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Abstract

Transmission Control Protocol (TCP) has served as the workhorse to trans-
mit Internet traffic for several decades already. Its built-in congestion con-
trol mechanism has proved reliable to ensure the stability of the Internet,
and congestion control algorithms borrowed from TCP are being applied
largely also by other transport protocols. TCP congestion control has two
main phases for increasing sending rate. Slow Start is responsible for start-
ing up a flow by seeking the sending rate the flow should use. Congestion
Avoidance then takes over to manage the sending rate for flows that last
long enough. In addition, the flow is booted up by sending the Initial
Window of packets prior to Slow Start.

There is a large difference in the magnitude of sending rate increase during
Slow Start and Congestion Avoidance. Slow Start increases the sending
rate exponentially, whereas with Congestion Avoidance the increase is lin-
ear. If congestion is detected, a standard TCP sender reduces the sending
rate heavily. It is well known that most of the Internet flows are short. It
implies that flow startup is a rather frequent phenomenon.Â Also, many
traffic types exhibit an ON-OFF pattern with senders remaining idle for
varying periods of time. As the flow startup under Slow Start causes expo-
nential sending rate increase, the link load is often subject to exponential
load transients that escalate in a few round trips into overload, if not con-
trolled properly. It is true especially near the network edge where traffic
aggregation is limited to a few users.
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Traditionally much of the congestion control research has focused on behav-
ior during Congestion Avoidance and uses large aggregates during testing.
To control router load, Active Queue Management (AQM) is recommended.
The state-of-the-art AQM algorithms, however, are designed with little at-
tention to Slow Start. This thesis focuses on congestion control and AQM
during the flow startup. We explore what effect the Initial Window has
to competing latency-sensitive traffic during a flow startup consisting of
multiple parallel flows typical to Web traffic and investigate the impact of
increasing Initial Window from three to ten TCP segments. We also high-
light what the shortcomings are in the state-of-the-art AQM algorithms and
formulate the challenges AQM algorithms must address to properly handle
flow startup and exponential load transients. These challenges include the
horizon problem, RTT (round-trip time) uncertainty and rapidly changing
load. None of the existing AQM algorithms are prepared to handle these
challenges. Therefore we explore whether an existing AQM algorithm called
Random Early Detection (RED) can be altered to control exponential load
transients effectively and propose necessary changes to RED. We also pro-
pose an entirely new AQM algorithm called Predict. It is the first AQM
algorithm designed primarily for handling exponential load transients.

Our evaluation shows that because of shortcomings in handling exponen-
tial load transients, the state-of-the-art AQM algorithms often respond too
slowly or too fast depending on the actual RTT of the traffic. In contrast,
the Predict AQM algorithm performs timely congestion indication without
compromising throughput or latency unnecessarily, yielding low latency
over a large range of RTTs. In addition, the load estimation in Predict
is designed to be fully compatible with pacing and the timely congestion
indication allows relaxing the large sending rate reduction on congestion
detection.

Computing Reviews (2012) Categories and Subject
Descriptors:
C.2.1 Network Architecture and Design
C.2.2 Network Protocols
C.2.3 Network Operations
C.2.6 Internetworking
C.4 Performance of Systems

General Terms:
Active Queue Management, Congestion Control, Access Networks, TCP
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Chapter 1

Introduction

Congestion control is essential to ensure proper functioning of the Inter-
net. Without congestion control, the Internet would become unusable due
to overload. The congestion control mechanism of Transmission Control
Protocol (TCP) [13, 151] has proved reliable to ensure the stability of the
Internet, and congestion control algorithms borrowed from TCP are being
applied largely also by other transport protocol.

1.1 Background and Motivation

Internet traffic patterns have changed over the years. One major reason is
the World Wide Web (WWW). Soon after its invention in 1989, the web
became very popular and since then a large portion of Internet traffic has
been web traffic [185]. Web pages are transferred using Hypertext Transfer
Protocol (HTTP) [23, 26, 73–75] that is layered on top of Transmission
Control Protocol (TCP) [151]. Web traffic consists largely of short TCP
flows and alternation between active and inactive transmission periods is
frequent [1, 49, 56, 63]. Web browsers typically use parallel connections to
reduce latency in fetching a web page that consists of many HTTP objects.

TCP has a built-in congestion control mechanism to ensure the stability
of the Internet by preventing congestion collapse [102, 140] and to prevent
the use of excessive sending rate over a prolonged period of time. The TCP
congestion control mechanism is self-clocked using acknowledgement pack-
ets (ACKs) as feedback and tries to follow a “packet conservation principle”
that allows sending a new data packet to the network only when another
packet has left it [102]. TCP congestion control has two main phases: Slow
Start and Congestion Avoidance [13]. A TCP sender first uses Slow Start
to probe for the available capacity on the end-to-end path that is unknown
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2 1 Introduction

to the sender. The ACK clock is booted up for Slow Start by sending up
to the TCP Initial Window (IW) worth of packets to the network. Then
the sender increases the sending rate exponentially during Slow Start. The
sender has to violate the packet conservation principle every time it in-
creases the sending rate because obeying the principle would only allow
maintaining the same sending rate. Slow Start continues until the TCP
flow hits “the ceiling” that the sender discerns through packets dropped in
the network due to congestion. Once the proper sending rate is acquired,
the TCP sender continues in Congestion Avoidance, which is much less ag-
gressive compared with Slow Start. We can compare these two congestion
control phases to a storm and calm waters, the storm being Slow Start and
calm waters matching Congestion Avoidance. To make things worse, the
storms caused by Slow Start do not settle until the sender finds the ceiling
through packet drops (assuming there is enough payload to be transmitted
in the TCP flow to feed the storm).

The use of short TCP flows with web traffic emphasizes the importance
of the Slow-Start phase that is now the norm rather than an infrequent
occurrence. It also makes the Initial Window important because web traf-
fic often uses parallel flows to transfer a web page. Slow Start produces
exponential load transients. The effect of exponential load transients on
the load of a link is most significant close to the network edge where traffic
aggregation is limited to only a single or a few users sharing the link. Such
an access network or access link is often also the bottleneck link, that is,
the narrowest link on the whole end-to-end path. When the bottleneck link
is close to an end-user, it is very likely also saturable by one end-user alone,
in contrast to the network core where the traffic aggregation level is higher
than near the network edge.

When the sending rate is higher than the rate of the bottleneck link,
a queue forms at the router before the bottleneck link. The router needs
to somehow manage the queue. Traditionally, a simple First-in, First-out
(FIFO) policy together with drop from the tail when the buffer is full
(Taildrop) has been used. Due to issues with persistently full or nearly
full buffers, Active Queue Management (AQM) was introduced to pro-
actively drop packets before the buffer becomes full to leave buffer space for
transient bursts. On the early round-trips (RTT) of Slow Start, the queue is
typically transient as the link is not yet saturated. The link drains the queue
during the intermediate idle periods of each RTT. However, Slow Start
rapidly escalates from a low load to the full load and overload in just a few
RTTs because of the exponential nature of the sending rate increase. Once
the end-to-end path becomes fully utilized by Slow Start, a standing queue
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forms in front of the bottleneck link. If the AQM algorithm does not react
in time, the standing queue keeps growing with a rapid rate leading to a
large delay spike that may harm competing traffic, for example, a competing
interactive media flow or a flow in the same web transaction. Because AQM
algorithms have been designed only for coping with Congestion Avoidance,
the rapid load growth during exponential load transients frequently takes
them by surprise. Slow Start easily overpowers the control authority in
AQM algorithms leading to suboptimal performance.

Designing AQM algorithms with awareness for exponential load tran-
sients has serious challenges. This thesis explores those challenges, namely
the horizon problem and RTT uncertainty. Many AQM algorithms base
their control decisions on queue visible at the router, either measuring
queue length or queuing delay. The horizon problem, however, prevents
the router from acquiring a complete picture of the traffic load by simply
measuring its current queuing, because the distribution of the load over the
end-to-end path keeps some of the load-inducing packets out of the view
of the router. At the same time, inability to know the RTTs of the flows
going through the router also makes it challenging for the AQM algorithm
to use a proper measurement interval for load calculation as it does not
know what that interval should be.

Even though the experiments in this thesis are carried out using TCP,
we believe it does not significantly limit the generality of the findings. The
generality comes from other protocols running on top of another transport
protocol, mainly User Datagram Protocol (UDP) [152], implementing con-
gestion control features that are heavily borrowed from TCP algorithms
(e.g., QUIC [100, 101, 124]). In addition, more and more traffic that has
traditionally transferred over UDP is being moved to work on top of HTTP
which is especially true with streaming traffic. It is now largely transmit-
ted using HTTP adaptive streaming (HAS) [182] instead of, for example,
Real-time Transport Protocol (RTP) [174] on top of UDP. As HTTP traf-
fic is transmitted using either TCP itself or using QUIC that implements
TCP-like congestion control, our focus on TCP is very valid in the Internet
of today.

Given the frequent occurrence of exponential load transients in normal
network traffic, considering them during AQM algorithm design seems a
natural design choice. To ignore them is like designing a ship (AQM al-
gorithm) only for calm waters. Unfortunately, exponential load transients
are rather nasty storms that occur very frequently shaking the unequipped
ship over and over again. As the storms caused by exponential load tran-
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sients are such that they are only quenched after the AQM algorithm takes
serious actions, the AQM designs ignore them only at their own peril.

This thesis focuses on the behavior during a flow startup and exponen-
tial load transients that occur during the bandwidth-probing phase. We
cover (a) the issues that occur due to the unpreparedness of the conges-
tion control and AQM algorithms to the rapid changes in the load and (b)
propose solutions that are aware of exponential load transients.

1.2 Problem Statement and Scope

This thesis is composed of two research themes related to flow startup.
The first research theme focuses on flow initiation, that is, to the very
first round trip (RTT) during which data is being transmitted when a flow
starts up. In addition to existing aggressive behavior in the Internet with
web traffic using parallel TCP flows, there is a proposal on making the
TCP Initial Window larger [50]. This relatively recent proposal and web
traffic using parallel TCP flows need to be evaluated together. The related
research questions are as follows:

RQ1 Does parallel flow initiation introduce load transients with delays that
are large enough to be harmful to competing delay-sensitive traffic?

RQ2 What is the impact of the proposed increased TCP Initial Window?

RQ1 addresses the effect of existing behavior in web browsers that typi-
cally open a large number of parallel TCP flows. RQ2 aims to give insights
into how the aggressiveness develops if the proposed TCP modifications are
widely deployed.

The second research theme focuses on Active Queue Management
(AQM) during flow startup. Our initial research questions related to
existing work on this theme are:

RQ3 Do the state-of-the-art AQM algorithms [80, 94, 142, 143, 145, 146]
work properly during exponential load transients that occur due to
flow startup?

RQ4 What are the issues AQM algorithms need to solve to work properly
during exponential load transients?

RQ3 seeks for an answer to whether the existing AQM algorithms are
adequate for handling flow startup-related exponential load transients. In
addition, a negative answer to RQ3 gives insights into what the problems
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with the state-of-the-art AQM algorithms are, leading us to RQ4. To an-
swer RQ4, we were able to crystallize the AQM problems with exponential
load transients to two root problems that we labelled as the horizon prob-
lem and RTT uncertainty. Together those two problems make the load
estimation on a router challenging. The issues caused by these problems
are somewhat known beforehand to congestion control research and listed
as open challenges by RFC 6077 [147]. This thesis refines the understanding
about these challenges.

Since none of the existing AQM algorithms properly addresses the issues
that occur during exponential load transients, we realized that we need a
new AQM algorithm that is designed primarily with the exponential load
transients in mind. The remaining research questions are related to such
an AQM algorithm:

RQ5 Can an AQM algorithm measure link load properly if it solves the
horizon problem and RTT uncertainty?

RQ6 Can the known characteristics of the exponential load transient be
used by an AQM algorithm to predict the load into the near future?

RQ7 Can an AQM algorithm send a congestion signal at the right point of
time to terminate the bandwidth-probing phase of a connection when
the bottleneck link becomes fully utilized?

RQ5 seeks for an answer to whether the more accurate understand-
ing on why AQM algorithms have a hard time to correctly manage the
exponential load transients helps in constructing an AQM algorithm that
properly measures the current link load. If the answer to RQ5 is yes, the
acquired knowledge about the parameters of the exponential load transient
may allow further refinement of the AQM algorithm. The refinement is
formalized in RQ6 aiming to give predictive power to the AQM algorithm.
The prediction allows the AQM algorithm to circumvent a third problem
that occurs during exponential load transients due to rapidly changing load.
The high rate of change in the load makes the current link load estimate
already stale once the router is able to enforce a sender response that occurs
only after one additional RTT. The prediction powers the AQM algorithm
to take into account the RTT-long delay in feedback allowing the router to
send timely congestion signals to the senders, which could enable solving
RQ7 about timely feedback to an ongoing bandwidth-probing phase.

This thesis focuses on load transients that occur during flow startup.
The behavior and problems that occur after the flow startup during TCP
Congestion Avoidance are beyond the scope of this thesis. Thus, advanced
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TCP algorithms that only start working during the Congestion Avoidance
phase of the flow such as CUBIC [88, 159] and Compound TCP [180, 184]
fall outside the scope.

Load transients have a big impact on the load of the routers at the
network edge or near it. Such routers typically serve only one to a few
users with limited flow aggregate and low overall utilization. This thesis
focuses on the effects of load transients to such routers. In many carrier-
grade routers on the Internet core the level of traffic aggregation is very
high and the effect of a single flow or an end host on their load is miniscule.
AQM on such a router is outside the scope of this thesis, however, as long as
any single sender may cause an overload situation, the work in this thesis is
relevant also on such routers. The overload condition can occur if a single
sender has enough capacity to saturate the outgoing link or can cause a
significant load swing on top of the other traffic.

The scope of this thesis is further narrowed by excluding flow handshake-
related problems and improvements. Therefore TCP three-way handshake
[151] improvements (e.g., TCP Fast Open [47]) and possible use of Trans-
port Layer Security (TLS) [64–66, 157, 188] (formerly Secure Socket Layer
(SSL) [83]) are outside the scope. While the number of RTTs needed dur-
ing the handshake increases flow completion times, which is a problem from
the end-user perspective, it is less of a problem from the congestion control
point of view. It is the actual payloads that are more problematic for the
congestion control and therefore this thesis focuses on the behavior after
the completion of the initial handshakes.

1.3 Methodology

In this thesis, we perform experimental network measurements to evaluate
performance during a flow startup. The experiments are conducted either
with real cellular 3G hardware or as simulations using the ns2 network
simulator [99]. We use workloads that mimic mainly web traffic object
response with a rough level of abstraction excluding the effects of Domain
Name System (DNS) [138, 139] queries, web object requests, and delays
due to structural dependencies within web page, which all are relevant to
real web transactions. To validate the measurement toolset, a smaller set
of preliminary tests is first run to identify problems. If unwanted behavior
due to bugs, misconfigurations, misimplementations, etc. are found during
analysis, the issues are fixed before running the full set of tests. During the
work, we identified and fixed a few issues in the ns2 RED implementation.
The results from the experiments are carefully analyzed in order to confirm
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the validity of the results and to locate the root cause for each phenomenon.
If a validity problem is found only at this late stage, the problems are fixed
and the affected experiments are rerun.

In this thesis we use mainly workloads and metrics that try to minimize
the impact of samples from the flows that have transitioned to Congestion
Avoidance. This selection is based on our observation that often the tran-
sient problems are short in duration compared with the overall lifetime of
many experiments by other researchers. Therefore, the transient problems
often fail to show up clearly, if at all, in statistics that include a vast number
of samples from non-transient phases of the connections. In our measure-
ments interest is quite often placed on the worst-case behavior because it
sets a clear performance bound that is independent of the aspects we ex-
cluded during our web traffic abstraction. While the aspects abstracted
away would also affect user perceived performance, in practice it would
explode the required test space to cover a comprehensive set of real web
pages.

In this thesis, we use mainly TCP to provoke congestion. However, the
flow startup-related problems are generalizable to other transport proto-
cols. Often such protocols even borrow heavily from the vast library of
TCP algorithms developed to handle various scenarios. Even if the algo-
rithms used by the other protocol are not exactly the same, they often
still include elements similar to those of TCP, which stems from the TCP-
friendly concept [79]. As the TCP-friendly concept dictates that the other
transport protocols cannot be too aggressive compared with a competing
TCP flow, it has led to adoption of similar behavior in practice. Further-
more, there is only quite a limited set of ways to do the flow startup anyway,
which forces adoption of similar behavior for the flow startup regardless of
the protocol. In addition, measurements show that when the link capacity
is highly utilized, HTTP running on top of TCP is by volume responsible
for most of the traffic [166].

1.4 Thesis Contributions

This thesis contributes to the knowledge on how aggressiveness during a
flow startup affects performance of the flow and the co-existing flows that
share the same bottleneck link, especially the peak queuing delay. The first
research theme about flow initiation explores how the end-host congestion
control needs to initiate flows in order to not produce delay spikes harmful
to concurrent traffic that may be sensitive to latency.
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The second research theme identifies and proposes solutions to the in-
teractions between flow startup and AQM algorithms. To the best of our
knowledge, we are the first to develop AQM algorithms based primarily on
behavior during exponential load transients. We measure how the existing
mainstream AQM algorithms perform during exponential load transients,
identify their key shortcomings, and propose improved AQM algorithms
that are prepared to handle exponential load transients.

The research in this thesis is presented in four original publications that
are referred to as Pub. I, II, III, and IV. As the research conducted in this
thesis also covers proposals active in the Internet Engineering Task Force
(IETF), an important part of the research is contributing the evaluation
results of the active proposals to IETF. The contribution of each publication
is described below.

Pub. I: In this paper we evaluate the impact of aggressive flow startup.
The evaluation covers the impact of parallel connections typical to web traf-
fic combined with the proposal to increase TCP Initial Window (IW) [50]
from three to ten TCP segments 1. The experiments for this paper are
conducted in a real high-speed cellular network and the impact of the ag-
gressive flow startup is quantified using the delay imposed on a concurrent
interactive media flow that is latency sensitive. The work in this paper
answers RQ1 and RQ2 giving insight into how the end hosts should handle
flow initiation in order to not harm latency-sensitive traffic that may be
competing. We also confirm in this paper that a long-lived bulk TCP con-
nection in the particular cellular network cause excessive buffering known
as bufferbloat [84] that has a very devastating impact on interactive traf-
fic. The performance impacts due to the long-lived bulk TCP connection,
however, are beyond the scope of this thesis.

The author is the major contributor to the measurement toolset and to
the result analysis. Some parts of the toolset originate from earlier tests
by Aki Nyrhinen and Binoy Chemmagate but they were improved by the
author. Effectively, most of the toolset was rewritten by the improvements
from the author and by a limited amount also the new work from Binoy
Chemmagate. The author is the main contributor of the paper content.
Binoy Chemmagate was responsible for running the experiments and did
small parts of the result analysis. Laila Daniel provided useful advice.
Aaron Yi Ding assisted with related work and together with Markku Kojo
gave useful suggestions. Markus Isomäki and Jouni Korhonen worked as
technical advisers.

1We also evaluated the impact of reduced initial RTO [148] but found out its impact
small and due to space limitation results were not included into Pub. I.
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Pub. II: This paper highlights how the Random Early Detection
(RED) AQM algorithm [80] responds too slowly when it encounters ex-
ponential load transients that are typical to occur with limited aggregate
traffic and proposes the HRED (Harsh RED) AQM algorithm that prop-
erly responds to exponential load transients. The paper compares HRED
performance to a FIFO queue with the simple Taildrop and RED with rec-
ommended parameters using the ns2 network simulator [99]. For this paper,
we developed a simulation model for exponential load transients that mim-
ics behavior that, for example, a web transaction using parallel connections
to transmit HTTP objects would cause when aggregate traffic over a router
is limited. Such condition commonly occurs at the network edge where the
traffic for a router originates from one or a few users. This ns2 model is
then used in all our subsequent work. While analyzing the results from the
simulations we also discovered issues in the ns2 RED implementation. We
fixed the issues before rerunning the affected simulations.

The results in this paper show how RED with the recommended param-
eters leads to anomalous behaviors during exponential load transients which
causes drastic performance reduction. HRED, on the other hand, is shown
to properly control the queue without anomalies. Based on the HRED ex-
perience we discover that contrary to the conventional wisdom on setting
the RED parameters to respond “slowly” to congestion, it is safer to oper-
ate RED “too fast” to prevent anomalous behavior in the RED algorithm.
This paper also shows that an equal response from an AQM algorithm to
TCP Slow Start and Congestion Avoidance [13, 102] causes performance
issues because they have a very different level of aggressiveness.

The author developed HRED, the measurement tools, and performed
the result analysis. Discussion about exponential load transients and TCP
Slow Start nuances with Aki Nyrhinen were very helpful while designing
HRED. The author is the main contributor of the paper content. Figure
2 and Figure 1 were made by Aaron Yi Ding, the latter according to the
instructions of the author. Aaron Yi Ding helped with the related work
and together with Markku Kojo helped in writing and finalizing the paper.

Pub. III: In this paper we evaluate how AQM algorithms perform
during exponential load transients. The paper compares HRED proposed
in Pub. II to the state-of-the-art AQM algorithms CoDel (Controlled De-
lay) [142, 143] and PIE (Proportional Integral controller Enhanced) [145,
146] using the ns2 simulation model we developed in Pub. II. This paper
together with Pub. II answers RQ3. The results show that the state-of-
the-art AQM algorithms handle exponential load transients inadequately.
We also discovered an issue in the departure rate estimator of PIE that
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effectively disabled the whole PIE algorithm when the link bandwidth is
low. We have contributed to the PIE specification [145] to ensure it does
not leave the particular part of the algorithm unclear.

The author is the sole toolset contributor and performed the result
analysis. The author is the main contributor of the paper content but has
received valuable feedback and suggestions from the coauthor.

Pub. IV: This paper explores the issues AQM algorithms face dur-
ing exponential load transients and proposes a new AQM algorithm called
Predict. The paper refines the understanding about the limitations in the
existing AQM algorithms by defining the horizon problem and RTT un-
certainty that make load estimation challenging for routers. The HRED
algorithm proposed in Pub. II went as far as the state-of-the-art AQM al-
gorithms seem to be able to in responding to exponential load transients.
However, HRED is still seriously limited by the requirement for a known,
constant end-to-end RTT, that is, it would need to solve the RTT uncer-
tainty. Instead of trying to improve HRED, this paper proposes the Predict
AQM algorithm that not only solves the horizon problem and RTT uncer-
tainty but is also able to predict the load into the near future, effectively
answering RQ5, RQ6, and RQ7 positively. Pub. II found out that it is nec-
essary to differentiate responses depending on whether there is Slow Start
in progress or not, Predict solves this differentiation by detecting whether
exponential load transient is in fact taking place and only then responding
aggressively.

For this paper, we run simulation experiments using an extended version
of the exponential load transient model that was used in Pub. II and III.
The experiments cover a wide set of network paths with different RTTs to
validate the Predict AQM algorithm and compare it against PIE, CoDel,
and SFQ-CoDel. The results show that there is room for significant peak
delay improvements if the design of an AQM algorithm properly addresses
exponential load transients and that the current AQM algorithms have a
hard time to correctly manage exponential load transients. The additional
results acquired in this paper further reinforce that the state-of-the-art
AQM algorithms do not adequately solve exponential load transients and
may even do significant harm to performance (RQ3).

The Predict AQM algorithm we developed is able to control the fastest
and therefore the most dangerous form of load growth transients that a
congestion-controlled load can experience. Therefore, we believe we may
have solved one of the open questions in congestion control research related
to information acquisition [147].
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The author crystallized the horizon problem and RTT uncertainty, and
the limitations they impose on AQM. The author developed the Predict
AQM algorithm and alone extended the toolset from the previous two pa-
pers to be suitable for the measurements done in this paper. The author did
the entire result analysis and is the main contributor of the paper content.
Again, the author has received valuable feedback and suggestions from the
coauthor.

1.5 Structure of the Thesis

The rest of this thesis is organized as follows. Chapter 2 provides the
background to flow startup first highlighting how flow startup relevance
has increased due to developments in the Internet traffic. Then it explains
various components related to the flow startup process and covers the flow
initiation research theme explored by Pub. I. Chapter 3 focuses on Active
Queue Management (AQM) during flow startup that is the second research
theme in this thesis. It first introduces state of the AQM art, then explains
how these AQM algorithms behave during load transients that are caused
by flow startup, and finally discusses solutions that address the shortcom-
ings in the state-of-the-art AQM algorithms. Table 1.1 summarizes the
mapping between the research questions and the content of this thesis.
Chapter 4 concludes this thesis, presents the areas that need future work,
and highlights how the discoveries and insights gained in this thesis may
turn out useful for a future Internet congestion control architecture. The
four original publications describing the research conducted in this thesis
are included at the end of this thesis.

Table 1.1: Summary of the thesis structure, research themes, and questions.

Theme Research Main Original Publications
Question Sections

Flow RQ1 2.2 Pub. I
Initialization RQ2 2.2 Pub. I

Active Queue RQ3 3.2, 3.3 Pub. II, Pub. III, Pub. IV
Management RQ4 3.2, 3.3 Pub. II, Pub. III, Pub. IV
During Flow RQ5 3.3, 3.4 Pub. II, Pub. IV
Startup RQ6 3.3, 3.4 Pub. IV

RQ7 3.3, 3.4 Pub. IV
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Chapter 2

Flow Startup and Congestion
Control

The lifetime of any flow in the Internet begins with flow startup. With
a large number of flows coming and going in common Internet traffic, it
is important to understand how flow startup and congestion control in-
teract. This chapter focuses on topics related to flow startup. First in
Section 2.1 we highlight the developments in the Internet traffic that has
led to a significant increase in relevance of the flow startup for good per-
formance of flows in the Internet. In the next two sections we discuss the
flow startup phases: flow initiation that relates to RQ1, RQ2, and Pub. I is
discussed in Section 2.2; and the following bandwidth-probing phase is dis-
cussed in Section 2.3. Section 2.5 discusses optional mechanisms for exiting
the bandwidth-probing phase before a congestion signal. In Section 2.4 we
discuss congestion that often ends the bandwidth-probing phase, associ-
ated actions related to sender response, and possibly needed loss recovery.
Section 2.6 concentrates on restarting flows after periods of inactivity or
low activity. Finally, a summary is provided in Section 2.7.

2.1 Importance of Flow Startup due to Internet
Traffic Developments

TCP congestion control [13] is based on a “packet conservation principle”
that is enacted when the TCP flows in the network operate “in equilib-
rium” [102]. The main purpose of the TCP congestion control was initially
to prevent “congestion collapse” that caused abysmal performance due to
unnecessary retransmissions [102, 140] by operating TCP flows in a manner
that ensures a stable network [102]. The TCP congestion control also aims

13
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to utilize the network capacity efficiently but within the constraints im-
posed by its primary goal of avoiding the congestion collapse. Slow Start
used for probing available capacity was seen only as a mandatory viola-
tion of the packet conservation principle until packet conservation can be
achieved [102]. This means that the major focus of the congestion control
work has been on Congestion Avoidance in equilibrium and that is reflected
in a rather large number of congestion control-related models, proofs, etc.
that are based on the “steady-state” operation. The steady-state operation
implies expectation of large, long-running bulk TCP flows. In general, the
progress of a long-running bulk TCP flow is at its best when congestion
control does not reduce the throughput of the flow which was long used as
the main or sole metric to gauge congestion control performance.

It was soon realized that congestion control needs to do more than pre-
vent the congestion collapse. TCP congestion control aims for a condition
where the network cannot hold even a single packet more. A TCP sender
keeps increasing its sending rate on each RTT even in Congestion Avoid-
ance to probe the network for higher available capacity as long as there is
payload to transmit. Only after a dropped packet is detected, the sender
backs off temporarily and then again continues trying to drive the network
to the maximal level of utilization and buffer usage. TCP congestion con-
trol together with a simple drop-from-tail-when-buffer-is-full policy, known
as Taildrop, leads to full or close to full buffers. To prevent problems associ-
ated with full buffers, Active Queue Management (AQM), such as Random
Early Detection (RED) [80], was introduced and later recommended to
be deployed by Internet routers [31]. But again, the AQM research and
design focused on solutions for Congestion Avoidance and steady state.
Nevertheless, the need for lower delay was recognized as a target for AQM
algorithms.

The World Wide Web (WWW) was invented in 1989 [27]. A web page
is a collection of objects that are glued together and displayed by a web
browser according to the instructions given in Hypertext Markup Language
(HTML) [25, 190, 191]. In order to display a web page, the web browser
performs a web transaction first fetching the main object of the web page
called body object from a remote web server. Based on parsing the body
object, the browser decides what additional objects need to be fetched.
Those additional objects are called inline objects and may contain images,
scripts, stylesheets, etc. Processing of an inline object may require further
inline objects to be fetched. Once all required objects are transferred, the
web transaction is complete. Some web browsers may start to display the
web page while the web transaction is still in progress, however, the actual
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representation of the web page to the end user and issues related to it are
out of scope for this thesis.

Web objects are transferred over Hypertext Transfer Protocol (HTTP).
HTTP/1.0 [26] performs fetching of each web object over a Transmission
Control Protocol (TCP) [151] connection and once completed, it closes the
connection. If persistent connections are enabled, it is possible to reuse a
TCP connection without closing it and opening another TCP connection
for the next object to be fetched. As many objects typically originate from
the same remote server, HTTP/1.1 [73–75] introduces HTTP pipelining
to enable re-using a TCP connection more efficiently for multiple objects
as HTTP pipelining allows the next request to be made before the first
object is fully transferred. Also, the TCP connections with HTTP/1.1 are
persistent by default.

One characteristic of web traffic is the presence of ON and OFF periods
that refer to whether an HTTP transmission is currently active or not. The
OFF periods are caused by (a) the user reading and thinking (inactive OFF)
and (b) the web browser processing the HTTP objects received so far before
the browser is able to decide what HTTP object to request next (active
OFF) [1, 56]. These ON and OFF periods are also reflected in various
HTTP models [21, 49, 63, 181]. A recent study from real traffic captures
confirms the presence of internal OFF periods for roughly a quarter to one
third of all connections [165].

In the 1990s, the web became very popular. By 1995 web traffic made
up roughly one fifth of all Internet traffic [141]. Only two years after that
in 1997, the share of the HTTP traffic had grown so that more than 70%
of the Internet traffic was HTTP traffic [185].

While the web traffic, HTTP models, and measurements mentioned
above are old, HTTP and web traffic changed very little for many years.
The most significant change after HTTP/1.1 was the complexity growth in
the web pages increasing the sizes of the HTTP objects and the number of
the objects that were required to complete web transactions [153, 155]. As
the complexity grew, also the latency of a web transaction became larger.
The latency arms race between browser makers was a result. HTTP/1.1
allows up to two parallel connections to be used for a single server to bet-
ter utilize the resources during a web transaction [74] but the number of
allowed parallel connections was increased from two by the browser makers
to reduce the latency to win against competing browsers [169]. In addition,
many complex web sites were not satisfied with the off-the-shelf parallelism
and resorted to a technique called domain sharding. The domain sharding
artificially inflates the number of hostnames the inline objects of a web
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page appear to originate from which circumvents the per hostname limit
on the number of allowed parallel connections. Therefore the number of
parallel connections a browser may open during a web transaction became
very large [42, 178].

Many of the HTTP objects are quite small [153, 155] and therefore the
TCP flows transmitting them mostly operate in Slow Start. Many of such
TCP flows may never leave Slow Start before the data of the transmitted
HTTP object runs out. As web traffic forms a significant portion of Internet
traffic, the short TCP flows transmitting HTTP objects play a significant
role for the load at the routers. TCP senders increase sending rate expo-
nentially per RTT in Slow Start producing exponential load transients. At
this point, the situation is a network that is designed for operation in Con-
gestion Avoidance, whereas the transfers for HTTP objects mostly operate
in the much more aggressive Slow Start probing for the sending rate they
should use. As the load growth during an exponential load transient is very
fast, the TCP flows using Slow Start can congest links just in a few RTTs,
which is much faster than the AQM algorithms expect by design.

Short TCP flows are often regarded as “mice”, in contrast to “ele-
phants” that are much larger. Unfortunately, the “mouse” notion can easily
convey a false message that such flows are not important from the conges-
tion control point of view. However, a web transaction is not a single
“mouse” but an “army of mice” that together may quickly eat up all the
resources because the flows of the web transaction often start up and in-
crease sending rate simultaneously. Together the footprint of the short web
traffic flow “mice” is significant and is comparable to a longer TCP flow
in Slow Start. Often HTTP pipelining even naturally combines the HTTP
objects to a longer “train of mice” that is transmitted over a single TCP
flow. A measurement study based on real traffic captures confirms that it
is reasonable to assume that for flows originating from a single endpoint,
a small number of flows at each time tend to proceed past TCP Initial
Window to form bandwidth probing aggregates [7].

While congestion can occur almost anywhere in the network, some links
are more likely to get congested than the others. One such case is the link
with the least bandwidth along an end-to-end path. The link with the least
bandwidth is commonly close to the network edge, that is, the access link
or a link in the access network is likely to have smaller bandwidth than the
links in the network core [67]. The links close to the network edge have
only a limited level of traffic aggregation serving only one to a few end
users. Typically, the access links also have low overall utilization [134, 166,
177]. Therefore, the impact of a single user or a single web transaction on
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the load of the link is large. As OFF periods natural to the web traffic
are frequent, the new connections often start their Slow Start when the
link at the network edge is idle [34] or has low load. An exponential load
transient then rapidly increases the load but after a relatively short ON
period, the link becomes idle again and the process soon repeats itself once
the end user initiates the next web transaction. A study on access link
performance [176, 177] confirms that (a) web traffic is likely a significant
contributor to access link saturation, that (b) volume-wise the saturated
periods are “almost negligible” which hints at the presence of a significant
amount of OFF periods, and that (c) the link utilization over longer periods
of time is very low for most of the clients. The first observation is true even
though the methodology used in the analysis filters a significant portion
of HTTP traffic away by limiting the analysis only to flows with at least
190kB of payload. In addition, another measurement confirms that HTTP
is responsible for 91% of the data volume when the capacity is being highly
utilized [166]. The low overall link utilization for most of the broadband
links is likewise confirmed by a recent study [134].

On routers in the Internet core with a high level of traffic aggregation,
exponential load transients are less of a problem as the effect of a single user
or an end host on the load is miniscule. The network topology towards the
Internet core may dictate that no end host has enough access-link capacity
to saturate an outgoing link of such a router. However, as long as there is
any single source with enough capacity to cause significant load swings, the
work in this thesis may have some usefulness also on large routers although
such routers are not the main target for this work.

While web traffic keeps increasing, other traffic types have surpassed it
by volume. First, peer-to-peer (P2P) traffic with long-running downloads
and later video streaming became volume-wise larger than web traffic [52,
154, 198]. Nowadays, streaming is even more important [53]. Some of the
streaming traffic is interactive and therefore sensitive to latency. With in-
teractive game traffic, likewise, low latency often improves user experience.
These interactive traffic types may not be the most dominant in the overall
traffic volumes and are often not the cause for high load. Despite their
innocence, they commonly still experience very noticeable effects during
high-load situations negatively affecting user experience.

Today HTTP is no longer limited to its initial use for web traffic but
HTTP use has expanded to many things besides the web. Most of the non-
interactive streaming today uses HTTP adaptive streaming (HAS) [182]
(also known as dynamic adaptive streaming over HTTP (DASH)) to deliver
content to the end-users (services such as YouTube, Netflix, Spotify, etc.).
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As HTTP adaptive streaming runs on top of TCP, TCP still is the most
used protocol in the Internet. A HAS stream is split into chunks and each
chunk is encoded with the multiple advertized rates [17, 125]. A client
decides which of the advertized rates it uses in fetching each chunk. The
fetched chunks are stored into a playback buffer. Typically the HAS client
keeps making chunk requests in advance until the playback buffer has a
good level of occupancy. Then it needs to wait until some of the playback
buffer is consumed before resuming the advance chunk fetching. Thus,
despite the playback itself being continuous, the HAS client has an internal
tendency to produce ON-OFF periods. Therefore, it is hardly surprising
that Slow Start is shown to occur often with HAS [17].

In order to reduce latency, new proposals on how to transfer web objects
have been made, which also address the use of excessive number of parallel
connections. First, SPDY [22, 149, 179] that uses a single connection to
transmit many HTTP objects by multiplexing them. Then, the follow up
for SPDY work in the context of HTTP/2 [23] that supports many of the
SPDY features, including the multiplexing of HTTP objects into a single
TCP connection. Further improvements are made in QUIC [29, 101] that
removes the TCP protocol-level head-of-line blocking issue. The head-of-
line blocking occurs with SPDY and HTTP/2 when a TCP packet is lost
and the TCP receiver has to wait until a retransmitted copy of the packet
arrives because TCP supports only in-order delivery of the data. With
the head-of-line blocking issue resolved, there is even less need for using
parallel connections to quickly deliver HTTP objects across the network.
The QUIC congestion control [100] is heavily based on the existing TCP
congestion control algorithms. The exponential load transients, however,
are not removed by any of the techniques as probing for available capacity is
needed independent of the number of flows. QUIC may eventually become
“the next TCP” that is used to transport the majority of the Internet
content.

Besides latency in transmitting the actual HTTP payload, the user-
visible latency includes the latency caused by the TCP three-way hand-
shake delay. TCP Fast Open (TFO) [47] optimizes the TCP handshake by
allowing subsequent connections to the same destination to embed data al-
ready to the TCP SYN packet. QUIC [101, 124] as an UDP-based protocol
goes even further removing the entire three-way handshake for connections
to the same destination and also combines TLS handshake to further re-
duce connection setup latency for encrypted connections. These handshake
latency-related optimizations, however, are out of scope for this thesis as
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they are quite unimportant from the congestion control point of view we
focus on.

2.2 Flow Initiation

At the beginning of a TCP connection after the three-way handshake, a
TCP sender starts the data transmission by sending up to the number
of segments allowed by the Initial Window (IW) [12]. With the typical
maximum transmission unit (MTU) of 1500 bytes, up to three segments
are sent in the Initial Window. The segments in the Initial Window are
used to boot up the ACK clock, a constant stream of ACK packets flowing
in the reverse direction, that is used for sending packets after the Initial
Window. The Initial Window is “uncontrolled” traffic in the sense that it
is sent without knowing that packets are leaving the network.

Relatively recently, a larger Initial Window has been proposed for ex-
perimental use to reduce latency [50]. The larger Initial Window reduces
the number of RTTs needed to complete short transfers that are typical,
for example, with web objects. The larger Initial Window allows up to
10 segments to be sent without verifying that there is capacity available
for them. Figure 2.1 shows the flow startup with the Initial Window of
three and ten segments. A study with web search traffic indicates that the
Initial Window of ten segments instead of three improves average latency
by roughly 10% [68]. In addition, the latency improvement increases with
higher quantiles. A measurement study indicates that one fourth to one
fifth of the TCP connections become more aggressive because of the Initial
Window larger than three segments [7].

Combining the larger Initial Window with parallel flows starting up at
the same point of time can result in a large number of segments injected
into the network. Such a large uncontrolled burst of packets may be harm-
ful to other flows in the network. When aggregated effect is considered,
measurements in the residential access network indicate that for 5%-12%
of the cases1 there is amplified effect due to combined larger Initial Win-
dows from multiple flows [7]. Pub. I focuses on measuring the effect of the
larger Initial Window and the combined effects of the parallel flows and
larger Initial Window to competing latency-sensitive traffic over a high-
speed cellular network.

Pub. I shows that the impact of sending the Initial Window is very
significant for the delay experienced by the packets of the competing traffic.

1Aggregate grouping in [7] is worst-case analysis with one second time window to form
an aggregated group and therefore likely includes some flows that do not group for real.
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(a) IW3 (b) IW10

Figure 2.1: TCP Initial Window (IW).

With one or two flows, the quality impact is only small but issues become
more severe as the number of flows starting at the same time increases.
With the proposed larger Initial Window of ten segments, even the impact
of a single flow exceeds the impact of six parallel flows using the Initial
Window of three segments. The measurements made in Pub. I also show
that the bad quality the large number of parallel flows or the proposed
larger Initial Window cause is not limited to the Initial Window RTT but
prolongs over the duration of the TCP Slow Start bandwidth-probing phase.

In order to alleviate the problems caused by excessive bursts due to
the larger Initial Window, initial spreading has been proposed [163, 164].
Initial spreading separates the Initial Window packets to individual, smaller
transients over the expected RTT that was measured during the three-way
handshake. A similar proposal but with an additional removal of the Initial
Window altogether has also been made in [9]. Long before the larger Initial
Window proposal, JumpStart [127] was proposed effectively removing the
concept of Initial Window completely but without any spreading.

The removal of the Initial Window is very harmful to other flows in the
light of Pub. I as the number of uncontrolled packets allowed to be sent will
be much larger. We believe that even spreading the packets over the initial
RTT is unable to solve the problems caused by an excessive initial sending
rate. Whenever the sender violates the packet conservation principle, there
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is a possibility to do significant harm to competing traffic. As the Initial
Window sender cannot even know about the harm, not to mention react to
it, before the harm has already happened, the only way to avoid harming
other traffic is to retain sending huge uncontrolled initial bursts. If a huge
Initial Window is used, the only hope is that statistical multiplexing is
lucky enough to cover for it, that is, that there is no other traffic present
which could be harmed. It is somewhat unfortunate that the sender is likely
to be lucky very often because of low overall utilization near the network
edge. Thus, measuring or extracting the harm caused from a large set of
real world data is challenging, and it is too easy and tempting to falsely
conclude that no harm is caused by the larger Initial Window. The use of
Slow Start for bandwidth probing with a small Initial Window is a good
way to limit the extent of the harm caused by the Initial Window as it gives
every sender time to respond. A claim has been made that it is in the best
interest of the sender to limit the Initial Window to avoid issues because of
local resource exhaustion [9] but it is likely not enough as the competing
traffic may not originate from the same source. In such case, the resources
exhausted may not be local but near the network edge at the other end of
the connection. Therefore, the harm caused to the competing traffic may
not be measurable at all by the sender using an excessive sending rate. In
the worst case, the sender might not care about the competing traffic but
is willing to harm other traffic to get “better service” for its own traffic
and might see the opportunity to monopolize the remote resources as a
competitive advantage.

An alternative to uncontrolled sending at the beginning of data trans-
mission is given by an old solution known as Quick-Start [78, 167, 173]. A
TCP sender using Quick-Start acquires information about available capac-
ity from the routers on the end-to-end path using IP and TCP options. In
practice, however, Quick-Start requires support from every router on the
end-to-end path and is therefore extremely challenging to deploy.

Various alternatives to the Initial Window of three segments are com-
pared in [170–172].

2.3 Bandwidth-Probing Phase

Bandwidth probing is a congestion control phase at the early round-trips
of the connection. The purpose of probing is to determine the capacity of
the end-to-end path that is usually unknown to the end host. Figure 2.2
shows the taxonomy of possible bandwidth probing approaches.
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Bandwidth probing approaches

Self-clocked bandwidth probing Timer-based approaches

Paced bandwidth probing Bandwidth estimation with
quick sending rate ramp-up

Figure 2.2: Taxonomy of bandwidth-probing approaches.

Self-Clocked Bandwidth Probing

A sender using self-clocked bandwidth probing relies on incoming acknowl-
edgements (ACKs) for timing the outgoing packets. In addition to prob-
ing for the available capacity, the bandwidth-probing phase is used by the
sender to boot up an ACK clock that is a constant stream of ACKs flowing
in the reverse direction [102]. The ACK clock carries credits to the sender
from which the sender can infer how many packets have left the network.
The credits tell the sender how many new packets can be injected into to
the network “safely”, that is, without increasing the load in the network.
In addition to the “safe” packets, the sender needs to inject more packets
than what has left the network in order to probe for a higher sending rate
than is currently being used. The sender terminates the bandwidth-probing
phase once a congestion signal is detected or a high enough sending rate is
attained.

In TCP the self-clocked bandwidth probing process is performed by
Slow Start [13, 102]. Figure 2.3a shows the Slow-Start process. The left-
hand side is the TCP sender and the right-hand side is the TCP receiver.
First, the sender sends three segments as per the standard Initial Window.
After the Initial Window, the sender waits for ACKs to arrive. In Slow
Start, the sender sends an additional packet on each arrival of ACK be-
sides the packets that according to the credits have left the network. The
additional packet probes for more available capacity. The number of pack-
ets that can be sent is tracked by the sender using a congestion window
(cwnd) variable [13]. The Slow-Start process results in doubling the conges-
tion window and thus the sending rate per each RTT, in other words, the
sending rate and the load imposed by the flow is increasing exponentially.
The exponential increase in the sending rate results in exponential load
transients also at the network routers. With the self-clocked bandwidth
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probing, the sender has to send packets in bursts. The burst is followed
by an idle period as long as the sending rate has not yet used up all the
available network capacity.

(a) Slow Start (b) Slow Start with De-
layed ACK

(c) ABC corrected Slow
Start with Delayed ACK

Figure 2.3: TCP Slow-Start variants.

The Slow-Start process allows up to doubling the sending rate per RTT.
However, the sending rate growth may be less because of Delayed ACK [54]
that was implemented decades ago to roughly halve the number of ACK
packets. A smaller rate for ACKs was necessary to reduce the rate of
interrupts from the network adapter and the associated cost of processing
ACKs. Slow Start with Delayed ACK is shown in Figure 2.3b. When a
TCP receiver is using Delayed ACK, it sends one ACK after receiving two
segments instead of after every segment. If no second segment is received,
the receiver waits instead until a Delayed ACK timer expires to send out the
pending ACK for the single segment. Because of Delayed ACKs, instead of
doubling, as low as 1.5 factor growth is possible with a typical Slow Start
but the actual factor also depends on how RTT and delayed ACK timers
are sized with respect to the other [14]. If the receiver does not implement
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or use Delayed ACKs 2, the growth factor in Slow Start is exactly two.
Also the sender TCP implementation can correct the smaller congestion
window increase due to Delayed ACKs during Congestion Avoidance using
Appropriate Byte Counting (ABC) [10, 13]. Use of ABC during Slow Start
is allowed for experimental use [10], however, standard implementations
are recommended to not increase the congestion window by more than
one segment per ACK [13]. In practice, some TCP implementations have
chosen to use ABC with the larger congestion window increase also during
Slow Start (e.g., the Linux TCP implementation includes an ABC-based
mechanism that is adapted to the packet-based TCP implementation [48]).
Slow Start with Delayed ACKs and ABC is shown in Figure 2.3c. ABC
restores the growth factor to two while the TCP sender is in Slow Start.
For simplicity, we assume from this point onward a factor of two growth
rate in this thesis unless otherwise stated.

During self-clocked bandwidth probing, the ACKs tend to arrive roughly
at the rate of the narrowest link on the end-to-end path called bottleneck
link because the data segments are spaced out by the bottleneck link [102]
(see Figure 2.3). This implies that the sending rate of the additional packets
sent during the bandwidth-probing phase exceed the rate of the bottleneck
link. As the packets come in faster than can be transmitted to the bot-
tleneck link, a queue forms at the router in front of the bottleneck link.
Figure 2.4 shows an example for TCP Slow Start-induced transient queue
spikes occurring at the router in front the bottleneck link. If the link is not
yet saturated by the current load, the queue is only transient and the queue
will be drained to the outgoing link once the short burst of packets ends.
These transient queue spikes grow in amplitude as the number of packets
grow exponentially, and on each RTT, half of the packets are sent with a
higher rate than the bottleneck link can immediately forward. Eventually
the load becomes large enough that the queue can no longer drain before
the next burst of packets comes in. The bottleneck link is saturated and a
standing queue with rapidly increasing length is formed. Assuming infinite
flow lengths, the queue grows until congestion is signalled by the router
which results in the sender discontinuing the bandwidth-probing phase.

Alternatively, the bandwidth probing may end without a congestion
signal from the network. If the congestion window (cwnd) reaches the
Slow-Start threshold (ssthresh) [13], the sender continues in Congestion
Avoidance but typically TCP stacks set ssthresh initially to a very large
value. In addition, the receiver advertized window (rwnd) may impose a

2E.g., Linux TCP receiver implements heuristics called quick ACKs to only use De-
layed ACKs after Slow Start (DAASS) [8, 11].
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Figure 2.4: Queue transients during self-clocked bandwidth probing.

limiting upper-bound for the congestion window even if the sender has not
received any congestion signal.

Paced Bandwidth Probing

The second bandwidth probing category is based on sending the packets
using a timer. This timer-based sending is known as pacing [3, 16, 119].
The goal of pacing is to reduce bursts by spreading the sent packets evenly
over the measured RTT. The packets are sent using a frequently expiring
timer rather than when ACKs arrive. If the bandwidth probing packets are
retimed to such portion of RTT that the bottleneck link rate is not exceeded
due to a too nearby transmission of another packet, the probe packets do
not form a queue at the bottleneck. Retiming of the transmission is possible
as long as the bottleneck link is not yet saturated. After saturation, there
are no more available slots to be filled using the timer as there always is the
previous packet sent so recently that the sender will exceed the bottleneck
link rate even with the timer.

One recent example of paced bandwidth probing is Bottleneck band-
width and RTT (TCP BBR) [45, 46] congestion control for TCP. TCP
BBR implements paced sending of all packets after the Initial Window,
including pacing during bandwidth probing. Like with Slow Start, the
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sending rate with TCP BBR effectively roughly doubles in one RTT but no
queue is formed until the bottleneck becomes saturated (see the green line
in Figure 4 in [45]). Another recent example is QUIC that recommends
using pacing [100].

It is possible to use pacing for all congestion control phases but pac-
ing is most useful during bandwidth probing as it allows maintaining a
sending rate that is less than the rate of the bottleneck link until the bot-
tleneck link becomes saturated. Thus, before saturation no transient queue
is formed with paced bandwidth probing. If the bandwidth-probing phase
is allowed to continue after the bottleneck link becomes saturated, how-
ever, pacing will not reduce the peak queue length because the peak queue
length will occur after the bottleneck link saturation. Therefore, it would
be very useful to be able to terminate the bandwidth probing exactly at
the right point of time to reap queuing delay reduction benefits from the
use of pacing. Section 2.5 describes possible mechanisms for exiting the
bandwidth-probing phase at the right point of time.

Bandwidth Estimation with Quick Sending Rate Ramp-up

The third main bandwidth probing category is the bandwidth estimation
with quick sending rate ramp-up to the estimated available capacity. The
key goal in this category is to avoid extra RTTs needed to increase the
sending rate “slowly” and instead quickly jump to the estimated available
capacity by increasing the sending rate directly to the value derived from
the estimated capacity.

One such approach is Quick-Start [78, 167, 173] that performs a nego-
tiation of the available capacity with the routers on the end-to-end path.
Quick-Start may, however, perform the sending rate ramp-up already dur-
ing flow initialization and is therefore included in Section 2.2.

Other approaches such as TCP RAPID [112] estimate the available
bandwidth without help from the on-path routers. The bandwidth estima-
tion in TCP RAPID is based on the pathChirp [160] algorithm and aims to
try a large sending rate range in a very short period of time. Typically the
probing uses the previous estimate of the available capacity as the RTT-
long average for the sending rate but sending rates both lower and higher
than the average sending rate are tried in the shorter term. That is, rather
than sending the packets as evenly spread as possible like with pacing, in-
tentional unevenness is introduced by the timer. As the time to send with
a high sending rate is much shorter than RTT, the high sending rate looks
just like a short burst to the network without building a large standing
queue unlike the other two bandwidth probing mechanisms. Packet timing
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measurements are then used to determine the sending rate that exceeded
the rate of the bottleneck link. Only after the sender has received a positive
confirmation from the bandwidth estimator that the capacity to sustain a
particular sending rate is likely available it does truly load the network
with that rate. [57] amends pathChirp-based bandwidth estimation with
cross-layer information about the access link characteristics.

Packet timing measurements are challenging in general due to sensitiv-
ity to small measurement errors and noisy environments [199]. Some access
link environments include behavior that breaks the assumptions made by
the packet-timing approaches [113, 123]. A sender using bandwidth estima-
tion should really ensure the validity of the estimation and if the validity is
even in the slightest of doubt, fall back to safer self-clocked or paced band-
width probing to avoid too high sending rates due to mismeasured available
capacity. To ensure scalability to high-rate environments, the timer used
for the packets in a probe must have sufficiently small granularity [117,
199]. Instead of easily measurable RTT, the mechanism may need to use a
more challenging metric based on one-way delay or one-way delay variation.
While those metrics are more robust to noise than RTT, measuring them
occurs at the receiving end requiring additional signalling between the end
hosts [117]. In addition, the sender should also avoid overshoots due to
ramp-up collisions [33, 147].

2.4 Congestion and Response to Congestion De-
tection

Congestion occurs at the intermediate nodes of the end-to-end path in
buffers that are used to queue the packets that are waiting to be trans-
mitted. As the outgoing link where a packet is supposed to be sent has
only limited capacity, it often occurs that the transmission of the packet
may not begin immediately on arrival to the intermediate node because the
previously arrived packets have not yet been transmitted fully. The waiting
packets form a queue. The queue is managed by some algorithm. Tradi-
tionally a very simple Taildrop algorithm is used by most of the routers to
manage the queue. With Taildrop, congestion is signalled only by drop-
ping an incoming packet when the router runs out of buffer space for the
packet. The sender interprets the loss as a signal about congestion some-
where along the end-to-end path and responds with a reduction in the
sending rate. Later, it was realized that more control is necessary to keep
some of the buffer unoccupied for short-term transients and thus Active
Queue Management (AQM) was recommended [31]. An AQM algorithm
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tries to keep long-term queuing low by pro-actively signalling congestion
before the buffer space on the router runs out.

Pro-active congestion signalling that is enabled by AQM algorithms
allows two options for handling a packet at a router. The router can either
drop the incoming packet or it can preserve the packet but still signal
congestion. When the router preserves the packet, it sends the congestion
signal using an Explicit Congestion Notification (ECN) flag [156]. The
ECN-based congestion signal is carried in-band. ECN allows the original
packet to reach the receiver which may improve latency because the sender
does not need to later retransmit the payload that is lost if the original
packet is dropped.

Once a congestion signal is sent by the router either using drop or mark-
ing with ECN, Slow Start is coming to its end. However, the congestion
signal is sent in-band and it takes one full RTT until the effects of response
to the congestion become visible at the router3. While Slow Start is about
to finish, the last RTT of Slow Start sends roughly as many additional
packets to the network as was sent during all of the earlier RTTs combined
because of the exponential nature of Slow Start. This huge load spike is
called Slow-Start overshoot. In order to successfully queue the packets dur-
ing the last Slow-Start RTT, a larger buffer is needed. The load spike is
obviously smaller if Slow Start is interrupted early, for example, due to in-
sufficient buffer size or pro-active AQM response. However, the flow might
then continue with an incorrect estimate about the available bandwidth
and it may take a while before the sending rate slowly increases to the
correct level using Congestion Avoidance.

When the TCP sender detects a congestion signal, it responds by re-
ducing the sending rate. The reduction is called Multiplicative Decrease
(MD). Factor of 0.5 is used for the MD [13], that is, the sending rate is
halved when a congestion signal comes in. The sender performs up to one
reduction per RTT. Use of 0.5 as the factor causes the resulting sending
rate to match the sending rate before the Slow-Start overshoot began as-
suming the factor of two exponential growth during the bandwidth-probing
phase. In order to not harm utilization, the buffer in front of the bottleneck
link needs to be sized large enough to allow the transient with the doubled
sending rate before the MD sending rate reduction takes effect. With one
flow the needed buffer space is roughly the bandwidth-delay product of the
end-to-end path [20, 189]. If there is always more than one flow over the
bottleneck at any point of time and the losses are not synchronized between

3With drops the RTT actually begins only after a subsequent packet of the flow is
not dropped by the router because TCP loss detection depends on duplicate ACKs
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flows, a smaller buffer may be used [15]. If synchronization for congestion
signals to all or many flows occurs, the net effect of the sending rate reduc-
tions is still a halved total sending rate and underutilization may occur if
the buffer is too small.

Recent work proposes a sending rate reduction that is less than halving
the sending rate. Alternative Backoff with ECN (ABE) [109–111] proposes
to change the MD factor to 0.8 for ECN-marked congestion signals only,
which results in a less aggressive sending rate reduction for flows using
ECN. A similar MD factor but also for loss-based congestion signals has
already been deployed to the Internet by the Linux Cubic [88, 159] imple-
mentation that is the default TCP variant used by off-the-shelf Linux kernel
(its MD factor is roughly 0.7 [28]). Also Data Center TCP (DCTCP) [5,
24] that aims to replace TCP inside datacenters achieves its latency bene-
fits largely by tweaking the sending rate reduction factor. DCTCP uses a
modified ECN feedback definition allowing fine-grained congestion indica-
tion. DCTCP calculates the fraction of packets over RTT that indicated
congestion to set the MD factor dynamically. Effectively, it often results in
less than halving the sending rate when congestion occurs as the DCTCP
sender detects that the congestion is not very heavy.

If the congestion is signalled using packet drops, the packet losses need
to be recovered. The Slow-Start overshoot typically causes many drops if
the router buffer is full or nearly full as happens with Taildrop. The loss
recovery used to have a clear impact on performance because TCP Reno
recovers only a single lost segment per window of data and requires an RTO
if more packets are dropped. Also TCP NewReno [92] allows retransmitting
only one lost segment per RTT. Selective ACK (SACK) [30, 130] typically
allows all losses to be discovered and retransmitted within one or a few
RTTs. Nowadays, wide penetration of SACK [115] makes the loss recovery
much more efficient. Use of Retransmission timeout (RTO) [148] to recover
the losses which initially was the only mechanism for loss recovery is used
only as the last resort. If RTO expires, the sender assumes its sending
rate estimate is compromised and falls back to using Slow Start. In RTO-
triggered Slow Start, only one packet is allowed to be sent on the first
RTT after the RTO which is typically a large reduction in sending rate.
Therefore, RTO often has a larger impact on performance than the loss
recovery using the other mechanisms. In case of genuine loss of many
packets, Slow Start after RTO is also needed for restarting the ACK clock
without huge bursts. The main focus of this thesis is not on the behavior
during the loss recovery or on its effects but we cannot entirely avoid it
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either as naturally a congestion signal from an AQM algorithm using losses
results in the need to retransmit the lost payload on the TCP layer.

If deployed, pacing packets during the bandwidth-probing phase to re-
move transient queue spikes introduces additional challenge to congestion
detection at the router. In case of perfect or near-perfect pacing, the traffic
load grows but no transient queue forms until the link becomes saturated [3,
135, 164]. Therefore any queue length or delay-based AQM algorithm will
not see any signs of congestion until the link is saturated. As no transient
queue spike gives an early warning, the congestion signal and response will
be delayed compared with self-clocked bandwidth probing which leads to a
large Slow-Start overshoot.

2.5 Mechanisms for Exiting the Bandwidth-
Probing Phase Before a Congestion Signal

Typically, the bandwidth-probing phase continues clearly beyond the satu-
ration point of the bottleneck link because congestion signals are generated
and delivered only later when the queue before the bottleneck link starts to
build up rapidly. As the flow keeps increasing its sending rate exponentially,
the continued bandwidth probing leads to the Slow-Start overshoot. The
sender may optionally try to terminate the bandwidth-probing phase before
it receives any congestion signals to avoid the overshoot. These mechanisms
need to somehow estimate the rate of the bottleneck link and discontinue
the bandwidth probing beyond that rate. Alternatively, they may infer
that persistent queue is growing at the router in front of the bottleneck
link. The latter approach, while better than nothing, is less interesting as
it discontinues bandwidth probing too late because it first needs to build
the persistent queue in order to then measure it. For the mechanisms that
estimate the rate of the bottleneck link, additional difficulty is knowing the
available capacity that may be less than the rate of the bottleneck link. As
it is challenging to know the available capacity of the bottleneck link at
the end hosts, many mechanisms only offer an upper bound for the sending
rate rather than the actual sending rate that matches the current state of
the network.

The simplest technique for estimating the rate of the bottleneck link
is to use a static value that is manually configured. The most well-known
approach for this is Limited Slow Start [76]. Unfortunately manual values
that need to be inputted by end users are impractical and thus undeployable
on large scale. That problem also sealed the fate of Limited Slow Start
that was once included in the Linux kernel [91] but later removed from the



2.5 Mechanisms for Exiting the Bandwidth-Probing Phase Before a
Congestion Signal 31

kernel [48] as hard to configure and unnecessary complexity in the code.
Obviously the end user cannot be expected to update the value when the
available capacity on the bottleneck link changes so a properly set value for
Limited Slow Start provides only an upper bound for the sender.

If the point when the bandwidth-probing phase should be exited is
known, it is also possible to somewhat limit the size of transient queuing by
smoothing the sending rate. Instead of continuing according to Slow Start
near the end of the bandwidth-probing phase, the growth of the sending
rate is smoothly reduced when approaching the sending rate at which the
sender will exit the bandwidth-probing phase. The growth rate reduction
in such a technique is achieved at the cost of RTTs needed to reach the
final sending rate. This kind of smoothing is used in Limited Slow Start [76]
and Smooth Start [192]. A very recent take in this direction is among the
requirements for TCP Prague [35, 37] in the form of “gradual exit from
Slow Start” that depends on congestion feedback before the end-to-end
path is saturated. To us gradual exit seems a futile attempt as the smooth
exit alone cannot remove transient queue spikes but only reduce them. The
cost in the number of RTTs and the still remaining transient queue spikes
make deploying smooth exit approaches unattractive.

The second approach for determining the bottleneck link rate is based
on the local link characteristics. In them, cross-layer information is used
as an upper bound for the rate of the bottleneck link. However, if the link
rate varies or the bottleneck link is not directly attached to the end host
the value may be off by a very large margin. These techniques also provide
no way to estimate the available capacity but instead use the nominal
capacity which may be shared by more than a single flow. In addition, if
the bottleneck link is at the other end of the path, signalling of the local
link characteristics to the remote end needs to deployed.

Control Block Interdependence (CBI) [186] is a TCP mechanism where
different flows to the same destination address share part of the TCP vari-
ables. Among them is the Slow-Start threshold (ssthresh) that is used by
the sender to terminate Slow Start when its congestion window has reached
it, which combined with RTT determine the used sending rate. CBI is prob-
lematic because connections to new peers typically open in bursts making
ssthresh sharing occur too late for them unless there was a preceding con-
nection to the same destination. Also, volatility of the available capacity
near the network edge makes the shared ssthresh value often stale which is
ironic as the value measured from the other connections reflect the available
capacity to at least some extent. The gravest problem with CBI sharing
for ssthresh, however, are carrier-grade middleboxes implementing network
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address translation (NAT) as the same public IP address connects behind
the scenes to a very large set of hosts with non-shared bottleneck links.

Quick-Start [78] or a similar negotiation mechanism could be used for
setting the Slow-Start threshold based on the rate approved by Quick-Start
(similar to the approach used in [168]). When using this approach, the
sender Slow Starts only up to the rate matching the approved rate that
hopefully roughly matches the available capacity on the bottleneck link.
However, the accuracy of this approach is limited by the granularity of the
rate request [78]. In contrast to ramping up the sending rate immediately
as occurs with the normal Quick-Start procedure, setting only the Slow-
Start threshold should be reasonably safe even if some of the routers did
not understood the Quick-Start request.

HyStart [87] has two independent sender-side mechanisms for finding
an exit point for Slow Start, one based on detecting build-up of persistent
queue and the other on estimating the bottleneck link rate. HyStart is
enabled by default in the Linux TCP implementation when the default Cu-
bic [88, 159] congestion control is in use. As such, there is wide deployment
experience already about it. This first mechanism of HyStart measures
increase in the delay at the beginning of a Slow-Start round and if the
increase is above a threshold, the sender assumes that a persistent queue
is building up into the network and discontinues Slow Start. However, too
low a threshold may give false signals if a link technology introduces delays
of varying length that are unrelated to queuing. The problems with too
early termination of Slow Start has resulted in some operators disabling
HyStart [135] and there have been multiple issues due to the sensitivity
of the HyStart delay mechanism [69, 89, 114]. It seems that there are no
known good parameters for HyStart with the current link technologies [44]
and a more relaxed parametrization would be needed [107, 144]. Lack of
good parameters is not surprising. It is difficult, if not impossible, to find
a good global delay threshold without compromising either low standing
queue build-up or utilization depending on the link technology. Also, this
mechanism is not related to the true link load as tightly as the second,
bottleneck link rate estimation mechanism of HyStart.

The second mechanism in Hybrid Slow Start (HyStart) [87] detects
when to exit from the bandwidth-probing phase using ACK timing mea-
surements. The self-clocked bandwidth probing during Slow Start naturally
produces packet trains which then trigger trains of ACKs. A sender using
HyStart measures whether the time elapsed for the train of ACKs for the
current RTT is longer than half of RTT, which is used as the proxy for half
of the capacity. Due to exponential sending rate growth, the bottleneck
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link will become saturated on the next RTT following the half-RTT-long
ACK train. Therefore, HyStart discontinues the bandwidth-probing phase
at that point with a rate roughly matching the rate of the bottleneck link.
The sender assumes that the train of ACKs is spaced out by the rate of
the bottleneck link. The spacing at the bottleneck link is typically guar-
anteed as long as the sender sent the packets on the previous RTT with
at least the bottleneck link rate. If the ACK clock retains at least roughly
the rate of the bottleneck link, the sender assumption is valid, however,
some link technologies may introduce systematic discrepancies to the ACK
clock. HyStart has been shown to miscalculate the exit point when the de-
lay varies due to other than congestion-caused sources [43, 114, 144, 161] as
HyStart assumes that any delay in ACK timing is due to congestion. These
noise sources independent of the current load are, in general, challenges to
any ACK timing measurement-based bandwidth estimators.

Packet timing measurements, in general, work better when done over
long packet trains rather than for individual samples [128]. As the second
mechanism in HyStart uses a long train of packets to trigger the ACKs
for the timing measurements, the errors in individual samples are hidden
better but it also imposes a requirement to create large queue transients
for the mechanism to work properly. Unfortunately, pacing packets evenly
and sending such a long train of packets are at odds with each other and
cannot be deployed at the same point of time by the same sender. For the
bottleneck link rate estimation to work, the sender needs to send with at
least the bottleneck link rate to make sure the ACK spacing will reveal
the bottleneck link rate. Sending at higher than the bottleneck link rate
creates a queue before the bottleneck link and as the packet train needs to
be long enough, significant queue build-up is to be expected during ACK
train measurements. While the queue may be transient, it is forming such a
queue that pacing packets evenly tries to avoid. As such, pacing and reliable
ACK timing measurements are inherently incompatible with each other.
Because of the incompatibility problem with pacing, the entire ACK train-
based mechanism in HyStart is disabled by some operators [44]. Therefore,
to achieve low queuing latency, we believe sender-side ACK-train-based
bandwidth estimation such as in HyStart cannot be used because pacing is
required to remove transient queue spikes.

To work around the problems pacing evenly introduces to determin-
ing the exit point, [135] suggests using chirping and determining the exit
point with mechanisms similar to bandwidth estimation algorithms. With
chirps, the frequency in sending a train of bandwidth probe packets in-
creases rapidly while the number of packets in the train can be kept small
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by using multiple chirps that are spaced apart in time. A small chirp causes
only some queuing but no high queue build-up that would come with the
inherent delay increase. But as noted above, all these packet-timing tech-
niques work better with longer trains of packets. Limiting the size of the
train to small, while good for delay, will likely in the general Internet run
into similar issues in defining a good global threshold for the delay as the
first mechanism in HyStart did. To avoid measuring noise instead of the
actual signal, in the global deployment scenario the packet train size must
be long enough to overpower noise in any link technology. Thus, the delay
cost is likely to become prohibitive as it is likely impractical to expect that
the noise level of the current path could be acquired so a high global default
value must be used instead.

Delay-based congestion control algorithms are a full class of algorithms
that attempt to terminate the bandwidth-probing phase based on increase
in the persistent queuing. Like the first mechanism in HyStart, these mech-
anisms are based on measuring persistent queue and do not aim to find the
right exit point but only that the bandwidth probing is already clearly past
the correct exit point. That is, in order to build a measurable persistent
queue, the sending rate must already clearly exceed the rate of the bot-
tleneck link. Delay-based algorithms include for example TCP Vegas [32,
33] and FAST TCP [106, 193]. The FAST TCP window function is based
directly on RTT, whereas TCP Vegas uses delay indirectly by estimating
the actual sending rate that will stop growing once the persistent queue is
building up as RTT increases together with the bytes transmitted over that
RTT. Delay-based congestion control, in general, has starvation issues when
operated together with flows that use loss-based congestion control [137].
A few other delay-based congestion estimators are listed in [158].

As an alternative to the sender-side exit from the bandwidth-probing
phase, the TCP receiver advertized window or ECN marking by the receiver
may be used to limit sending rate growth beyond the estimated rate of the
bottleneck link. The main difference is that most calculation can then be
done by the receiving host, however, the mechanisms themselves have to be
based on similar fundamental principles as with the sender-side approaches
explained above.

To recap the approaches listed above and issues with them if deployed to
the general Internet: Most approaches likely have unsatisfactory accuracy
for operation in the general Internet or are impractical to operate. The
HyStart algorithm, on the other hand, is well-tested in the general Internet.
Its ACK train mechanism often has acceptable performance and does not
require end user input for operation which has allowed it to be accepted and
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remain in the mainline Linux kernel this far but it is also known to have
some issues in handling noise. However, ACK train-based approaches are
inherently incompatible with pacing packets evenly which may mean not
so bright a future even for the HyStart one because there is some interest
in enabling pacing to smooth out burstiness that otherwise occurs during
the bandwidth-probing phase.

An entirely different approach for exiting the bandwidth-probing phase
at the right point of time would be to use explicit feedback from the router
in front of the bottleneck link. Such a signal itself is similar to a congestion
signal, however, the signal needs to be sent slightly before actual congestion
takes place to reach the sender in time. Unfortunately, no solution currently
exists for a router to provide timely feedback about soon to be occurring
congestion and such a router algorithm is the research question RQ7 in this
thesis. To eliminate the transient queuing during the bandwidth-probing
phase, however, the algorithm on the router needs not only to solve RQ7
but also has to be compatible with pacing. Effectively, the congestion signal
must be sent before the saturation of the bottleneck link when, because of
pacing, there is not yet a queue present.

2.6 On Restarting Flows After Low-Activity Pe-
riods

When a TCP connection becomes idle or is sending with a much lower rate
than allowed by the congestion control because of an application limit, the
sending rate estimate of the congestion control becomes compromised. As
the sending rate is not “tested” fully by sending at that rate, resuming
transmission suddenly with the compromised sending rate may be prob-
lematic. Onset of congestion that would occur and be detected if the full
sending rate would have been used may not be noticed by the sender be-
cause the network is less loaded during the low activity period. When the
sender then resumes with the full rate, the network immediately experiences
a sudden load spike that may cause excessive latency to occur. Many traffic
types are suspectable to these low activity periods such as HTTP persis-
tent connections during OFF periods, HTTP adaptive streaming (HAS)
when there is a stable scene without much frame-to-frame variation, etc.
According to measurements internal idle periods alone occur at least in one
fourth of all connections [165].

As the outstanding data packets are few or completely drained from
the network during the low activity periods, the ACK clock also has less
incoming ACKs to trigger sending new data packets. In order to restart the
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flow safely, Slow Start from the Restart Window that is the minimum of
the Initial Window or the current congestion window is recommended after
an idle period longer than RTO [13]. The Congestion Window Validation
(CWV) [90] algorithm improves the decay of the congestion window to be
less dramatic. As time passes on from the last validated sending rate sam-
ple, CWV gradually reduces the allowed rate with which the transmission
can be resumed. Once the transmission is resumed, Slow Start [13] is used
to quickly increase the sending rate up to the higher sending rate that was
used earlier. The use of Slow Start allows feedback from the network to
occur before the sender accelerates to the earlier, higher sending rate in
case the network has become congested in the meantime.

Slow Start, and especially the gradual reduction of the sending rate all
the way back to the Initial Window if the low activity period is long, has
made some senders unhappy about the CWV performance. In order to
remove the need for hacks around the old CWV, a new CWV algorithm
was specified [70]. The new CWV is much more aggressive compared with
the old CWV. Instead of Slow Start, the new CWV uses pacing to send
immediately with the original rate and only validates whether there was
capacity in the network for that rate afterwards.

The load increase due to the new CWV is comparable to extreme vi-
olations of the packet conservation principle similar to what a very large
Initial Window are causing. The new CWV hopes opportunistically that
statistical multiplexing covers for the induced bursts [70]. If no other traffic
has occupied the bottleneck link in the meantime, the sender is lucky and
can continue with the sending rate that has now been tested. However,
if competing traffic has appeared, it will be harmed before the sender can
even know about it like with a large Initial Window. In addition, the use
of pacing will not remove the violation of the packet conservation princi-
ple that increases the queuing delay if the bottleneck link becomes fully
utilized. In fact, in this case pacing is more a solution to self-congestion
than to protect other users of the network and the included responsiveness
comes too late. Whether one or a few RTTs worth of harm is acceptable
to competing traffic can of course be debated but this new CWV is by no
means conservative in sending that has traditionally been one of the key
guidelines in operating a network endpoint.

With the new CWV, the sending rate is held for up to a Non-validated
Period (NVP) that is chosen to be up to five minutes [70]. Five minutes may
be enough for path stability, however, on links near the network edge it is
ages from the congestion control point of view [135]. That is, the congestion
level on an edge link or nearby it is hardly stable that long (unless the users
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are inactive, of course). Even the new CWV proposal itself admits that “the
opportunity for congestion-free statistical multiplexing” is “reduced” [70]
with the hacks around the old CWV implying there are other load sources
with which the restarting source may collide. To us this seems just to
be a circumvention of Slow Start by replacing it with an extreme Initial
Window similar to what is proposed in [9]. The only difference is a more
valid estimate about the maximal capacity of the end-to-end path but as
with the Initial Window, there is no recent enough information about the
currently available capacity. Therefore similar considerations apply as to
the Initial Window in Section 2.2.

2.7 Summary

Congestion control is traditionally based on TCP Congestion Avoidance
and operating in steady state. However, the explosion of web usage caused
short, non-steady state flows to increase in number and to become a very
significant contributor to congestion. Early, often still in-use HTTP ver-
sions depend on parallel flows to reduce web transaction latency which led
to a large default setting for the number of parallel flows allowed by web
browsers. As the parallel flows in a web transaction are closely packed in
time, in the worst case starting exactly at the same point of time, the Ini-
tial Window of the flows may cause significant congestion build-up. Pub. I
measures the effect that parallel flows and the proposed increase of Initial
Window to ten TCP segments have on competing latency-sensitive traffic.
It shows that with one or two flows, the impact of competing TCP flows on
delay is small when using Initial Window of three segments. If the number
of flows is higher or Initial Window of ten is used regardless of the number
of flows, the delay likely reduces the quality of the competing interactive
media flow.

During flow startup, a bandwidth-probing phase is used by the sender
to find out the sending rate it should use later in the steady state. During
the bandwidth-probing phase, TCP uses Slow Start that often causes expo-
nential load transients to occur at the bottleneck router. The exponential
load transients have a significant impact especially close to the network
edge where the bottleneck typically is and where the traffic aggregation
level is less than in the core network routers. As web traffic has ON and
OFF periods, these exponential load transients occur frequently and lead
to rapid load fluctuations between idle or low utilization and overload.

HTTP adaptive streaming (HAS) is one of the recent trends on the In-
ternet and is already a significant portion of all traffic on the Internet. HAS
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runs on top of HTTP/TCP and has been shown also to cause transients
on the network level even if the playback itself is continuous. As it runs on
top of TCP, TCP Slow Start is very much a factor during such transients.

TCP Slow Start causes transient queue spikes at the router in front the
bottleneck link because bandwidth probing based solely on the ACK clock
cannot achieve a smooth sending rate. This limit is inherent to any self-
clocked sending rate increase. The only way around this limitation is to use
external triggers outside of ACK clock ticks, that is, to pace packets out
using a timer. Pacing during the bandwidth-probing phase allows packet
sending times to be spread to inactivity parts of RTT which avoids queue
build-up before the bottleneck link. In the ideal case, no queue is formed
until the TCP sending rate matches the rate of the bottleneck link. Thus,
pacing may be used to solve the transient queue spikes associated to self-
clocked TCP Slow Start but the bandwidth-probing phase must then be
terminated very precisely to avoid building a persistent queue once the bot-
tleneck link is saturated. However, precise exit from the bandwidth-probing
phase is challenging as the ACK train-based mechanisms are incompatible
with pacing, while the other mechanisms are inaccurate or impractical.
A precise exit from the bandwidth-probing phase based on a completely
new approach that would be fully compatible with pacing is the ultimate
research question RQ7 in this thesis.



Chapter 3

Active Queue Management During
Flow Startup

Active Queue Management (AQM) is an algorithm that runs on an Inter-
net router to manage its queue before the router is forced to drop packets
as it runs out of buffer space. AQM has long been recommended to be
deployed by the Internet routers [31]. In practice, the recommendation has
had little effect and if AQM capability exists in the actual router hard-
ware, it tends to be disabled. Recently, however, new interest has revived
the AQM discussion and sped up the deployment of the AQM algorithms.
The AQM working group in IETF [2] and its update on the earlier AQM
recommendations [19] are just a few fruits of the effort. As such, AQM is
very timely and relevant today.

As a part of the recent AQM efforts, a bufferbloat problem [84] has
been identified. Bufferbloat refers to oversized, unmanaged buffers in the
routers which typically yield no improvement in performance but only tend
to increase latency when the buffers fill. Many measurements on how bad
problems the bufferbloat causes to real networks have been made [4, 7, 67,
84, 105, 183]. Several new AQM algorithms that could be used to combat
the bufferbloat have been proposed [142, 146] and the IETF AQM working
group has been formed to come up with specifications for the algorithms [94,
143, 145].

Unfortunately most of the AQM interest still ignores the issues that
occur because of exponential load transients and focus only on steady-
state behavior [93]. Yet, several studies point out that the Internet traffic
exhibit ON-OFF characteristics which implies that load transients are quite
a common occurrence. In this chapter, we focus solely on exponential load
transients during flow startup and their effect on AQM performance.

39
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Section 3.1 introduces the current state of the AQM art. Section 3.2 ex-
plains the AQM behavior during exponential load transients, which we an-
alyzed in Pub. II, Pub. III, and Pub. IV. It also explains how current AQM
algorithms are inadequately solving the issues during exponential load tran-
sients; this relates to the research questions RQ3 and RQ4. In Section 3.3
we cover Pub. II that aims to push a state-of-the-art AQM algorithm as
far as we could to solve the issues with exponential load transients. As the
solution in Pub. II turns inadequate for solving the general case, we next
discuss in Section 3.4 a completely new AQM algorithm covering Pub. IV
to truly solve the issues identified in Section 3.2. In Section 3.5 we apply
the insights our AQM algorithms to handle exponential bandwidth probing
have given us also on flow initiation and restart.

3.1 State of the AQM Art

Router Governed AQM Algorithms

Random Early Detection (RED) [80] is a decades old AQM algorithm that
tracks average queue length to allow short-term bursts to pass through
without reaction while responding to long-term congestion. RED updates
the average queue length when a packet arrives. The average queue length
(avg) is calculated from an instantaneous queue length (qlen) using expo-
nentially weighted moving average (EWMA) with a weight (wq) as follows:

avg = (1− wq)avg + wq · qlen (1)

Figure 3.1 shows how RED compares the average queue length to two
thresholds to decide on which operating region the current congestion level
is: (a) when below the minimum threshold (thmin), RED does not drop any
traffic, (b) when the queue average is between the minimum and maximum
(thmax) thresholds, RED performs probabilistic dropping, and (c) when
the queue average is above the maximum threshold RED invokes a safety
valve that causes it to drop all traffic. The main operating region between
thmin and thmax with probabilistic dropping calculates an initial dropping
probability (pinitial) as a linearly increasing function of the average queue
length:

pinitial = pmax · avg − thmin

thmax − thmin
(2)

The slope of the linear function is controlled by the maximum drop-
ping probability (pmax) variable. A second stage to calculate final drop
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Figure 3.1: The initial dropping probability with RED.

probability (pfinal) aims to produce a desired distribution for the drops.
Typically, a uniform distribution is chosen. With it, RED calculates the
final dropping probability from the initial dropping probability as follows:

pfinal =
pinitial

1− count ∗ pinitial (3)

The count variable indicates how many packets have arrived on the
router since the average queue length exceeded the minimum threshold or
since the last drop. That is, count is reset on each entry to the main
operating region and on each drop made by it. The above second-stage
formula ensures that the final dropping probability rapidly approaches one
as count approaches 1/pinitial − 1.

RED calculations typically take place when packets arrive at the router.
After an idle period on the outgoing link, an additional formula is needed to
reduce the average queue length by feeding the queue average with phantom
packets. The size of the phantom packets may be based on assumed or
measured average size of the real packets to approximate how many packets
could have been sent during the idle period. The idle time is accounted
according to the formula:

avg = (1− wq)
(timenow−timeidle start)

xmittimephantom · avg (4)
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Variables timenow and timeidle start indicate the current time and the
time when the outgoing link became idle, respectively, and xmittimephantom
is the assumed transmission time of a phantom packet.

The RED algorithm is already more than two decades old and there are
multiple variations to the basic algorithm. RED and some of its variants
have been deployed on many Internet routers, however, they are rarely
enabled. Next we will look at the most notable RED variants.

Weighted RED (WRED) [51] allows differentiation according to a traffic
class by having separate RED thresholds and weight for each class. By
configuring a traffic class with larger thresholds, WRED allows that traffic
class to be prioritized over the other traffic classes.

Adaptive RED (ARED) [71, 72, 82] dynamically adjusts the maximum
dropping probability in order to adapt traffic load variations. ARED peri-
odically observes the average queue length. If the average queue length is
outside of the target region, the maximum dropping probability is adjusted
if possible by its allowed range. This makes ARED more aggressive when
congestion persists long enough for the maximum dropping probability to
grow. While we have not run any tests with ARED in the experiments done
in this thesis, the periodic readjustments seem to occur too infrequently to
have any meaningful impact during exponential load transients. The target
region definition varies between ARED proposals. In [71, 72], the target
region is defined as the full region between the minimum and maximum
threshold, whereas in [82] the target region is only a small part in the
middle of the main operating region between the minimum and maximum
thresholds:

target = [0.4 · (thmax − thmin) + thmin, 0.6 · (thmax − thmin) + thmin] (5)

Gentle RED (GRED) [162] splits the linear function for the initial drop-
ping probability into two parts. First the slope for the initial dropping
probability is similar to that of RED and is typically kept small. Once the
queue average is beyond the maximum threshold, the dropping probability
grows linearly towards dropping probability of one that is reached at twice
the maximum threshold.

Figure 3.2 summarizes the differences in calculation of the initial drop-
ping probability for RED, WRED (with two traffic classes), GRED, and
ARED. Other variations with different kinds of functions for the initial
dropping probability have also been proposed [40, 98, 150].

PIE (Proportional Integral controller Enhanced) [145, 146] is based on
PI (Proportional Integral controller) [96, 97]. To improve stability and
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Figure 3.2: Drop probabilities with different RED variants.

response speed, PIE adds auto-scaling for PI control law and also solves
some implementation challenges related to queuing delay estimation. In ad-
dition, PIE adds various conditions that result in non-continuous response
instead of using the plain PI formula [61]. The most prominent feature
with non-continuous response is burst allowance quota that is optional but
enabled with default parameters [145]. PIE is mandatory for DOCSIS 3.1
compliant cable modems [194–196].

PIE tracks queuing delay and the trend of the queuing delay aiming
to keep the queuing delay at the target delay (delaytarget). At the end of
each interval, PIE updates drop probability that is applied for the duration
of the next interval on incoming packets. The new drop probability (p) is
calculated according to equations:

Δp = α(delaynow − delaytarget) + β(delaynow − delayprev) (6)

p = p+Δp (7)

delaynow and delayprev are the current delay and the delay on the previ-
ous invocation of the drop probability calculation, respectively, and α and
β are control parameters. PIE tracks not only the current queuing delay
but also the trend and is able to remove steady-state error that is inherent
to averaging only controllers. PIE has an auto-scaling element to control
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the aggressiveness of PI control law and to ensure the stability of the algo-
rithm. The auto-scaling alters the control parameters α and β, however, it
can be implemented by scaling the delta term of the drop probability (Δp)
in Equation 7 as follows:

p = p+ scaling factor ·Δp (8)

The scaling factor is derived from the previous drop probability as
shown in Table 3.1.

Drop probability Scaling factor

p < 0.000001 1/2048
0.000001 ≤ p < 0.00001 1/512
0.00001 ≤ p < 0.0001 1/128
0.0001 ≤ p < 0.001 1/32
0.001 ≤ p < 0.01 1/8
0.01 ≤ p < 0.1 1/2
0.1 ≤ p 1

Table 3.1: PIE drop probability auto-scaling [145].

PI2 [61, 62] replaces the drop probability scaling table with an automatic
adjustment to the right sensitivity level by squaring a PI controlled pseudo-
probability to obtain the final drop probability. Effectively, PI2 calculates
the pseudo-probability in a domain linear to load but then adjusts the
result by the square to take into account the throughput response of TCP
Congestion Avoidance that is proportional to the square root of the drop
probability [131]. In addition, PI2 simplifies PIE by removing the non-
continuous elements.

MADPIE (Maximum and Average queuing Delay with PIE) [118] at-
tempts to mitigate the oscillations PIE experiences with large RTTs. MAD-
PIE modifies PIE by adding deterministic dropping instead of random drop.
MADPIE controls large queuing delay spikes better than PIE by avoiding
alternation of full and empty queue period better than with PIE.

P2I [200] is a two-state AQM algorithm. PI controller is used for the
steady state and a proportional controller to handle load transients. The
proportional controller derives the final drop probability from an instanta-
neous queue length without any averaging or filtering. Instead, the instan-
taneous queue length is directly multiplying with a drop probability fac-
tor making the resulting drop probability to increase whenever the queue
length increases. The proportional controller is shown to improve transient
response time over a PI controller.
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CoDel (Controlled Delay) [142, 143] is a three-state AQM algorithm to
address a long-standing queue that is termed “bad queue” by CoDel. CoDel
maintains sojourn time (i.e., queuing delay) for each packet by timestamp-
ing them at the enqueue time of the packet and calculating the time elapsed
when dequeuing the packet. The long-standing queue is detected when the
sojourn time remains above the target delay (5 msecs by default) for at
least an interval (100 msecs by default).

CoDel selects its state based on the measured sojourn times. The three
states of CoDel are as follows 1) non-dropping state when the queuing
delay is below the target delay, 2) pre-dropping state while the sojourn
times are above the target delay but less than one interval has elapsed,
and 3) the dropping state where the drops are scheduled with increasing
frequency. Whenever the sojourn time falls below the target delay, CoDel
immediately returns into the non-dropping state. When CoDel measures a
sojourn time above the target in non-dropping state, it enters to the pre-
dropping state and the switch to the dropping state is scheduled to occur
after one interval. At the entry to the dropping state, CoDel drops one
packet and initializes a count variable that indicates how many drops have
occurred since the entry to the dropping state. CoDel then schedules the
next drops by dividing the interval by the square root of the count:

time to next drop =
interval√

count
(9)

As the interval is constant and the count is incremented by one after
each drop, the time to next drop series is not probabilistic but deadline
based.

The entry to the dropping state in CoDel may trigger a count recall
instead of resetting the count to one if the dropping state was recently
active. The count recall has many variants and to our best knowledge,
there has not been a comprehensive study on the performance with different
variants of the count recall in CoDel. We next describe the approach used
in [143]. The recall is called if the previous entry to the dropping state
was within 16 intervals from the previous visit into the dropping state 1.
At recall, CoDel calculates the count as the delta between the count at
the entry and exit from the previous visit to the dropping state (i.e., the
number of drops made minus one). In addition, the recall must always
result in a count of at least one.

1The previous dropping state is considered to be terminated at the point when it
would have scheduled the next drop which never took place as sojourn time fell below
the target.
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CoDel, while specified for single queue use, is recommended to be de-
ployed with fair queuing [103]. A router may use a fair-queuing mechanism
to provide flow isolation. Technically fair queuing can be used orthogo-
nally to an AQM algorithm but its presence will affect packet dynamics in
significant ways.

Stochastic Fair Queuing (SFQ) [133] provides flow isolation by hashing
each packet into one of the queues. The hash should place packets of a single
flow in the same queue. A round-robin algorithm is then used to dequeue
from those queues. As a result, the outgoing link is shared between active
flows such that each will get equal share 2. The hashing, however, may be
subject to collisions resulting in putting more than one flow into the same
queue. If a collision occurs, the equal share is not allocated for a flow but
shared between the flows in that same queue. To prevent collisions from
persisting for a long time, the hash is frequently perturbed [133] but that
increases complexity. Another approach is to partition queues for n-way
set associativity [55, 95] which virtually eliminates the hash collisions.

FQ-CoDel (FlowQueue-CoDel) [94] is a specifically tailored approach
for CoDel to provide flow isolation. By default, FQ-CoDel provides 1024
queues each with an individual CoDel instance and state variables. When
a packet arrives, it is classified into one queue using a hash. The queues
are scheduled by a modified Deficit Round Robin (DRR) [175] scheduler.
The DRR modifications allow FQ-CoDel to distinguish sparse flows that
constantly transmit no more than their DRR quantum. Such flows are given
priority over the flows that keep building the queue. The prioritization is
achieved using new and old lists for queues storing currently active sparse
and queue-building flows, respectively. The empty queues that are currently
inactive are in neither of the lists. When a packet arrives on an inactive
queue, the queue is added to the new list. To prevent starvation of the flows
in the old list, whenever a queue is visited in the new list by the scheduler,
it is moved to the tail of the old list even if it became empty. If a queue
becomes empty during dequeue while it is in the old list, it is removed from
the old list and becomes inactive. The aim of the modification is similar to
the contract of DRR++ [132].

AQM algorithm cannot measure the current load of the router directly
but a proxy variable must be used. As a keen reader may have noticed,
one noteworthy feature of these AQM algorithms is that they tend to use
queue length or a dual of it, queuing delay, as the proxy for load esti-

2Some call the equal share the fair share, however, usually with lots of speculation
that “fair” may mean also something else. Therefore we prefer to refer it only as equal
share which does not carry such philosophical burden.
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mation. Queue length, however, provides a robust signal only when the
bottleneck link is saturated. If the bottleneck link is not saturated, the
signal tends to somewhat correlate to the load growth only if the sender is
sending with a rate higher than the bottleneck link rate. With self-clocked
bandwidth probing the sending rate is inherently higher due to transient
queuing. Sending rates lower than the bottleneck link rate, however, cause
no queuing and therefore no early signal from the proxy about the onset
of congestion [3, 135, 164]. Thus, if pacing is used during the bandwidth-
probing phase, queue as the proxy for load estimation gives no warning
to the AQM algorithm until the link becomes saturated. As such, en-
abling pacing during the bandwidth-probing phase is a two-edged sword to
many AQM algorithms. While intuitively it would seem that removal of
the queue and therefore latency would be all good, the “too good” pacing
removes the early transient queue artifacts that would benefit many AQM
algorithms that include too simplistic queue length-based load estimation
logic. As a result, the onset of congestion after the link becomes saturated
takes the AQM algorithms by surprise. Hence, the congestion at the end
of the bandwidth-probing phase will be even heavier than without paced
bandwidth probing. To mitigate this problem, it would be desirable for the
load estimation in AQM algorithms to not depend on the transient queuing
during self-clocked bandwidth probing.

Explicit Congestion Notification with AQM Algorithms

Modern AQM algorithms aim to keep queuing delay at a low level and if
the AQM algorithm is operating correctly, it should not normally run out
of buffer space. Having a less than full buffer opens up a new possibility for
a router as it may opt to send a congestion signal by marking a packet us-
ing Explicit Congestion Notification (ECN) [156] instead of the traditional
drop. With full buffers, the router would not have had such an option as
it lacks buffer space for the incoming packet.

The ECN signal is transmitted in-band when a router marks the ECN
field of the IP header [156] with the Congestion Experience (CE) value.
The receiver then relays the CE indications back to the sender so that the
sender can adjust its sending rate. The feedback channel for CE indications
is transport protocol dependent. With TCP the feedback is achieved by
asserting the ECN-Echo (ECE) bit in the TCP header for all ACKs until
an incoming segment with the Congestion Window Reduced (CWR) bit
arrives. The sender sets the CWR bit for the next new packet it sends
after it has performed a reduction to the sending rate regardless of the
reason for the reduction.
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The router may set the CE value to the ECN field only for those packets
that do indicate ECN capability by having the ECN field set to either
ECT(0) or ECT(1). If the ECN field already contains CE, marking the
packet again simply retains the value as CE. If the packet became marked
with CE before it was lost, the reliable loss detection ensures that the sender
will reduce its congestion window even if CE never reached the receiver.
Likewise, the CWR bit is set by the sender even if the window reduction
was triggered because of a packet loss rather than CE marking to stop
the receiver from sending more ECE-flagged ACKs. This way of signalling
ensures that the sender performs one congestion window reduction for each
RTT with a CE mark or loss but should not reduce the congestion window
more than once per RTT.

If the packet contains the Non-ECT value in the ECN field, a router
must drop it even if the router itself supports marking using ECN. The
ECN specification [156] requires using Non-ECT for TCP retransmissions
and control packets as their losses cannot be reliably detected by the TCP
sender to ensure the congestion window is reliably reduced on a packet
loss. The specification also recommends against setting the CWR bit in
a retransmission. There is currently ongoing effort to relax these require-
ments [18, 38].

Most modern AQM algorithms discussed in Section 3.1 can be con-
figured by the operator to use either drops or ECN marks for congestion
signalling. In such setups, ECN is used in the standardized form [156].
In addition, there are a few more advanced congestion control architecture
proposals that redefine the meaning of the ECN signals requiring changes
to both the end hosts and the network routers.

Datacenter TCP (DCTCP) [5, 24] is an AQM approach combining a
router AQM algorithm, modified ECN signalling, and end-host modifica-
tions to the TCP implementation. A DCTCP-aware router runs the RED
algorithm in a degenerated mode with the queue averaging exponent set
to one, that is, the average queue length equals the instantaneous queue
length. In addition, the thresholds are set to the same value causing RED
to implement a step function to mark packets with CE when the queue
length is above the set threshold. Whereas an ordinary ECN receiver keeps
sending ACKs with the ECE flag throughout the whole RTT until a CWR-
flagged TCP segment arrives, a DCTCP receiver echoes each received CE
indication using a single ECE-flagged ACK.

As CE marks from the DCTCP AQM controller are more frequent than
from an ordinary, probabilistic AQM controller, a DCTCP sender responds
to the ECE-flagged ACKs proportionally to the severity of the perceived
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congestion rather than by a constant reduction to the sending rate. For
each window of data, a DCTCP sender calculates the fraction of packets
(F ) that were congestion marked. An EWMA with weight g is then applied
on it after each window of data to produce an averaged fraction of marked
packets (α):

α = (1− g)α+ g · F (10)

The DCTCP congestion window (cwnd) is adjusted according to the
severity of congestion using the averaged fraction of marked packets as
follows:

cwnd =

(
1− α

2

)
cwnd (11)

If α is small, only a small correction is applied to the congestion window,
whereas with larger α the congestion window is more rapidly reduced. With
the maximum α of one, the DCTCP congestion window reduction is equal
to that of TCP with the MD factor of 0.5. The DCTCP cwnd formula is
only applied during Congestion Avoidance and no modification is proposed
to TCP Slow Start that is kept identical to standard TCP. As such, the end-
host DCTCP logic will not play a significant role during an exponential load
transient that relates to flow startup using Slow Start. The AQM compo-
nent in DCTCP, however, is based on pure instantaneous queue length that
is subject to transient queue spikes during the bandwidth-probing phase.
The spikes, despite being only transient, may lead to crossing the DCTCP
AQM step threshold resulting in a premature exit from Slow Start with a
small congestion window, which causes suboptimal flow performance.

DCTCP is designed for well-controlled datacenter environments. Its
main goal is to keep queuing persistently on a low level to reserve most
of the buffer space for a burst of short flows [5]. DCTCP is incompatible
with standard TCP congestion control and therefore cannot be readily de-
ployed safely in the general Internet. There is ongoing work to construct a
slightly modified DCTCP variant with a similar scalable congestion control
but such that the obstacles to Internet-wide deployment are removed [35–
37, 58–60, 116]. It is a multifaceted problem requiring congestion control
advancements both in AQM and end-host TCP algorithm fronts.

DCTCP [5, 24] uses a fine-grained ECN signalling but the feedback
channel is vulnerable to ACK losses [116]. Accurate ECN [38] specifies a
robust feedback alternative for such fine-grained ECN signals.

Coupled Dual Queue AQM (DualQ) [58, 60] attempts to enable Inter-
net deployment of a slightly modified DCTCP variant by segregating stan-
dard TCP congestion control and DCTCP traffic into their own queues.
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The traffic type can be selected using Low Latency, Low Loss, Scalable
throughput (L4S) [36] service identifier. The queue for scalable traffic has
a strict priority but the probability for congestion signal is coupled between
the queues to avoid starvation of the classic queue. The coupling ensures
that the higher priority scalable queue is often enough without a packet
giving an opportunity for the scheduler to dequeue a packet from the clas-
sic queue. Coupling between the drop probabilities is calculated according
to the formula:

pclassic =

(
pscalable

k

)2

(12)

Where pclassic and pscalable are the drop probabilities for the classic and
scalable queues, respectively, and constant k determines how the achieved
rates are coupled with equal RTTs 3.

Exponential load transients due to flow startup are known to cause pre-
mature exits from the bandwidth-probing phase with DCTCP [58]. Two
main directions to work around this problem have been suggested: 1) grad-
ual exit from the bandwidth-probing phase [35, 37, 58] and 2) bandwidth
estimation approaches with quick sending rate ramp-up [59, 135, 136]. The
third alternative could, instead of noise challenged bandwidth estimation,
use pacing together with a timely exit from the bandwidth-probing phase.
The timely exit avoids the overshoot a too late AQM response would cause.
This third alternative requires finding the correct exit point which in turn
requires a pacing compatible AQM algorithm that is aware of the current
load during flow startup-induced exponential load transients. Such an AQM
algorithm is a focus area of this thesis.

High-bandwidth Ultra-Low Latency (HULL) [6] combines sender-side
pacing, DCTCP, and Phantom Queues (PQ) that are very similar to Vir-
tual Queue AQMs [86, 120]. PQ limits the bottleneck link utilization by
sending congestion feedback using ECN the way that matches a slower link.
Sender-side pacing is employed to smooth out burstiness that easily triggers
spurious congestion feedback from the instantaneous queue-based threshold
used in PQ as with DCTCP in general. Sender-side pacing is selectively em-
ployed to avoid introducing latency to short flows. Only after enough con-
gestion feedback from the AQM algorithm has arrived for a particular flow,
pacing is applied to its packets. However, the pacer module of HULL archi-
tecture selects the flows to be paced solely based on congestion feedback ob-
served on the flows themselves. Therefore, the pacing will not play any role

3To achieve an equal rate with homogeneous RTTs, k must be selected based on the
congestion control used by the non-scalable traffic, see [58] for more details.
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whatsoever during the bandwidth-probing phase as a DCTCP sender, like
an ordinary TCP sender, terminates the bandwidth-probing phase when
the first congestion indication arrives. As the bandwidth-probing phase is
not paced by a HULL sender, it cannot mitigate queue transients during
the bandwidth-probing phase and results in “triggering spurious congestion
signals, leading to reduced throughput” [6]4.

3.2 Analyzing AQM Behavior During Load Tran-
sients

TCP Slow Start [13, 102] forms a big challenge to AQM algorithms because
of its exponential nature. The exponential increase in the sending rate
during Slow Start may increase also the load on a router exponentially. As
the load grows exponentially, the transient from idle or low load to overload
takes only a few RTTs. In the research question RQ3 we want to know how
the existing AQM algorithms cope when they are subject to exponential
load transients and in the research question RQ4 we seek to locate what are
the main issues AQM algorithms encounter when handling exponential load
transients. To answer RQ3, we show in Pub. II, Pub. III, and Pub. IV that
all state-of-the-art AQM algorithms with default parametrization are not
properly responding to rapidly occurring exponential load transients. This
failure to work properly during transients is also confirmed by others [93].

In Pub. II we show how the RED algorithm with default parameters [77]
leads to two load transient-related issues. First, a Taildrop fallback takes
place because the queue average and drop probability rise too slowly for
RED to respond pro-actively while there is still room in the buffer. As
a result, the physical buffer space runs out and the router has no other
choice but to reactively drop packets. Once the RED algorithm finally
“pro-actively” reacts, it is too late and it drops retransmitted packets,
which cannot be resent by TCP before RTO expires. The second issue
with RED is a maximum threshold cutter that is even worse than the Tail-
drop fallback because it activates the safety valve of RED5. Even if there
is room in the physical buffer, the safety valve forces the router to drop
all packets until the queue average slowly falls back below the maximum

4[6] labels queue transients that occur due to Slow Start as “TCP artifact”, however,
as discussed in Section 2.3, such queuing is inherent to any self-clocked bandwidth probing
and requires timers, that is, pacing to mitigate.

5After completing Pub. II we have been made aware of a potential improvement
to RED [41] that could make the effects of the maximum threshold cutter less severe
compared to the results in Pub. II.
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threshold. Following the first, earlier drops, the TCP flows already reacted
and reduced their sending rate, however, they cannot make any progress
as now the retransmissions are dropped. Therefore RTOs are needed to
restart the flows like with the Taildrop fallback. Because the RED drop-
ping probability still remains high, more RTOs are likely needed, but now
with an exponentially backed-off timeout value, until the drops become in-
frequent enough to allow TCP flows to maintain reasonable sending rates.
Both of these RED issues trace back to too slow a reaction to an ongoing
exponential load transient. We also conclude that RED is very sensitive to
parametrization and a serious performance degradation may occur during
exponential load transients if the parameters are incorrectly set.

In Pub. IV we show that to work properly, “an AQM algorithm must
discern between transient queuing that is natural to heterogeneous packet-
switched networks and persistent queuing that is caused by too high send-
ing rate”. This leads us to one of the open questions in congestion control
research related to information acquisition about the “current link load”
which “requires defining the right measurement interval / sampling inter-
val” [147]. As the description of this problem in [147] is quite terse, to
answer RQ4 we had to first crystallize the actual issues involved in Pub. IV
to two distinct, although inter-related problems we named horizon problem
and RTT uncertainty.

Pub. IV defines the horizon problem and RTT uncertainty as follows.
The horizon problem prevents a router from acquiring a complete picture of
the traffic load by simply measuring its current queuing because the distri-
bution of the load over the end-to-end path keeps some of the load-inducing
packets out of the view of the router. RTT uncertainty stems from the in-
ability of the router to know the RTTs of the flows going through the router
which also makes it challenging for the router to use a proper measurement
interval for load calculation as the router does not know what that inter-
val should be. Together these two problems complicate load estimation for
AQM algorithms.

The horizon problem and RTT uncertainty manifest in the state-of-the-
art AQM algorithms as too slow response that is shown by Pub. II, Pub. III,
and Pub. IV. Another form of manifestation is found in Pub. IV that ob-
serves too aggressive response with long RTTs. Long RTTs are shown to
be problematic for PIE also in [118]. These sub-optimal AQM behavioral
patterns can be explained by the use of arbitrary values as load measure-
ment intervals by those AQM algorithms. Such a tuning constant may be
explicit, or it can also be implicitly built into other parameters or constants
that affect the convergence rate of the formulas used by the AQM algorithm.
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Quite often something around 100 msecs RTT is assumed by default (e.g.,
the weight calculation for ARED [82], the interval in CoDel [142, 143], and
150 msecs burst allowance with PIE [145, 146]). This tuning RTT constant
acts as a dividing line for the behavior, if the actual RTT is less than the
tuning RTT the AQM response is too slow, and in the opposite case, the
response is too fast.

Pub. IV shows that while the AQM algorithm waits, the exponential
load transient overloads the bottleneck link with RTTs smaller than the
tuning RTT of the AQM algorithm, which leads to long queuing delay.
With small RTTs and short flows, the flows tend to end before any conges-
tion control action from the AQM algorithm takes place. However, even
with “optimal” RTTs close to the tuning RTT, the delay performance dur-
ing exponential load transients is far from good according to the results
in Pub. IV. Quite contrary actually, Pub. IV shows that both PIE and
CoDel-based AQM algorithms experience the longest queuing delays when
the RTT is at or slightly above the tuning RTT.

With long RTTs, the tuning RTT starts to cause performance degra-
dation because TCP Slow Start is cut short by the AQM response to a
transient queue spike. As discussed in Pub. IV, this behavior is worrisome
because it hurts flow completion times for intercontinental flows, users with
extra terrestrial access, and other flows that have a long RTT. As both
PIE and FQ-CoDel are aiming for real, wide-scale deployment in the gen-
eral Internet, it may eventually cause issues for such use cases when the
penetration of those AQM algorithms becomes widespread enough.

Some recent AQM proposals remove the measurement interval com-
pletely. As discussed earlier, DCTCP uses the degenerated case of the RED
formula effectively eliminating the average that substitutes for a measure-
ment interval. We believe this is a turn in a completely wrong direction
when designing an AQM algorithm. Instead, one important design principle
of RED is to allow transient queue during exponential load transients [80,
81]. We believe this is an approach that has a solid foundation in the light
of the horizon problem. Discarding the measurement interval subjects the
AQM algorithm to the mercy of the horizon problem resulting in flow com-
pletion time issues during transients that are cut short. Such problems have
already been reported to occur with DCTCP [58] and requires a band-aid
solution to allow the bandwidth-probing phase at the sender side to power
through congestion signals [35, 37], all because of a flawed load estimate
in the AQM algorithm at the router. In case the AQM algorithm is using
sampling rather than a measurement interval such as the use of interval by
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CoDel, the horizon problem may also mislead the algorithm to believe that
the load during an exponential load transient is much less than it really is.

Pub. III highlights another pitfall for AQM algorithms. If the AQM
algorithm is sending congestion feedback too infrequently, it cannot scale
well to exponential load transients when there are multiple flows present.
The results with CoDel clearly show that there is very little scaling when the
actual load increases. Instead, the congestion signalling follows exactly the
same pattern except that CoDel needs to stay in the congestion signalling
state longer because unsignalled flows still keep increasing their sending
rate exponentially until finally signalled. Making transient queue spikes of
the other flows transparent is one of the reasons why CoDel is recommended
always to be deployed with fair queuing [103, 104]. However, Pub. IV shows
that at least for the flows participating in the transient, the delay is not
transparent and keeps growing also for the best flow with SFQ-CoDel.

Unfortunately our results in Pub. IV do not allow drawing conclusions
on how interactive traffic that is not the cause for the exponential load
transient would perform with fair queuing because none of our workloads
included interactive traffic. We suspect, however, that it depends heavily on
the actual sending rate of the interactive traffic. If the sending rate with fair
queuing is below the equal share, the performance of the interactive traffic
is likely good but with rates higher than the equal share or with bursts,
the exponential load transient would likely have a significant impact also
on the delay of the interactive traffic. That is, it would likely experience
the delay increase even if it is not itself the cause for the exponential load
transient. Simply assuming the sending rate of the interactive traffic to be
small enough to be below equal share is hazardous at best. On the contrary,
Internet traffic patterns are known to be bursty and the interactive traffic
itself has no control over how many flows it is competing with. The rigid
boundary fair queuing enforces has been shown to be a problem to HTTP
adaptive streaming traffic [187]. Therefore it likely makes sense to have well
working AQM control also with fair queuing rather than trying to offload
the transient handling from AQM to fair queuing.

Pub. IV introduces yet another challenge with exponential load tran-
sients that occur because of a high rate of load growth during the late phase
of a transient. As the rate of change is very fast, also the load estimate
becomes stale with a similar rate. Because of various practical obstacles
that are outside the scope of this thesis, the router can send a congestion
signal only in-band with a packet of a flow. Therefore the delivery of the
congestion signal only occurs, at earliest, when the sender receives back the
first ACK that was sent by the receiver after delivery of the packet con-
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taining the in-band congestion signal. The effect of the congestion response
then becomes visible at the bottleneck router only after the first packet (or
possibly a hypothetical packet that would have been sent otherwise but the
response prevented sending it) after the response reaches the router. In
total, this feedback loop takes one RTT for the effects of the congestion re-
sponse to finally reach back to the signalling router. Therefore, any AQM
decision based on the estimate about the “current link load” is already
using a stale value for the load. In reality during an exponential load tran-
sient, the load has already increased and the router is already committed
beyond remorse to receiving that load increase. The increase of the load
will become visible only later because the horizon problem still prevents
the visibility during the congestion signalling RTT, yet the router can no
longer signal in time to have any effect on that load increase.

The research question RQ5 looks for a solution to the “current link
load” problem by taking the horizon problem and RTT uncertainty into
account. The research questions RQ6 and RQ7 go even beyond RQ5 and
attempts to rectify the RTT-long feedback latency and calculate the correct
time for sending the congestion signal.

3.3 Alleviating AQM Problems with Load Tran-
sients

In order to avoid most of the problems the exponential load transients cause
to AQM algorithms, we believe a paradigm shift in the AQM research
is needed. To the best of our knowledge, handling the exponential load
transients has never before been a focus during the design phase of the
AQM algorithms. Instead, the main approach is to focus on Congestion
Avoidance and if any attention is paid to the exponential load transients due
to bandwidth probing, all some AQM algorithms aim to do is to not react to
them (e.g., [81, 103]). Therefore, there simply are no AQM algorithms that
handle exponential load transients well. Because of ignoring exponential
load transients, the designed AQM algorithms have a hard time to correctly
manage them as they are much more rapid than the algorithms expect by
design, which results in delay spikes. Others measuring AQM performance
during exponential load transients echo this observation [93].

In order to resolve the issues with the exponential load transients, we
believe AQM algorithms must be designed primarily for handling exponen-
tial load transients that are much more aggressive than the behavior during
Congestion Avoidance. The difference between exponential load transient
and Congestion Avoidance is like the difference between a nasty storm and



56 3 Active Queue Management During Flow Startup

calm waters. As exponential load transients are frequent in the general
Internet due to flows constantly starting up using TCP Slow Start, ignor-
ing the effects of exponential load transients does not seem a wise design
decision. We also believe that if an AQM algorithm is able to handle expo-
nential load transients well, it will be much easier to handle also Congestion
Avoidance that is much less aggressive compared with the exponential load
transients.

Our first attempt to solve the issues with exponential load transients is
based on the existing RED algorithm and could therefore possibly exploit
the existing real hardware that is already deployed with the RED capability.
We independently understood that RED is based on a sane design principle
in determining the link load in transient-aware manner before finding it
already mentioned [81]. Effectively, a properly configured RED offers a
solution to the horizon problem. Such a solid foundation inspires us to use
it as a basis for our work rather than some other AQM algorithms that do
not have the same design principle. Unfortunately, the transient awareness
is not reflected in the RED parametrization guidelines [77, 80].

In Pub. II we present HRED (Harsh RED) that takes exponential load
transients into account by reversing the common AQM control reasoning
“when at the earliest to drop” into “when at the latest must drop” to
produce parametrization that puts a deadline on arresting the rapid load
growth during transients. As a result, HRED achieves reasonable perfor-
mance during exponential load transients stopping them in time. HRED
successfully stays in the pro-active dropping mode spacing losses out in
contrast to Taildrop or RED with recommended parameters that tend to
drop many packets in a burst or even consecutive packets. However, there
is a serious limitation with HRED as it needs known end-to-end param-
eters, that is, even though HRED addresses the horizon problem during
the exponential load transients, it is seriously affected by RTT uncertainty.
The other limitations of HRED are its use of stale load estimate during
a rapidly developing exponential load transient and its inability to adapt
to the less aggressive Congestion Avoidance operating mode of TCP lead-
ing easily to underutilization when no flow is undergoing an exponential
load transient. The latter of them leads us to believe that also the AQM
algorithm should have one operating mode responding to Slow Start and
another for Congestion Avoidance.
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3.4 The Predict AQM Algorithm

In the general Internet, RTTs are not constant nor known to the router that
runs an AQM algorithm. As HRED would require reconfiguration whenever
its tuning RTT is not correct, it is not practical from the deployment point
of view. Armed with the knowledge about what is still missing from HRED,
we turn our attention to RTT uncertainty and how to address it on a
router that does not have knowledge about the RTTs of the flows going
through the router. We also realized that once the horizon problem and
RTT uncertainty are resolved, we can also address the stale load estimates
as a free bonus because the key parameters affecting the load development
during exponential load transients are then known to the router. Therefore,
an AQM algorithm solving the horizon problem and RTT uncertainty is not
only able to estimate the “current link load” but also able to predict the
load into the near future.

In Pub. IV we introduce the Predict AQM algorithm that addresses
the horizon problem and RTT uncertainty. In addition, its capabilities in-
clude the ability to cast short-term predictions on how the load will develop
whenever the heuristics used in the algorithm detects an exponential load
transient. Pub. IV compares the performance of the Predict AQM algo-
rithm to that of PIE, CoDel, and SFQ-CoDel over a large RTT range and
finds that all other AQM algorithms have serious issues described in Sec-
tion 3.2, whereas the Predict AQM algorithm scales over the entire tested
RTT range as expected. One interesting detail is that both flow comple-
tion time and queuing delay with the Predict AQM algorithm are managed
nearly optimally. That is, the Predict AQM algorithm does not trade off
any extra from low queuing delay in an attempt to improve flow comple-
tion times when no improvement is possible nor harms flow completion
times to slightly lower the queuing delay. Almost all queuing delay that is
imposed during an exponential load transient with the Predict AQM algo-
rithm is simply to avoid hurting flow completion times badly. The other
AQM algorithms do harm flow completion times with large RTTs to keep
the queuing delays within the configured limits because they are subject to
RTT uncertainty.

One might argue that it is also wise to limit the amount of transient
queuing with the larger RTTs. We agree on principle, however, such limita-
tion of transient queuing with CoDel is an unintentional side-effect and was
not the original intention of the algorithm that aims to let a transient queue
pass unharmed [103]. PIE [146] offers a configurable parameter to decide
how large bursts are allowed but unfortunately the effectiveness of such a
constant parameter is limited by RTT uncertainty. DCTCP takes the lim-
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iting of transient bursts to the very extreme at the cost of flow completion
times because of premature exit from TCP Slow Start [58]. The Predict
AQM algorithm, on the other hand, can really discern transient queuing
from a persistent one, which truly enables a policy decision on how much
transient queuing should be allowed with larger RTTs (this feature is not
implemented currently by the Predict algorithm given in Pub. IV). The
transient allowance parameters used to limit queuing in the state-of-the-
art AQM algorithms are constants that prevent timely response with short
RTTs, whereas Predict can react before such a transient queuing bound is
exceeded when the real RTTs are short. Therefore, enabling such a limit
for transient queuing with the Predict AQM algorithm would not impact
its ability to manage queue with smaller RTTs. Furthermore, Pub. IV
shows that Predict already as is outperforms the other AQM algorithms by
a large margin in latency also when the real RTT is close to the constant
tuning RTTs used by the other AQM algorithms.

During development of the Predict AQM algorithm we made an in-
teresting observation on head or tail drop dilemma [122, 143]. The load
estimate in the state-of-the-art AQM algorithms is always badly behind
during exponential load transients and the use of head drop is simply an
attempt to improve the situation slightly compared with the tail drop that
would deliver the congestion signal even later. The correct solution, of
course, is to address the root problem with stale load estimates instead of
trying to work around the issue using the head drop that has only limited
effectiveness. In contrast, the Predict AQM algorithm is well ahead of the
traffic with its predictions about the future load and it does not need to
act hastily. Therefore, we realized that sending congestion signals from the
head of the queue would make them occur too early rather than in a timely
manner as the Predict AQM algorithm optimizes the load for its vantage
point at the tail of the queue, not at the head of the queue.

In addition to solving the horizon problem, RTT uncertainty, and stale
load estimates, our fourth design objective with the Predict AQM algorithm
was to make it truly pacing compatible. We believe pacing is ultimately the
only way around the large transient queue spikes during the bandwidth-
probing phase, which occur due to the inherent limitations of the self-
clocked bandwidth probing. However, realizing pacing together with the
state-of-the-art AQM algorithms is challenging because the better pacing
gets, the less queue there is for the AQM algorithm to measure. In the
extreme case with ideal pacing, there will not be a queue until the link
is fully utilized [3, 135, 164]. With no queue, there is no indication of
congestion for the queue length or delay-based AQM algorithms until too
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late for the router to react in time and a Slow-Start overshoot occurs, which
results in the sender exceeding the targeted sending rate. The Predict AQM
algorithm, on the other hand, is not based on measuring the queue only but
has a more complete picture of the load development even when no queue
is visible at the router. Therefore, we believe it is much more compatible
with pacing. However, we have not yet fully proven this property of the
Predict AQM algorithm through experiments.

We believe that the Predict AQM algorithm introduced in Pub. IV is
a major advancement in solving the open question in congestion control
research about determining the “current link load” [147]. Our solution
with the Predict AQM algorithm, however, not only involves solving both
the horizon problem and RTT uncertainty but also redefines the question
by taking into account that the “current link load” is already stale when
measured. We believe those are the root issues behind determining the
“current link load” challenge. Unfortunately RFC 6077 is rather terse in
describing the issue [147] and in our opinion fails to describe the problem in
a sufficient manner. We believe that any solution trying to determine the
“current link load” needs to solve the above-mentioned horizon problem,
RTT uncertainty, and also has to consider the effect of stale load estimate.

We built the Predict AQM algorithm as a proof-of-concept for test-
ing whether an AQM algorithm can detect the signal given by TCP Slow
Start successfully in time to produce a correctly timed congestion signal.
With the timely congestion signal, Predict allows relaxing the multiplicative
decrease (MD) response to TCP Slow Start because the Slow Start over-
shoot occurring with the other AQM algorithms that respond too slowly
is avoided. In the current state, the Predict AQM algorithm has shown
that the timely detection of TCP Slow Start is possible and achieves signif-
icant performance benefits, however, it is not ready for deployment to the
Internet in this limited form. In order to make deployment a practical pos-
sibility, the relaxed multiplicative decrease compatibility with the current
congestion signalling, Congestion Avoidance handling, and fairness aspects
need to be solved, which likely must happen together as they seem to de-
pend on each other. In addition, developing an improved version of Predict
that would have a smaller memory footprint with the same or better accu-
racy would make deploying Predict less challenging. It would mitigate the
current trade-off in Predict to use a large memory footprint to reduce the
computational cost of the algorithm. Nevertheless, even the current, large
memory requirement is calculated in Pub. IV to be less than the amount
of memory the router needs for storing the huge burst of packets that TCP
Slow Start may send with long RTTs.
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3.5 Reflections on Flow Initiation and Restart

In Sections 3.3 and 3.4 we created two AQM algorithms that take the
aggressive exponential load transients that occur during the bandwidth-
probing phase of a flow properly into account. However, there is still the
flow initiation before the flow even starts its bandwidth-probing phase,
which is not covered by our algorithms. As mentioned in Chapter 2, there
are proposals to make the flow initiation much more aggressive than the
standardized Initial Window of three TCP segments and flow restart to
use a much more aggressive sending rate. We will now see how the insights
from our AQM work reflect on flow initiation and restart.

There is an important difference between packets in the Initial Window
and packets from subsequent RTTs of a flow. The former is unresponsive
traffic in that there is only very limited control possible (through TCP
SYNs), whereas the latter is fully controllable through the ACKs for the
packets of the previous RTT. This key difference in controllability is what
our AQM algorithms exploit to tame the exponential load transients. If,
however, the Initial Window burst is enlarged, there will be more queuing
at the buffer in front of the bottleneck link.

The proposal to remove the Initial Window completely puts trust on
AQM algorithms on solving the issues the extra queuing will cause [9].
However, AQM algorithms do not help as they cannot pre-emptively pre-
vent sending the Initial Window. Also, they will likely require more than
one RTT worth of tracking for the traffic like our algorithm in Pub. IV (or
in general, any measurement or sampling interval-based algorithm) does,
to produce a meaningful response. The most intuitive way to work around
this AQM shortcoming is then to propose fair queuing instead. However,
the SFQ-CoDel results in Pub. IV indicate that it might turn out to be a
false hope but more work is needed to confirm it is indeed the case. As
such, the increase of the Initial Window is likely to further complicate AQM
design as it reduces the wiggle room an algorithm designer has to timely
respond to load excursions.

3.6 Summary

In this chapter we have discussed how the state-of-the-art AQM algorithms
have not been designed with exponential load transients in mind but instead
base their control systems on much slower changing Congestion Avoidance
behavior. Exponential load transients, however, are a frequent phenomenon
in the network. As the effect of exponential load transients have been
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ignored during the AQM algorithm design phase, the AQM algorithms have
a hard time to correctly manage them. Exponential load growth during a
transient can easily overpower the control authority of an AQM algorithm
because the load is changing much faster than the algorithm expects by
design, leading to delay spikes during exponential load transients.

Lack of true knowledge about exponential transient parameters makes
it hard to react correctly. Depending on the RTT of the exponential traffic
load, the state-of-the-art AQM algorithms react either too slow or too fast.
The former lead to excessive delay and the latter sacrifices throughput.
In this thesis those problems are shown to originate from two main issues
we named the horizon problem and RTT uncertainty. In addition, the
rapidly growing load causes AQM algorithms to use stale load estimates.
There is no state-of-the-art AQM algorithm that solves these three issues
adequately.

Our first attempt in this thesis to build an exponential load transient-
aware AQM algorithm resulted in the HRED AQM algorithm. The HRED
algorithm could have exploited the RED algorithm support on deployed
hardware but unfortunately it only solves the horizon problem. As such,
an unacceptable restriction requiring a known end-to-end RTT with HRED
remains which stems from its inability to address RTT uncertainty.

We then construct a new AQM algorithm called Predict AQM algorithm
whose primary design goal is properly handling exponential load transients.
The Predict AQM algorithm achieves superb response to exponential load
transients without the need to trade off latency for throughput nor vice-
versa. Even with RTTs that are “optimal” compared with the tuning RTTs
used in the state-of-the-art AQM algorithms, the Predict AQM algorithm
wins by a huge margin in latency.

The Predict AQM algorithm is also designed to be fully compatible with
pacing. Pacing would be very useful in removing the transient queue spikes
that occur during exponential load transients. However, pacing has been
problematic for state-of-the-art AQM algorithms because load estimation
when the bottleneck link is not fully utilized is even more challenging with
pacing than without it. The challenges are due to the horizon problem and
RTT uncertainty. Therefore, the Predict AQM algorithm that solves both
of those problems offers potential for a near-zero queue without falling vic-
tim to a surprise Slow-Start overshoot once the link becomes fully utilized.

Measuring the “current link load” has been an open question in conges-
tion control research this far [147]. However, the Predict AQM algorithm
presented in this thesis is not only able to determine the “current link
load” but is also able to predict the load into the near future whenever an
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exponential load transient is detected. As such, the work done in this the-
sis gives significant insight into how to solve the “current link load” open
question. Notably, the Predict AQM algorithm has possibly solved it al-
ready for the most challenging part, the exponential load transients, which
is much more challenging to control than less aggressive behavior during
Congestion Avoidance.



Chapter 4

Conclusions

This thesis contributes to the area of Active Queue Management (AQM),
end-host congestion control, and their interaction during flow startup.

4.1 Summary of Contributions

The particular contribution in this thesis is the Predict AQM algorithm
that is the first exponential load transient-aware AQM algorithm. The
Predict AQM algorithm not only detects exponential load transients but
determines the parameters of the exponential load growth from the traffic
itself. Based on those parameters, it can predict how the link load likely
develops in the near-term future by assuming the exponential trend still
keeps continuing. Because of its prediction capability, the Predict AQM
algorithm is able to give very timely congestion feedback that also takes
into account the inherent RTT-long latency when the congestion feedback
is signalled in-band.

This thesis also describes the challenges any AQM algorithm willing
to properly address exponential load transients needs to solve, namely the
horizon problem, RTT uncertainty, and stale load estimates. The first
two challenges stem from the limitations imposed by the placement of the
AQM algorithm on an Internet router which typically offers only a lim-
ited view about the traffic going through the router. Because the current
link load is rapidly changing during exponential load transients, the second
and third challenges are important to address. If the AQM algorithm has
no understanding about the timescale affecting load growth, which for a
Slow-Starting flow is coupled to the RTT of the flow, it easily ends up re-
sponding to congestion too early or too late, which both come with negative
consequences as highlighted in this thesis.

63
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With the understanding given in this thesis about the challenges en-
countered during exponential load transients, we conclude that AQM al-
gorithms, in general, should consider exponential load transients already
during their design phase. If exponential load transients are not considered
in the design phase, an AQM algorithm is very likely to exhibit sub-par
performance during exponential load transients. As exponential load tran-
sients are bound to occur whenever long enough flows are starting and
probing for the bandwidth to use, ignoring exponential load transients in
AQM algorithm design is likely to have unfortunate consequences during
actual operation of the algorithm.

Another interesting insight from the Predict AQM algorithm is in how
it tackles the current load estimation challenge that is listed as an open
challenge in congestion control research [147]. Rather than simply giving an
answer to the question “what is the current link load?”, the Predict AQM
algorithm takes one step further and answers when the AQM algorithm
needs to start reacting in order to meet the desired link load target. This
approach solves the problem with the current link load that is stale already
at the time it is measured, that is, the current load may be much less than
the targeted load at the time when the AQM algorithm must already react.
As such, this thesis may contribute significantly on resolving the challenge
about estimating the current link load in AQM algorithms.

This thesis also describes the HRED AQM algorithm that worked as
an intermediate step towards the Predict AQM algorithm. HRED is based
on the RED AQM algorithm that allows using “a measurement interval”
for the current link load estimation [147] which is necessary because of the
horizon problem. HRED addresses exponential load transients reasonably
well for a known end-to-end RTT if the algorithm is parametrized according
to the RTT. However, as the RED algorithm is still a conventional AQM
algorithm, it offers no solution to RTT uncertainty nor stale load estimate
challenges. As such, it does not scale to the Internet environment with
large variation in RTTs of the flows as continuous manual reconfiguration
is not a realistic option. Nevertheless, it serves as a good example about
the expected limitations of a conventional AQM design that does not take
exponential load transients specifically into account. In addition, HRED
overcontrols TCP flows that are in Congestion Avoidance highlighting the
need for differentiated control depending on whether all flows operate in
Congestion Avoidance or at least one of them operates in the much more
aggressive Slow Start.

The performance results in this thesis evaluate how the state-of-the-art
AQM algorithms PIE, CoDel, and SFQ-CoDel behave during exponential
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load transients. To the best of our knowledge, only little research specifi-
cally related to AQM behavior during exponential load transients has been
conducted by others [93]. Contrary to findings in the earlier studies, our
results also hint that offloading transient handling to fair queuing may not
be enough to address the queue delay spikes that may occur during expo-
nential load transients. Instead, also an exponential load transient-aware
AQM algorithm may be needed.

This thesis also gives insights into how the end hosts should manage
flow initiation. In particular, combining the proposed larger Initial Window
(IW) of ten segments with parallel flow initiation or continuation after a low
activity period easily imposes delays exceeding what interactive traffic can
tolerate. As the sender has no way to measure the impact until feedback
arrives after one RTT, the harm is already done before the sender can
react. In contrast, more careful initiation together with exponential ramp
up allows congestion control reaction to take place from properly designed
AQM algorithms such as Predict avoiding excessive delay spikes.

4.2 Impact for Active Queue Management Re-
search

At minimum, the research questions answered in this thesis deepen the
understanding of the current link load estimation challenge by refining the
actual question to a form that is more useful for AQM algorithms. The
partial answer offered to the link load estimation challenge by this work
alone solves a significant portion of the operating envelope of routers near
the network edge where exponential load transients are very frequent.

Our angle on the design of AQM algorithms is a new way to look at load
estimation in AQM algorithms. We believe that a paradigm shift is needed
in the AQM algorithm research which has previously focused almost solely
on solving the Congestion Avoidance mode of operation. We highlight the
importance of considering exponential load transients already during AQM
algorithm development. If, however, the exponential load transients keep
getting ignored during the design phase, the performance is likely not going
to get very nice during them. Designing only for Congestion Avoidance is
like designing a ship only for calm waters. This work attests that expo-
nential load transients are rather nasty storms and argues that they also
are frequent enough that they must be considered by a prudent AQM de-
sign. As the congestion control is built such that these exponential load
transient storms only settle once the AQM algorithm reacts and meanwhile



66 4 Conclusions

grow intensity rapidly, the AQM algorithm must take proper action rather
than hope for the best.

4.3 Future Work

The Predict AQM algorithm proposed in this thesis was built as proof
of concept for detecting and responding properly to exponential load tran-
sients. As such, it is not ready for the general Internet. In particular, we did
not yet address deployability and handling for long-running flows that oper-
ate long in Congestion Avoidance mode after the initial bandwidth-probing
phase has completed. We believe these problems are highly intertwined.
To make the algorithm deployable, an approach for sending the congestion
feedback has to be selected and it must be able to inter-operate with the
existing Internet traffic. The selected feedback approach then may have
significant implications on how flows behave after the bandwidth-probing
phase. As such, these problems likely need to be solved together, which we
leave to future work.

Other development areas with the Predict AQM algorithm include po-
tential improvements to its heuristics for smaller memory footprint, and
combining Predict with sender-side pacing to ultimately provide close to
zero queue during the bandwidth-probing phase. For the latter, the ap-
proach used by Predict seems much more robust than the existing AQM
algorithms that use queue length or a dual of it, queuing delay, as the proxy
for their load estimation. The use of sender-side pacing invalidates queue as
the proxy variable for the load until the bottleneck link is saturated. Once
the saturation takes place, the congestion feedback in an exponential load
transient is already late by at least RTT leading to an unavoidable Slow-
Start overshoot. Thus, better pacing works to mitigate queuing delay spikes
during bandwidth probing, the longer the latency spikes become during the
Slow-Start overshoot because pacing invalidates the assumptions the AQM
algorithms using queue length depend on. Hence, also the response from
such AQM algorithms will be delayed if pacing is enabled. In contrast, we
would like to show that the Predict AQM algorithm is not similarly vulner-
able and allows sender-side pacing to be enabled with significant latency
gains.

It would also be highly interesting to proceed with a real implementation
of the Predict AQM algorithm with, for example, a Linux or NetFPGA [85]
platform. A real implementation would facilitate testing the performance
of Predict with real web pages in a compatibility mode that detects a load
of 200%, which together with the standard TCP performing multiplicative
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decrease (MD) leads to the correct sending rate. Such testing could confirm
the latency benefits of Predict for short RTTs and verify that the page load
time remains unharmed with long RTTs.

The insight into how to design AQM algorithms for exponential load
transient awareness gained in this thesis may also enable designing other
exponential load transient-aware AQM algorithms besides Predict. In par-
ticular, curve fitting-based approaches seem appealing especially from a
robustness perspective, however, the computational complexity of the fit
may make such approaches impractical. If such an algorithm is devised, it
should also properly address the pacing compatibility so that the algorithm
is able to provide congestion feedback when no perceivable queue exists.

4.4 Thoughts on Future Internet Congestion Con-
trol Architecture

In the long term, we believe that sender-side pacing will need to be intro-
duced to reduce burstiness in transmission. Pacing will help in particu-
lar during the bandwidth-probing phase as it allows eliminating transient
queue spikes before the bottleneck link is saturated. The reduced queu-
ing offers two major advantages, it reduces the probability of drops due to
queue overflow and improves latency. We already see significant interest
in this direction in datacenter-centric congestion control proposals such as
HULL [6] and more importantly in TCP BBR [45, 46] that aims not only
for datacenters but also for the general Internet. Also QUIC senders are
recommended to enable sender-side pacing [100].

Once the sender-side pacing gets enabled, it will become evident that
the approaches used for load estimation in many current AQM algorithms
are insufficient to address the horizon problem. Therefore AQM algorithms
need to become fully compatible with pacing as otherwise the latency ben-
efits pacing offers are nullified by the rapidly increasing load after the bot-
tleneck link becomes saturated. The pacing compatibility and exponen-
tial load transient aspects explored in this thesis are therefore significant
building blocks needed to realize congestion control in the future Internet
according to our understanding.

Another important development aspect is multiplicative decrease (MD)
that is too dramatic to result in good utilization if AQM successfully keeps
queuing at a low level. The two main approaches currently proposed for
it are the TCP Alternative Backoff (ABE) [109–111] that simply alters the
MD factor from 0.5 and enhanced congestion feedback such as the fine-
grained reduce slightly congestion indication in DCTCP or its successors [5,
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24, 38]. The keep current rate indication we used for Predict in this thesis
is also one potential form of enhanced congestion feedback. At the other
end of spectrum, there is the need to rapidly increase the sending rate
when surplus capacity is available but the active flows are already past
the bandwidth-probing phase, which may require introducing, for example,
an exponential increase allowed indication such as in the variable-structure
congestion control protocol (VCP) [126, 197] and AntiECN [121]. Together,
we get exponential increase allowed, keep current rate, and the fine-grained
reduce slightly indications. The reduce slightly indication allows fine-grained
control but a larger reduction can still be produced by sending an appropri-
ate number of them making the currently used MD indication unnecessary.
By sending both the reduce slightly and exponential increase allowed indi-
cations, it may be possible to handle also the keep current rate indication
without an explicit flag. Alternation between those two indications would
also add some natural shuffling to the traffic during steady periods, hope-
fully improving fairness similar to the fairness controller in XCP [108]. In
the end of this road, looms the elimination of the entire Congestion Avoid-
ance from the end-host congestion control. It seems to us useful as its
increase is highly dependent on RTT and hard to estimate at the router-
side algorithms. The exponential increase allowed indication, on the other
hand, offers a very deterministic increase, that is, the load doubles exactly
for each packet flagged with the exponential increase allowed indication.

In general, enhanced congestion feedback will be challenging to deploy
as taking advantage of them requires both router and end-host support,
and the new architecture must also inter-operate with the existing traffic.
One take into this direction is the DualQ coupled congestion control [58, 60]
which circumvents the compatibility issues with the existing traffic by dif-
ferentiating the legacy traffic from the next generation feedback-aware traf-
fic that uses a congestion control derived from DCTCP. As DCTCP-based
congestion control is known to cause a premature exit from the bandwidth-
probing phase, the Predict AQM algorithm together with pacing could offer
a solution to the bandwidth-probing phase within a DualQ-like approach.

Besides the congestion control machinery, the future Internet may in-
corporate Congestion Exposure (ConEx) [39, 129] to make the sources ac-
countable for the congestion they cause downstream in the network. In
the context of network congestion control, ConEx offers protection from
misbehaving sources for congestion control algorithms that, in general, as-
sume honest and responsive behavior when the network sends congestion
indications.
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[95] T. Høiland-Jørgensen, D. Täht, and J. Morton. “Piece of CAKE: A
Comprehensive Queue Management Solution for Home Gateways”.
In: Proc. IEEE International Symposium on Local and Metropolitan
Area Networks (LANMAN 2018). (Washington, District of Columbia,
USA). June 2018, pp. 37–42. doi: 10.1109/LANMAN.2018.8475045.

[96] C. Hollot, V. Misra, D. Towsley, and W. Gong. “Analysis and Design
of Controllers for AQM Routers Supporting TCP Flows”. In: IEEE
Transactions on Automatic Control 47.6 (June 2002), pp. 945–959.
doi: 10.1109/TAC.2002.1008360.

[97] C. Hollot, V. Misra, D. Towsley, and W. Gong. “On Designing Im-
proved Controllers for AQM Routers Supporting TCP Flows”. In:
Proc. Twentieth Annual Joint Conference of the IEEE Computer
and Communications Society Conference on Computer Communi-
cations (INFOCOM 2001). (Anchorage, Alaska, USA). Vol. 3. April
2001, pp. 1726–1734. doi: 10.1109/INFCOM.2001.916670.

[98] L. Hu and A. Kshemkalyani. “HRED: a Simple and Efficient Ac-
tive Queue Management Algorithm”. In: Proc. 13th International
Conference on Computer Communications and Networks. (Chicago,
Illinois, USA). October 2004, pp. 387–393. doi: 10.1109/ICCCN.
2004.1401681.

[99] Information Sciences Institute (ISI), University of South California.
The Network Simulator – ns-2. url: http://www.isi.edu/nsnam/
ns.



78 References

[100] J. Iyengar and I. Swett. QUIC Loss Detection and Congestion Con-
trol. Internet Draft. Work in progress. Internet Society, October
2018.

[101] J. Iyengar and M. Thompson. QUIC: A UDP-Based Multiplexed and
Secure Transport. Internet Draft. Work in progress. Internet Society,
October 2018.

[102] V. Jacobson. “Congestion Avoidance and Control”. In: Proc. ACM
Symposium on Communications Architectures and Protocols (SIG-
COMM ’88). (Stanford, California, USA). August 1988, pp. 314–
329. doi: 10.1145/52324.52356.

[103] V. Jacobson. “Kathie Nichols’ CoDel”. In: Proc. 84th Internet Engi-
neering Task Force (IETF-84) meeting (tsvarea). (Vancouver, British
Columbia, Canada). July 2012.

[104] V. Jacobson. “Kathie Nichols’ CoDel”. In: The 84th Internet Engi-
neering Task Force (IETF-84) meeting (tsvarea). (Vancouver, British
Columbia, Canada). Audio Recording. July 2012. url: http://www.
ietf.org/audio/ietf84/ietf84- regencyd- 20120730- 1540-

pm2.mp3.

[105] H. Jiang, Z. Liu, Y. Wang, K. Lee, and I. Rhee. “Understanding
Bufferbloat in Cellular Networks”. In: Proc. 2012 ACM SIGCOMM
Workshop on Cellular Networks: Operations, Challenges, and Future
Design (CellNet ’12). (Helsinki, Finland). August 2012, pp. 1–6. doi:
10.1145/2342468.2342470.

[106] C. Jin, D. Wei, S. Low, J. Bunn, H. Choe, J. Doylle, H. Newman, S.
Ravot, S. Singh, F. Paganini, G. Buhrmaster, L. Cottrell, O. Martin,
and W. Feng. “FAST TCP: From Theory to Experiments”. In: IEEE
Network 19.1 (January 2005), pp. 4–11. doi: 10.1109/MNET.2005.
1383434.

[107] I. Johansson. TCP HyStart patch deployment. Post on IETF tcpm
Working Group Mailing List. May 2015. url: https://www.ietf.
org/mail-archive/web/tcpm/current/msg09675.html.

[108] D. Katabi, M. Handley, and C. Rohrs. “Congestion Control for High
Bandwidth-Delay Product Networks”. In: Proc. 2002 Conference on
Applications, Technologies, Architectures, and Protocols for Com-
puter Communications (SIGCOMM ’02). (Pittsburgh, Pennsylva-
nia, USA). August 2002, pp. 89–102. doi: 10.1145/633025.633035.



References 79

[109] N. Khademi, G. Armitage, M. Welzl, S. Zander, G. Fairhurst, and
D. Ros. “Alternative Backoff: Achieving Low Latency and High
Throughput with ECN and AQM”. In: Proc. IFIP Networking Con-
ference (IFIP Networking 2017). (Stockholm, Sweden). June 2017,
pp. 1–9. doi: 10.23919/IFIPNetworking.2017.8264863.

[110] N. Khademi, M. Welzl, G. Armitage, C. Kulatunga, D. Ros, G.
Fairhurst, S. Gjessing, and S. Zander. Alternative Backoff: Achieving
Low Latency and High Throughput with ECN and AQM. Tech. rep.
CAIA-TR-150710A. Swinburne University of Technology, July 2015.

[111] N. Khademi, M. Welzl, G. Armitage, and G. Fairhurst. TCP Alter-
native Backoff with ECN (ABE). rfc 8511. December 2018.

[112] V. Konda and J. Kaur. “RAPID: Shrinking the Congestion Con-
trol Timescale”. In: Proc. INFOCOM 2009. (New York, New York,
USA). April 2009, pp. 1–9. doi: 10.1109/INFCOM.2009.5061900.

[113] D. Koutsonikolas and Y. Hu. “On the Feasibility of Bandwidth Es-
timation in Wireless Access Networks”. In: Wireless Networks 17.6
(August 2011), pp. 1561–1580. doi: 10.1007/s11276-011-0364-5.

[114] T. Koyama and K. Aoki. “Slow Start Algorithm for Mobile Broad-
band Networks Including Delay Unrelated to Network Congestion”.
In: Proc. International Conference on Computing, Networking and
Communications (ICNC 2015). (Garden Grove, California, USA).
February 2015, pp. 148–152. doi: 10.1109/ICCNC.2015.7069332.

[115] M. Kühlewind, S. Neuner, and B. Trammell. “On the State of ECN
and TCP Options on the Internet”. In: Proc. 14th Passive and Active
Measurement Conference (PAM 2013). (Hong Kong). March 2013,
pp. 135–144. doi: 10.1007/978-3-642-36516-4_14.

[116] M. Kühlewind, R. Scheffenegger, and B. Briscoe. Problem Statement
and Requirements for Increased Accuracy in Explicit Congestion No-
tification (ECN) Feedback. rfc 7560. August 2015.

[117] M. Kühlewind and B. Briscoe. “Chirping for Congestion Control -
Implementation Feasibility”. In: Proc. 8th International Workshop
on Protocols for Future, Large-Scale and Diverse Network Trans-
ports (PFLDNeT 2010). (Lancaster, Pennsylvania, USA). November
2010.

[118] N. Kuhn and D. Ros. “Improving PIE’s Performance over High-
Delay Paths”. In: CoRR abs/1602.00569 (February 2016).



80 References

[119] J. Kulik, R. Coutler, D. Rockwell, and C. Partridge. A Simulation
Study of Paced TCP. Tech. rep. NASA CR-2000-209416 / E-12041.
NASA / BBN Technologies, January 2000.

[120] S. Kunniyur and R. Srikant. “Analysis and Design of an Adaptive
Virtual Queue (AVQ) Algorithm for Active Queue Management”.
In: ACM SIGCOMM Computer Communications Review 31.4 (Oc-
tober 2001), pp. 123–134. doi: 10.1145/964723.383069.

[121] S. Kunniyur. “AntiECNMarking: AMarking Scheme for High Band-
width Delay Connections”. In: Proc. IEEE International Conference
on Communications (ICC ’03). (Anchorage, Alaska, USA). Vol. 1.
May 2003, pp. 647–651. doi: 10.1109/ICC.2003.1204255.

[122] T. Lakshman, A. Neidhardt, and T. Ott. “The Drop from Front
Strategy in TCP and in TCP over ATM”. In: Proc. Conference on
Computer Communications (INFOCOM ’96). (San Francisco, Cal-
ifornia, USA). Vol. 3. March 1996, pp. 1242–1250. doi: 10.1109/
INFCOM.1996.493070.

[123] K. Lakshminarayanan, V. Padmanabhan, and J. Padhye. “Band-
width Estimation in Broadband Access Networks”. In: Proc. 4th
ACM SIGCOMM Conference on Internet Measurement (IMC ’04).
(Taormina, Sicily, Italy). October 2004, pp. 314–321. doi: 10.1145/
1028788.1028832.

[124] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang,
F. Yang, F. Kouranov, I. Swett, J. Iyengar, J. Bailey, J. Dorfman,
J. Roskind, J. Kulik, P. Westin, R. Tenneti, R. Shade, R. Hamilton,
V. Vasiliev, W. Chang, and Z. Shi. “The QUIC Transport Protocol:
Design and Internet-Scale Deployment”. In: Proc. Conference of the
ACM Special Interest Group on Data Communication (SIGCOMM
’17). (Los Angeles, California, USA). August 2017, pp. 183–196. doi:
10.1145/3098822.3098842.

[125] S. Lederer, C. Müller, and C. Timmerer. “Dynamic Adaptive Stream-
ing over HTTP Dataset”. In: Proc. 3rd Multimedia Systems Confer-
ence (MMSys ’12). (Chapel Hill, North Carolina, USA). February
2012, pp. 89–94. doi: 10.1145/2155555.2155570.

[126] X. Li and H. Yousefi’zadeh. “An Implementation and Experimen-
tal Study of the Variable-Structure Congestion Control Protocol
(VCP)”. In: Proc. IEEE Military Communications Conference (MIL-
COM 2007). (Orlando, Florida, USA). October 2007, pp. 1–7. doi:
10.1109/MILCOM.2007.4455186.



References 81

[127] D. Liu, M. Allman, S. Jin, and L. Wang. “Congestion Control With-
out a Startup Phase”. In: Proc. Fifth International Workshop on
Protocols for FAST Long-Distance Networks. (Marina Del Rey (Los
Angeles), California, USA). February 2007.

[128] X. Liu, K. Ravindran, and D. Loguinov. “Multi-Hop Probing Asymp-
totics in Available Bandwidth Estimation: Stochastic Analysis”. In:
Proc. 5th ACM SIGCOMM Conference on Internet Measurement
(IMC’ 05). (Berkeley, California, USA). October 2005, pp. 173–186.

[129] M. Mathis and B. Briscoe. Congestion Exposure (ConEx) Concepts,
Abstract Mechanism, and Requirements. rfc 7713. December 2015.

[130] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selective
Acknowledgment Options. rfc 2018. October 1996.

[131] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm”. In: ACM
SIGCOMM Computer Communications Review 27.3 (July 1997),
pp. 67–82. doi: 10.1145/263932.264023.

[132] M. McGregor and W. Shi. “Deficits for Bursty Latency-Critical
Flows: DRR++”. In: Proc. IEEE International Conference on Net-
works (ICON 2000). (Singapore). September 2000, pp. 287–293. doi:
10.1109/ICON.2000.875803.

[133] P. McKenney. “Stochastic Fairness Queueing”. In: Proc. Conference
on Computer Communications, Ninth Annual Joint Conference of
the IEEE Computer and Communications Societies, The Multiple
Facets of Integration (INFOCOM ’90). (San Francisco, California,
USA). Vol. 2. June 1990, pp. 733–740.

[134] D. Mendes, G. Senges, G. Santos, G. Mendonça, R. Leão, and E.
Silva. “A Preliminary Performance Measurement Study of Residen-
tial Broadband Services in Brazil”. In: Proc. 2016 Workshop on Fos-
tering Latin-American Research in Data Communication Networks
(LANCOMM ’16). (Florianópolis, Brazil). August 2016, pp. 16–18.
doi: 2940116.2940135.

[135] J. Misund. “Rapid Acceleration in TCP Prague”. MA thesis. Uni-
versity of Oslo, Department of Informatics, May 2018.

[136] J. Misund and B. Briscoe. “Flow-start: Faster and Less Overshoot
with Paced Chirping”. In: Proc. 102nd Internet Engineering Task
Force (IETF-102) meeting (iccrg). (Montreal, Quebec, Canada). July
2018.



82 References

[137] J. Mo, R. La, V. Anantharam, and J. Walrand. “Analysis and Com-
parison of TCP Reno and Vegas”. In: Proc. Eighteenth Annual Joint
Conference of the IEEE Computer and Communications Societies
Conference on Computer Communications (INFOCOM ’99). (New
York, New York, USA). March 1999, pp. 1556–1563. doi: 10.1109/
INFCOM.1999.752178.

[138] P. Mockapetris. Domain names - concepts and facilities. rfc 1034.
November 1987.

[139] P. Mockapetris. Domain names - implementation and specification.
rfc 1035. November 1987.

[140] J. Nagle. Congestion Control in IP/TCP Internetworks. rfc 896.
January 1984.

[141] NFSNET: A Partnership for High-Speed Networking. Final Report.
1995. url: https://web.archive.org/web/20100528000953/
http://www.merit.edu/about/history/pdf/NSFNET_final.pdf.

[142] K. Nichols and V. Jacobson. “Controlling Queue Delay”. In: ACM
Queue 10.5 (May 2012), 20:20–20:34. doi: 10.1145/2208917.2209
336.

[143] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar. Controlled
Delay Active Queue Management. rfc 8289. January 2018.

[144] L. Nussbaum. Make CUBIC Hystart more robust to RTT variations.
Proposed Linux kernel modification (not mainlined). March 2011.
url: http://patchwork.ozlabs.org/patch/85945/.

[145] R. Pan, P. Natarajan, F. Baker, and G. White. Proportional Inte-
gral Controller Enhanced (PIE): A Lightweight Control Scheme to
Address the Bufferbloat Problem. rfc 8033. February 2017.

[146] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F.
Baker, and B. VerSteeg. “PIE: A Lightweight Control Scheme To
Address the Bufferbloat Problem”. In: Proc. 2013 IEEE 14th Inter-
national Conference on High Performance Switching and Routing
(HPSR 2013). (Taipei, Taiwan (ROC)). July 2013. doi: 10.1109/
HPSR.2013.6602305.

[147] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe. Open Re-
search Issues in Internet Congestion Control. rfc 6077. February
2011.

[148] V. Paxson, M. Allman, J. Chu, and M. Sargent. Computing TCP’s
Retransmission Timer. rfc 6298. June 2011.



References 83

[149] R. Peon and W. Chan. SPDY Essentials. Google Tech Talk. Decem-
ber 2011.

[150] E. Plasser, T. Ziegler, and P. Reichl. “On the Non-Linearity of the
RED Drop Function”. In: Proc. 15th International Conference on
Computer Communication (ICCC ’02). (Mumbai, Maharashtra, In-
dia). August 2002, pp. 515–534.

[151] J. Postel. Transmission Control Protocol. rfc 793. September 1981.

[152] J. Postel. User Datagram Protocol. rfc 768. August 1980.

[153] R. Pries, Z. Magyari, and P. Tran-Gia. “An HTTP Web Traffic
Model Based on the Top One Million Visited Web Pages”. In: Proc.
8th EURO-NGI Conference on Next Generation Internet (NGI
2012). (Karlskrona, Sweden). June 2012, pp. 133–139. doi: 10 .

1109/NGI.2012.6252145.

[154] R. Pries, F. Wamser, D. Staehle, K. Heck, and P. Tran-Gia. “On
Traffic Characteristics of a Broadband Wireless Internet Access”.
In: Proc. 5th Euro-NGI Conference on Next Generation Internet
Networks (NGI 2009). (Aveiro, Portugal). July 2009, pp. 184–190.
doi: 10.1109/NGI.2009.5175772.

[155] S. Ramachandran. Web metrics: Size and number of resources. May
2010. url: http : / / web . archive . org / web / 20140625155405 /
https://developers.google.com/speed/articles/web-metrics.

[156] K. Ramakrishnan, S. Floyd, and D. Black. The Addition of Explicit
Congestion Notification (ECN) to IP. rfc 3168. September 2001.

[157] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. rfc 8446. August 2018.

[158] S. Rewaskar, J. Kaur, and D. Smith. Why Don’t Delay-based Con-
gestion Estimartors Work in the Real-world? Tech. rep. TR06-001.
Department of Computer Science, University of North Carolina at
Chapel Hill, January 2006.

[159] I. Rhee, L. Xu, S. Ha, A. Zimmermann, L. Eggert, and R. Scheffeneg-
ger. CUBIC for Fast Long-Distance Networks. rfc 8312. February
2018.

[160] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell.
“pathChirp: Efficient Available Bandwidth Estimation for Network
Paths”. In: Passive and Active Measurement Workshop (PAM 2003).
(San Diego, California, USA). April 2003.



84 References

[161] V. Roman. TCP HyStart patch deployment. Post on IETF tcpm
Working Group Mailing List. October 2015. url: https://www.
ietf.org/mail-archive/web/tcpm/current/msg09877.html.

[162] V. Rosolen, O. Bonaventure, and G. Leduc. “A RED Discard Strat-
egy for ATMNetworks and Its Performance Evaluation with TCP/IP
Traffic”. In: ACM SIGCOMM Computer Communications Review
29.3 (July 1999). doi: 10.1145/505724.505728.

[163] R. Sallantin, C. Baudoin, F. Arnal, E. Dubois, E. Chaput, and
A. Beylot. Safe Increase of the TCP’s Initial Window Using Ini-
tial Spreading. Internet Draft. Work in progress. Internet Society,
January 2014.

[164] R. Sallantin, C. Baudoin, E. Chaput, F. Arnal, E. Dubois, and A.
Beylot. “Initial Spreading: A Fast Start-Up TCP Mechanism”. In:
Proc. 38th Annual IEEE Conference on Local Computer Networks
(LCN 2013). (Sydney, New South Wales, Australia). October 2013,
pp. 492–499. doi: 10.1109/LCN.2013.6761283.

[165] M. Sargent, E. Blanton, and M. Allman. “Modern Application Layer
Transmission Patterns from a Transport Perspective”. In: Proc. Pas-
sive and Active Measurement: 15th International Conference (PAM
2014). (Los Angeles, California, USA). March 2014, pp. 141–150.
doi: 10.1007/978-3-319-04918-2_14.

[166] M. Sargent, B. Stack, T. Dooner, and M. Allman. A First Look at
1 Gbps Fiber-To-The-Home Traffic. Tech. rep. 12-009. International
Computer Science Institute, August 2012.

[167] P. Sarolahti, M. Allman, and S. Floyd. “Determining an Appropriate
Sending Rate over an Underutilized Network Path”. In: Computer
Networks 51.7 (May 2007), pp. 1815–1832. doi: 10.1016/j.comnet.
2006.11.006.

[168] P. Sarolahti, J. Korhonen, L. Daniel, and M. Kojo. “Using Quick-
Start to Improve TCP Performance with Vertical Hand-offs”. In:
Proc. 31st IEEE Conference on Local Computer Networks (LCN
2006). (Tampa, Florida, USA). November 2006, pp. 897–904. doi:
10.1109/LCN.2006.322197.

[169] R. Sayre. Change max-persistent-connections-per-server to 6 (we-
didntstartthefire). Feature Request. March 2008. url: https : / /
bugzilla.mozilla.org/show_bug.cgi?id=423377.



References 85

[170] M. Scharf. “Fast Startup Internet Congestion Control Mechanisms
for Broadband Interactive Applications”. PhD thesis. Institut für
Kommunikationsnetze und Rechnersysteme der Universität
Stuttgart, April 2011.

[171] M. Scharf. “Quick-Start, Jump-Start, and Other Fast Startup Ap-
proaches”. In: Proc. 73rd Internet Engineering Task Force (IETF-
73) meeting (iccrg). November 2008.

[172] M. Scharf. “Comparison of End-to-end and Network-supported Fast
Startup Congestion Control Schemes”. In: Computer Networks 55.8
(June 2011), pp. 1921–1940. doi: 10.1016/j.comnet.2011.02.002.

[173] M. Scharf. “Performance analysis of the Quick-Start TCP exten-
sion”. In: Proc. Fourth International Conference on Broadband Com-
munications, Networks, and Systems (IEEE BROADNETS 2007).
(Raleigh, North Carolina, USA). September 2007, pp. 942–951. doi:
10.1109/BROADNETS.2007.4550538.

[174] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
Transport Protocol for Real-Time Applications. rfc 3550. July 2003.

[175] M. Shreedhar and G. Varghese. “Efficient Fair Queueing Using Deficit
Round Robin”. In: IEEE/ACM Transactions on Networking 4.3
(June 1996), pp. 375–385. doi: 10.1109/90.502236.

[176] M. Siekkinen, D. Collange, G. Urvoy-Keller, and E. Biersack.
Application-Level Performance of ADSL Users. Research Report
RR-06-178. Institut Eurécom, October 2006.
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