new photo album has been shared in social

media, and the friends have gathered together in

a cafeteria, for instance.

• The experiment shows that it is

easy with AcOP to include social me-

dia content, and share this content in

AcOP interactions.

52

A PhD student used the trusted device coali-

tion framework to test forming direct device-to-

device topologies for exchanging state informa-

tion between the devices [43]. The experiment

showed that proximate devices could offload large

amounts of user-originated data from the conven-

tional cellular links to be transferred directly be-

tween these devices. Direct communication pro-

vides benefits like security and supports preserv-

ing privacy. In addition, it can be slow to transfer

large files through Internet. Trusted device coali-

tion framework solves many problems of sharing

the state and content to be included in the inter-

actions (Quality 3).

• Trusted device coalition framework

provides a secure way of exchanging

state information between devices in a

peer-to-peer manner since all the in-

formation stays on the possession of a

trusted set of devices.

• While sharing user-generated con-

tent in the Fog environment, the

trusted device coalition framework

provides faster transfer rates and help

with including the content in the inter-

actions.

Q
u
a
li

ty
4
:

B
e

so
c
ia

l Beńıtez was implementing various social appli-

cations with AcOP [49]. Some issues, however,

emerged in his experiments related to becom-

ing aware of other users and devices presence.

Beńıtez used classic Bluetooth technology for de-

tecting other devices (and their owners) in the

proximity and found that this was consuming

much battery. Beńıtez’s solution for the problem

was to use GPS for detecting when the users are

in the vicinity, and then start using classic Blue-

tooth discovery for detecting the actual distance.

However, also Beńıtez believes that in the near

future Bluetooth Low Energy technology has the

potential to void these issues.

• Forming a proper proximity set can

be considered as one of the main chal-

lenges of Quality 4 and in general

human-centric Fog computing.

• BLE solves many issues, but yet

typically prevents proximity detection

while the applications run in the back-

ground.

Palviainen et al. [51] used AcOP to implement

and study a social gaming application for co-

located situations. In many collaborative co-

located applications, the physical topology is an

essential factor since screens, for instance, may

be shared. In their CarGame, multiple devices

show part of a race track. They were successful in

forming the social proximity graph of the devices

with the framework, but it turned out that the

orientation of the graph was hard to detect—in

many cases the social proximity graph was mir-

rored. This led the developers to eventually im-

plement a feature that enabled the users to set

the device topology manually.

• The orientation of the social prox-

imity graph may be an important fea-

ture of social applications that share

resources (Quality 4).

• It may yet be challenging to detect

the orientation of the graph in AcOP.

This should be studied further.

53

Beńıtez used AcOP to implement FollowMe ap-

plication, where the devices first interact by ex-

changing some pieces of information that their

owners have specified about their personal inter-

ests [49]. With this information, the devices then

try to find matches and help their owners to con-

nect and interact within the cyber world.

• Social media content can be lever-

aged to help forming new social rela-

tionships.

• AcOP provides tools for implement-

ing the cyber-social and social-physical

interactions and new relationships be-

tween entities based on the users’ so-

cial media content.

Q
u
a
li

ty
5
:

B
e

a
d
a
p
ti

v
e We hired a team of junior software develop-

ers to implement a social game application with

AcOP [48]. This team evaluated the framework

for Android, and the framework’s ability to dy-

namically load the capabilities during the run-

time and enabled by the user’s preferences. The

developers regarded the idea of loading the ca-

pabilities dynamically very good and important.

Such ability is especially crucial from the per-

spective of Quality 5 as it enables reserving re-

sources from the user’s surroundings. From Qual-

ity 5 perspective it is essential to provide proper

programming concepts that enable the software

execution to adapt to the dynamically changing

environment around the user.

• Dynamic deployment of capabilities

during runtime is an essential feature

from the adaptivity perspective (Qual-

ity 5).

• Frameworks for various platforms

are essential to make the collective ex-

ecutions as adaptive as possible.

• AcOP provides frameworks for

leveraging device resources from vari-

ous platforms: iOS, Android, Arduino,

NET Gadgeteer, and any Node.js and

Python enabled platforms.

Aguilar was not entirely happy with the AcOP

framework (previous version) [52]. He studied

how AcOP can be used for implementing so-

cial games, and found some features to be miss-

ing. Thus, he implemented his own a comple-

mentary Game Composer Framework (https://

github.com/dpares/Game-Composer-Framework) for

AcOP, that offers features like profile manage-

ment (username and avatar), spectator mode,

player disconnection handling, and rematch man-

agement which are essential for the adaptivity

of the collective executions (Quality 5). After

his feedback, AcOP framework has been comple-

mented with a new feature which enables new de-

vices to join ongoing interactions.

• Implementing social games often re-

quire implementing the same features

over and over again. Frameworks can

be used to provide such features for de-

velopers.

• In multiplayer games, it is often re-

quired that players can join and leave

the game dynamically and without af-

fecting to other players. The new

AcOP actions are ephemeral, and the

collective executions directly support

user profiles and devices to join and

leave.

54

Plain trusted device coalition framework has been

tested separately by an Information Technology

PhD student, who was leveraging the trusted de-

vice coalition framework to implement commu-

nication offloading from the mobile phone net-

works to direct D2D communication for a social

video sharing application [43]. The experiments

provided valuable insight into what are the pain

points of WiFi Direct technology. The main chal-

lenge was that the user has to confirm the con-

nections with all the users that are encountered

in proximity every time the connection is being

initialized. This requirement was, however, set

by the Android platform not by the communi-

cation framework itself. Another challenge was

that, on the one hand, there must always be a

group owner to which other devices then con-

nect, and which then makes the communication

dependent on this group owner. On the other

hand, forming a mesh topology requires then hav-

ing multiple group owners, which consumes a lot

of resources. Although the experiment focused

purely on the communication framework, these

challenges interfere with the Quality 2 (be proac-

tive) as well as the other qualities in general.

• The security policies of the commu-

nication technologies in different plat-

forms vary, and these may cause issues

that affect other qualities, especially to

the Quality 2 and 5.

Q
u
a
li

ty
6
:

B
e

h
u
m

a
n
e Ever since the first implementation of Action-

Oriented Programming model, Talking-capability

has been one of the most studied concepts [1,

14]. Talking-capability enables translating text

to speech, giving a human-like impression for the

co-located people. Later on the Talking- capa-

bility has been used by developers for different

purposes. For instance, BusReminder is targeted

to the office or home environment for observing

busses in real-time and then notifying the user

with voice when it is time to go to the bus stop.

Other similar examples are CalendarReminder

and SMSReminder, which can both utilize user’s

other devices and even other users’ devices to

notify about urgent events and emails. These

demonstrations implemented by various people

proved that Action-Oriented Programming could

be used for programming meaningful interactions

between different types of devices and leverage

human-friendly interaction interfaces.

• In some cases, people yet feel it

strange to communicate with voice

with the IoT devices. However, in the

case of physical robots, the voice is

likely the most natural modality for

a human to communicate with them

since this is the way people are ac-

customed to interacting with other hu-

mans.

55

To study more using human-like interaction inter-

faces, a MSc student [53] implemented an AcOP

framework for the Arduino platform. On top of

this framework, he implemented a robot parrot

that was able to detect people nearby and com-

municate with them by voice. In the demonstra-

tion of these AcOP interactions, the software did

run on a Raspberry Pi, which helped to reduce

the communication lag as this turned out to be a

decisive factor in human-machine interactions to

make the user feel more comfortable while com-

municating with the robot parrot. Another inter-

esting finding of this experiment was that people

indeed seem to take it more natural to commu-

nicate in human-like modalities with robots in

contrast to communicating with their mobile de-

vices for instance.

• It depends on the device how peo-

ple prefer to interact with the de-

vice. With physical robots, the more

human-like interactions are typically

preferred.

• The communication lag may affect

how humans feel interacting with a

robot.

• AcOP with its capability concept

provides an easy way to implement

interaction modalities that feel more

natural for humans in various contexts.

More thoroughly the user experiences and the

roles of the interaction participants in social and

co-located situations with AcOP has been studied

by Jarusriboonchai for her PhD thesis [54]. Jarus-

riboonchai categorized such interactions where

multiple devices and people are present in three

types of interactions: inviting, encouraging, and

enforcing interactions. In all of these, the role

of the device is to act as an activity facilitator,

which means that the devices are then managing

and manipulating the users’ interactions. The re-

sults of her studies show that in certain situations

the devices can indeed augment, encourage, and

support the interaction. Yet people may consider

interactions with specific interaction modalities

awkward and especially in social situations.

• The developer and the designer

must carefully consider the role of the

devices in the interactions to make the

interactions feel as natural as possible

to a human to support the sQuality 6.

In addition to the findings in Table 5, there was other learning, which

cannot be overlooked in our long-term development plans. It is not directly

related to the proposed concept and the programming model, but more

associated with developers’ expectations regarding any toolset. In general,

developers found our tools and techniques partly incomplete, but usable for

keen and aware developers. For independent use – without consulting with

researchers – it was understood that the tools and documentation are not

56

mature enough for mainstream use. Furthermore, the heterogeneity of devices

also caused certain problems. We will devote more attention to this dimension

soon, as it is also an inherent requirement of the Fog and Edge Computing.

6.6. Future Work on the Evaluation

We described how AcOP has been evaluated from the different perspectives

over the years, but the evaluation has not been done holistically to AcOP and

the evaluation has focused on earlier versions of programming model. The

overall architecture of the system has changed from a somewhat centralized

Cloud-based solution to highly decentralized Fog-based solution in which the

infrastructure changes dynamically runtime. In addition, there are new and

changed programming concepts that need to be extensively evaluated by

software developers and the implemented programs must be evaluated with

end-users. Therefore, there are limitations regarding to the validity of the

presented evaluation, and for this reason, the validity of the evaluation must

be considered critically. More holistic evaluation is a topic for future work

including testing AcOP programs that are based on the six human-centric Fog

Computing qualities is one of the critical research topics to focus on.

At a concrete level, we are studying how AcOP applications based on the

presented six human-centric Fog Computing qualities should be tested and

evaluated. Testing AcOP programs differs from testing traditional distributed

software and systems. While in general distributed systems are hard to test,

the human-centric qualities set entirely new perspectives on the evaluation.

For instance, the qualities Be proactive and Be adaptive have turned out to be

challenging to test. For this purpose, we record data from real-life situations

and feed this to a test-bed consisting of specific devices and networks. Such

testing will only help to repeat different situations, which is essential for

developing the applications. However, in real life, the data and the system

structure will continuously change, and thus the actual evaluation of any such

AcOP program following the qualities can only be done during a long period

and by multiple users providing constructive feedback.

57

Other qualities set similar challenges for the evaluation: Be humane, for

example, is somewhat subjective to the person experiencing the interaction and

thus can be hard to measure. It is possible to develop AcOP programs for

specific use cases, and then evaluate the programs with end-users by interviewing

them and then, for instance, by comparing how humane various people consider

the developed programs. It must be noted, however, that the Fog and IoT form

a dynamic computing environment where the devices around the user change,

which has a direct effect on the user experience.

The qualities Be concerted and Be social have been evaluated in our

previous tests with the communication framework, and with various

experiments by software developers. In general, the use of action and

capability concepts has not changed much. In this sense, the evaluation can

yet be considered to be valid from the developer perspective. The main flaw

has been the lack of documentation and sometimes improperly working tools.

Based on our interpretation, this has not prevented the developers from using

the framework. Naturally, it is yet essential to keep the documentation

up-to-date to support the developers.

Similarly, the quality Be inclusive has been evaluated but not

comprehensively. The AcOP model now allows collectively handling the joint

state in entirely new ways. Thus, more evaluation is needed with real-life

applications so that we can get feedback on how developers experience the new

concept of collective execution as well as the new framework supporting this

concept. One option to get feedback from outside developers would be to

arrange summer school or code camp where students would be implementing

applications with the new AcOP framework. During and after such an event,

we would be collecting feedback and then improving the framework

accordingly, as we have done previously [48]. Later, when the framework is

stable and mature enough, it would be an excellent opportunity to arrange

tutorials in scientific conferences and then get feedback from other researchers

and to discuss future research plans.

As a concrete application scenario, we are applying the AcOP model in

58

a project on autonomous robotics and creative computing to study how the

autonomously operating robots could form new joint goals with the concept of

collective execution, and then aim at reaching these goals with joint actions.

This will give us more insight into how well AcOP fits forming the shared goals

in a physical and highly dynamic environment.

7. Related Work

In what follows, we describe the different advances in the field of Fog

Computing and Ubiquitous Computing related to AcOP model for Fog

Computing. We give an overview of the related work in three dimensions,

beginning from the network technology level, then continuing to programming

approaches on a general level, and finally ending to concrete platforms and

middlewares that are related to our work.

7.1. Network Technology for Ad Hoc Communication

Mobile ad hoc networks have been emerging ever since mobile devices

started to gain popularity. Mobile ad hoc networking technology can be seen

as an important enabler for Edge Computing and Fog Computing. The broad

adaptation of our trusted device coalition framework could rely only on sys-

tems that are already standardized and partially integrated or ones currently

in the standardization process. Currently, available solutions are not yet ready

to handle the connectivity in a comprehensive manner, which is confirmed by

the state-of-the-art technological implementations. Direct links between

mobile devices are still rather exotic and, for example, Apple or Android users

can already use short-range communication to share data between smart-

phones through AirDrop or WiFi-Direct protocols acting in mesh-like mode

and being mainly utilized for file transfer, but also have excellent capabilities

to accommodate a variety of direct data exchange applications [55].

Utilization of Bluetooth Low Energy (BLE) is also feasible due to its

availability on most of the market-available devices [56] but is highly

59

questionable due to low bitrate and limitations of the collision domain.

Another potential solution is the IEEE 802.11s standard designed explicitly for

WiFi-like mesh networks [57]. It is, however, not very widely supported by

conventional devices. As part of active future candidates to serve our tasks,

IEEE 802.11ad and 802.11ax are perfect ad hoc enabled technologies offering

high throughput and low delay [58]. To summarize, the presence of the listed

technologies only proves that the enabler is already integrated into most of the

devices on the market, there is just a place for an additional level of extraction

that allows the nodes to establish the connectivity more efficiently.

7.2. Programming Approaches

Fog Computing has been an emerging research topic for several years

already, but only a few programming approaches are targeted to the Fog in

particular [11]. This is in part because Fog Computing is a relatively new

paradigm proposed by Cisco in 2012 [12]. However, research on distributed

and IoT systems has been active for many years. In general, there are two

types of the Fog Computing programming models: sense-process-actuate and

stream processing [9]. The latter is the conventional approach for

programming the current IoT systems. The idea is that all of the devices,

regardless of their computing capabilities, stream data to a remote Cloud

where the processing is then conducted. Such systems are primarily used for

data analysis and are not aimed for programming two-way interactions as

such. These approaches have long been studied in various distributed contexts,

such as Wireless Sensor Networks (WSNs) and Industrial IoT (IIoT). These

programming methods are not the focus of this work.

The sense-process-actuate programming models have also been studied for

some time already in the context of the IoT. The limitation of many existing

approaches is that the data is streamed to a remote Cloud and then the

instructions are sent back to the Edge. While this may work for some systems,

there are also many reasons to why this approach does not suit well for

real-time and mission-critical operations [59, 60, 12, 61]. Further, the research

60

on Fog Computing programming models appears to focus on the analysis and

the sense part of the sense-process-actuate models [62]. Hence, the existing

models (e.g., Foglets [63] and Ceml [64]) mainly target Complex Event

Processing (CEP) at the Edge and other parts of the network [65].

In contrast, we offer a complete perception-interaction programming model

that can dynamically leverage the entire Fog infrastructure, that is, the network

edge devices, the network nodes, as well as the Cloud services [66]. In this work,

a particular emphasis is set on the actuate part of the sense-actuate-process

model. Therefore, many existing Fog programming models can become useful

for the CEP purposes in our collective executions.

The concept of Cloudlets is sometimes criticized for that it is merely a data

center in a box and that it does not help realize the Fog Computing full poten-

tial [11]. Despite this fact, we observe similarities between Cloudlets [66, 67] or

Foglets [63] and our collective execution framework. However, compared with

these, the collective executions are more dynamic and can merge into each

other when a certain threshold is reached. We describe how the coalescence

may occur when the distance in the social and physical worlds becomes

sufficiently short. This distance is an application-specific value.

As opposed to Cloud Computing, Edge Computing is about computation

in the edge devices [68]. It has been argued that edge devices simply cannot

handle multiple IoT applications running on them while consuming their

limited resources [9]. For this reason, it is imperative to consider more

dynamic leveraging of the entire modern computing platform, that is, the edge

devices, the network nodes, as well as the Cloud services. To this effect, we

also find similarities with certain legacy Fog Computing approaches, such as

e.g., Mobile Fog [61].

However, our goal here is not to focus on the scalability of Mobile Fog.

Instead, the scalability in our approach is supported by executing the compu-

tationally heavy tasks closer to the data sources by relying on the AcOP

concept of capability. This kind of scalability in our approach can be consid-

ered as a high-level approach to Serverless Computing [69]. While the current

61

frameworks (e.g., AWS Lambda, Google’s Cloud Functions, Azure Functions)

can be used behind the scenes to implement a computationally heavy AcOP

capability, one should keep in mind the economics of the serverless computing

approaches offered by the current Cloud service providers [45]. For this reason,

we argue that it is preferable to leverage the users’ own devices for the

computational tasks and perform analytics on the edge devices. In AcOP, this

Edge Device Analytics is supported by the concept of sensations.

7.3. Middlewares and Platforms for Interactions

Over the years, a multitude of middleware and platform approaches for the

IoT have been introduced [70]. All approaches have unique characteristics and

specific goals, and we find similarities between AcOP and many existing

approaches. In a broader scope, AcOP can be considered to belong under

Weiser’s Ubiquitous Computing [3] paradigm, and in particular, we find

similarities to Ambient Intelligence [71, 72] approaches. Ubiquitous

Computing and Ambient Intelligence both aim at making the technology to

disappear in the background while serving the human in daily life [71].

There are various programming models for Ambient Intelligence.

Ambient-oriented programming model and AmbientTalk programming

language aim at making the programming of Ambient Intelligence as easy as

object-oriented programming is in general [73, 74]. We find the actor model of

AmbientTalk interesting, and especially we find similarities how AcOP and

AmbientTalk frameworks operate behind the scenes: Also in AcOP device

objects are similarly allocated (during runtime), and their representatives

created, after which the devices and their resources can be considered as

objects of object-oriented programming. In AcOP, the device capabilities are

the programmable objects, and these also describe to which roles a device can

participate in a specific action. While AmbientTalk is already a mature

approach, its ambient-oriented programming model has lately been embodied

in JavaScript with AmbientJS, which enables a multitude of devices to

leverage the same application [75]. Hence also this resembles AcOP as both

aim at one single application that can be distributed to various devices.

62

One of the main contributions of this presented work is the new collective

execution concept. AcOP enables creating high abstraction level sensations

(like events in AmbientTalk but consisting of various data coming from multiple

sources in physical, cyber, and social worlds), and then sharing these sensations

between the other devices executing the same instance of the AcOP program.

From the development perspective, the idea is to support the software developers

with these sensations to implement more complex events and by providing tools

for combining data from various sources software. In some sense, this idea of

the collective execution can also be considered to resemble shared/distributed

Tuple Space which has been long studied in the context of Mobile Computing

(e.g., TOTA and LIME) [76, 77], and lately in the context of IoT [78]. However,

also compared to Tuple Spaces, the collective executions provide direct access to

the shared sensation objects which act as a basis for the joint interactions. The

collective execution also provides the support for coalescence and disintegration,

and synchronizing the data is done in a specific order as we have described in

this article. This is because the usage of the shared sensations is different than

in typical Tuple Space applications since in AcOP, only the coordinator needs

to have access to the most recent data.

There are also plenty of Publish/Subscribe [79] approaches for the IoT where

events or notifications are relayed between the nodes. These typically form peer-

to-peer communication architecture in mesh network topologies. As described

in this article, the AcOP was earlier based on the Publish/Subscribe [24]. Now,

the collective execution, however, is a specific type of implementation where the

sensations (complex events) are shared via the coordinator to other participants

of the collective execution.

We also find similarities between AcOP and pervasive service composition

approaches [80]. ComPOS [81] represents one of the latest pervasive service

composition approaches where the idea is on combining various services (e.g.,

camera or motion service), and then enable composing actor behavior between

different devices. In contrast to AcOP, such programming is rather

service-oriented—in AcOP the developer defines specific roles, and then

63

creates a casting function that tries to pick the best devices to these roles

based on their capabilities. AcOP thus lacks the concept of service, although

there are often services behind the capabilities. Other similarities between the

approaches include adaptive and dynamic behavior, like the ability to continue

execution when some of the devices are not available.

Arguably, the Fog Computing mobility-aware scheduling in the context is

the closest to our ideas presented in this paper. Bittencourt et al. present a

compelling general idea and architecture in [66], and their research supports our

thinking that scheduling should take place in the Fog, closer to people and their

devices. In their work, programmability resides on the API level, while they

also mention that programming models are complementary to their work [66].

Hence, we believe that the said research may be beneficial for our approach in

considering the scheduling policies.

8. Conclusions

Our essential assumption is that Fog Computing is still missing appropriate

programming constructs. Hence, we contribute the Action-Oriented Program-

ming model for the purposes of coordinating interactions between machines to

augment humans. Since people own a growing variety of devices, while more

and more interactions with various devices take place near the network edge, it

is evident that the existing approaches are inadequate in these settings.

To overcome the limitations of traditional Cloud-based IoT back-ends, we

defined the necessary qualities for more user-friendly and human-centric

software that emerge from the Fog Computing paradigm as well as the

computing environment that it provides. We suggested executing applications

in the Fog—collectively and autonomously—by dynamically leveraging the

entire network capability near the Edge, where the people and their devices

are actually located. We also described how the Action-Oriented Programming

model may be used for programming autonomous collective executions and

discussed how these satisfy the qualities of human-centric Fog Computing.

64

The paper specifically focused on a new coordination model that supports the

coalescence and disintegration of autonomous collective executions in the Fog.

Acknowledgments

The work of N. Mäkitalo was supported by the Academy of Finland (project

313973).

References

[1] T. Aaltonen, V. Myllärniemi, M. Raatikainen, N. Mäkitalo, J. Pääkkö, An

Action-Oriented Programming Model for Pervasive Computing in a De-

vice Cloud, in: Proc. of 20th Asia-Pacific Software Engineering Conference

(APSEC), Vol. 1, IEEE, 2013, pp. 467–475.

[2] W. Shi, S. Dustdar, The Promise of Edge Computing, Computer 49 (5)

(2016) 78–81. doi:10.1109/MC.2016.145.

[3] M. Weiser, The Computer for the 21st Century, Scientific American 265 (3)

(1991) 94–104.

[4] J. Miranda, N. Mäkitalo, J. Garcia-Alonso, J. Berrocal, T. Mikkonen,

C. Canal, J. M. Murillo, From the Internet of Things to the Internet of

People, Internet Computing, IEEE 19 (2) (2015) 40–47.

[5] A. Ometov, S. V. Bezzateev, J. Kannisto, J. Harju, S. Andreev, Y. Kouch-

eryavy, Facilitating the Delegation of Use for Private Devices in the Era

of the Internet of Wearable Things, IEEE Internet of Things Journal 4 (4)

(2017) 843–854.

[6] D. Dearman, J. S. Pierce, It’s on my Other Computer!: Computing with

Multiple Devices, in: Proc. of SIGCHI Conference on Human factors in

Computing Systems, ACM, 2008, pp. 767–776.

65

[7] A. Klein, C. Mannweiler, J. Schneider, H. D. Schotten, Access Schemes for

Mobile Cloud Computing, in: Proc. of 11th International Conference on

Mobile Data Management (MDM), IEEE, 2010, pp. 387–392.

[8] M. Raatikainen, T. Mikkonen, V. Myllärniemi, N. Mäkitalo, T. Männistö,

J. Savolainen, Mobile Content as a Service a Blueprint for a Vendor-neutral

Cloud of Mobile Devices, IEEE Software 29 (4) (2012) 28–32.

[9] A. V. Dastjerdi, R. Buyya, Fog Computing: Helping the Internet of Things

Realize Its Potential, Computer 49 (8) (2016) 112–116. doi:10.1109/MC.

2016.245.

[10] M. Satyanarayanan, et al., Pervasive computing: Vision and challenges,

IEEE Personal Communications 8 (4) (2001) 10–17.

[11] D. Bermbach, F. Pallas, D. G. Pérez, P. Plebani, M. Anderson, R. Kat,

S. Tai, A Research Perspective on Fog Computing, in: Proc. of 2nd

Workshop on IoT Systems Provisioning & Management for Context-Aware

Smart Cities, Springer, 2017.

[12] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and Its Role in

the Internet of Things, in: Proc. of the first edition of the MCC workshop

on Mobile cloud computing, ACM, 2012, pp. 13–16.

[13] N. Mäkitalo, A. Ometov, J. Kannisto, S. Andreev, Y. Koucheryavy,

T. Mikkonen, et al., Safe, Secure Executions at the Network Edge: Co-

ordinating Cloud, Edge, and Fog Computing, IEEE Software 35 (1) (2018)

30–37.

[14] N. Mäkitalo, J. Pääkkö, M. Raatikainen, V. Myllärniemi, T. Aaltonen,

T. Leppänen, T. Männistö, T. Mikkonen, Social Devices: Collaborative

Co-located Interactions in a Mobile Cloud, in: Proc. of 11th International

Conference on Mobile and Ubiquitous Multimedia, ACM, 2012, p. 10.

66

[15] Y. Li, T. Wu, P. Hui, D. Jin, S. Chen, Social-aware D2D communications:

Qualitative insights and quantitative analysis, IEEE Communications Mag-

azine 52 (6) (2014) 150–158.

[16] Google Services, The New Multi-screen World: Understanding Cross-

platform Consumer Behavior, [online] http://services.google.com/fh/

files/misc/multiscreenworld_final.pdf (2012).

[17] I. Petri, J. Diaz-Montes, O. Rana, M. Punceva, I. Rodero, M. Parashar,

Modelling and Implementing Social Community Clouds, IEEE Transac-

tions on Services Computing 10 (3) (2017) 410–422.

[18] D. Gelernter, N. Carriero, Coordination Languages and Their Significance,

Commun. ACM 35 (2) (1992) 96–107.

[19] P. Ciancarini, Coordination Models and Languages as Software Integrators,

ACM Computing Surveys (CSUR) 28 (2) (1996) 300–302.

[20] R.-J. Back, R. Kurki-Suonio, Distributed Cooperation with Action

Systems, ACM Transactions on Programming Languages and Systems

(TOPLAS) 10 (4) (1988) 513–554.

[21] C. D. Cantrell, Modern Mathematical Methods for Physicists and Engi-

neers, Measurement Science and Technology 12 (12) (2001) 2211.

[22] A. Gallidabino, C. Pautasso, V. Ilvonen, T. Mikkonen, K. Systä, J.-P.

Voutilainen, A. Taivalsaari, Architecting Liquid Software, Journal of Web

Engineering 16 (5&6) (2017) 433–470.

[23] G. Coulouris, J. Dollimore, T. Kindberg, Distributed Systems: Concepts

and Design (4th Edition) (International Computer Science), Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[24] N. Mäkitalo, Building and Programming Ubiquitous Social Devices, in:

Proc. of 12th ACM International Symposium on Mobility Management

67

and Wireless Access, MobiWac ’14, ACM, New York, NY, USA, 2014, pp.

99–108.

[25] J.-P. Voutilainen, T. Mikkonen, K. Systä, Synchronizing Application State

Using Virtual DOM Trees, in: Proc. of 1st International Workshop on

Liquid Software, 2016.

[26] H. Garcia-Molina, Elections in a Distributed Computing System, IEEE

Trans. Computers 31 (1) (1982) 48–59.

[27] A. Zhang, J. Chen, R. Q. Hu, Y. Qian, SeDS: Secure Data Sharing Strategy

for D2D Communication in LTE-Advanced Networks, IEEE Transactions

on Vehicular Technology 65 (4) (2016) 2659–2672.

[28] 3GPP TS 23.303, Technical Specification Group Services and System As-

pects; Proximity-based services (ProSe), V15.0.0, Tech. rep. (February

2017).

[29] A. K. Chorppath, J. Hackel, F. H. Fitzek, Network Coded Caching and D2D

Cooperation in Wireless Networks, in: Proc. of 23th European Wireless

Conference European Wireless, VDE, 2017, pp. 1–6.

[30] G. Fodor, E. Dahlman, G. Mildh, S. Parkvall, N. Reider, G. Miklós,

Z. Turányi, Design Aspects of Network Assisted Device-to-Device Com-

munications, IEEE Communications Magazine 50 (3).

[31] A. Ometov, E. Olshannikova, P. Masek, T. Olsson, J. Hosek, S. An-

dreev, Y. Koucheryavy, Dynamic Trust Associations over Socially-aware

D2D Technology: A Practical Implementation Perspective, IEEE Access 4

(2016) 7692–7702.

[32] A. Celesti, M. Fazio, F. Longo, G. Merlino, A. Puliafito, Secure Regis-

tration and Remote Attestation of IoT Devices Joining the Cloud: The

Stack4Things Case of Study, Security and Privacy in Cyber-Physical Sys-

tems: Foundations, Principles and Applications.

68

[33] D. Tsolkas, N. Passas, L. Merakos, Device Discovery in LTE Networks: A

Radio Access Perspective, Computer Networks 106 (2016) 245–259.

[34] A. Ometov, A. Orsino, L. Militano, G. Araniti, D. Moltchanov, S. Andreev,

A Novel Security-centric Framework for D2D Connectivity Based on Spatial

and Social Proximity, Computer Networks 107 (2016) 327–338.

[35] G. Fodor, N. Reider, A Distributed Power Control Scheme for Cellular

Network Assisted D2D Communications, in: Proc. of Global Telecommu-

nications Conference (GLOBECOM 2011), IEEE, 2011, pp. 1–6.

[36] G. Araniti, A. Orsino, L. Militano, G. Putrino, S. Andreev, Y. Kouch-

eryavy, A. Iera, Novel D2D-based Relaying Method for Multicast Services

over 3GPP LTE-A Systems, in: Proc. of International Symposium on

Broadband Multimedia Systems and Broadcasting (BMSB), IEEE, 2017,

pp. 1–5.

[37] A. K. Kalia, Z. Zhang, M. P. Singh, Güven: Estimating Trust from Com-

munications, Journal of Trust Management 3 (1) (2016) 1.

[38] D. Bruneo, S. Distefano, K. Esmukov, F. Longo, G. Merlino, A. Puliafito,

User-Space Network Tunneling Under a Mobile Platform: A Case Study for

Android Environments, in: Proc. of International Conference on Ad-Hoc

Networks and Wireless, Springer, 2017, pp. 135–143.

[39] Q. Lu, Q. Miao, G. Fodor, N. Brahmi, Clustering Schemes for D2D Commu-

nications under Partial/no Network Coverage, in: Proc. of 79th Vehicular

Technology Conference (VTC Spring), IEEE, 2014, pp. 1–5.

[40] A. Ometov, A. Orsino, L. Militano, D. Moltchanov, G. Araniti, E. Olshan-

nikova, G. Fodor, S. Andreev, T. Olsson, A. Iera, et al., Toward Trusted,

Social-aware D2D Connectivity: Bridging Across the Technology and So-

ciality Realms, IEEE Wireless Communications 23 (4) (2016) 103–111.

[41] S. Garfinkel, PGP: Pretty Good Privacy, O’Reilly Media, Inc., 1995.

69

[42] A. Ometov, K. Zhidanov, S. Bezzateev, R. Florea, S. Andreev, Y. Kouch-

eryavy, Securing Network-assisted Direct Communication: The Case

of Unreliable Cellular Connectivity, in: Proc. of IEEE Trustcom/Big-

DataSE/ISPA, Vol. 1, IEEE, 2015, pp. 826–833.

[43] M. Devos, A. Ometov, N. Mäkitalo, T. Aaltonen, S. Andreev, Y. Kouch-

eryavy, D2D Communications for Mobile Devices: Technology Overview

and Prototype Implementation, in: Proc. of 8th International Congress on

Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), IEEE, 2016, pp. 124–129.

[44] A. Ometov, P. Masek, J. Urama, J. Hosek, S. Andreev, Y. Koucheryavy,

Implementing Secure Network-assisted D2D Framework in Live 3GPP LTE

Deployment, in: Proc. of IEEE International Conference on Communica-

tions Workshops (ICC), IEEE, 2016, pp. 749–754.

[45] A. Eivy, Be Wary of the Economics of “Serverless” Cloud Computing, IEEE

Cloud Computing 4 (2) (2017) 6–12.

[46] I. Stojmenovic, S. Wen, X. Huang, H. Luan, An Overview of Fog Comput-

ing and its Security Issues, Concurrency and Computation: Practice and

Experience 28 (10) (2016) 2991–3005.

[47] N. Mäkitalo, T. Aaltonen, T. Mikkonen, Coordinating proactive social de-

vices in a mobile cloud: Lessons learned and a way forward, in: Proc.

of International Conference on Mobile Software Engineering and Systems,

MOBILESoft ’16, ACM, New York, NY, USA, 2016, pp. 179–188.

[48] N. Mäkitalo, T. Aaltonen, T. Mikkonen, First Hand Developer Experiences

of Social Devices, in: European Conference on Service-Oriented and Cloud

Computing, Springer, 2013, pp. 233–243.

[49] J. A. C. Beńıtez, Emerging models for the development of social mobile

applications: People as a Service, and Social Devices. A Proof of Concept,

Master of Science thesis, University of Málaga (November 2014).

70

[50] P. Jarusriboonchai, T. Olsson, K. Väänänen-Vainio-Mattila, User experi-

ence of proactive audio-based social devices: a wizard-of-oz study, in: Proc.

of the 13th International Conference on Mobile and Ubiquitous Multime-

dia, ACM, 2014, pp. 98–106.

[51] J. Palviainen, K. Väänänen-Vainio-Mattila, H. Peltola, Social Devices: A

Laboratory Study on User Preferences of Device Proactivity, in: CHI ’13

Extended Abstracts on Human Factors in Computing Systems, CHI EA ’13,

ACM, New York, NY, USA, 2013, pp. 223–228. doi:10.1145/2468356.

2468397.

[52] D. P. Aguilar, Framework de juegos para móviles basados en Social Devices

(Framework for Mobile Games based on Social Devices), Master of Science

thesis, University of Málaga (November 2014).

[53] A. Kelloniemi, Social Devices Client for Arduino, Master of Science thesis,

Tampere University of Technology (December 2014).

[54] P. Jarusriboonchai, Understanding Roles and User Experience of Mobile

Technology in Co-located Interaction, Tampere University of Technology.

Publication, Tampere University of Technology, 2016.

[55] A. Pyattaev, O. Galinina, K. Johnsson, A. Surak, R. Florea, S. Andreev,

Y. Koucheryavy, Network-assisted D2D over WiFi direct, in: Smart Device

to Smart Device Communication, Springer, 2014, pp. 165–218.

[56] F. Malandrino, C. Casetti, C.-F. Chiasserini, Toward D2D-enhanced het-

erogeneous networks, IEEE Communications Magazine 52 (11) (2014) 94–

100.

[57] D. Karvounas, A. Georgakopoulos, K. Tsagkaris, V. Stavroulaki, P. De-

mestichas, Smart management of D2D constructs: An experiment-based

approach, IEEE Communications Magazine 52 (4) (2014) 82–89.

[58] T. Nitsche, C. Cordeiro, A. B Flores, E. W. Knightly, E. Perahia, J. Wid-

mer, IEEE 802.11 ad: directional 60 GHz communication for multi-Gigabit-

71

per-second Wi-Fi, IEEE Communications Magazine 52 (12) (2014) 132–

141.

[59] M. Dı́az, C. Mart́ın, B. Rubio, State-of-the-art, challenges, and open issues

in the integration of Internet of things and cloud computing, Journal of

Network and Computer Applications 67 (2016) 99–117.

[60] C. Esposito, A. Castiglione, F. Pop, K.-K. R. Choo, Challenges of Con-

necting Edge and Cloud Computing: A Security and Forensic Perspective,

IEEE Cloud Computing 4 (2) (2017) 13–17.

[61] K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwälder, B. Koldehofe,

Mobile Fog: A Programming Model for Large-scale Applications on the

Internet of Things, in: Proc. of Second ACM SIGCOMM Workshop on

Mobile Cloud Computing, MCC ’13, ACM, New York, NY, USA, 2013,

pp. 15–20. doi:10.1145/2491266.2491270.

[62] F. Bonomi, R. Milito, P. Natarajan, J. Zhu, Fog Computing: A Platform

for Internet of Things and Analytics, in: Big Data and Internet of Things:

A Roadmap for Smart Environments, Springer, 2014, pp. 169–186.

[63] E. Saurez, H. Gupta, R. Mayer, U. Ramachandran, Demo Abstract: Fog

Computing for Improving User Application Interaction and Context Aware-

ness, in: Proc. of IEEE/ACM Second International Conference on Internet-

of-Things Design and Implementation (IoTDI), IEEE, 2017, pp. 281–282.

[64] J. A. C. Soto, M. Jentsch, D. Preuveneers, E. Ilie-Zudor, CEML: Mixing

and Moving Complex Event Processing and Machine Learning to the Edge

of the Network for IoT Applications, in: Proc. of 6th International Confer-

ence on the Internet of Things, IoT’16, ACM, New York, NY, USA, 2016,

pp. 103–110. doi:10.1145/2991561.2991575.

[65] M. Mongiello, L. Patrono, T. Di Noia, F. Nocera, A. Parchitelli, I. Sergi,

P. Rametta, A Complex Event Processing Based Smart aid System for Dire

72

and Danger Management, in: Proc. of 7th IEEE International Workshop

on Advances in Sensors and Interfaces (IWASI), IEEE, 2017, pp. 44–49.

[66] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, M. Parashar,

Mobility-Aware Application Scheduling in Fog Computing, IEEE Cloud

Computing 4 (2) (2017) 26–35. doi:10.1109/MCC.2017.27.

[67] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The Case for VM-

based Cloudlets in Mobile Computing, IEEE Pervasive Computing 8 (4).

[68] W. Shi, J. Cao, Q. Zhang, Y. Li, L. Xu, Edge Computing: Vision and

Challenges, IEEE Internet of Things Journal 3 (5) (2016) 637–646.

[69] S. Tai, Continuous, Trustless, and Fair: Changing Priorities in Ser-

vices Computing, Advances in Service-Oriented and Cloud Computing

(ASOCC). Springer.

[70] A. Taivalsaari, T. Mikkonen, Beyond the next 700 lot platforms, in: 2017

IEEE International Conference on Systems, Man, and Cybernetics (SMC),

2017, pp. 3529–3534. doi:10.1109/SMC.2017.8123178.

[71] Y. Cai, J. Abascal (Eds.), Ambient Intelligence in Everyday Life, Springer-

Verlag, Berlin, Heidelberg, 2006.

[72] F. Sadri, Ambient intelligence: A survey, ACM Comput. Surv. 43 (4) (2011)

36:1–36:66. doi:10.1145/1978802.1978815.

[73] J. Dedecker, T. Van Cutsem, S. Mostinckx, T. D’Hondt, W. De Meuter,

Ambient-Oriented Programming in AmbientTalk, in: D. Thomas (Ed.),

ECOOP 2006 – Object-Oriented Programming, Springer Berlin Heidelberg,

Berlin, Heidelberg, 2006, pp. 230–254.

[74] T. Van Cutsem, S. Mostinckx, E. G. Boix, J. Dedecker, W. De Meuter,

AmbientTalk: Object-oriented Event-driven Programming in Mobile Ad

hoc Networks, in: XXVI International Conference of the Chilean Society

of Computer Science (SCCC’07), IEEE, 2007, pp. 3–12.

73

[75] E. Gonzalez Boix, K. De Porre, W. De Meuter, C. Scholliers, AmbientJS,

Springer International Publishing, Cham, 2018, pp. 32–58. doi:10.1007/

978-3-030-00302-9_2.

[76] M. Mamei, F. Zambonelli, Programming Pervasive and Mobile Computing

Applications with the TOTA Middleware, in: Second IEEE Annual Con-

ference on Pervasive Computing and Communications, 2004. Proceedings

of the, 2004, pp. 263–273. doi:10.1109/PERCOM.2004.1276864.

[77] A. L. Murphy, G. P. Picco, G.-C. Roman, LIME: A Middleware for Physical

and Logical Mobility, in: icdcs, Vol. 1, Citeseer, 2001, p. 524.

[78] H. D. Lima, L. A. de P. Lima, A. Calsavara, H. F. Eberspcher, R. C.

Nabhen, E. P. Duarte, Beyond scalability: Swarm intelligence affected by

magnetic fields in distributed tuple spaces, Journal of Parallel and Dis-

tributed Computing 123 (2019) 90 – 99. doi:https://doi.org/10.1016/

j.jpdc.2018.09.004.

[79] P. T. Eugster, P. A. Felber, R. Guerraoui, A.-M. Kermarrec, The Many

Faces of Publish/Subscribe, ACM Comput. Surv. 35 (2) (2003) 114–131.

doi:10.1145/857076.857078.

[80] J. Brønsted, K. M. Hansen, M. Ingstrup, Service composition issues in

pervasive computing, IEEE Pervasive Computing 9 (1) (2010) 62–70. doi:

10.1109/MPRV.2010.11.

[81] A. kesson, G. Hedin, M. Nordahl, B. Magnusson, Compos: Composing

oblivious services, in: 2019 IEEE International Conference on Pervasive

Computing and Communications Workshops (PerCom Workshops), 2019,

pp. 132–138. doi:10.1109/PERCOMW.2019.8730786.

74

Bios

Niko Mäkitalo is a Postdoctoral researcher at the University of Helsinki,

Department of Computer Science. He received Ph.D. in Computer Science

from Tampere University of Technology, Finland, in 2016. Nikos main

interests are Web technologies in the context of Fog Computing and IoT

programming. Recently his research focus has been on making the interactions

with the IoT more human-centric with a novel programming model. Niko is

Associate Editor of IEEE Software Blog and a member of ACM and IEEE

Computer Society. Contact him at niko.makitalo@helsinki.fi

Timo Aaltonen is a University lecturer at Tampere University, Laboratory

of Pervasive Computing where he is responsible in teaches databases, data-

science and cloud-related courses. His main research interests are distributed

systems, data analytics, the Internet of Things, and multi-machine interactions.

Timo has a Ph.D. from Tampere University of Technology. Contact him at

timo.aaltonen@tuni.fi

Mikko Raatikainen is a researcher at Empirical Software Engineering

Research Group of University of Helsinki, Department of Computer Science.

His research interests include software product lines, variability, software

architecture, and requirements engineering. He is especially interested in

conducting empirical research in industrial settings in which software-intensive

systems or services are developed. Contact him at

mikko.raatikainen@helsinki.fi

Aleksandr Ometov is a Postdoctoral Researcher at Tampere University

(TAU), Finland focused on H2020 A-WEAR project. He received his Dr.Sc.

(Tech.) in 2018 and M.Sc. in 2016 from the Department of Electronics and

Communications Engineering, Tampere University of Technology (TUT),

Finland and the Specialist degree in Information Security from the St.

Petersburg State University of Aerospace Instrumentation, Russia. His major

research interests ara wireless communications, information security,

heterogeneous networking, cooperative communications, and

75

machine-to-machine applications. Contact him at aleksandr.ometov@tuni.fi

Sergey Andreev is an assistant professor of communications engineering

and Academy Research Fellow at Tampere University, Finland. Since 2018, he

has also been a Visiting Senior Research Fellow with the Centre for

Telecommunications Research, King’s College London, UK. He received his

Ph.D. (2012) from TUT as well as his Specialist (2006) and Cand.Sc. (2009)

degrees from SUAI. He serves as editor for IEEE Wireless Communications

Letters (2016-) and as series editor of the IoT Series (2018-) for IEEE

Communications Magazine. He (co-)authored more than 200 published

research works on intelligent IoT, mobile communications, and heterogeneous

networking. Contact him at sergey.andreev@tuni.fi

Yevgeni Koucheryavy is a full professor and lab director in the

Laboratory of Electronics and Communications Engineering at the Tampere

University (TAU), Finland. He received his Ph.D. degree (2004) from the

TUT. He is the author of numerous publications in the field of advanced wired

and wireless networking and communications. His current research interests

include various aspects of heterogeneous wireless communication networks and

systems, and nano communications. He is an associate technical editor of

IEEE Communications Magazine and an editor of IEEE Communications

Surveys and Tutorials. Contact him at evgeni.kucheryavy@tuni.fi

Tommi Mikkonen is a Professor of Software Engineering at the

University of Helsinki, Finland. Tommis research focuses on software

architectures, agile methodologies, web technologies, and connected devices.

He has published over two hundred peer-reviewed conference and journal

papers. Tommi received his doctoral degree in information technology from

Tampere University of Technology, Finland, in 1999. Contact him at

tommi.mikkonen@helsinki.fi

76

