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Abstract
Objective
We report a second family with autosomal dominant transportinopathy presenting with con-
genital or early-onset myopathy and slow progression, causing proximal and less pronounced
distal muscle weakness.

Methods
Patients had clinical examinations, muscle MRI, EMG, and muscle biopsy studies. The
MYOcap gene panel was used to identify the gene defect in the family. Muscle biopsies were
used for histopathologic and protein expression studies, and TNPO3 constructs were used to
study the effect of the mutations in transfected cells.

Results
We identified a novel heterozygous mutation, c.2757delC, in the last part of the transportin-3
(TNPO3) gene in the affected family members. The mutation causes an almost identical
frameshift affecting the stop codon and elongating the C-term protein product of the TNPO3
transcript, as was previously reported in the first large Spanish-Italian LGMD1F kindred.
TNPO3 protein was increased in the patient muscle and accumulated in the subsarcolemmal
and perinuclear areas. At least one of the cargo proteins, the splicing factor SRRM2 was
normally located in the nucleus. Transiently transfected mutant TNPO3 constructs failed to
localize to cytoplasmic annulate lamellae pore complexes in cells.

Conclusions
We report the clinical, molecular genetic, and histopathologic features of the second trans-
portinopathy family. The variability of the clinical phenotype together with histopathologic
findings suggests that several molecular pathways may be involved in the disease patho-
mechanism, such as nucleocytoplasmic shuttling, protein aggregation, and defective protein
turnover.
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The limb-girdle muscular dystrophies form a heterogeneous
group of genetically transmitted myopathies with pre-
dominantly proximal, progressive muscle weakness.1 To date, 8
forms of dominant limb-girdle muscular dystrophy with known
genetic cause have been identified; however, a new nomen-
clature has recently been proposed,2 in which only 4 dominant
forms fulfilled the required criteria: LGMD D1 DNAJB6 re-
lated, D2 TNPO3 related, D3 heterogeneous nuclear ribonu-
cleoprotein D like related, and D4 calpain3 related.

A dominant mutation in the TNPO3 gene was found to cause
LGMD1F in a large Spanish-Italian family with proximal limb
and axial muscle weakness.3,4 The causative mutation,
c.2771delA p.*924Cext*15 in exon 22, results in the extension of
the reading frame by 15 additional amino acids. There was wide
variability in the age at onset and disease severity,3 and also,
nonpenetrance was observed.5 Muscle weakness and atrophy of
the lower limbs were prominent. Additional features were dys-
phagia, arachnodactyly, joint contractures, scapular winging, and
hyperlordosis in some of the patients.3,6 Muscle histopathology
was characterized by myopathic changes, including nuclear pa-
thology, myofibrillar protein accumulation in the cytoplasm, and
rimmed vacuolar pathology corresponding to accumulated
autophagosomal membranes at the ultrastuctural level.6,7

Transportin-3 (TNPO3) belongs to the importin beta su-
perfamily. It facilitates the nuclear import of Ser/Arg-rich
(SR) proteins.8 SR motifs are commonly found on RNA-
binding proteins associated with splicing. TNPO3 has also
been identified as essential for HIV infection, and loss of
TNPO3 function is protective against HIV.9 The role of
TNPO3 in skeletal muscle and how mutations affect its
function and lead to muscle disease have not been described.

Patients
A Swedish family with 3 patients representing subsequent gen-
erations, the proband (II-1), hismother (I-3), and his son (III-1),
was included in this study (figure 1). The patients were followed
up since early childhood because of walking difficulties or hy-
potonia at birth. All underwent neurologic examinations, muscle
biopsy, and muscle MRI studies. EMG findings and creatine
kinase (CK) levels were available in the proband and his mother.
Muscle biopsies were performed at different time points: for I-3,
at ages 31 and 48 years (both from the tibialis anterior muscle,
TA); for II-1, at ages 3, 24, and 35 years (all from the TA); and
for III-1, at age 16 months (vastus lateralis).

Standard protocol approvals, registrations,
and patient consents
All participants provided appropriate consent, and the study
was approved by the IRB of Tampere University Hospital.

Methods
Molecular genetics
Targeted massively parallel sequencing was performed for
DNA samples of patients II-1 and III-1, as previously de-
scribed,10 and sample I-3 was Sanger sequenced. The se-
quencing library was enriched using the probes of MYOcap
v3 gene panel that is targeted to the exons of 265 genes
known or predicted to cause muscular dystrophy or
myopathy.

Histologic techniques
Snap-frozen muscle biopsies were processed into sections for
histologic and immunohistochemical stainings. Conventional
hematoxylin and eosin (H&E), Herovici, modified Gomori
trichrome, and nicotinamide adenine dinucleotide tetrazo-
lium reductase staining techniques were applied.11

For immunohistochemistry (IHC), the Ventana GX auto-
mated immunostainer was used to get 3,39-diaminobenzidine
immunolabeling, followed by hematoxylin and bluing coun-
terstain (all by Roche Tissue Diagnostics/Ventana Medical
Systems, Tucson, AZ).

Figure 1 Pedigree

The affected family members were included in this study. The proband (II-1)
is indicated with an arrow.

Glossary
AL = annulate lamella; ALPC = annulate lamellae pore complex; BSA = Bovine serum albumin; CK = creatine kinase; DAB =
diaminobenzinide; HA = hemagglutinin; IF = immunofluorescent; IHC = immunohistochemistry; PBS = Phosphate buffered
saline; PC = pore complex; RBM4 = RNA binding motif protein 4; RT = room temperature; SG = stress granule; SR = serine/
arginine rich; SRRM2 = SR repetitive matrix 2; SQSTM1 = sequestosome 1; TA = tibialis anterior; TDP-43 = TAR DNA-
binding protein 43; TIA1 = T-cell-restricted intracellular antigen-1; TNPO = transportin-3; WT = wild type.
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Immunofluorescent (IF) stainings were performed manually.
The frozen muscle sections were fixed in 4% paraformaldehyde
for 15 minutes, permeabilized with 0.05% Triton X-100 in
phosphate buffered saline (PBS) for 10 minutes, and blocked
with 2% bovine serum albumin (BSA) in PBS for 30 minutes.
Primary antibody incubation was performed overnight at 8°C.
After PBS washes, Alexa-488 and Alexa-546 Fluor–conjugated
secondary antibodies were used for detection at room tem-
perature (RT) for 1 hour. Hoechst nuclear conterstain was
performed before mounting in Fluoromount (Sigma-Aldrich)
medium. The following primary antibodies were used: poly-
clonal anti-TNPO3 antibody (C-term) (Abcam ab109386),
polyclonal anti-p62 (Millipore/Sigma P0067), monoclonal
anti-TAR DNA-binding protein 43 (TDP-43) (Sigma-Aldrich
WH0023435M1-1), polyclonal anti-ubiquitin (Dako Z0458),
polyclonal anti-myotilin (ProteinTech 10731-1-AP), mono-
clonal anti-desmin (Abcam ab32362),monoclonal anti-alpha-B-
crystallin (CRYAB) (Leica Biosystems NCL-ABCrys-512),
monoclonal anti-tropomyosin (Abcam ab7786), polyclonal
anti-CHCHD10 (Novus Biologicals NBP1-91169), polyclonal
anti-RNA binding motif protein 4 (RBM4) (Atlas Antibodies
HPA047849), and polyclonal anti-serine/arginine repetitive
matrix 2 (SRRM2) (Abcam ab122719).

Western blotting
Frozen muscle biopsies were homogenized in Laemmli sam-
ple buffer and heated at 98°C for 5 minutes to prepare tissue
lysates. Conventional sodium dodecyl sulphate
polyacrylamide gel electrophoresis and Western blotting
protocols were used, with 4%–20% precast TGX (Bio-Rad
Laboratories, Hercules, CA) and Trans-Blot Turbo System
(Bio-Rad) for protein transfer onto polyvinylidene difluoride
membranes. For immunodetection, the membrane was in-
cubated overnight at 8°C with anti-TNPO3 antibody (Abcam
ab109386) at 1/500 dilution in tris-buffered saline with
tween-20/5% skimmed milk powder. The next day, after
horseradish peroxidase-conjugated secondary antibody in-
cubation for 1 hour at RT, the bands were detected using
enhanced chemiluminescence (SuperSignal West Femto
Maximum Sensitivity Substrate, Thermo Fisher Scientific).
After blotting, the gels were recovered and stained with
Coomassie blue for myosin heavy chain, which was used as
a loading control. ChemiDoc reader and ImageLab software
(Bio-Rad) were used to obtain images and for calculating the
relative quantities and molecular weights of the bands.

Plasmids
Wild-type (WT) hemagglutinin (HA)-TNPO3 was provided by
Nathaniel Landau of New York University. The C-terminal

extension constructs “+15” and “RG” were made by insertion
mutagenesis of the HA-TNPO3 plasmid using the Q5 Site-
Directed Mutagenesis Kit (NEB E0554S) and the following
primers:

Immunofluorescence
HeLa cells were grown on glass coverslips in a 12-well plate. The
next day, cells were transfected with 1.0 μg of plasmid using
Lipofectamine 2000 and following the manufacturer’s protocol.
Twenty-four hours later, cells were fixed in ice-cold 4% para-
formaldehyde in PBS for 15 minutes at RT. Cells were then
washed with PBS 3 times for 5 minutes each and permeabilized
with 0.2% Triton X-100 in PBS for 10 minutes at RT.

Blocking and detection of hemagglutinin only
Cells were incubated in blocking buffer made up of 1% BSA in
PBS for 1 hour at RT. Coverslips were then transferred to a hu-
midified chamber and incubatedwithAlexa Fluor 488-conjugated
mouse anti-HA antibody diluted 1/200 in blocking buffer for
either 2 hours at RT or overnight at 4°C. Coverslips were washed
with PBS 3 times for 5 minutes each at RT. They were then
carefully dipped in molecular-grade water for 10 seconds and
mounted onmicroscope slides usingMowiol mountingmedium.

Blocking and double-labeling of both marker
and hemagglutinin
Cells were incubated in Blocking Buffer A (PBS + 1% BSA + 5%
serum of the secondary antibody host) for 1 hour at RT. Cov-
erslips were then transferred to a humidified chamber and in-
cubated overnight with anti-HA, anti-T-cell-restricted intracellular
antigen-1 (TIA1), RanGAP1 (Santa Cruz Biotechnology), or
Mab414 (BioLegend) in Blocking Buffer A. The next day, cov-
erslips were washed 3 times for 5minutes eachwith PBS and then
incubated with Alexa Fluor 555–conjugated secondary antibody
diluted 1/500 in Blocking Buffer A for 1 hour at RT. Cells were
washed 3 times for 5minutes eachwith PBS and then incubated in
Blocking Buffer B (PBS + 1% BSA + 5% serum of the primary
antibody host) for 1 hour at RT. Coverslips were then incubated
for 2 hours at RT with Alexa Fluor 488–conjugated mouse anti-
HA antibody diluted 1/200 in Blocking Buffer B. Coverslips were
washed with PBS 3 times for 5 minutes each at RT. They were
then carefully dipped inmolecular-grade water for 10 seconds and
mounted on microscope slides using Mowiol mounting medium.

Arsenite assay
Twenty-four hours after transfection, media were removed from
the coverslips and replaced with warmmedia containing 0.5mM
arsenite or an equivalent volume of PBS. Cells were incubated
for 45 minutes in a humidified 37°C, 5% CO2 incubator. After
incubation, media were aspirated, and cells were washed once
with PBS before fixing and staining as described above.

Quantification of TNPO3 foci
Fixed and stained U2OS cells were viewed on low magnifi-
cation, and transfected cells were scored as either TNPO3 foci
positive or TNPO3 foci negative. A minimum of 50 cells were
counted for each condition, and at least 3 independent
experiments were conducted.

Primer ID Sequence

+15 forward tcacccaggaatgtcttttttaaAGCTCGAGTCTAGAGGGC

+15 reverse caggcacagtgcaggagtgtgagcATCGAAACAACCTGGTGAAG

RG forward gtgcctgtcacccaggaatgtcttttttaaAGGTTGTTTCGATAGCTCG

RG reverse agtgcaggagtgtgagctgtcgaagcatccGGTGAAGTCTCGCAAGGC
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Data availability statement
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Results
The proband, a 44-year-old man (II-1), was first examined at
age 13 months because of unsteady waddling gait and ab-
normal head control. At age 3 years, he had mild myopathic
facies, narrow palate, and generalized muscle weakness and
atrophy. There were also absent tendon reflexes and Gower
sign present when rising from the floor. Slight extension
contracture was observed in the right elbow, otherwise joint
contractures or hyperlordosis were not present. Cognitive
functions were normal. During childhood, he was unable to
run or walk on toes and heels. The most pronounced weakness
was present in ankle dorsiflexion and knee and hip flexion. EMG
showed no abnormalities, muscle enzymes were slightly ele-
vated, whereas other routine laboratory tests yielded normal
results. His functional abilities were stable and weakness non-
progressive until early adulthood. After that, weakness slowly
progressed to encompass most upper and lower limb muscles,
although more markedly proximal muscles.

His mother (I-3) was able to walk at 16 months and had
proximal and distal lower limb and neck flexor weakness and
Gower sign. She also had proximal upper limb weakness.
Hyperlaxity of most joints was noted. The CK level was
normal, and EMG was suggestive of myopathy. During
childhood, generalized muscle weakness was noted. Achilles
tendon reflex was normal, others were absent. She could walk
on toes but not on heels. Her disease was also stable until

adulthood, after which it slowly progressed. She started to use
a wheelchair at age 64 years.

The son (III-1) was hypotonic at birth and had slightly high
palate, no contractures. There was no facial weakness or at-
rophy or hypertrophy of muscles. Tendon reflexes and rou-
tine laboratory tests were normal. He started to walk with
waddling gait at 13 months. Gower sign was present, and
slight girdle weakness and axillar hypotonia were observed. At
age 7 years, he could not run and had difficulties walking on
uneven ground. Trendelenburg was positive. He had no
hyperlordosis or scoliosis. The Medical Research Council
scale score was 3–4/5 in all proximal and distal limb muscles.
His vital capacity was 75% at age 8 years.

Muscle imaging
Muscle MRI of the proband showed generalized and severe
diffuse fatty degenerative changes in all pelvic and thigh
muscles and slightly less severe but still diffuse changes in all
the distal lower limb muscles (figure 2). The changes in the
pelvic and thigh muscles were also severe in the mother, al-
though less severe in the hamstrings and anterior compart-
ment of the lower limbs. Early diffuse degenerative changes
were seen in all muscles of the son of the proband.

Genetics
The analysis of the MYOcap sequencing data revealed a het-
erozygous variant c.2757delC p.(R920Gfs*20) in TNPO3
(NM_012470) in II-1 and III-1, and the samemutationwas later
confirmed with Sanger sequencing in I-3. The detected variant
was not listed in the Exome Variant Server, Exome Aggregation
Consortium, or 1000 Genomes databases. Other variants suit-
able for autosomal dominant inheritance were not detected.

Figure 2 Muscle imaging

Severe generalized fatty degenerative
changes in the proband (A). The ham-
string muscles and anterior compart-
ment of the lower limbs were
relatively spared in the mother (B).
Mild and diffuse early changes were
seen in the son of the proband more
pronounced in the sartorius, gracilis,
adductor magnus, and peroneus lon-
gus muscles (C).
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Histopathology
The muscle biopsies obtained from the proband (II-1) and his
mother (I-3) at adult age showed general myopathic changes
including variation in fiber size and shape, fiber splitting, and
numerous internal nuclei (figure 3, A and B). Both hypertrophic
and atrophic fibers were present in large numbers, and prom-
inent type 1 fiber predominance was observed (>90% type 1
fibers, whereas in the TA muscle, 60%–80% type 1 fibers is
considered normal).12 Very few occasional necrotic and regen-
erating fibers were present. The nuclear pathology was re-
markable, including swollen nuclei with central pallor (figure
3A), and accumulation of perinuclear/subsarcolemmal baso-
philic material was a frequent finding. Cytoplasmic abnormalities
were observed as well, including rimmed vacuoles (figure 3B),

sarcoplasmic basophilic material (Figure 3, D and F), and even
some cytoplasmic bodies (figure 3D). Occasional ragged red
fibers were encountered (figure 3F), and the number of
Cytochrome C oxidase-negative fibers was slightly increased
(5%–10% fibers Cytochrome C oxidase-negative in I-3 at age 48
years). Sporadic targetoid, whorled, and moth-eaten fibers were
also observed (I-3 at age 48 years).

In biopsies taken at young age (II-1 and III-1 at 3 years and 16
months, respectively), there was fiber size variation but no internal
nuclei. Sarcoplasmic abnormalities were not observed in routine
histochemical stainings (H&E andGomori), but themyofibrillar/
cytoskeletal pathology became visible when immunostained for
myotilin, desmin, and tropomyosin, showing several fibers with

Figure 3 Histopathology

Histopathology of patient II-1 TA bi-
opsy (A–E, G–K, M–N, P) shows myo-
pathic changes: fiber size variation
and numerous internal nuclei, some
with central pallor in H&E (A, arrow-
heads) and rimmed vacuoles in
Herovici (B, arrowheads). Sub-
sarcolemmal TNPO3 accumulation is
observed in TNPO3 IHC staining (C,
arrowheads). A fiber with small cyto-
plasmic bodies is seen in Gomori tri-
chrome staining (D, black arrowhead)
and a fiber with myofibrillar pathol-
ogy (D, white arrowhead). In a serial
section, mitochondrial NADH staining
reveals an uneven staining pattern in
central parts of the muscle fibers (E).
Gomori trichrome of patient I-3 TA
biopsy (F) shows a ragged red fiber
(black arrowhead) and myofibrillar
pathology (white arrowhead). Large
(arrowhead) and small myotilin accu-
mulations are observed in IHC stain-
ing (G). In IF double staining, p62
(green) and TDP-43 (red) colocalize in
inclusion bodies (H, arrowheads) in
the rimmed vacuolar fiber. The mito-
chondrial CHCHD10 shows sub-
sarcolemmal accumulation in several
muscle fibers (I). IF double staining of
desmin (green) and alpha-B-crystallin
(red) shows both cytoplasmic and
subsarcolemmal overexpression and
colocalization (J, arrowheads), as does
desmin (green) and tropomyosin (red)
in K. Notably, desmin (green) and
tropomyosin (red) show over-
expression in patient III-1 muscle at
only age 16 months (L). In confocal
microscopy, RBM4 (green) is often
excluded from the nuclei (M, arrow-
heads) in the patient biopsies,
whereas SRRM2 (green) in N shows
strictly nuclear localization in the pa-
tient, a pattern similar to control
muscles. Confocal analysis of TNPO3
shows normal nuclear localization in
patient III-1 (O), but often perinuclear
accumulation of TNPO3 in adult pa-
tient biopsy (P, arrowheads), which
shows as a nuclear rim. (A–L), scale
bar = 100 μm; (M–P), scale bar =
50 μm. IF = immunofluorescent; IHC =
immunohistochemistry; TA = tibialis
anterior; TNPO3 = transportin-3.
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accumulation (figure 3L). However, the rimmed vacuolar pa-
thology, as well as perinuclear basophilic masses, appeared later in
the disease course and was not present at childhood. Type 1 fiber
predominance was present as early as at age 3 years (II-1).

Ultrastuctural examination of I-3 and II-1 showed subsarcolemmal
deposits of amorphic material and degenerated mitochondria and
sometimes membranous structures (data not shown). Areas of
myofibrillar disorganization, including Z-streaming, were en-
countered, as well as sporadic fibers with minicore-like pathology.
The nuclei were large and showed atypical morphology.

Immunohistochemical analysis showed that TNPO3 accumu-
lated subsarcolemmally, surrounding the myonuclei, corre-
sponding to the perinuclear basophilic material observed in
H&E andHerovici (figure 3C). Other markers present in these
subsarcolemmal masses included desmin, tropomyosin,
CRYAB, and mitochondrial protein CHCHD10 (in addition,
some lysosomal associated membrane protein 2-positive
granules were observed in the perinuclear location.) The ac-
cumulated myofibrillar material in the cytoplasm stained for
desmin, myotilin, CRYAB, ubiquitin, and p62/sequestosome 1
(SQSTM1) and, to a lesser extent, for tropomyosin and lyso-
somal associated membrane protein 2. Rimmed vacuolar fibers
were positive for p62/SQSTM1, microtubule-associated pro-
teins 1A/1B light chain 3, TDP-43, and ubiquitin (figure 3H).

No gross abnormality of nuclear markers matrin-3 and emerin
was observed with the IF technique. Confocal analysis showed
diffuse to granular nuclear localization of TNPO3 in the control
muscle and patient III-1 (age 16 months) (figure 3O), whereas

in II-1, variable nuclear and/or perinuclear localization was ob-
served (figure 3P). A similar staining pattern was observed with
RBM4 (figure 3M), one of the splicing factors TNPO3 binds
and translocates to the nucleus. Another Ser/Arg-rich splicing
factor, SRRM2, showed normal nuclear (speckle) localization in
patient II-1, with no perinuclear accumulation (figure 3N).

Western blotting
In Western blotting, one band of approximately 96 kD was
observed in both controls and patients (figure 4A); hence, we
could not differentiate the mutant isoform from theWT by gel
migration. However, when the protein bands were quanti-
tated, we observed a marked (two- to threefold) increase in
the TNPO3 protein levels in patients II-1 and III-1 compared
with controls (figure 4B).

Functional studies
Immunoblotting of Hela cells following transient transfection
with plasmids expressing HA-tagged TNPO3-WT, TNPO3
carrying the previously reported 15 amino acid C-terminal
extension (HA-TNPO3+15) or the currently reported
frameshift mutation (HA-TNPO3-RG) (figure 5A) revealed
similar expression levels and a slight increase in the molecular
weight of HA-TNPO3+15 and HA-TNPO3-RG as expected
(figure 5B). Immunofluorescence of exogenously expressed
TNPO3 using an HA antibody revealed similar nuclear lo-
calization in addition to cytosolic puncta that were signifi-
cantly enriched in HA-TNPO3-WT–expressing cells
compared with TNPO3 mutants (figure 5, C and D).

Tomore clearly identify the cytosolic structure containing HA-
TNPO3-WT, we performed dual immunofluorescence with an
antibody to the stress granule (SG)marker TIA1 because it has
recently been reported that nuclear import receptors associate
with SGs. AlthoughHA-TNPO3-WT andHA-TNPO3-RG do
localize to a subset of TIA1-positive SGs, the larger cytosolic
HA-TNPO3-WT puncta do not colocalize even when cells are
treated with arsenite to induce SGs in HeLa cells (figure 5E).

We reasoned that cytosolic TNPO3 punctamay colocalize with
nuclear pore complexes (PCs) that assemble in the cytoplasm
at structures termed annulate lamellae pore complexes
(ALPCs). In addition to nucleoporins, ALPCs containmuch of
the machinery necessary for nuclear transport including Ran-
GAP1 and both nuclear import and export receptors. Co-
immunofluorescence with antibodies to nuclear PCs
(Mab414) or RanGAP1 and HA in HeLa cells transfected with
HA-TNPO3-WT or HA-TNPO3-RG demonstrated strong
colocalization at ALPCs in only TNPO3-WT–expressing cells.

Discussion
Only 1 family with TNPO3 mutation causing LGMD1F has
been reported to date.3,4,13 In addition, a patient with sporadic
LGMD harboring a completely different heterozygous mis-
sense mutation in the C-terminal part of TNPO3 has been
described4,14 The follow-up study on the large family found

Figure 4 Western blotting

(A) Western blotting shows approximately 3-fold increase in TNPO3 protein
expression in the patient samples analyzed (III-1 and II-1) comparedwith the
pooled control sample (C100 and C50). (B) The bands were quantitated by
calculating the relative quantities of TNPO3/MyHC in each sample and
normalizing the control samples average to 1. MyHC = myosin heavy chain;
TNPO3 = transportin-3.
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that the mutation c.2771delA segregated in the total of 45
individuals of 115 studied family members with the estimated
penetrance rate of 84.7%.5 Age at onset ranged from less than
1 year to 58 years. Based on the onset and the rate of pro-
gression, a juvenile form (onset before age 15 years, severe
disability) and an adult form (onset in the third to fourth
decades, slower progression) were presented.3,12 In the ju-
venile group, 6 patients had onset at age 1 year with delayed
early motor skills. Although our patients had very early-onset
proximal weakness or congenital hypotonia, the disease was
stable during childhood and slow progression started in
adulthood. The youngest of our patients had a mild decrease
in respiratory functions; none had cardiomyopathy or
hyperlordosis. Also, muscle MRI findings have been variable

with main involvement of the vastus lateralis, rectus femoris,
sartorius, and gracilis muscles and at later stages of the calf and
peroneus longus muscles.3,6

We report the second transportinopathy family with a novel
but almost identical frameshift mutation in the TNPO3 gene
compared with the one identified in the first family.3,12 The
congenital very early-onset generalized limb weakness and
slow progression in our patients differed from the phenotype
of most of the patients in the primary family, although some
patients with congenital disease also were encountered. Two
of our patients had already very severe fatty degeneration in
most of their lower limb muscles making comparison difficult,
whereas earliest involvement can be observed in the sartorius,

Figure 5 Expression and localization of HA-tagged TNPO3 constructs

(A) Schematic of HA-tagged TNPO3-
WT, the previously reported
LGMD1F mutation TNPO3+15 or the
currently described frameshift mu-
tation TNPO3-RG. (B) Immunoblot
with anti-HA, TNPO3, or GAPDH of
HeLa cell lysates transfected with
HA-TNPO3-WT, HA-TNPO3+15, or
HA-TNPO3-RG. (C) HA immunofluo-
rescence of HeLa cells transiently
transfected with HA-TNPO3-WT, HA-
TNPO3+15, or HA-TNPO3-RG. HA-
positive cytosolic puncta (arrows).
(D) Quantitation of the percent of
cells in C with cytosolic HA-TNPO3
puncta (*** p = < 0.0001). (E) Im-
munofluorescence using antibodies
to HA (green) and TIA1 (red) of HeLa
cells transfected with TNPO3-WT or
TNPO3-RG pre- and post-stress
granule induction with arsenite. HA-
positive/TIA1-negative puncta
(arrowheads). (F) Immunofluores-
cence using antibodies to HA (red)
and RanGAP1 (green) or nucleo-
porin antibody Mab414 (green) of
HeLa cells transfected with TNPO3-
WT or TNPO3-RG. Cytosolic puncta
(arrowheads). Scale bars (C, E, and F)
= 20 μm. TNPO3 = transportin-3; WT
= wild type.

Neurology.org/NG Neurology: Genetics | Volume 5, Number 3 | June 2019 7

http://neurology.org/ng


gracilis, adductor magnus, and peroneus longus muscles
(figure 2C). In contrast to the previous reports, we found that
TNPO3 protein was quantitatively increased in the patient
muscle and accumulated in the subsarcolemmal and peri-
nuclear areas in the muscle fibers.

The detected mutation c.2757delC is predicted to cause
a frameshift and transfer the stop codon (p.R920Gfs*20). The
predicted outcome on protein level is almost identical to the
original TNPO3 mutation c.2771delA p.*924Cext*15 (the
amino acid sequence changed by the mutations is
underlined):

Actually, there is just a 5 amino acid difference between the 2
protein products. Hence, it is expected that the patho-
mechanisms are largely shared as well. Indeed, we found that
expression of the previously reported TNPO3 variant be-
haved similarly to our reported variant in cell culture. Spe-
cifically, TNPO3-WT localizes to the nuclear envelope and
a cytosolic organelle termed annulate lamellae (ALs). ALs are
cytosolic accumulations of nuclear PCs and the molecular
machinery necessary for nuclear import/export. The function
of ALs and ALPCs is unclear but may serve as repository
necessary for replacement of nuclear pores and import/export
components. The effect of TNPO3mutations on nuclear pore
function remains to be established. TNPO3 is a nuclear
transport receptor, regulating nucleocytoplasmic shuttling of
several S/R-rich splicing factors. Perinuclear accumulation
and simultaneous nuclear depletion of TNPO3 and RBM4
observed in the patient muscle biopsy are in line with these
mechanisms. Consequently, processing of specific mRNA
species may be altered, leading to aberrant splicing and ex-
pression of muscle genes. However, the nuclear localization of
SRRM2 indicates that these transcription factors have also
other alternatives to TNPO3 for nuclear entry. Physical ac-
cumulation of TNPO3 in the perinuclear/subsarcolemmal
regions, shown by IHC and Western blotting, together with
other proteins and organelles, could disturb normal nuclear
functions in several ways. Indeed, the patient biopsies show
nuclear anomalies.

Myofibrillar pathology was present in the patient biopsies in
this study, although less extensively than in conventional
myofibrilliar myopathies such as myotilinopathy or zaspop-
athy,15 shown by accumulation of myotilin and desmin, as
reported before in the Spanish family.6 As a novel finding, we
found that the myofibrillar changes were present as early as at
age 16 months, which is in line with the congenital onset of
symptoms. Notably, we did not observe perinuclear TNPO3
accumulation or depletion from nuclei (or other abnormal
localization) at that early stage, suggesting that this pathology

develops later andmay contribute to later events in themuscle
pathology. Rimmed vacuolar pathology with p62/SQSTM1,
TDP-43, microtubule-associated proteins 1A/1B light chain
3, and valocin-containing protein-positive material and accu-
mulated autophagosomal membranes at the ultrastructural
level indicate induction of the autophagosomal degradation
pathway. Again, the number of rimmed vacuolated fibers was
rather low. Defects in RNA metabolism are connected to
defective autophagy and rimmed vacuolar pathology, as seen
in multisystem proteinopathy pathologies.16

The muscle histopathologic findings and experimental data so
far implicate that there may be several possible mechanisms
involved in the transportinopathy molecular pathophysiology.
To elucidate the pathogenic effects of the described TNPO3
mutations, studies clarifying how they affect the nuclear
import/export dynamics will be required. In addition, the
splicing of muscle genes, especially those regulated by the
TNPO3 cargo proteins, needs to be analyzed. However, toxic
proteins often shed little or no light on the functions of the
normal cognate.
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