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Background-—There exists a wide interindividual variability in blood pressure (BP) response to b1-blockers. To identify the genetic
determinants of this variability, we performed a pharmacogenomic genome-wide meta-analysis of genetic variants influencing b1-
blocker BP response.

Methods and Results-—Genome-wide association analysis for systolic BP and diastolic BP response to b1-blockers from 5 randomized
clinical trials consisting of 1254 patients with hypertension of European ancestry were combined in meta-analysis and single nucleotide
polymorphisms (SNPs)withP<10�4were tested for replication in2 independent randomized clinical trials ofb1-blocker–treatedpatientsof
European ancestry (n=1552). Regions harboring the replicated SNPs were validated in a b1-blocker–treated black cohort from 2
randomized clinical trials (n=315). A missense SNP rs28404156 in BST1 was associated with systolic BP response to b1-blockers in the
discovery meta-analysis (P=9.33910�5, b=�3.21 mm Hg) and replicated at Bonferroni significance (P=1.85910�4, b=�4.86 mm Hg)
in the replicationmeta-analysis with combinedmeta-analysis approaching genome-wide significance (P=2.18910�7). This SNP in BST1 is
in linkage disequilibrium with several SNPs with putative regulatory functions in nearby genes, including CD38, FBXL5, and FGFBP1, all of
which have been implicated in BP regulation. SNPs in this genetic region were also associated with BP response in the black cohort.

Conclusions-—Data from randomized clinical trials of 8 European ancestry and 2 black cohorts support the assumption that BST1
containing locus on chromosome 4 is associated with b1-blocker BP response. Given the previous associations of this region with
BP, this is a strong candidate region for future functional studies and potential use in precision medicine approaches for BP
management and risk prediction. ( J Am Heart Assoc. 2019;8:e013115. DOI: 10.1161/JAHA.119.013115.)

Key Words: blood pressure • hypertension • meta-analysis • pharmacogenomics • b1-blocker • b-blocker

H ypertension is a preventable risk factor for stroke,
chronic heart failure, coronary artery disease, and

kidney disease resulting in premature death and disability.1

Hypertension remains a global burden with an estimated

direct cost of �$200 billion by 2030.2 More than 1.3 billion
people worldwide are estimated to have hypertension and this
estimate is expected to increase to 1.56 billion people
globally by 2025.1,3 Moreover, �4 in 10 adults older than
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25 years have hypertension, and 9 of 10 adults living up to
80 years will develop hypertension.4

b-Blockers, one of the many available pharmacothera-
peutic interventions, have been used for the past 45 years
and previously were recommended as first-line agents for
treating uncomplicated hypertension. However, over recent
years, b-blockers have fallen out of favor as first-line
therapy because of results of large meta-analyses docu-
menting poorer outcomes when compared with other drug
classes such as diuretics, angiotensin-converting enzyme
inhibitors, angiotensin receptor blockers, or calcium channel
blockers, for treating hypertension.5 Based on findings from
these large studies, recent guidelines including American
College of Cardiology/American Heart Association and
National Institute for Health and Care Excellence no longer
recommend b-blockers as a first line of treatment in all or
in a subset of patients.6,7 While b-blockers are not
recommended as first-line agents, they are still a preferred
choice for treating patients with hypertension who have
comorbid cardiovascular conditions such as angina, chronic
heart failure, and arrhythmias, and as part of combination
therapy for resistant hypertension.8,9 As a result of this
continued use of b-blockers, there remains a need for
individualizing b-blocker–based antihypertensive therapy for

better hypertension management, blood pressure (BP)
control, and improved outcomes of patients who require
b-blocker therapy.

Studies have documented that patients of white ances-
try usually respond favorably to b-blocker therapy com-
pared with other antihypertensive medications such as
diuretics that result in better BP control in patients of
black ancestry.10 However, there exists a wide interindi-
vidual variability in BP response to b-blockers among
patients of white ancestry, suggesting a need to under-
stand related factors (genetic and nongenetic) that
contribute to variability in BP response to b-blockers, with
an ultimate goal of optimizing BP management.11 Further-
more, b1-selective blockers are the b-blocker of choice for
patients with hypertension who require b-blocker ther-
apy.16,17 Identification of genetic factors of b1-selective
blocker therapy response through pharmacogenomics
analyses could have the potential to achieve some of
the goals for individualizing therapy among individuals with
hypertension. To this end, several genome-wide analyses
conducted through individual studies have identified a few
replicated signals of b1-selective blocker therapy
response.12–15 To the best of our knowledge, there are
no genome-wide analyses for nonselective b-blockers,
which are not currently recommended as first line for
treatment of hypertension. In this article, we aimed to
perform the largest 2-stage genome-wide meta-analysis
using data from randomized clinical trials with genome-
wide data, as part of the ICAPS (International Consortium
for Antihypertensive Pharmacogenomics Studies). However,
as mentioned before, ICAPS only had pharmacogenomics
trials with whole genome data for b1-selective blocker–
centered studies. Based on the phenotype of interest, our
meta-analysis study reported in this article focused on BP
response to b1-selective blockers, which comprised a total
of 8 cohorts of hypertensive patients of white ancestry
treated with b1-blockers to identify pharmacogenetic
markers associated with BP response.

Methods

Study Participants and Inclusion Criteria
The discovery genome-wide association study (GWAS) meta-
analysis consisted of 5 study cohorts: PEAR (Pharmacoge-
nomic Evaluation of Antihypertensive Responses),18 PEAR-2
(Pharmacogenomic Evaluation of Antihypertensive Responses
2),19 LIFE-Fin (Finnish arm of the Losartan Intervention For
Endpoint Reduction in Hypertension Study),20 GENRES
(Genetics of Drug Responsiveness in Essential Hyperten-
sion),13 and BB-SS (Pharmacogenomics of Beta-Blockers
Sardinian Study). Detailed information of each of these

Clinical Perspective

What Is New?

• Although multiple genome-wide association studies have
attempted to investigate the genetic determinants of the
large interindividual variability observed in the blood pres-
sure (BP) response to b1-blockers, most of these studies
have been plagued by small sample sizes and lack of
replication.

• Using genome-wide association study data from 8 distinct
cohorts of b1-blocker–treated participants, we performed
the largest genome-wide meta-analysis to identify the
genetic determinants of BP response to b1-blockers and
identified a locus near BST1 on chromosome 4p15.32 that
was significantly associated with BP response with multiple
levels of evidence.

What Are the Clinical Implications?

• These findings indicate that the BST1 locus is involved in the
BP response to b1-blockers with multiple genes in this
region having been previously implicated in pathways
related to BP regulation and hypertension.

• Additional investigations to understand the exact mecha-
nism of this locus and the genes involved in mediating BP
response can aid in the advancement of personalized b1-
blocker therapy for improved BP control and management.
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cohorts is described in Data S1. For all participating cohorts,
patients with uncomplicated hypertension and untreated
systolic BP (SBP) >140 mm Hg or diastolic BP (DBP)
>90 mm Hg were included in the study. Patients from all
participating studies in the discovery cohort underwent an
antihypertensive medication washout before starting the
study, after which they were treated with b1-blocker
monotherapy for varying lengths of time according to each
study-specific protocol.

For replication, a meta-analysis consisting of 3 study
cohorts (INVEST [International Verapamil SR-Trandolapril
Study],21 ASCOT-UK [Anglo-Scandinavian Cardiac Outcomes
Trial-United Kingdom],22 and ASCOT-SC [Anglo-Scandinavian
Cardiac Outcomes Trial-Scandinavian]22) was used. ASCOT-
UK, ASCOT-SC, and INVEST did not have a hypertensive
medication washout period before starting the b1-blocker
therapy. Black participants from PEAR and PEAR-2 were used
for ethnic validation.

All of the studies were approved by institutional review
committee, all of the participants signed informed consent,
and studies were conducted in accordance with the regula-
tions set forth by the Declaration of Helsinki. The data for
PEAR have been made publicly available in the database of
Genotypes and Phenotypes (dbGaP)23 (Accession:
phs000649.v1.p1). The PEAR-2 and INVEST data are currently
in the process of being uploaded and will soon be available to
other researchers in dbGaP. Clinical Trials included in this
meta-analysis can be found at: URL: https://www.clinicaltria
ls.gov. Unique identifiers: PEAR (Pharmacogenomic Evaluation
of Antihypertensive Responses): NCT00246519; PEAR-2
(Pharmacogenomic Evaluation of Antihypertensive Responses
2): NCT01203852; INVEST (International Verapamil SR Tran-
dolapril Study): NCT00133692; GENRES (A Study on Molec-
ular Genetics of Drug Responsiveness in Essential
Hypertension): NCT03276598; and LIFE (Losartan Interven-
tion For Endpoint Reduction in Hypertension): NCT00338260.

BP Response Phenotype
Multiple measures of BP response were available for each
study and the most accurate BP measurement available for
each study was used to determine the phenotype. PEAR-219

used home BP measurements, whereas GENRES,24 BB-SS,
LIFE-Fin,20 INVEST,21 ASCOT-UK, and ASCOT-SC used office
BP measurements to define response to b1-blockers. PEAR
used a composite weighted average of BP response from
office, home, and ambulatory day and nighttime values.25

For all studies, using the above-mentioned BP measure-
ments, b1-blocker BP responses (diastolic and systolic BP
response) were calculated as the difference between the start
to the end of the b1-blocker treatment.

Genotyping and Imputation
For each study, participants were genotyped on either an
Illumina or an Affymetrix panel. Each study underwent standard
quality control (QC) protocols for their genotype data to obtain
high-quality single nucleotide polymorphisms (SNPs) for their
study, which were then imputed to the 1000G phase 3
reference panel for a total number of �47 million SNPs.

Statistical Analysis
Continuous variables are presented as mean�SD and cate-
gorical variables are presented as numbers and percentages.

We performed a 2-stage genome-wide meta-analysis. The
first stage comprised of a discovery GWAS meta-analysis,
which was followed by testing the top signals in a meta-
analysis replication cohort. The second stage was a combined
meta-analysis of the findings from both discovery and
replication meta-analysis. The detailed flowchart outlining
the steps in the study is presented in Figure 1.

GWAS Per Study

A total of 1254 individuals from 5 cohorts (PEAR, PEAR-2,
LIFE-Fin, GENRES, and BB-SS) were included as part of the
discovery GWAS meta-analysis for BP response to b1-blocker
treatment. First, a GWAS for imputed SNPs was performed
separately in each study for association with SBP and DBP
response using linear regression adjusting for age, sex,
pretreatment BP, and principal components for ancestry.
Regression analysis was conducted using either EPACTS or
SNPTEST. Each study filtered the tested SNPs at a minor allele
frequency cutoff of >1% and imputation QC (Rsq) of >0.30.

QC Per Study

Results from each study further underwent stringent standard
QC procedures using the EasyQC package as per protocol
described by Winkler et al,26 to account for heterozygosity,
missingness, and allele mismatches. Quantile-quantile plots,
P-Z test, and allele frequency mismatch plots were generated
using EasyQC.

Discovery GWAS Meta-Analysis

After QC, the GWAS results from each cohort were combined
in a meta-analysis using the inverse variance method with
fixed effect model performed using Meta-Analysis Helper
(METAL).27 A genomic inflation (k) correction was applied if
genomic inflation was deemed to exist (k >1) for any of the
studies. As mentioned previously, each of the studies in the
discovery meta-analysis GWAS were imputed to the same
reference panel. However, each of the GWAS results from the
study was subjected to stringent QC and a different number of
SNPs were removed from each study based on the QC
criteria. However, for the purpose of discovery meta-analysis
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we focused only on the 6596214 SNPs that were present in
all 5 studies. After meta-analysis, we applied a stringent
prioritization criterion to select SNPs from the discovery
meta-analysis and focused only on SNPs with the same
direction of association across all 5 studies in the discovery
meta-analysis and deemed SNPs that met the conventionally
acceptable P<5910�8 as genome-wide significant. The sug-
gestive level of association was set at a threshold of
P=1910�4. SNPs that met the suggestive level of association
with a concordant direction of association across all 5 studies
were further linkage disequilibrium (LD) pruned at r2>0.2
using LD Link,28 to obtain single independent SNPs repre-
sentative of each associated locus that were tested for
replication. The number of independent signals were used to
calculate a Bonferroni-corrected a level (0.05/# of indepen-
dent signals), to determine whether SNPs were replicated for
SBP and DBP responses in the replication cohort.

Replication GWAS Meta-Analysis

A total of 1592 individuals from 3 study cohorts (INVEST,
ASCOT-UK, and ASCOT-SC) were included in the replication

meta-analysis. Since replication cohorts did not have a
hypertensive medication washout before starting the b1-
Blocker therapy, the analysis was adjusted for a dummy
variable indicative of patient treatment status (yes=1, no=0), if
patients were or were not treated, respectively, with any
antihypertensive medication at the start of their b1-blocker
therapy. Summary statistics for SNPs meeting the suggestive
level of significance from the discovery GWAS meta-analysis
were looked up in each study of the defined replication
cohorts, which were then combined in meta-analysis to form
the replication meta-analysis cohort. SNPs were deemed
replicated if they met the Bonferroni-corrected P value for
association with SBP (3.4910�4) and DBP (4.3910�4)
response, with concordant direction of association as in the
discovery meta-analysis.

Combined Discovery and Replication Meta-Analysis

Summary statistics of discovery and replication GWAS and
meta-analyses were further combined in a meta-analysis.
Genome-wide significance for this combined meta-analysis
was set at P=5910�8.

Figure 1. Overall design framework for the discovery and replication meta-analysis. ASCOT-SC indicates Anglo-Scandinavian Cardiac
Outcomes Trial-Scandinavian; ASCOT-UK, Anglo-Scandinavian Cardiac Outcomes Trial-United Kingdom; BB-SS, Pharmacogenomics of Beta-
Blockers Sardinian Study; BP, blood pressure; EAF, effect allele frequency; GENRES, Genetics of Drug Responsiveness in Essential Hypertension;
GWAS, genome-wide association study; INVEST, International Verapamil SR-Trandolapril Study; LIFE-Fin, Finnish arm of the Losartan Intervention
For Endpoint Reduction in Hypertension Study; METAL, Meta-Analysis Helper; PEAR, Pharmacogenomic Evaluation of Antihypertensive
Responses; QC, quality control; Rsq, imputation quality; SNPs, single nucleotide polymorphisms.
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Secondary Validation

The SBP and DBP association results for black participants
with hypertension from PEAR-2 and PEAR were combined in a
meta-analysis and used for ethnic validation of SNPs that
were successfully replicated in an INVEST/ASCOT-UK/
ASCOT-SC replication cohort. Given the differences in LD
between the genome of people with white and African
ancestry, we did not expect the same SNPs to be necessarily
validated. Hence, we scanned the genetic region surrounding
the index SNP (�500 kb) for any SNPs that were associated
with the SBP or DBP response in the same direction as that of
the index SNP at a Bonferroni-corrected P value.

In Silico Analysis
In an attempt to identify the putative functional SNP, all SNPs
in high LD (r2>0.8) with the replicated SNP (rs28404156 of
BST1 locus) based on the 1000G phase 3 reference panel
were extracted using the rAggar.29 RegulomeDB30 was used
to annotate and score these SNPs to identify potentially
regulatory SNPs in LD with the index SNP using a stringent
score of ≤4.30 The expression Quantitative Trait Locus (eQTL)
of all of these SNPs in LD with the replicated SNPs was
evaluated using HaploReg v4.1 databases.31

Results
Clinical characteristics of all 8 participating cohorts in the b1-
blocker discovery and replication meta-analysis are summa-
rized in Table 1. All participants were of European ancestry.
Men and women were similarly represented in all of the
studies, with the exceptions of GENRES, which was composed
of men only, and ASCOT, which was composed of predom-
inantly men. The clinical characteristics of the black patients
from PEAR-2 and PEAR treated with a b1-blocker, and
included in the secondary validation, are summarized in
Table S1.

Discovery GWAS Meta-Analysis
GWAS discovery meta-analysis for SBP and DBP responses to
b1-blockers was performed using 5 cohorts (PEAR, PEAR-2,
LIFE-Fin, GENRES, and BB-SS). Manhattan and QQ plots for
association are shown in Figure 2. The QQ plots for both SBP
and DBP do not exhibit any inflation indicative of population
substructure beyond that expected by chance alone. None of
the SNPs reached genome-wide significance for either SBP or
DBP response. However, 1207 SNPs for SBP and 842 SNPs
for DBP met the suggestive level of significance (P<1910�4).
With LD pruning (r2>0.2), a total of 280 and 218 independent

signals associated with SBP and DBP, respectively, were
identified and tested for replication.

Replication GWAS Meta-Analysis
For association with SBP response, the SNP rs28404156 was
successfully replicated with a Bonferroni-corrected P value and
was associated in the same direction as in the discovery meta-
analysis. (Discovery: P=9.33910�5 and b=�3.21�0.82; repli-
cation: P=1.85910�4 and b=�4.86�1.3) (Table 2).
rs28404156 (G->A) is a missense variant that causes an
arginine to histidine (Arg153His) amino acid change in BST1 and
is an eQTL31 for FAM200B(Artery_Tibial). The regional plot for
rs28404516 for the white population is presented in Figure 3A.

The least square adjusted means for SBP response by
genotype for rs28404156 was plotted for the studies that
were part of the discovery meta-analysis (PEAR, PEAR-2, LIFE-
Fin, GENRES, and BB-SS) as these were the only studies for
which this analysis was available. Given the low minor allele
frequency of rs28404156 (0.08), only heterozygotes but no
homozygotes for the minor allele were available in all of the
discovery studies except BB-SS. Among the 5 studies, the A
allele carriers had better SBP response compared with the
noncarriers (Figure S1).

In contrast, for association with DBP responses, none of
the SNPs that were tested met the Bonferroni-corrected P
value for replication.

Combined Discovery and Replication Meta-
Analysis
None of the SNPs met genome-wide significance in the
combined discovery-replication meta-analysis and the associ-
ation of the replicated SNP rs28404156 with SBP response
reached a meta-analysis P value of 1.15910�7.

Ethnic Validation
The black cohort from PEAR and PEAR-2 were used for ethnic
validation of the replicated SNP rs28404156. rs28404156 was
not significantly associated in the black cohort. However,
considering the region (�500 kb) surrounding the SNP
rs28404156, another SNP, rs193131744, was found to be
significantly associated with reduction in SBP in response to b1-
blocker treatment with a concordant direction as that of
discovery meta-analysis (discovery: P=2.64910�6 and
b=�16.87) (Figure 3B).

In Silico Analysis
A total of 12 SNPs in high LD (r2>0.8) with the replicated SNP
(rs28404156) were extracted using rAggar. Of these, the
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functional prediction performed using regulome DB identified
3 variants that met the stringent cutoff threshold of <4. We
also investigated the eQTL traits of these 12 SNPs using
HaploReg v4.1, and 10 of these variants were also eQTLs for
either BST1 or other nearby genes of this locus such as CD38,
FBXL5, and FAM200B. The details of the LD (r2 and D’), eQTLs
and the correlated genes and tissues, the RegulomeDB
scores, and the potential regulatory functions have been
outlined in Table S2. There were 3 variants that were
positively predicted by both tools used (RegulomeDB and
Haplroreg v4.1), further strengthening their putative roles as
functional/regulatory variants (Table S2).

Discussion
To our knowledge, this is the largest genome-wide meta-
analysis for antihypertensive response to b1-blocker treat-
ment, consisting of 5 randomized controlled trials for
discovery and 3 randomized clinical trials for replication,
followed by ethnic validation of the replicated SNPs among a
cohort of black patients from 2 randomized clinical trials. We
successfully identified and replicated a missense variant,

rs28404156 in the BST1 locus, which was significantly
associated with SBP response to b1-blockers. The carriers
of the A allele of this SNP had a significantly better SBP
response in both discovery and the replication meta-analysis.
Given LD differences across race groups, even though the
exact SNP did not replicate in the black cohort, we were able
to validate the genomic region by identifying other SNPs that
were significantly associated with BP response to b1-blockers.
This further points towards the potential importance of this
locus in b1-blocker BP responsiveness.

The SNP rs28404156 is present in the BST1 gene and
represents a missense SNP along with being an eQTL for
FAM200B. This SNP results in an arginine to histidine
substitution. Arginines are usually involved in formation of
salt bridges needed for protein stability and, accordingly, its
replacement could have implication on the BST1 protein
function. BST1, also known as CD157, encodes for ADP-
ribosyl cyclase 2, which is a cell surface receptor expressed in
bone marrow stromal cells and is primarily involved in
regulation of pre–B-cell growth. It is now known that BST1 is
also expressed in multiple other cell types including vascular
endothelial stem cells, monocytes, and mast cells.32 Although

Table 1. Clinical Characteristics of all White Participants for the 8 Studies in the Discovery and Replication Meta-Analysis

Discovery Meta-Analysis Replication Meta-Analysis

PEAR PEAR-2 GENRES LIFE-Fin BB-SS ASCOT-UK ASCOT-SC INVEST

No. 233 201 216 202 403 745 773 74

b-Blocker Atenolol Metoprolol Bisoprolol Atenolol Atenolol Atenolol Atenolol Atenolol

Treatment
duration

8 wk 8 wk 4 wk 61 d (average) 4 wk 6 wk 6 wk 6 wk

Age, y 49�9.52 51�8.99 50.5�6.3 64.0�6.5 51.7�11.4 63.1�8.3 60.8�8.9 68.35�9.21

Women,
No. (%)

109 (46.78) 65 (48.14) 0 97 (48.0) 214 (53.1) 114 (15.2) 177 (22.9) 41 (54.66)

Body mass
index, kg/m2

30.30�4.90 30.66�4.95 26.7�2.7 27.1�3.6 26.9�4.08 28.4�4.6 28.4�4.2 29� 6

Baseline
SBP, mm Hg

145.46�9.68 147.49�10.83 151.9�13.1 166.4�13.2 159.3�15.3 159.7�14.9 164.8�16.5 146.41�15.43

Baseline
DBP, mm Hg

93.20�5.54 93.94�5.63 100.0�7.2 97.6�6.4 102.5�10.7 92.6�9.1 96.3�9.8 84.01�10.21

Post-treatment
SBP, mm Hg

136.11�11.46 137.32�12.82 138.9�15.2 145.1�13.1 136.3�16.5 148.8�20.7 156.4�22.1 136.82�15.48

Post-treatment
DBP, mm Hg

86.05�7.75 84.90�7.45 90.2�8.7 84.8�6.4 84.9�10.9 83.9�10.1 89.6�10.5 77.53�8.63

ΔSBP, mm Hg �12.67�8.61 �10.19�9.20 �13.0�10.5 �21.3�12.8 �23.0�17.7 �10.8�19.7 �8.4�20.7 �9.59�16.96

ΔDBP, mm Hg �10.50�5.77 �9.05�6.07 �9.8�6.9 �12.8�6.6 �17.7�11.2 �8.5�10.6 �6.7�10.4 �6.47�10.84

Values are presented as mean�SD unless otherwise noted. ASCOT-SC indicates Anglo-Scandinavian Cardiac Outcomes Trial-Scandinavian; ASCOT-UK, Anglo-Scandinavian Cardiac
Outcomes Trial-United Kingdom; BB-SS, Pharmacogenomics of Beta-Blockers Sardinian Study; DBP, diastolic blood pressure; GENRES, Genetics of Drug Responsiveness in Essential
Hypertension; INVEST, International Verapamil SR-Trandolapril Study; LIFE-Fin, Finnish arm of the Losartan Intervention For Endpoint Reduction in Hypertension Study; PEAR,
Pharmacogenomic Evaluation of Antihypertensive Responses; SBP, systolic blood pressure.
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no direct association between BST1 and BP regulation has
been reported, there are various pathways and signaling
components that BST1 may interact with to influence the
pathophysiology of hypertension. For example, BST1/CD157
influences the phosphorylation of focal adhesion kinase33 and
calcium homeostasis,34 which are known to be involved in the
hypertension-vascular signaling cascade. BST1/CD157 is also
involved in various immune and inflammation responses,
including regulation of motility and transendothelial migration
of monocytes and their adhesion to extracellular matrix
proteins.32 The fact that BST1 is expressed in a larger number
of tissue subtypes was only recently discovered, implying that

the interaction of BST1 with these signaling cascades with
respect to hypertension may warrant further study.

This replicated SNP is located on chromosome 4p15.32 on
the distal part of the small segment of chromosome 4.
Multiple previous studies have identified and reported the
distal region of chromosome 4p to be involved with BP
regulation, which further highlights the importance of this
locus in BP response.35,36 There are several genes present in
this locus, with variants in high LD with our successfully
replicated index SNP (�500 kb) such as CD38, FAM200B,
FBXL5, FGFBP1, and FGFBP2. Many of these genes have been
implicated in various physiological and pathophysiological

Figure 2. Manhattan (A and B) and quantile-quantile (C and D) plots from meta-analysis of genome-wide association for systolic (A
and C) and diastolic (B and D) blood pressure responses to b1-blocker treatment. The blue line refers to the suggestive level of
significance (P<1910�4). The red line refers to the genome-wide significance (P=5910�8).
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components of hypertension signaling. To further investigate
the plausible involvement of this locus in BP response, we
used in silico approaches and identified several SNPs in high
LD with the replicated SNP in BST1 as well as in other genes
in this genomic locus (�500 kb). Further investigation using
in silico analysis revealed that several of these SNPs were
predicted to have regulatory function and are eQTLs for the
genes in the same locus.

Some of these SNPs with potential regulatory function
were found to be in high LD with our index replicated SNP and
were present in CD38. Interestingly, CD38 is a transmem-
brane protein that shares 33% homology with BST1 and has
both ADP-ribosyl cyclase and cyclic adenosine 50-diphosphate
ribose hydrolase activities.37 CD38 has been shown to be
involved in multiple key processes such as vascular contrac-
tion, apoptosis, and neural signaling via its involvement in
calcium regulation, which plays a key role in hypertension as
well as cardiovascular diseases, renal regulation, and energy
metabolism.38 Studies have also shown that elimination of
CD38 prevents mice from gaining weight and becoming obese
while on a high-fat diet via a SIRT-dependent mechanism.39

Some recent human studies have found a similar association
between CD38 and metabolic syndrome in which high BP is
an important factor.40 Of note, one study has shown that
CD38-deficient mice have increased plasma renin activity.41

This could have implications for b1-blocker BP response given
that higher plasma renin activity has been reported to be
associated with better BP responses to b1-blocker monother-
apy as well as to various add-on therapies.42 Several
studies have reported the direct activation of CD38 by
angiotensin II (Ang II), endothelin-1, and norepinephrine, as
well as indirect activation via the generation of reactive
oxygen species.43,44 Upon activation, CD38 generates the
endogenous calcium secondary messengers, ie, cyclic
adenosine 50-diphosphate ribose and nicotinic acid adenosine
dinucleotide phosphate, which modulate the intracellular
calcium transients resulting in vasoconstriction.38,45 These
studies indicate that CD38 plays an important role in the
modulation of agonist-induced vascular smooth muscle cell
responses. These responses might have an important
implication in the regulation of BP by b1-blockers and need
further elucidation.

FBXL5 is another gene harboring SNPs in LD with the index
SNPs. FBXL5 belongs to the F-box family of proteins and
encodes for F-box and leucine-rich repeat protein 5. It acts as
an iron sensor and has been reported to be a tumor
suppressor.46 One of the meta-analyses of data from 6 global
whole blood gene expression studies for BP and hypertension
found FBXL5 to be one of the differentially expressed genes
and to be significantly associated with DBP.47 The index SNP
as well as several other SNPs in LD with the index SNP were
also eQTLs for FAM200B. However, not much information isTa
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available in the literature regarding FAM200B in relation to the
BP phenotype or related pathways.

FGFBP1 is among other genes in this associated locus.
Even though we could not find SNPs in FGFBP1 that were in
LD with the rs28404156 SNP, the importance of this gene in
hypertension and BP response cannot be overlooked. FGFBP1
encodes for fibroblast growth factor (FGF)–binding protein 1
(FGFBP1) and is involved in the modulation of the FGF
signaling. FGFs are a family of proteins, many of which have
been implicated in pathways related to hypertension.48,49

Specifically, FGFBP1 is a precursor protein that releases FGF1
from the extracellular matrix and has been investigated for its
role in modulating BP. Cuevas et al50,51 reported a decrease
in the endothelial FGF in the blood vessels of spontaneously
hypertensive rats and further showed that systemic admin-
istration of FGF improves the impaired endothelial cells and
nitric oxide synthase resulting in improvement in hyperten-
sion. Similarly, studies in hypertensive rats have deemed the
FGFBP1 locus to be important in the development of
glomerular damage and hypertension.52 Further, a recent

Figure 3. Regional plot of the BST1 locus in white (A) and blacks (B).
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family-based study from Poland reported a novel association
between variants in the FGFBP1 and familial hypertension.
This report also showed an increased expression of the
FGFBP1 in the kidneys of these patients with hyperten-
sion.51,53 More recently, studies in transgenic mice have
shown that increased expression of FGFBP1 resulted in an
increase of >30 mm Hg in arterial pressure by increasing the
sensitivity of the blood vessels to Ang II.54 The investigators
of this study postulated that targeted inhibition of the FGF
signaling using FGF inhibitors, which are conventionally used
for cancer treatment, might help in controlling hypertension
as well. They tested this theory by using an FGF inhibitor in
transgenic mice overexpressing FGFBP1 and found that Ang II
sensitivity of the vasculature was reversed, resulting in
decreased BP.54 Given the fact that b1-blockers are known
to suppress the renin system and Ang II levels in the
plasma,55 it is important to consider the cross-talk between
b1-blockers, Ang II, and FGFBP1. Additional investigations to
better understand this cross-talk is needed to further
elucidate the possible contribution of FGFBP1 to b1-blocker
BP response.

Study Strengths and Limitations
Overall, this study has certain noteworthy strengths. To our
knowledge, this is the largest pharmacogenomic GWAS
assessing the underlying genetic variants contributing to
variable BP response. Through our discovery, replication, and
ethnic validation efforts we were able to identify and
thoroughly validate the association of the BST1-containing
locus with b1-blocker BP response. Although various genes in
this locus have been previously implicated in BP-related
signaling, this is the first time a direct association with
response to b1-blocker treatment has been identified.
Furthermore, our criteria for selecting markers from the
discovery meta-analysis for testing in replication were strin-
gent, which ensured the consistency of direction across the
data sets for the identified association.

We acknowledge the limitations of our study as well. While
this is considered the largest pharmacogenomics analysis of b1-
blockers response including 8 cohorts (5 discovery and 3
replication) and consisted of >2000 participants, our results did
not identify genome-wide significance, which may be partly
attributed to reduced power driven by variants with low-modest
effect size. Additionally, subtle heterogeneity in BP response
phenotype across the different studies may have led to failure to
identify genome-wide significant signals. Nevertheless, the
association of SNPs in the replication cohort at a Bonferroni-
corrected P value, as well as ethnic validation of the region,
suggest the importance of the genomic locus. Another limitation
is the use of different b1-blockers across studies included in this
meta-analysis. Although the majority of the studies used

atenolol in their design, GENRES and PEAR-2 used bisoprolol
and metoprolol, respectively. Bisoprolol was used at 5 mg/d,
which is equivalent to 50 mg/d as that of atenolol56 and is the
dose that was used in the majority of the atenolol studies in this
article, except for PEAR, in which the target atenolol dose was
100 mg/d upon titration. Likewise, for metoprolol, the patients
were started on 50 mg/d with uptitration to 100 mg twice per
day in PEAR-2; in this case, the equivalent atenolol doses are
�100 mg once per day.57 Hormones are known to play a role in
modulating BP, and hormone replacement therapy can interfere
with BP levels. Another limitation of this study is that exclusion of
women taking any kind of hormone replacement therapywas not
consistently across all of the studies that are part of this meta-
analysis. While some studies excluded women taking oral
contraceptives or hormone replacement therapy, others did not.
This precludes the ability to include hormone replacement
therapy, which may influence BP, as a covariate in our
association analysis. However, using our stringent thresholds
and multistage GWAS efforts, we were able to identify a strong
association with multiple levels of evidence. This article lever-
ages the power of collaborative efforts within ICAPS to
investigate genetic determinants of BP response, and show-
cases potential opportunities to investigate other important
related phenotypes such as heart rate reduction response to b-
blockers in future

Conclusions
We performed the largest genome-wide meta-analysis of BP
response to b1-blockers and successfully identified and
replicated an SNP in the BST1 locus that was significantly
associated with BP response to b1-blockers. We were further
able to gather additional evidence in support of the region
containing this SNP using in silico approaches, and further
identified SNPs in high LD with the index SNP with putative
regulatory and functional effects. These data collectively
suggest the importance of this region in mediating BP
response to b1-blockers, warranting further studies to under-
stand the exact underlying mechanism(s). Deeper insights
about such pharmacogenomic markers and loci can ultimately
pave the way for personalized b1-blocker use with optimum
BP control and outcomes.
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Supplemental Methods: 

Study samples 

All the study protocols for each of the studies was approved by the local institutional 

review boards or equivalent committees. Informed consent forms were voluntary signed 

by all the participants. The clinical trials at each of the institutions included in this meta-

analysis were conducted in accordance with regulations set forth by the Declaration of 

Helsinki and local regulatory agencies.  

PEAR (Pharmacogenomic Evaluation of Antihypertensive Responses) 

The details of the PEAR study have been described previously1. PEAR was a 

prospective randomized, crossover clinical trial, which included hypertensive patients 

with mild to moderate uncomplicated hypertension. In brief, patients of both genders 

and of any race and ethnicity between ages of 17-65 years were included in the study. 

Secondary HTN, known history of cardiovascular disease (CVD) or diabetes were 

exclusions from PEAR. Before the initiation of HTN treatment, patients went on a 

washout for at least three-four weeks to revert to their hypertensive BP state. Patients 

were then randomized to an eight-week, monotherapy treatment with either atenolol 

(ATN) 50mg daily or hydrochlorothiazide (HCTZ) 12.5mg daily, followed by the addition 

of the other drug (i.e. ATN added to HCTZ, and HCTZ added to ATN).  For BP 

phenotype, a composite BP response of home, office and ambulatory BP measurement 

was used. For the analysis included herein, only participants with European American 

ancestry (EA) who were treated with β-blocker monotherapy and had available genome-

Data S1.
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wide genotype data were included. Genotyping was performed using Illumina Human 

Omni1M Quad Beadchip. (Illumina, San Diego, CA, USA) 

PEAR-2 

The details of PEAR-2 study have been published previously2, 3. PEAR-2 was a 

prospective, randomized trial that assessed the genetic factors contributing to variable 

BP response following sequential monotherapy with metoprolol (β-blocker) and 

chlorthalidone (thiazide-like diuretic). Like PEAR, adult participants between 18 and 65 

years of age, from both sex, and of any race/ethnicity who had mild to moderate, 

uncomplicated, HTN, were recruited into the study and underwent an anti-hypertensive 

treatment washout period for three-four weeks. Exclusion criteria was like that of PEAR. 

Upon confirmation of HTN criteria and BP readings, participants were started on 

metoprolol tartrate (50mg twice daily), and treatment was up titrated to a maximum dose 

of 100mg twice daily, followed by a second hypertensive washout, and treatment with 

chlorthalidone. While office and home BP readings were collected in PEAR-2, the 

average home BP measurements were used to create the BP response phenotype to 

metoprolol monotherapy. For this analysis, participants with EA ancestry who were 

treated with metoprolol monotherapy and had available genome-wide data were 

included. Genome-wide data were generated using Illumina Human Omni2.5S 

Beadchip (Illumina, San Diego, CA).     
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LIFE-Fin (Finnish Arm of the Losartan Intervention For Endpoint Reduction in 

Hypertension Study) 

LIFE was a prospective, randomized, multicenter (Scandinavia, UK, USA), double-blind, 

double-dummy, active-controlled study that aimed at evaluating the long-term treatment 

effects of losartan compared with atenolol among 9193 hypertensive patients with signs 

of left ventricle hypertrophy (LVH) indicated by their ECG. The details of the study have 

been published elsewhere4. Adult patients with 55-80 years of age, who had office 

systolic BP (SBP) of 160-200 mmHg or diastolic BP (DBP) of 95–115 mmHg, were 

included in the study. They underwent a two-week antihypertensive treatment-washout 

period during which placebo treatment was used. The baseline BP was derived from BP 

at the end of the washout period. Patients were then randomized to either losartan or 

atenolol, with a subsequent addition of HCTZ, to achieve a target BP of <140/90mmHg. 

Patients were followed at two, four and six months intervals after starting the 

medication, then every six-months for a total follow-up period of 4.8 years. Office BP 

readings were recorded at each visit and used to create BP response phenotype.  

For the current study, DNA samples from Finnish participants of the LIFE 

pharmacogenetic sample were available. Herein, we selected 202 participants on 

monotherapy treatment with atenolol 50 mg daily at two months of the study and used 

office BP data at 2 months after start of the treatment to calculate the BP responses.  

The DNA samples were genotyped using Illumina Human OmniExpress-12 BreadChip 

(Illumina, Inc., San Diego, CA, USA). 
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GENRES (Genetics of Drug Responsiveness in Essential Hypertension) 

GENRES is a randomized, placebo-controlled, double-blind, cross-over, single-center 

study that investigated the molecular genetics of drug response in essential HTN. The 

details of the study have been described previously5, 6. Moderately hypertensive Finnish 

men with 35–60 years of age who had repeated measurements of DBP >=95mmHg or 

used antihypertensive medication(s) were included in the study. Exclusion criteria 

included the use of three or more antihypertensive drugs, secondary hypertension or 

significant additional co-morbidity. Patients’ antihypertensive treatment was stopped for 

at least 4 weeks prior to starting the study drugs. The study included a four-week, run-in 

placebo period, followed by four-week drug monotherapy periods that were separated 

by four-week placebo treatment periods.  During the drug periods, the patients received 

(in a randomized order, in a rotational fashion) losartan 50mg, bisoprolol 5mg, HCTZ 

25mg, or amlodipine 5mg daily. Office BP measurements after a 30-minute rest in the 

sitting position were recorded at the end of each treatment or placebo period.  For the 

present study, we selected 216  participants with office BP response data to bisoprolol 

treatment available. Means of all (up to four) placebo treatment periods were used as 

the baseline levels for the calculation of BP responses. These patients had genome-

wide genotype data on Illumina Human OmniExpress-12 BreadChip (Illumina, Inc., San 

Diego, CA, USA). 

Pharmacogenomics of beta blocker Sardinian Study (BBSS) 

PHSS was a Pharmacogenomic study conducted at Hypertension and Related Disease 

Centre of the AOU-University of Sassari, Italy. The aim of the study was to find genetic 

markers of response to the antihypertensive drug atenolol in Essential Hypertension 
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(EH). Four hundred and three never treated Caucasian essential hypertensive patients, 

whose blood pressure was found  SBP ≥ 140 or DBP≥ 90 mmHg at the first visit (week-

8), were screened. Only patients with asymptomatic, mild-to-moderate essential 

hypertension were screened. A complete absence of major systemic disease and of any 

kind of treatment was also required. The absence of whatever kind of concurrent 

disease was a prerequisite for patients' eligibility to the study. 

After a run-in period of 8 weeks under controlled dietary conditions (sodium 100-140 

mEq/day and potassium 50-70 mEq/day), during which a complete diagnostic workout 

was performed to define the presence of high BP and to exclude secondary forms of 

hypertension (week 0), all the patients started Atenolol 50 mg b.i.d for 4 weeks. To 

avoid the interference of the effect of previous treatments which may last up to six 

months after drug withdrawal, only never treated EH were enrolled in the study.  The 

run-in period to confirm the presence of BP≥140/90 was decided according to 

International Guidelines on High Blood Pressure and to the Ethics Committee of the 

University of Sassari,    

During this period, BP and side effects were monitored every 2 weeks. BP was 

measured by automated electronic devices (OMRON 7051 IT) between 8:00 and 10:00 

AM, in the sitting position, on the dominant arm: three readings were obtained in each 

occasion by the same nurse in a quiet room and in the absence of the physician: the 

average of the three readings was used as reference value.Genomic DNA, collected at 

week 0 from the peripheral blood, was extracted with Macherey-Nagel kit: NucleoSpin 

Blood XL, Düren, Germany. All samples were genotyped at “Genomic and 

Bioinformatics laboratory” of University of Milan, using the Illumina Human1M-Duo array 
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within the HYPERGENES project7 and the Illumina HumanOmniExpress array (Illumina 

Inc, San Diego, CA, USA), within the InterOmics project (http://www.interomics.eu/). 

INVEST (INternational VErapamil SR-Trandolapril) 

INVEST was an international, prospective, multicenter, randomized trial. The details of 

the study including the inclusion/exclusion criteria have been published elsewhere8, 9. 

Patients older than 50 years of age, with essential hypertension and documented 

coronary artery disease (CAD) were randomized to receive either verapamil SR 

(calcium antagonist strategy; CAS) or atenolol (β-B strategy). Trandolapril or HCTZ 

were added respectively, to the treatment arms if target BP control was not achieved 

(<140/90 mm Hg or <130/85 mm Hg if patients were diabetic or have renal 

impairment). Patients were initially followed up every six weeks for the first six months, 

then every 6 months thereafter for recording of BP, assessing of patients’ overall well-

being, adverse events, and drug compliance, for an average follow-up period of 2.7 

years. INVEST-GENES is the genetic sub-study of INVEST which included 5979 

INVEST participants with DNA samples of whom, 1529 had genome-wide data 

generated on Illumina OmniExpress Exome chip. Herein, a total of 74 participants with 

EA ancestry who had BP response data to atenolol monotherapy treatment were 

analyzed.  

ASCOT UK/ASCOT SC 

ASCOT study is an investigator-led, multi-center trial, which included over 19,000 

hypertensive patients, aged 40-79 years at baseline, with an average SBP of 140/90 

mmHg on-treatment and 160/100 mmHg off-treatment. The details of this study have 
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been published previously10. Patients with no history of coronary heart disease who had 

at least three risk factors for CVD such as LVH, type II diabetes mellitus, peripheral 

artery disease, previous stroke/TIA, smoking, and male sex older than 55 years. The 

study investigated the outcome of amlodipine, a CAS compared with atenolol (βB-based 

strategy) among hypertensive patients at a moderate risk for CVD. BP was measured at 

randomization clinic visit and subsequently, at follow-up visits scheduled initially at six 

weeks, three months, six months, and every six months interval thereafter.  BP 

measurement post-atenolol monotherapy treatment taken at each person’s first follow-

up visit was used to define BP response phenotype. 745 Europeans from UK and 

Ireland were genotyped using Illumina HumanCNV 370 chip and 773 Europeans from 

Scandinavia were genotyped using the Illumina Human Omni Exome Express v8.1 and 

comprised the ASCOT UK and ASCOT-Sc cohorts, respectively. 
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Table S1. Clinical Characteristics of African American participants from PEAR and 

PEAR-2. 

Ethnic Validation Cohorts 

PEAR PEAR-2 

N 150 168 

Age, years 47.2 ± 8.5 50.0 ± 9.2 

Female, N (%) 107 (71.3%) 89 (53.0%) 

Body Mass Index, kg/m2 31.6 ± 6.3 30.8 ± 5.2 

Baseline SBP (mm/Hg) 151.3 ± 12.1 147.5 ± 10.6 

Baseline DBP(mm/Hg) 99.0 ± 5.7 95.6 ± 6.1 

Post treatment SBP (mm/Hg) 137.3±12.8 142.7±13.1 

Post treatment DBP (mm/Hg) 84.9±7.4 89.8±7.9 

Delta SBP (∆SBP) (mm/Hg) -5.1±9.2 -4.7±10.5

Delta DBP (∆SBP) (mm/Hg) -5.1±5.9 -5.7±6.7

Values are presented as mean ± standard deviation unless otherwise noted. SBP: 

Systolic Blood Pressure, DBP: Diastolic Blood Pressure
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Table S2. In silico analysis of the SNPs in LD with the replicated SNP rs28404156 using regulome DB and Haploreg 

v4.1.  

SNP BP 

LD with the 
index SNP 

(rs28404156) 

Functional prediction using Regulome 

DB eQTL annotation (Haploreg v4.1) 

R-

squared D' Score Potential Regulatory Function 

Correlated 

gene Tissue 

rs28404156 15737732 1 1 No data - FAM200B 

rs4301112 15717226 0.82 0.96 No data - CD38 Heart_Atrial_Appendage 

rs28532698 15721619 0.82 0.96 6 other CD38 Heart_Atrial_Appendage 

rs10001565 15722573 0.82 0.96 1f eQTL + TF binding / DNase peak 

CD38 
BST1 

FBXL5 

Heart_Atrial_Appendage 
Whole Blood 

Whole Blood 

rs12643475 15723514 0.86 0.97 5 TF binding or DNase peak 
BST1 

FBXL5 
Heart_Atrial_Appendage 

Whole Blood 

rs9942212 15724150 0.88 0.98 No data - - - 

rs7667512 15731560 0.93 0.97 3a 
TF binding + any motif + DNase 

peak 
BST1 

FBXL5 
Whole Blood 
Whole Blood 

rs7672311 15731690 0.95 0.98 1f eQTL + TF binding / DNase peak 
BST1 

FBXL5 
Whole Blood 
Whole Blood 

rs12649015 15733020 0.95 0.98 No data - - - 

rs33936701 15737559 0.97 0.98 6 other FAM200B Arterial_Tibial 

rs28641514 15737722 0.98 1 6 other FAM200B Arterial_Tibial 

rs12646913 15739276 0.91 0.96 5 TF binding or DNase peak BST1 Whole Blood 

The SNPs that have evidence of potential regulatory function from both the databases are in bold. 
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Figure S1. Change in systolic blood pressure post β1-blocker treatment by rs28404156 genotype. 

Systolic Blood Pressure change post to β1-blocker treatment among PEAR, PEAR‐2, GENRES, LIFE-Fin and BB-SS by 

BST1 rs28404156 genotype. Systolic blood pressure change for all studies is adjusted for pretreatment systolic blood 

pressure levels, age, sex, and principal components. P values are for contrast of least square adjusted means between 

genotype groups. PEAR: Pharmacogenomic Evaluation of Antihypertensive Response, GENRES: Genetics of Drug 

Responsiveness in Essential Hypertension, LIFE-Fin: Finnish Arm of the Losartan Intervention For Endpoint Reduction in 

Hypertension Study and BB-SS: Pharmacogenomics of beta blocker Sardinian Study
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