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Abstract

The theory for conventional Gaussian, causal and invertible autoregressive
moving average (ARMA) models has developed into a what can be conside-
red as a basis of modern time series analysis. The concept of noninvertibility
is plausible only under non-Gaussian processes because non-Gaussianity is a
necessary condition for the statistical identification of the noninvertible AR-
MA model. Therefore, if the Gaussianity assumption is relaxed, we can study
a richer class of models which are, unlike their invertible counterparts, capable
of capturing nonlinear patterns in the data.

The aim of this thesis is to consider some of the novel results in ARMA
modeling of stationary time series data, and to expand these results to a par-
ticular case of noninvertibility and non-Gaussianity of the model. It also aims
at providing insights on applicability of noninvertible ARMA models in fi-
nancial time series analysis.

The first essay proposes two residual-based diagnostic tests for noninver-
tible ARMA models. The tests are analogous to the portmanteau tests develo-
ped by Box and Pierce (1970) and McLeod and Li (1983) in the conventional
invertible case. We derive the asymptotic χ2 distribution for the tests under
the null of correctly specified model, and study the size and power proper-
ties in a Monte Carlo simulation study. An empirical application employing
financial time series data points out the usefulness of noninvertible ARMA
model in analyzing stock returns and the use of the proposed test statistics.

The second essay studies properties of the maximum likelihood estimator
of a noninvertible ARMA model with errors that follow an α-stable distribu-
tion and have infinite variance. To ensure the identification of the noninver-
tible ARMA model considered, we restrict the analysis to non-Gaussian distri-
butions. Estimators of the autoregressive and moving average parameters are
shown to be n1/α-consistent and to converge to a non-standard limiting distri-
bution that is obtained as a maximizer of a certain random function. Estima-
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tors of the parameters in the α-stable distribution have the conventional n1/2

rate of convergence. Finite sample properties of the estimators are studied in
a simulation experiment, and an application to financial trading volume data
illustrates the applicability of the model.

The third and last essay looks for nonlinear predictability in stock re-
turns. For many theoretical asset pricing models, predictability follows as an
implication of risk aversion of agents. A closed form solutions for the next pe-
riods asset return depends on how the agents form their expectations about
the future state of the world. By no means should this predictability be linear.
First, we provide evidence of predictability of returns of U.S. stock portfolios
and individual financial sector stocks using noninvertible ARMA(1,1) model
and two-stage predictability testing procedure. Second, we provide a straight-
forward extensions to this procedure and allow for a larger model than the
non-invertible ARMA(1,1).
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1 Introduction

1.1 Background

In their seminal book, Box and Jenkins (1970) introduce a time series mod-
eling framework which is nowadays known as Box-Jenkings methodology.
Their approach is, first, to consider the class of models which are sufficient in
controlling the features of the data. For example, the models need to be able to
overcome nonlinearities, seasonalities, or nonstationarity of the data. Second,
the class of statistical models must be related to the observed data. One needs
to identify the correct form of the model. This can be done, for example, by
investigating the autocorrelation and partial autocorrelation structure of the
data. Third, the identified model must be fitted to the data. This stage is con-
cerned with estimating the model parameters using some estimation method,
maximum likelihood for example. In the fourth and last step, one must con-
clude if the chosen model indeed provides an adequate fit to the data. For this
reason, one may use diagnostic checks to judge, if the residuals of the fitted
model contain information that was not used in the modeling of the data, and
if so, the model should be modified to incorporate this information.

Autoregressive moving average (ARMA) class of models play a key role
in analysis of stationary time series data in various fields. Since Box-Jenkins
methodology was introduced, a vast literature on estimation theory, predict-
ing time series data, model selection, and identification has been developed.
This thesis expands on some of the novel results in conventional invertible
ARMA modeling, and generalizes these results for a particular case of non-
invertibility and non-Gaussianity. In particular, these results contribute to the
third and fourth steps in Box-Jenkins methodology: We provide means for
checking adequacy of an estimated noninvertible ARMA model under non-
Gaussian error terms, and we provide maximum likelihood theory for nonin-
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Introduction

vertible ARMA models under the assumption of a heavy tailed error process.
Thesis also contains an empirical study, in which the time series properties of
financial data is studied using noninvertible ARMA models, illustrating the
usefulness of noninvertible models in applied econometric research.

The results of this thesis are motivated by financial market data. There are
two point of view as to, why these methods should be of interest to practi-
tioners. The first is derived from economic theory. In recent years, there has
been a considerable branch of economic literature aimed at modeling differ-
ent areas of economy, and their linkages, in which the solution of the models
turns out to be noninvertible (nonfundamental). Although the mapping be-
tween noninvertible statistical models and nonfundamental solutions of the
economic models is ambiguous, there is already some evidence for the appli-
cability for these types of models in situations where we could expect that the
data is generated by a noninvertible process (see for example Lof, 2013, for a
small scale simulation study).

The second reason why we should be motivated to develop noninvertible
models in order to understand financial data better, comes from the properties
of the models. There are some features in the financial times series data that
are consistently encountered, and some properties that the models should be
able to model. First, financial data seems to be predominantly heteroskedas-
tic. This feature is so common that there exists a vast literature on nonlinear
time series models that have been developed to capture the the clustering of
the volatility. Any statistical model that is aimed at modeling financial data,
should be able to incorporate this feature. Second, Gaussianity might not be
a good description of the distribution of the financial data; the tails of the dis-
tribution seem to be heavier than what one would expect if the process were
Gaussian. Although non-Gaussianity is a prerequisite for the identification of
the noninvertible model, this assumption does not seem to be very restrictive
in our case. To the contrary, in Chapters 2 and 4 we estimate the model using
quarterly stock return data with Student’s t-distribution. Estimation results
suggests that the kurtosis of the error distribution is considerable larger than
that of the Gaussian distribution. In Chapter 3, we go even further, and show
how to estimate this model without making any assumption on the finiteness
of the moments, and we assume that the distribution belongs in the attraction
of domain of stable distributions.

The third feature of the data we wish to explain, is the predictability. This
need arises from the theoretical asset pricing literature (see for example Chap-
ter 9 in Singleton, 2009). Dynamic asset pricing literature suggests, that risk
aversion should impose predictability in the asset returns. This predictability,

2



1.2 The noninvertible ARMA model

however, might not be easy to capture, as it might be nonlinear as well as
linear. Noninvertibel ARMA processes are always predictable. Unlike their
conventional invertible counterparts, there is nonlinear predictability present
even if the observations are not autocorrelated.

1.2 The noninvertible ARMA model

This section introduces the noninvertible ARMA model that will be present
in all of the Chapters of this thesis. The model specification is adapted from
Meitz and Saikkonen (2013), which studied a noninvertible model with an
ARCH type heteroskedasticity. After the introduction to the model, we will
briefly discuss the identification of the model, especially the importance of
the assumption of non-Gaussianity. We will then derive a backward looking
presentation for this model in order to illustrate the nonlinear nature of this
process. We will briefly talk about the predictability of noninvertible ARMA
processes and then we illustrate graphically some of these features.

1.2.1 Model specification

In this thesis, we specify the noninvertible ARMA(P,Q) model as in Meitz and
Saikkonen (2013),

yt − a0,1yt−1 − · · · − a0,Pyt−P = εt − b0,1εt+1 − · · · − b0,Qεt+Q, (1.1)

where εt is non-Gaussian and iid. In this specification, models linear depen-
dency on the current and future error terms is made precise. Model (1.1) can
also be defined using the AR and MA polynomials as

a0(B)yt = b0(B−1)εt,

where

a0(B) = 1− a0,1B− · · · − a0,PBP and

b0(B−1) = 1− b0,1B−1 − · · · − b0,PB−Q,

where B is a backshift operator (BkXt = Xt−k, for all k = . . . ,−1, 0, 1, . . . ).
The model has a stationary forward looking MA(∞) presentation, as long as
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Introduction

polynomials a0(B) and b0(B−1) satisfy the root conditions

a0(z) 6= 0 for all |z| ≤ 1 and (1.2)

b0(z−1) 6= 0 for all |z−1| ≤ 1.

Under these root conditions we have

yt =
∞

∑
j=−Q

ψjεt−j and εt =
∞

∑
j=P

πjyt+j, (1.3)

where ψj and πj are geometrically decaying coefficients of the Laurent’s series
expansions of a0(B)−1b0(B−1) and b0(B−1)−1a0(B), respectively.

This specification differs slightly from those in Lii and Rosenblatt (1992)
and Lii and Rosenblatt (1996). In their description of the model, the MA poly-
nomial is b0(B), in contrast to the b0(B−1) in (1.1), and the root condition of
the MA polynomial reads as b0(z) 6= 0 for all |z| ≥ 1. Both specifications span
the same space of models, but there are certain benefits in our specification
(see Chapter 2 and Meitz and Saikkonen, 2013, for more details).

1.2.2 Identification

As we already pointed out, non-Gaussianity is a necessary and sufficient con-
dition for identifying the noninvertible model. In Rosenblatt (1985) this is
illustrated by the following example. Let us consider an invertible ARMA(1,1)
model

(1− a0B)yt = (1− b0B)εt,

with Gaussian iid error term εt. Because yt is obtained by a linear filter from
a Gaussian sequence εt, it is Gaussian itself. Let |z̄a| > 1 and |z̄b| > 1 denote
the roots of the AR and the MA polynomials, respectively. Process yt has a
spectral density

fy(ω) =
σ2

ε

2π

|z̄b − e−iω |2
|z̄a − e−iω |2

=
σ2

ε |z̄b|2
2π

|z̄−1
b − e−iω |2

|z̄a − e−iω |2
.

The r.h.s. is the spectral density of

(1− a0B)yt = (1− b0B−1)ε∗t ,
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1.2 The noninvertible ARMA model

a noninvertible ARMA model with Var(ε∗t ) = |z̄b|2σ2
ε . In the Gaussian case

the whole probability structure of yt is determined by the second moments of
the process. The fact that these two processes have the same spectral densities
implies that the models cannot be statistically identified. This is not, however,
the case for other distributions, in general. The probability structures of the
observations are different for different locations of the roots.

This example carries over ARMA(P,Q) models with any values of P and Q.
The MA polynomial can always be factorized, and the roots can be switched
from outside the unit circle to inside. In ARMA(1,1) case, there were two
possible models with the same spectral densities, but for the MA polynomials
of order Q, there are already 2Q different models, one of them being strictly
invertible, and one being strictly noninvertible. Rest of the models have roots
both inside and outside of the unit circle.

1.2.3 Backward looking representations for the noninvertible
ARMA model

Under the root conditions (1.2) it is easy to see that the process (1.1) is covariance-
stationary. Wold’s representation theorem says that all the covariance-stationary
processes can be written as a sum of the history of the non-correlated shocks
(and some nonrandom sequence). This is in contrast to the MA(∞) presenta-
tion (1.3), in which the process yt is written in terms of the past, current, and
future shocks. The question arises, what is the connection of the model (1.1)
to the Wold’s decomposition?

To see how these two are related, notice that the Wold’s decomposition
does not say that the presentation is linear in iid shocks, as in (1.3). We may
take another point of view to the model (1.1) and consider it as a nonlinear
model, that has a linear backward looking presentation in terms of uncorre-
lated error terms et,

yt =
b0(B)
a0(B)

et, with et =
b0(B−1)

b0(B)
εt. (1.4)

It is easy to verify that et is uncorrelated process by looking at its spectral
density function

fe(ω) =
σ2

ε

2π

b0(e−2πiω)b0(e2πiω)

b0(e2πi)b0(e−2πi)
=

σ2
ε

2π
,
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which is flat for all frequencies ω. Under the root conditions (1.2), the polyno-
mials a0(B) and b0(B) clearly have their zeros outside the unit circle, so there
exist coefficients {ψ∗0,j}∞

j=0 of the power series expansion of b0(B)a0(B)−1 such
that yt = ∑∞

j=0 ψ∗0,jet−j, a Wold decomposition of the noninvertible ARMA
model (1.1).

The power of the Wold’s representation theorem stems from the fact that
ARMA processes are in general very good approximations to the infinite back-
ward looking sums. In previous literature, the use of ARMA models has been
justified by the fact, that no matter if the true data generating process is an
ARMA process, by the Wold’s representation theorem, it can be very closely
approximated by one. But if the data was indeed generated by a noninvert-
ible process, using this approximation would cause a loss of information in
the modeling. Although et is an uncorrelated sequence, it is not independent,
but an ARMA sequence itself. We would neglect the information implied
by the ARMA structure of the error term, and we would effectively consider
these errors as purely random error terms.

It is explained in Lanne, Meitz, and Saikkonen (2013) that et is a nonlin-
early dependent sequence. For example, the squared values of et are linearly
dependent. This is the reason why the noninvertible model is capable of con-
trolling mild heteroskedasticity in the data.

This alternative representation (1.4) also illustrates a possible way of de-
tecting a noninvertible model. By construction, the parameters in polynomi-
als a0(B) and b0(B) can be estimated from the data by using any estimation
method based on the second moments of the data. If the orders of the polyno-
mials are correctly specified, the obtained residual series ẽt should be a white
noise sequence. However, dependencies in the higher moments of this series
would suggest that the underlying data generating process was noninvertible,
and instead of (1.4) with white noise error et, we should perhaps consider
estimating the noninvertible model (1.1).

In Chapter 4, we test a hypothesis, whether the process et in (1.4) is a
good description for the quarterly U.S. stock return data, versus the alternative
hypothesis of the data being generated by process yt. Process et defines a so-
called all-pass process (see Andrews, Davis, and Breidt, 2006; Breidt, Davis,
and Trindade, 2001). This process generates data that are not correlated, but
still dependent. This feature is desirable, since the lack of autocorrelation
implies the independence of the observation for the standard ARMA models.
Lanne et al. (2013) shows that this model is capable of controlling for mild
heteroskedasticity in the data, and using the diagnostic tests developed in
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1.2 The noninvertible ARMA model

Chapter 2, we show that it seems sufficient in capturing the correlation of the
squared observations encountered in our stock return data. Another feature
of this all-pass process is that it is predictable despite being an uncorrelated
process. For this reason, the noninvertible model is prominent in answering
the question of whether there is linear or nonlinear predictability in stock
returns.

1.2.4 Predictability

Forecasting with the noninvertible ARMA model is a considerably more dif-
ficult task than with standard causal and invertible ARMA models. Meitz
and Saikkonen (2013) illustrates this difficulty. Let us consider the conditional
expectation of yt given the observations up to the time t− 1,

Et−1[yt] =a0,1yt−1 + · · ·+ a0,Pyt−P

+ Et−1[εt]− b0,1Et−1[εt+1]− · · · − b0,QEt−1[εt+Q].

Although the error terms have mean zero, the conditional mean is not zero. In
fact, the conditional mean of the errors is dependent on the history of yt. This
can be seen most clearly from (1.3), from where one can postulate that the
error terms are correlated with both lagged and leading values of yt. In Ap-
pendix A.1., in Lanne et al. (2013), there is a proof that conditional expectation
Et−1[εt] is not linear, and furthermore, it is not constant in general, but nonlin-
early dependent on the history of yt for any parameter values that satisfy the
root conditions (1.2). We find this kind of nonlinear predictability in a wide
variety of stock return portfolios in Chapter 4, which would go unnoticed if
we based our conclusions on predictability only on autocorrelations.

As pointed out, although the best predictions (the conditional expectation
Et−1[yt]) are difficult to calculate in practice, the best linear predictions are
much simpler. As pointed out in Meitz and Saikkonen (2013), because the
error terms et are uncorrelated, linear predictions can be calculated using (1.4).

1.2.5 Illustrations

Figure 1.1 plots a simulated times series with T = 250 observations of the
noninvertible ARMA process in (1.1) with a0 = 0.8 and b0 = 0.2. The error
process is assumed to follow a re-scaled Student’s t-distribution with degrees
of freedom λ0 = 5. The bottom panel in Figure 1.1 displays the sample auto-
correlation coefficients of the series. On the left, we see that the series is auto-
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Figure 1.1: TOP: Simulation of T = 250 observations of the noninvertible ARMA(1,1) process
(1.1) with a0 = 0.8 and b0 = 0.2. BOTTOM LEFT: Sample autocorrelation coefficients of the
simulated series. BOTTOM RIGHT: Sample autocorrelation coefficients of the squared values of
the simulated series.

correlated as we would expect, and the linear dependence decays smoothly to
zero. On the right we have plotted the sample autocorrelation coefficients of
the squared observations. This illustrates the nonlinear behavior of the non-
invertible ARMA(1,1). The squared observations are autocorrelated and this
implies the heteroskedasticity of the series. The pattern is similar to those of
the ARCH processes, although it is rather mild.

Figure 1.2 depicts plotted values of an all-pass process et in (1.4) with
b0 = 0.8, and the distribution of the error term εt is the same as previously.
The process is seemingly a weak white noise as the estimated sample autocor-
relations are not significant at any lag. The squared observations, however, in
the bottom right part of the figure, illustrates the nonlinear patterns of the all-
pass process. Although the series is not correlated, the squared observations
are, and the heteroskedasticity remains. This is obviously not the case with the
conventional invertible ARMA models, in which the lack of autocorrelations
automatically implies the independence of the observations. We encounter
similar patterns in all of the subsequent chapters of this thesis. When we an-
alyze financial time series data, we find that the return series are very mildly
autocorrelated, but the heteroskedasticity is visible.

Baseline paths of the noninvertible ARMA processes are illustrated in Fig-
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Figure 1.2: TOP: Simulation of T = 250 observations of the all-pass process et in (1.4) with
b0 = 0.8. BOTTOM LEFT: Sample autocorrelation coefficients of the simulated series. BOTTOM
RIGHT: Sample autocorrelation coefficients of the squared values of the simulated series.

ure 1.3 together with baseline paths of the invertible ARMA(1,1) model with
the same autocovariance structure. These plots highlight the economic im-
portance of the identification of the noninvertible model. Recall the MA(∞)
presentation (1.3) of the noninvertible ARMA process (1.1), yt = ∑∞

j=−Q ψjεt−j.
Using this, we have calculated the solid lines, which display the values of yt
for t = −10, . . . , 0, . . . 10, assuming that ε0 = −1 and εt = 0 for all t 6= 0. The
dashed lines, on the other hand, are the responses of the invertible ARMA
process with the same autocovariance structure than the noninvertible model
has. In the left panel we have set a0 = 0.5 and b0 = 0.7, and for the right panel
we have a0 = 0.5 and b0 = −0.7.

If an econometrician fails to identify the noninvertibility of the process,
and estimates an invertible ARMA model, he/she recovers the baseline path
illustrated by the dashed line. As we can see, these paths may differ substan-
tially, so the conclusions the econometrician draws from his/her analysis may
be misleading. In the left panel of Figure (1.3), both of the paths have simi-
lar patterns, but the solid line reacts slightly stronger to the negative shock.
On the other hand, it also recovers faster to zero. In the right panel, on the
other hand, the initial reactions are of the opposite sign. If the data was gen-
erated by the noninvertible model, a negative shock at t = 0 would induce an
initial positive reaction, after which the process turns negative and starts to
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recover towards its equilibrium. If the econometrician estimated an invertible
model, he/she would observe the baseline path illustrated by the dashed line,
and would conclude that a negative shock would induce an initial negative
impact.

For example Leeper, Walker, and Yang (2013) show that misspecification of
the noninvertibility may have serious consequences in policy analysis. They
study an impact of a fiscal policy shock in an dynamic stochastic general
equilibrium model assuming that the agents may foresee the forthcoming tax
changes some periods in advance. After solving the model they find that, in
their model economy, capital accumulation actually follows a noninvertible
ARMA process. If a policymaker wishes to study the response of capital
accumulation to a tax shock by using an ARMA model without identifying the
noninvertibility of the true data generating process, he/she draws misleading
conclusions and about the responses on his/her policy suggestions.

-11 -9 -7 -5 -3 -1 1  3  5  7  9  
-1.5

-1

-0.5

0

0.5

-11 -9 -7 -5 -3 -1 1  3  5  7  9  

-1

-0.5

0

0.5

1

Figure 1.3: LEFT: Baseline paths for two different ARMA models. The solid line is for a nonin-
vertible ARMA(1,1) yt = 0.5yt−1 + εt + 0.7εt+1, and the dashed line is for an invertible ARMA(1,1)
yt = 0.5yt−1 + εt + 0.7εt−1, assuming that ε0 = −1 and εt = 0 for all t 6= 0. RIGHT: Baseline
paths for a noninvertible ARMA(1,1) yt = 0.5yt−1εt − 0.7εt+1 (solid) and invertible ARMA(1,1)
yt = 0.5yt−1 − 0.7εt−1 (dashed).

1.3 Noninvertibility and economic models

Economic models may result in noninvertible log-linearized solutions. These
types of models can be found in the fields of asset pricing (Kasa, Walker, and
Whiteman, 2014) and fiscal foresight (Leeper et al., 2013), and in news shocks
models (Blanchard and Perotti, 2002; Forni and Gambetti, 2014), and perma-
nent income models (Fernández-Villaverde, Rubio-Ramírez, Sargent, and Wat-
son, 2007). What these economic models have in common is that the agents
are allowed to foresee hints of the forthcoming shocks before they hit the
economy. If this is the case, an econometrician who is trying to model the
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economy uses a smaller information set when performing the estimation than
the model agents use. Information deficiency of this sort leads to the non-
invertible solution (Hansen and Sargent, 1991). A comprehensive review of
noninvertibility and economic models can be found in Alessi, Barigozzi, and
Capasso (2011).

1.4 Noninvertibility in time series econometrics

In this thesis we concentrate on a specification of the noninvertible ARMA
model by Meitz and Saikkonen (2013). This specification differs somewhat
from the previous versions of noninvertible models. In this specification, the
observations dependency of the future error terms is written down explicitly.
Observations are linear combinations of a finite amount of past observations,
and a finite amount of future error terms, in addition to the current error.
Meitz and Saikkonen (2013) shows how to approximate the log-likelihood
of the model, and they derive the asymptotic properties of the maximum
likelihood estimator of the parameters.

From a time series perspective, noninvertible models, with non-causal
models, possess some desirable features. Non-causal models may be seen
as a good candidate for forecasting data, that can be considered forward-
looking. This phenomena has been studied in Lanne, Nyberg, and Saarinen
(2012) and Lanne, Luoto, and Saikkonen (2012), and in a multivariate setting
in Nyberg and Saikkonen (2014). Gouriéroux and Zakoïan (2013) provides
insight on how a simple non-causal model with a heavy-tailed error distri-
bution can be used in modeling bubble phenomena in asset markets. Hecq,
Lieb, and Telg (2016) illustrates how to identify non-causal models from their
causal counterparts in small samples. They also study the time series of daily
realized volatility of a set of financial assets, and conclude the presence of
the non-causal component in that data. Hecq, Telg, and Lieb (2017) shows
how seasonal adjustment of economic data induces non-causal dynamics in
the adjusted series. Noninvertible models have been shown to provide a good
fit for the financial data in Breidt et al. (2001) and in Lanne et al. (2013). Wu
and Davis (2010) and Wu (2013) illustrate how to model financial data with
noninvertible models accompanied by heavy-tailed error distribution.
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1.5 Summary of the essays

1.5.1 Chapter 2: Residual based diagnostic tests for noninvert-
ible ARMA models

In this chapter we propose two residual-based diagnostic tests for noninvert-
ible ARMA models. The tests are analogous to the portmanteau tests devel-
oped by Box and Pierce (1970) and McLeod and Li (1983) in the conventional
invertible case. We derive the asymptotic χ2 distribution for the tests under
the null of correctly specified model, and study the size and power properties
in a Monte Carlo simulation study. An empirical application employing finan-
cial time series data points out the usefulness of noninvertible ARMA model
in analyzing stock returns and the use of the proposed test statistics.

1.5.2 Chapter 3: Maximum likelihood estimation of a nonin-
vertible ARMA model with α-stable errors

We study the properties of the maximum likelihood estimator of a nonin-
vertible ARMA model with errors that follow an α-stable distribution and
have infinite variance. To ensure the identification of the noninvertible ARMA
model considered, we restrict the analysis to non-Gaussian distributions. Es-
timators of the autoregressive and moving average parameters are shown to
be n1/α-consistent and to converge to a non-standard limiting distribution
that is obtained as a maximizer of a certain random function. Estimators of
the parameters in the α-stable distribution have the conventional n1/2 rate of
convergence. The finite sample properties of the estimators are studied in a
simulation experiment, and an application to financial time series data from
the New York Stock Exchange illustrates the applicability of the model.

1.5.3 Chapter 3: Nonlinear predictability of asset returns

For many theoretical asset pricing models, predictability follows as an impli-
cation of the risk aversion of agents. A closed form solutions for the next
periods asset return depends on how the agents form their expectations about
the future state of the world. By no means should this predictability be linear.
First, we provide evidence of predictability of returns of U.S. stock portfolios
and individual financial sector stocks using noninvertible ARMA model a and
two-stage predictability testing procedure by Lanne et al. (2013). Second, we
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provide a straightforward extension to this procedure and allow for a larger
model than noninvertible ARMA(1,1).
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2 Residual-based diagnostic
tests for noninvertible ARMA
models1

2.1 Introduction

Portmanteau tests as diagnostic tools in ARMA(P, Q) modeling of time se-
ries were made popular in a series of papers in the 1970s. The key idea of
Box and Pierce (1970) was to derive the asymptotic distribution for a vector
of m first empirical autocorrelation coefficients of an estimated residual of an
ARMA model. Under the null hypothesis of a Gaussian, independent and
identically distributed (iid) error term process of the ARMA model, and cor-
rectly specified estimated ARMA(P, Q) model, they showed that this vector
is asymptotically normally distributed. Using this finding, they formulated
the Pox-Pierce Q statistic, which was asymptotically χ2

m−P−Q distributed un-
der the null hypothesis. A key insight in deriving the limiting distribution
was how to incorporate the estimation uncertainty in the residuals into the
asymptotic result. Ljung and Box (1978) revisited these results, and proposed

1I am grateful for the guidance and suggestions of Markku Lanne, Mika Meitz and Pentti
Saikkonen. I am also thankful to Tim Bollerslev and all the participants at Financial Time Series
Econometrics lunch group at Duke University; Henri Nyberg, and the participants at HECER
Econometrics Workshops; the participants at the 9th Nordic Econometric Meeting; and Christian
Gouriéroux and Jean-Michel Zakoïan and the participants at SoFiE Financial Econometrics sum-
mer school 2016, for useful comments. Detailed comments of Beth Andrews and Alain Hecq are
very much appreciated. Financial support from Academy of Finland, Yrjö Jahnsson Foundation
and OP-Pohjola Group Research Foundation is gratefully acknowledged. An earlier version of
this chapter has been published as HECER Discussion Paper No. 416.
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the Ljung-Box Q statistic to improve the small sample properties of the test.
A similar line of reasoning was used in McLeod and Li (1983) to derive the

McLeod-Li Q test for checking autocorrelation in the squared residuals of an
ARMA model. They noticed that the estimation uncertainty was not an issue
in this case. The asymptotic distribution of the empirical autocorrelation coef-
ficients of the estimated squared residuals was not affected by the distribution
of the estimated parameters of the ARMA(P, Q) model, and the limiting dis-
tribution of their test was χ2

m. Since these seminal findings, it has become
standard practice to reject the estimated ARMA(P, Q) model at the confidence
level α if the aforementioned test statistics exceed the (1− α)-quantile of the
corresponding χ2-distributions.

Development of the estimation theory for new kinds of linear ARMA mod-
els and nonlinear time series models have inspired theory for new tests in the
fashion of the previous papers. Romano and Thombs (1996) showed that it
is important to take the underlying assumptions of the ARMA models into
account. The critical values of the standard tests might be misleading if the
iid assumption fails and the error term is merely a martingale difference or
weak white noise, for example. Li and McLeod (1988) showed how to mod-
ify the test in the case of maximum likelihood estimation with non-Gaussian
errors. Francq, Roy, and Zakoïan (2012) focused on more robust tests, which
assume only weak white noise error terms, allowing for error processes that
are not martingale differences. Lin and McLeod (2008) considered models
with stable distributed innovations allowing for infinite variance and possi-
bly infinite mean. Many other formulations have been suggested to improve
the tests’ small sample properties and adapt them for different assumptions
of the ARMA models, see for example, Monti (1994); Peña and Rodríguez
(2002); Chen and Deo (2004); Lobato (2001); Lobato, Nankervis, and Savin
(2001, 2002).

In this paper, we concentrate on the consequences of the noninvertibility
of the ARMA model for the portmanteau tests. Because non-Gaussianity is
essential for the identification of the noninvertible ARMA model, our paper
is closely related to Li and McLeod (1988). Our paper overlaps with, but is
not nested by Francq et al. (2012). In principle, their test can be used for
model selection among noninvertible models. However, it does not allow for
the efficient ML estimation of the parameters. We, on the other hand, build
on the ML estimation theory for the noninvertible processes, introduced by
Meitz and Saikkonen (2013). Thus, our methods allows for more efficient
parameter estimation of assumable noninvertible and non-Gaussian ARMA
processes and draws the critical values using the actual dependence structure
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of the data. Our paper is also related to the work of Cui, Fisher, and Wu (2014)
who study autocorrelation tests for noncausal autoregressive processes with
stable distributed errors.

The usefulness of noninvertible time series models in economic research
was first pointed out by Hansen and Sargent (1981, 1991). They show that
the information deficiency of the econometrician leads to a noninvertible (or
nonfundamental) solution of the model. More recently, nonfundamentalness
has arisen in asset pricing models (Kasa, Walker, and Whiteman, 2014), fiscal
foresight models (Leeper, Walker, and Yang, 2013), news shocks models (Blan-
chard and Perotti, 2002; Forni and Gambetti, 2014), and permanent income
models (Fernández-Villaverde, Rubio-Ramírez, Sargent, and Watson, 2007). It
is common to all of these models that they have a noninvertible linearized
solution. A comprehensive survey on noninvertibility in economic theory can
be found in Alessi, Barigozzi, and Capasso (2011).

Empirical evidence of the good fit of the noninvertible ARMA model to
economic time series data have been provided by Andrews, Calder, and Davis
(2009), Breidt, Davis, and Trindade (2001), and Huang and Pawitan (2000).
Lanne and Saikkonen (2013) point out that noninvertible models are poten-
tially capable of capturing the nonlinearities in the time series as they are
driven by the iid error terms in a nonlinear fashion. For example, these mod-
els are shown to control for mild heteroskedasticity, commonly encountered
in financial time series. They are also capable of producing time series that
are at most very mildly autocorrelated but still nonlinearly dependent. These
nonlinearities cannot be controlled by a Gaussian causal and invertible ARMA
models, as the lack of autocorrelation automatically implies the independence
of the observations.

Noninvertible ARMA(P, Q) model have a linear representation in reversed
time. That is, the model is linear in terms of the P past observations and the
current and Q future errors. This forward-looking feature has been shown
useful in modeling and forecasting locally explosive bubbles in commodity
markets, as shown in Gouriéroux and Zakoïan (2017), Cavaliere, Nielsen, and
Rahbek (2018), and Friés and Zakoïan (2019), using mixed causal-noncausal
models, which share a somewhat similar forward-looking structure than our
noninvertible model.

We build our empirical application on the work by Lanne, Meitz, and
Saikkonen (2013), who propose a two-step procedure for testing the pre-
dictability in financial time series. This test is based on the properties of
the noninvertible ARMA model, and it is crucial to test if the model fits the
data well. We conclude that noninvertible ARMA(1, 1) provides a good fit for
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stock return data, so the findings of nonlinear predictability are credible from
this perspective.

The rest of the paper is organized as follows. Section 2.2 describes the
noninvertible ARMA model in detail and briefly discusses its maximum like-
lihood estimation. Section 2.3 introduces the test statistics considered and
derives their asymptotic properties. In Section 2.4 we conduct a Monte Carlo
experiment to study the small sample properties of the tests. Section 2.5 pro-
vides an empirical example using financial time series data used by Lanne
et al. (2013). Section 2.6 concludes. High-level assumptions are left for the
appendices to ease reading, as well as some intermediate results and lemmas
used in the proofs of the main results. The supplementary appendix contains
detailed proofs for the intermediate results.

A few notational conventions are given. Almost sure (a.s.) convergence,

convergence in probability, and in distribution are denoted by a.s.→,
p→, and d→,

respectively. We use as∼ when the left and the right hand sides have the same
asymptotic limiting distribution. All vectors are column vectors unless other-
wise indicated. That is, (x1, . . . , xh) is a column vector where the h elements
are either scalars or column vectors. The Lr-norm is denoted by ‖ · ‖r, mean-
ing that for any random variable x, ‖x‖ = (E[|x|r])1/r, where r > 0. Identity
matrix of size m is denoted by Im and (m× n) matrix of zeros is denoted by
0m×n.

2.2 The noninvertible ARMA model

The maximum likelihood estimation of noninvertible (AR)MA model has been
studied, among others, by Lii and Rosenblatt (1992, 1996).2 We study the
purely causal and noninvertible ARMA(P, Q) process by Meitz and Saikkonen
(2013):

a0(B)yt = b0(B−1)εt, (2.1)

where B denotes the backward shift operator, Bkxt = xt−k, for k ∈ Z, a0(z) =
1− a0,1z − · · · − a0,PzP is an autoregressive (AR) polynomial of order P and

2Breidt et al. (2001) and Andrews, Davis, and Breidt (2006) provide estimation theory for an
important special case of the noninvertible ARMA model, the so called all-pass model.
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has its roots outside the unit circle:

a0(z) 6= 0 for all |z| ≤ 1.

Moving average (MA) polynomial b0(z−1) = 1− b0,1z−1 − · · · − b0,Qz−Q is of
order Q, and its roots lie outside the unit circle:

b0(z−1) 6= 0 for all |z−1| ≤ 1.

Error term εt = σ0ηt is assumed non-Gaussian and iid, with zero mean and
finite variance: E[εt] = 0 and E[ε2

t ] = σ2
0 < ∞. It is assumed that ηt has a sym-

metric distribution with density function fη(x; λ0) with a (d × 1) parameter
vector λ0.

This presentation differs somewhat from, for example, that in Lii and
Rosenblatt (1996), where the MA polynomial is written as b0(B) (in contrast
to b0(B−1)). In their presentation, the MA polynomial is written in terms
of the current and the past error terms, and the roots of the MA polyno-
mial are allowed to situate inside or outside the unit circle. The pure non-
invertibility would imply that all the roots were inside the unit circle, and
if this were the case, the set of models would coincide in the current paper
and in Lii and Rosenblatt (1996).3 The difference is that in our presentation,
the dependence of yt on the future error terms εt is written explicitly. As
pointed out by Meitz and Saikkonen (2013), although all the purely nonin-
vertible ARMA(P, Q) models can be presented in either way, there are some
consequences in the choice of presentation. The derivation of the approximate
likelihood requires some care, as the observations are dependent on the future
errors (see the derivations in Section 3.1. in Meitz and Saikkonen, 2013). A
benefit of our presentation is that the likelihood function does not contain a
term like log |bQ| (Lii and Rosenblatt, 1996, p. 8), which allows for a straight-
forward test for an unknown order of the MA polynomial.

Non-Gaussianity of the error term is assumed for identification of the
model. For each causal and invertible Gaussian ARMA model, there is al-
ways a noninvertible model with exactly the same second order properties so
that the invertible and noninvertible ARMA models cannot be distinguished
from each other (for a thorough discussion, see Rosenblatt (2012), Chapter 2).

3Consider an MA(1) model yt = (1− aB)ζt with |a| > 1 and ζt an iid sequence. Another way
of writing this model is yt = (1− a−1B−1)εt, where εt = −aBζt is another iid sequence. The
former is the presentation of Lii and Rosenblatt (1996) and the latter is in the form of Meitz and
Saikkonen (2013). This idea generalizes easily for all the MA(Q) polynomials.
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Model (2.1) has an MA(∞) representation in terms of Q future, the present,
and infinite history of the error terms εt. It also has an AR(∞) representation
in terms of P lagged, the present, and infinite future of the observations yt,

yt =
∞

∑
j=−Q

ψ0,jεt−j and εt =
∞

∑
j=−P

φ0,jyt+j.

The coefficients ψ0,j and φ0,j are geometrically decaying coefficients of the
Laurent series expansions of a0(z)−1b0(z−1) and a0(z)b0(z−1)−1, respectively.4

For all the parameter values θ = (a1, . . . , aP, b1, . . . , bQ, σ, λ) ∈ Θ, where Θ
is a permissible parameter space defined in Assumption 2 in Appendix A, we
define

ut(θ) =
a(B)

b(B−1)
yt =

∞

∑
j=−P

φjyt+j, (2.2)

where a(z) = 1− a1z− · · · − aPzP and b(z) = 1− b1z− · · · − bQzQ. This sum
is well defined for all θ ∈ Θ and the coefficients φj decay geometrically as
j→ ∞. Because the infinite future of yt is not observable, this is an unfeasible
way to approximate the error terms.

Assuming that {yt}T
t=1−P are observed, the feasible counterpart of ut(θ),

say ũt(θ), is obtained using these observations and some initial values ũT+1(θ) =
ũT+Q(θ) = 0. For t = T, . . . , 1,

ũt(θ) = yt − a1yt−1 − · · · − aPyt−P + b1ũt+1(θ) + · · ·+ bt+Qũt+Q(θ). (2.3)

Regarding parameter estimation, Meitz and Saikkonen (2013) discuss the
maximum likelihood estimation of Model (2.1) with an error term assumed to
follow an ARCH process. Our model is thus a simplified version of theirs and
the asymptotic properties of the ML estimator are obtained in a very similar
fashion as in their paper. The properties are listed in Proposition 1 below. Let
LT(θ) denote an approximation of the log-likelihood function of the model
(see Meitz and Saikkonen, 2013, for details),

LT(θ) = T−1
T

∑
t=1

lt(θ) with lt(θ) = log fη(σ
−1ut(θ); λ)− log σ, (2.4)

4See Lemmas A.1. and A.2. in Meitz and Saikkonen (2013) for a thorough discussion of these
series presentations.
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and let Lθ,T(θ) and Lθθ,T(θ) denote the first and second order derivatives of
the log-likelihood with respect to the parameter vector θ. Estimation and sta-
tistical inference is based on feasible versions of these quantities, denoted by
L̃T(θ), L̃θ,T(θ) and L̃θθ,T(θ), which are obtained by replacing ut(θ) by ũt(θ) in
the log-likelihood functions (the exact expressions can be found in Appendix
2.C).

The following proposition contains the conventional properties of a (lo-
cal) maximum likelihood estimator. We omit the proof for brevity, but the
arguments are very similar to those in Meitz and Saikkonen (2013).

Proposition 1. Under Assumptions 1 (a), 2 and 3 in Appendix A,

1. limT→∞ Cov(T1/2Lθ,T(θ0)) = I , where I is positive definite and I =
−E[lθθ,t(θ0)],

2. T1/2Lθ,T(θ0)
d→ N(0,I),

3. supθ∈Θ0
|Lθθ,T(θ)−J (θ)| → 0 a.s. as T → ∞, where J (θ) = E[lθθ,t(θ)]

is finite and continuous at θ0, and Θ0 is defined in Assumption 2 in Appendix
A.

4. there exists a sequence of solutions θ̃T to likelihood equations L̃θ,T(θ) = 0 s.t.

T1/2(θ̃T − θ0)
d→ N(0,I−1), and

5. there is a consistent estimator for the asymptotic covariance matrix given by the
inverse of the Hessian, −L̃−1

θθ,T(θ̃T)→ I−1 a.s. as T → ∞.

These asymptotic properties of the ML estimators are the main ingredients
for the asymptotic behavior of the test statistics we derive in the next section.

2.3 Diagnostic tests

We now introduce the main test statistics considered in this paper. The mod-
ified test statistics for residual autocorrelation and autocorrelation in squared
residuals are5

Qac = Tρ̃′ac,mΩ̃−1
ac ρ̃ac,m and Qhs = Tρ̃′hs,mρ̃hs,m,

5All the quantities Qac, Qhs, ρ̃ac,m, ρ̃hs,m and so on are dependent on the sample size T, but for
the sake of brevity, we suppress this dependence in our notation.
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Residual-based diagnostic tests for noninvertible ARMA models

with ρ̃ac,m = ρ̃ac,m(θ̃T) = (ρ̃1,ac(θ̃T), . . . , ρ̃m,ac(θ̃T)), an m-vector of empirical
autocorrelations of ũt(θ̃T). Respectively, ρ̃hs,m = ρ̃hs,m(θ̃T) = (ρ̃1,hs(θ̃T), . . .
. . . , ρ̃m,hs(θ̃T)) is an m-vector of empirical autocorrelations of ũt(θ̃T)

2. The
ith autocorrelation coefficient is calculated as ρ̃i,ac(θ) = γ̃i,ac(θ)/γ̃0,ac(θ) and
ρ̃i,hs(θ) = γ̃i,hs(θ)/γ̃0,hs(θ) with

γ̃i,ac(θ) = (T − i)−1
T

∑
t=i+1

ũt(θT)ũt−i(θ) and

γ̃i,hs(θ) = (T − i)−1
T

∑
t=i+1

(ũt(θT)
2 − σ2)(ũt−i(θ)

2 − σ2).

The m-vectors of autocovariances of ũt(θ̃T) and ũt(θ̃T)
2 are denoted by γ̃ac,m =

γ̃ac,m(θ̃T) = (γ̃1,ac(θ̃T), . . . , γ̃m,ac(θ̃T)) and γ̃hs,m = γ̃hs,m(θ̃T) = (γ̃1,hs(θ̃T), . . .
. . . , γ̃m,hs(θ̃T)), respectively. Vectors ρ̃ac,m and ρ̃hs,m are feasible statistics, since
they are calculated using the observable quantities ũt(θ̃T) and σ̃2

T . The depen-
dence from the parameter value is suppressed in the notation to save space
whenever we consider these feasible quantities at θ̃T . Positive definite (m×m)
matrix Ω̃−1

ac is a consistent estimator for the inverse of the limiting covariance
matrix of ρ̃ac,m. The exact form will be given in the next subsection.

For the theoretical considerations that follow, it will be convenient to also
consider unfeasible quantities

ρac,m(θ) = (ρac,1(θ), . . . , ρac,m(θ)), ρhs,m(θ) = (ρhs,1(θ), . . . , ρhs,m(θ)),
γac,m(θ) = (γac,1(θ), . . . , γac,m(θ)), and γhs,m = (γhs,1(θ), . . . , γhs,m(θ)),

where ρi,ac(θ) = γi,ac(θ)/γ0,ac(θ) and ρi,hs(θ) = γi,hs(θ)/γ0,hs(θ). These quan-
tities are unfeasible, since they are calculated using the unobservable variables
ut(θ),

γi,ac(θ) = (T − i)−1
T

∑
t=i+1

ut(θ)ut−i(θ) and

γi,hs(θ) = (T − i)−1
T

∑
t=i+1

(ut(θ)− σ2)(ut−i(θ)
2 − σ2).

Note that γi,ac(θ0) = γi,ac and γi,hs(θ0) = γi,hs denotes the (unobservable)
sample autocorrelations of εt and ε2

t , as ut(θ0) = εt.
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The form of the Qac test is the same as in Li and McLeod (1988). The
covariance matrix between the vectors of empirical autocorrelation coefficients
is needed to adjust for the non-Gaussianity of the data (we will return to this
issue in Section 2.3.3). Remember, however, that the test statistic must be
calculated using the feasible quantities that are recursively solved top-down.
After one obtains the feasible residuals of the estimated noninvertible ARMA
model in the appropriate manner, the Qhs has exactly the same structure and
asymptotics as the McLeod-Li test.

The null hypotheses under which the asymptotic properties of Qac and Qhs
are derived are slightly different for these tests, so we give two different null
hypotheses (the Assumptions 1 - 3 are given in the Appendix),

H0,ac: yt admits model (2.1) and Assumptions 1, 2, and 3 (a).

H0,hs: yt satisfies H0,ac and Assumption 3 (b).

The difference between these null hypotheses is that the asymptotics of the
Qac test are derived under the assumption of finite fourth moments, whereas
the asymptotics of the Qhs are shown under the assumption of finite eight
moments. For example, if the Student’s t-distribution is assumed for the error
process, this assumption says that the degrees-of-freedom parameter is larger
than eight. This assumption is admittedly strong, but a standard in the related
literature. We will comment on it again in the simulation study in section 2.4.

Tests should have power against a variety of alternatives. For example, yt
might admit model (2.1) with orders P? and Q?, where P? > P or Q? > Q.
This alternative is the main reason for the Qac test, as selecting too few lags or
leads for the estimated model would result in autocorrelation in the estimated
residuals. Of course there are many models that do not admit model (2.1), for
example ARMA models with ARCH-type heteroskedasticity, which should
be detected by these tests. Yet another example of the usefulness of Qhs is an
alternative, where the true model is a causal and invertible ARMA(P,Q). If the
noninvertible model is fitted, the residuals should not exhibit autocorrelation,
but Qhs should be able to detect the autocorrelation in the squared residuals.6

6It was pointed out by pre-examiner, that heteroskedasticity in the residuals of the estimated
model (2.1) may also be an implication of non-causality of the true DGP. We acknowledge this
possibility, and state that our Qhs test should be able to detect this sort of a misspecification as
well, although this heteroskedasticity might be mild. We will not, however, elaborate this any
further, since as such, the asymptotic properties of our tests are derived under strict causality
of the AR polynomial, and even if the heteroskedasticity was detected, these tests could not be
used to study the residuals of the estimated non-causal ARMA models. The tests for non-causal
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Before we go into the asymptotics of our new tests, we wish to address
the overlapping of the current paper and that by Francq et al. (2012). Our
diagnostic tests efficiently use the entire probability structure of the nonin-
vertible ARMA process yt, as they rely on the asymptotic properties of the
ML estimators of the model. It is well known, that the process (2.1) has an
invertible and causal ARMA(P, Q) presentation in terms of a dependent weak
white noise process7: a0(B)yt = b0(B)ζt, with ζt = b0(B−1)b0(B)−1εt. If one
fits a causal and invertible ARMA(P, Q) model to the data yt by using the
second moments of the data, the resulting residuals should be approximately
weak white noise. Francq et al. (2012) show how to test for the hypothesis
that the resulting series is uncorrelated. If the null of no-autocorrelation can-
not be rejected, then the estimated ARMA(P, Q) model seems an adequate
description of the data. However, one must use some additional information
in order to identify whether the model is purely invertible or noninvertible.
This result also complements our results. If one cannot reject the weak white
noise hypothesis, but there are visible nonlinear dependencies in the residu-
als, it encourages one to estimate the noninvertible ARMA(P, Q) model with
the same P and Q as in the first step, and execute the new Qac and Qhs tests.
In this aspect, Francq et al. (2012) provides the means to select the orders P
and Q without the need to estimatethe noninvertible ARMA model. However,
once the orders have been selected, ML estimation of the noninvertible model
improves the efficiency of the estimation, and our Qac and Qhs test statistics
can be used to investigatethe iid property of the residuals of that model more
thoroughly.

Another branch of the literature concentrates on testing the iid hypothesis
directly using the generalized spectral density approach by Hong (1999) (see
also Hong and Lee, 2003). These tests are potentially useful in detecting the
nonlinear dependencies in the residuals of the estimated invertible ARMA
model, if the data is generated by the noninvertible model. However, it is not
clear how these tests behave if one wishes to test for the independence of the
residuals of the noninvertible ARMA model.8

ARMA processes are left for a potential line for future research. For noncausal AR processes with
stable distributed errors, autocorrelation test is provided by Cui et al. (2014).

7It is clear that the process ζt is white noise as its spectral density is constant: fζ (ω) =

σ2

2π

∣∣∣ b0(e−iω )

b0(eiω )

∣∣∣2 = σ2

2π .
8For example Velasco and Lobato (2018) propose, that the higher order spectral densities can

be used to formulate a minimum distance estimator for estimating a possibly non-causal and/or
noninvertible ARMA model.
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2.3.1 Limiting distribution of Qac

We begin by establishing a limiting joint distribution result for an unobserv-
able vector T1/2(θ̃T − θ0, γac,m). Although this result is not applicable as such
in the diagnostic testing, it is the key to establishing the asymptotic properties
for the feasible test statistic. The result is characterized by the model param-
eters and the asymptotic covariance matrix I , so, in principle, the limiting
distribution can be easily estimated by using consistent estimators for these
parameters, given in Proposition 1.

To this end, let us denote Σγac = σ4
0 Im×m and an (m× (P + Q)) matrix

Λm =


ψ
(a)
0,0 . . . ψ

(a)
0,1−P −ψ

(b)
0,0 . . . −ψ

(b)
0,1−Q

...
. . .

...
...

. . .
...

ψ
(a)
0,m−1 . . . ψ

(a)
0,m−P −ψ

(b)
0,m−1 . . . −ψ

(b)
0,m−Q

 , (2.5)

where by convention, ψ
(a)
0,j = ψ

(b)
0,j = 0 when j < 0.

Lemma 1. Under Hac, for P, Q > 0, T1/2(θ̃T − θ0, γac,m)
d→ N(0, Σθ̃,γac

), where

Σθ̃,γac
=

(
I−1 I−1Σ′l,γac

Σl,γacI
−1 Σγac

)
, with Σl,γac = σ2

0
(
Λm 0m×(1+d)

)
.

Proof. Using mean value expansion of the (feasible) score function around the
true parameter value θ0 gives us

T1/2
(

θ̃T − θ0
γac

)
= T1/2

(
−L−1

θθ,T(θ0)Lθ,T(θ0)
γac

)
+ T1/2

(
R1,T
0m×1

)
, (2.6)

where

R1,T =− (L̃−1
θθ,T(θ̄T)− L−1

θθ,T(θ̄T))(L̃θ,T(θ0)− Lθ,T(θ0))

− L−1
θθ,T(θ̄T)(L̃θ,T(θ0)− Lθ,T(θ0))− Lθ,T(θ0)(L̃−1

θθ,T(θ0)− L−1
θθ,T(θ0)),

and θ̄T is a vector with elements θ̄j,t, j = 1, . . . , P + Q + 1 + d and for some

αj ∈ (0, 1), θ̄j,T = αjθ0,j + (1 − αj)θ̃j,T . Then, T1/2R1,T
a.s.→ 0 as T → ∞ by

Proposition 1, continuity of Lθθ,T(·) and by Lemma C4 in the Appendix. From
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(2.6) and Proposition 1 we have

T1/2
(

θ̃T − θ0
γac

)
as.∼
(

I−1 0(P+Q+1+d)×m
0m×(P+Q+1+d) Im×m

)
T1/2

(
Lθ,T(θ0)

γac

)
,

and the asymptotic normality follows by applying a central limit theorem
for mixingales (see Proposition 2 in Scott, 1973) to T1/2(Lθ,T(θ0), γac), shown
in Proposition 2 in the Appendix. The asymptotic covariance matrix of this
vector is

lim
T→∞

Cov
(

T1/2
(

Lθ,T(θ0)
γac

))
=

( I Σ′l,γac
Σl,γac Σγac

)
,

from which the result follows.

The next lemma establishes the asymptotic normality of the feasible auto-
correlation function of ũt(θ̃T). The key is to approximate the feasible quantity
γ̃ac as a linear combination of the unfeasible quantity γac and the estimated
parameters, and then use the previous Lemma 1 to establish the limiting nor-
mal distribution.

Lemma 2. Under Hac, for P, Q > 0, T1/2ρ̃ac
d→ N(0, Ωac).

Proof. Linear approximation of the feasible autocovariance function around
the true parameter value θ0 gives

γ̃ac =γ̃ac(θ0) +
∂

∂θ′
γ̃ac(θ̄T)(θ̃T − θ0)

=γac +
∂

∂θ′
γac(θ̄T)(θ̃T − θ0) + R2,T ,

where

R2,T = γ̃ac(θ0)− γac +

(
∂

∂θ′
γ̃ac(θ̄)−

∂

∂θ′
γac(θ̄)

)
(θ̃T − θ0),

and T1/2R2,T
a.s.→ 0m×1 as T → ∞ by Lemma D7 in the Appendix and by

continuity of the derivatives. In Lemma D5 in the Appendix we justify that
∂θ
∂θ′ γac(θ̄T)

a.s.→ −Σl,γac as T → ∞. Hence, by Lemma 1, continuity of ∂
∂θ′ γac(·),

Propositions 1, and the discussion above, γ̃ac has an asymptotic normal dis-
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tribution with covariance matrix

lim
T→∞

Cov(T1/2γ̃ac) = Σl,γacI
−1Σ′l,γac

− Σl,γacI
−1Σ′l,γac

− Σl,γacI
−1Σ′l,γac

+ Σγac

= Σγac − Σl,γacI
−1Σ′l,γac

.

Finally, note that

T

(
ρ̃i,ac −

γ̃i,ac

σ2
0

)
= T1/2γ̃i,ac

T1/2(σ2
0 − γ̃i,ac)

σ2
0 γ̃0,ac

= Op(1),

so that ρ̃ac = σ−2
0 γ̃ac + Op(T−1) and the asymptotic covariance matrix for the

feasible autocorrelation function is

Ωac = lim
T→∞

Cov(T1/2ρ̃ac) =Im×m − σ−4
0 Σl,γacI

−1Σ′l,γac

=Im×m −ΛmI11Λ′m,

where I11 is the inverse of the first ((P + Q)× (P + Q)) block of I .

Proposition 1 suggests estimating I−1 by the inverse of the feasible Hes-
sian matrix, −L̃θθ,T(θ̃T)

−1, which is obtained during the estimation routine.
Matrix Σl,γac can be consistently estimated by replacing the model param-
eters by their estimated counterparts. If this matrix is denoted by Ω̃ac =

Im×m − Λ̃mĨ
11

Λ̃′m, then the asymptotic χ2
m distribution follows by standard

arguments.

Theorem 1. Under H0,ac, for P, Q > 0,

Qac
d→ χ2

m, as T → ∞.

2.3.2 Limiting distribution of Qhs

The form of Qhs suggests that there is less adjustment needed for the stan-
dard McLeod-Li Q statistic than there was for the Box-Pierce Q statistic. In
particular, as long as the feasible error terms ũt(θ̃T) are calculated recursively
top-down, as suggested in the previous section, then T1/2ρ̃hs is asymptotically
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N(0, Im×m) distributed, and the standard χ2
m limiting distribution applies for

Qhs.
Limiting distribution of ρ̃hs is invariant to the estimation uncertainty; the

limiting behavior of the parameter estimates do not affect the limiting distri-
bution of the test statistic.

Let κt = ε2
t − σ2

0 , and Σγhs = E[κ2]2 Im×m. This matrix is finite under As-
sumption 1 (a) in Appendix A.

Lemma 3. Under H0,hs, for P, Q > 0, T1/2(θ̃T − θ0, γhs)
d→ N(0, Σθ̃,γhs

), where

Σθ̃,γhs
=

(
I−1 0(P+Q+1+d)×m

0m×(P+Q+1+d) Σγhs

)
.

Proof. Steps in the proof of Lemma 1 above give

T1/2
(

θ̃T − θ0
γhs

)
as.∼
(

I−1 0(P+Q+1+d)×m
0m×(P+Q+1+d) Im×m

)
T1/2

(
Lθ,T(θ0)

γhs

)
.

In Proposition 2 in the Appendix we establish the limiting normal distribution
of T1/2(Lθ,T(θ0), γhs), and that

lim
T→∞

Cov
(

T1/2
(

Lθ,T(θ0)
γhs

))
=

( I 0(P+Q+1+d)×m
0m×(P+Q+1+d) Σγhs

)
,

and the stated result follows.

The following Lemma gives the limiting normal distribution of the auto-
correlation function of the squared feasible quantities ũt(θ̃T)

2.

Lemma 4. Under H0,hs, for P, Q > 0, T1/2ρ̃hs
d→ N(0, Im×m).

Proof. Following the steps in the proof of Lemma 2, linear approximation of
the feasible statistic γ̃hs around the true parameter value θ0 gives

γ̃hs = γhs +
∂

∂θ′
γhs(θ̄T)(θ̃T − θ0) + R3,T ,

where

R3,T = γ̃hs(θ0)− γhs +

(
∂

∂θ′
γ̃hs(θ̄)−

∂

∂θ′
γhs(θ̄)

)
(θ̃T − θ0),
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and T1/2R3,T
a.s.→ 0m×1 as T → ∞ by Proposition 1 and Lemma D7 in the

Appendix. In lemma D5 we establish that ∂
∂θ′ γhs

a.s.→ 0m×(P+Q+1+d), thus

T1/2γ̃hs
as.∼
(
0m×(P+Q+1+d) Im×m

)
T1/2

(
θ̃T − θ0

γhs

)
,

and limT→∞ Cov(T1/2γ̃hs) = Σγhs . Note that

T
(

γ̃i,hs

γ̃0,hs
−

γ̃i,hs

E[κ2
t ]

)
= T1/2γ̃i,hs

T1/2(E[κ2
t ]− γ̃i,hs)

E[κ2
t ]γ̃0,hs

= Op(1),

thus T1/2ρ̃hs = T1/2E[κ2
t ]
−1γ̃hs + Op(T−1/2) , and limT→∞ Cov(T1/2ρ̃hs) =

Im×m.

The χ2
m-distribution follows in the standard manner for the test statistic

Qhs.

Theorem 2. Under H0,hs, for P, Q > 0,

Qhs
d→ χ2

m as T → ∞.

2.3.3 Further consideration of the test statistics

In subsections 2.3.1 and 2.3.2 we developed the asymptotic theory for the
test statistics and showed that the limit is a χ2 distribution. Another way to
characterize the distribution of ρ̃ac is to note that, for an (m × 1) normally
distributed random variable z, z′z ∼ ∑m

i=1 ξiZ2
i , where Zi ∼ N(0, 1) and ξi is

the ith eigenvalue of the covariance matrix Cov(z). For Qhs, the asymptotic
χ2

m distribution follows by noting that the asymptotic covariance matrix of ρ̃hs,
Im×m, has m eigenvalues equal to one.

Next we provide some insight on how our theory overlaps with the find-
ings of Box and Pierce (1970). To this end, it is useful to consider a particular
partition of the matrix Λm,

Λm =


ψ
(a)
0,0 . . . ψ

(a)
0,1−P −ψ

(b)
0,0 . . . −ψ

(b)
0,1−Q

...
. . .

...
...

. . .
...

ψ
(a)
0,m−1 . . . ψ

(a)
0,m−P −ψ

(b)
0,m−1 . . . −ψ

(b)
0,m−Q

 =


ζ
(a)
1 ζ

(b)
1

...
...

ζ
(a)
m ζ

(b)
m


31
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=
(

Λ
(a)
m Λ

(b)
m

)
.

Let Λ
(a)
∞ = limm→∞ ∑m

i=1 ζ
(a)′
i ζ

(a)
i , Λ

(ab)
∞ = limm→∞ ∑m

i=1 ζ
(a)′
i ζ

(b)
i and Λ

(b)
∞ =

limm→∞ ∑m
i=1 ζ

(b)′
i ζ

(b)
i . An exact form for the block diagonal matrix I is given

in Appendix C. If I11 denotes the first (P + Q)× (P + Q) diagonal block, we
have

I11 =

(
E[e2

x,t]Λ
(a)
∞ Λ

(ab)
∞

Λ
(ab)′
∞ E[e2

x,t]Λ
(b)
∞

)
,

where ex,t =
∂

∂θ fη(εt; λ0)/ fη(εt; λ0) (see Appendix 2.A). In the case of purely

causal AR(P) model, matrix Λm takes the form Λ
(a)
m , and I11 is E[e2

x,t]Λ
(a)
∞ .

Now, the asymptotic covariance matrix of T1/2ρ̃ac in Lemma 2 is Im×m −
E[e2

x,t]
−1Λ

(a)
m (Λ

(a)
∞ )−1Λ

(a)′
m . Following the idea of Box and Pierce (1970), for

sufficiently large m, Λ
(a)′
m Λ

(a)
m ≈ Λ

(a)
∞ , so the matrix Λ

(a)
m (Λ

(a)
∞ )−1Λ

(a)′
m is ap-

proximately a projection matrix with P eigenvalues equal to zero and m− P
equal to one. In Gaussian case E[e2

x,t] = 1, and the matrix Im×m −
E[e2

x,t]
−1Λ

(a)
m (Λ

(a)
∞ )−1Λ

(a)′
m would be approximately a projection with m − P

eigenvalues of one, and the usual χ2
m−P approximation would hold. In the

non-Gaussian case E[e2
x,t] 6= 1 (Andrews et al., 2006, Remark 2), and we see

how this term distorts the approximation even in the large samples. How-
ever, our modified test Qac will correct for this bias, at the cost of having to
estimate the matrix I . It is worth noting, and easy to verify, that the purely
noninvertible MA(Q) case is analogous. In the Gaussian case χ2

m−Q approx-
imation holds, although our modified test Qac accounts for the distortion of
non-Gaussian distribution as well.

These ideas generalize to the noninvertible ARMA(P, Q) in (2.1) as well.
The asymptotic covariance of T1/2ρ̃ac is given in Lemma 2. Using approxi-
mation Λ′mΛm ≈ Λ∞, we have ΛmI11Λ′mΛmI11Λ′m ≈ ΛmI11Λ∞I11Λ′m, so
we can conclude that the asymptotic covariance matrix is not a projection,
thus the χ2

m−P−Q approximation fails. Although the Gaussianity of the error
term was ruled out in order to achieve the identification of the model, a point
that we will clarify below in an example, it is illustrative to think about what
happens when E[e2

x,t] = 1. In this case I11Λ∞ = I(P+Q)×(P+Q), and the the
covariance matrix would be a projection matrix. In general, non-Gaussianity
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breaks down this property.

2.3.4 Example: noninvertible ARMA(1,1)

Let us illustrate the method and consider the simplest possible noninvertible
ARMA(1,1) case

(1− a0,1B)yt = (1− b0,1B−1)εt.

Matrices in the asymptotic covariance matrix Ωac are

Λm =


1 −1

a0,1 −b0,1
...

...
am−1

0,1 −bm−1
0,1

 and I11 =

(
E[e2

x,t](1− a2
0,1)
−1 −(1− a0,1b0,1)

−1

−(1− a0,1b0,1)
−1 E[e2

x,t](1− b2
0,1)
−1

)
.

As pointed out in Lanne and Saikkonen (2013), the vitality of the non-Gaussianity
assumption can be seen in matrix I11 above. If E[e2

x,t] = 1, the matrix would
be singular for a0,1 = b0,1. More generally, this singularity occurs whenever
the roots of a0(z) are reciprocal to the roots of b0(z). Non-Gaussianity ensures
nonsingularity of I11 even if the true DGP is weak white noise, i.e. a0,1 = b0,1.

2.4 Monte Carlo simulations

2.4.1 Size simulations

In this section we study the finite sample properties of the proposed test statis-
tics using Monte Carlo simulations. We begin with size simulations using two
different data generating processes compatible with model (2.1):
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DGP I: yt = 0.2yt−1 + εt − 0.2εt+1, and
DGP II: yt = 0.2yt−1 + εt − 0.8εt+1.

Throughout this exercise we set σ2
0 = 2 and m = 5. The error process is

εt = σ0ηt and ηt follows the Student’s t-distribution with degrees of freedom
λ0. We vary the sample size as T = 250; 500 and 10,000. The smallest sample
size T = 250 represents a magnitude often encountered when, for example,
quarterly economic data is used. This is the case in our empirical example
in the next section, where we use quarterly stock return data from 1947Q1 to
2007Q4. T = 500 is also relevant for lower frequency financial and macro eco-
nomic data, for example when monthly data is under consideration for shorter
periods of time. The largest sample size is used to illustrate the asymptotic
properties of the statistics.

We use three different degrees of freedom, λ0 = 3, 5 and 9, for the Stu-
dent’s t-distribution. Assumption 1 in Section 2.A in Appendix lays down the
moment conditions of the error term process εt: asymptotic properties of the
Qac and Qhs tests have been derived under the assumptions of finite fourth
and eight moments, respectively. These assumptions are satisfied for λ0 > 4
for the Qac statistic and λ0 > 8 for the Qhs statistic. Our selection of the de-
grees of freedom parameter allows us to study the properties of the tests when
the assumptions are met, but also illustrate the consequences of the deviations
from these conditions. For λ0 = 3, moment conditions fail to hold for both of
the tests, and the deviation from this assumption is more severe for the Qhs
statistic. If λ0 = 5, the conditions of Qac are satisfied, but those of Qhs are not.
When λ0 = 9, assumptions are satisfied for both of the statistics.

For each combinations of T and λ0, we simulate 1,000 data sets using DGP
I and DGP II. To avoid initialization effects, 2,000 extra observations at the
beginning of each series are simulated and discarded. We fit the noninvertible
ARMA(1,1) model to each of the series and use the residuals to perform the
tests. Summaries of the simulation results are presented graphically.9 Figure
2.1 plots the discrepancy of Qac test size: the deviation of the test’s actual
size from its nominal size is plotted against the nominal size for significance
levels 1%, 1.1%,...,10%. Columns in Figure 2.1 refer to different values of λ0.
For all the parameter combinations, the size properties are adequate for large
samples. The moment conditions, however, play an important role for the

9Additional simulation results are available upon request. The size and power properties
have been investigated using different parameter value combinations, and standard Ljung-Box
tests have also been calculated for the sake of comparison. Not surprisingly, L-B test tends to
overreject because it lacks the covariance matrix that offsets for the non-Gaussianity.
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Figure 2.1: Size of the Qac test statistic with m = 5 for different sample sizes. The deviation
of the test size from its nominal value is plotted against the nominal values and the deviation
is measured in percentage points. Different columns correspond to different values of λ0, and
rows to different data generating processes, DGP I and DGP II, respectively. Solid line depicts
the results for T = 10, 000, dotted line for T = 500, and dashed line for T = 250.

−5

0

5

10

2.5 5.0 7.5 10.0

D
G

P 
I

λ  = 3

−3

−2

−1

0

1

2

2.5 5.0 7.5 10.0

λ  = 5

−3

−2

−1

0

1

2.5 5.0 7.5 10.0

λ  = 9

0

5

2.5 5.0 7.5 10.0

D
G

P 
II

−2

−1

0

1

2

2.5 5.0 7.5 10.0

−1

0

1

2

2.5 5.0 7.5 10.0

Figure 2.2: Size of the Qhs test statistic with m = 5 for different sample sizes. The deviation
of the test size from its nominal value is plotted against the nominal values and the deviation
is measured in percentage points. Different columns correspond to different values of λ0, and
rows to different data generating processes, DGP I and DGP II, respectively. Solid line depicts
the results for T = 10, 000, dotted line for T = 500, and dashed line for T = 250.
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smaller samples. When the moment conditions are not satisfied (λ0 = 3, in
the leftmost column), we find a downward-sloping pattern for the sizes. When
λ0 = 9 (the rightmost column), the distribution of the error process is close
to Gaussian. We would expect to find difficulties in the estimation procedure.
This might explain the overrejections we encounter in this case. The large
sample size ensures that the true DGP is identified during the estimation, but
for the smaller samples the estimated parameters might take false values and
thus impose autocorrelation in the residuals. It seems to be the case that the
higher the autocorrelation in the data (lower row), the higher the overrejection
rate.

Qhs test is more prone to moment conditions, as can be seen in Figure
2.2. When the assumptions are satisfied, the size of Qhs is well aligned on its
nominal values over the set of nominal values (the rightmost column). For
the smaller sample sizes, the patterns are similar to those of the Qac test. The
importance of the moment condition can be seen in the downward-sloping
lines in the left and middle columns. The χ2 distribution does not seem to
capture the behavior of the test statistics. For the large samples, the size
properties are tolerable even if the moment condition does not hold, and even
for the smaller samples, the distortion is not that intolerable for λ0 = 5.

2.4.2 Power simulations

Power properties of the Qac and Qhs tests are studied by simulating data
using three different models that are more general than the noninvertible
ARMA(1,1): noninvertible ARMA(1,2) and two noninvertible ARMA(1,1)
-ARCH(1) models with different magnitudes of heteroskedasticity. The model
equations are

DGP III: yt = 0.2yt−1 + εt − 0.2εt+1 − 0.2εt+2,

DGP IV: yt = 0.2yt−1 + σtηt − 0.2σt+1ηt+1, σt =
√

2 + 0.2η2
t−1, and

DGP V: yt = 0.2yt−1 + σtηt − 0.2σt+1ηt+1, σt =
√

2 + 0.8η2
t−1.

DGP III is used for studying how well the test statistics can detect misspecified
lead length in model (2.1). DGP IV and DGP V are noninvertible ARMA(1,1)
models with ARCH-type heteroskedasticity, the processes studied in Meitz
and Saikkonen (2013). These models are chosen to illustrate the power of Qhs
test against nonlinear processes with heteroskedasticity.
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Figure 2.3: Power of the Qac and Qhs test statistics against DGP III, for different sample sizes.
The power of the tests are plotted against the significance levels, and power is measured in
percentage points. Different columns correspond to different values of λ0, and different rows
correspond to different test statistics, Qac and Qhs, respectively. Solid line depicts the results for
T = 10, 000, dotted line for T = 500, and dashed line for T = 250.
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Figure 2.4: Power of the Qhs test statistic against DGP IV (upper row) and DGP V (lower row),
for different sample sizes. The power of the test is plotted against the significance levels, and
power is measured in percentage points. Different columns correspond to different values of λ0.
Solid line depicts the results for T = 10, 000, dotted line for T = 500, and dashed line for T = 250.
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The design of the Monte Carlo experiment is similar to the size simula-
tions. Again, we have simulated 1,000 data sets using the models described
above, and we have fitted the noninvertible ARMA(1,1) model for each data
set. The test statistics are calculated using the fitted residuals.

The test statistics’ power to detect misspecified lag length is illustrated
in Figure 2.3. Qac test statistic detects the autocorrelation induced by the
misspecified MA-polynomial lead length at a high rate. Although the au-
tocorrelation is assumable modest (b0,2 = 0.2), from the large samples, the
misspecification is always detected. For more modest sample sizes, for 5%
significance level, the power is around 75%, and never below 50% for any
significance levels.

Heteroskedasticity implied by the noninvertible ARMA(1,1) model is usu-
ally very modest, so we would not expect the misspecified lag length to imply
high heteroskedasticity for the residuals either. Nevertheless, the Qhs statistic
always has more than 40% power with even the smallest considered signifi-
cance level, when the sample size is T = 10, 000. With 5% significance level,
the power is always more than 50%, and the power increases substantially
when the sample size is doubled from 250 to 500. The sample size affects the
power properties of Qhs dramatically. For the smaller sample sizes, the mis-
specification is rarely detected via heteroskedasticity, but in the large samples,
this modest heteroskedasticity can be used to identify the misspecified model
quite accurately.

Even the modest ARCH-type heteroskedasticity can be detected with Qhs
very accurately in the large samples, as we can see in Figure 2.4. The power
of the test is, however, very much dependent on the sample size. Increasing
sample size from 250 to 500 makes a large difference in the power properties.
The more severe heteroskedasticity in DGP V is detected more accurately even
in the samples of more modest size. Depending on λ0 and the significance
level of the test, the power tends to be close to 50% or over, for T = 500, and
over 25% for T = 250.

2.5 Empirical application

The question we address in this section is whetherthe diagnostic checks shed
light on the predictability of asset returns. In our context, predictability sim-
ply means non-constant conditional expectation. According to dynamic asset
pricing literature, predictability is a consequence of agents’ risk aversion. For
a thorough discussion, see Chapter 9 in Campbell, Lo, and MacKinlay (1997),
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or Chapter 2 in Singleton (2009). By no means should the predictability be
manifested in a form of autocorrelation; rather we are expecting to encounter
nonlinear predictability.

The advantage the noninvertible model has over the invertible one in mod-
eling asset returns is its generality. In the previous analysis of predictability,
testing has usually been based on the invertible and autocorrelated ARMA
model, which is implied, for example, by the price-trend model of Taylor
(1982) or the mean-reversion model of Poterba and Summers (1988). The
noninvertible ARMA model is capable of capturing all the same autocorre-
lation structures as the invertible model, but is also capable of controlling
for the nonlinearities often encountered in the financial time series data. As
for the invertible ARMA model, the lack of autocorrelation automatically im-
plies the independence of the data: for the noninvertible ARMA model, zero-
autocorrelation is just a special case and the observations may still be depen-
dent in a nonlinear fashion. This generality allows us to model a richer class of
dependencies with noninvertible model, than a conventional invertible ARMA
model would allow.10

Following Lanne et al. (2013), we suggest that the noninvertible ARMA(1,1)
model is a particularly promising candidate to capture this nonlinear pre-
dictability. To our knowledge, this is the first time the model has been investi-
gated from the standpoint of model fit based on asymptotic results. Preceding
related work has mainly illustrated how the noninvertible model can mimic
the nonlinear behavior of stock markets (Breidt et al., 2001), or how the pre-
dictability can be tested under the null of noninvertible ARMA model (Lanne
et al., 2013). The evaluation of the model fit has been performed so far merely
by looking at the sample autocorrelation functions, without having the correct
critical values.

Using statistical tests on the estimated parameters of the noninvertible
ARMA(1,1) model, Lanne et al. (2013) reported nonlinear predictability, in
line with the asset pricing theory. Their testing procedure implicitly assumed
that, under the null, the correct model is the noninvertible ARMA. We take
another look at this data and show that our diagnostic checks actually support
this assumption and thus support their conclusions of nonlinear predictability.

10An interesting special case of the noninvertible ARMA model (2.1) is the so-called all-pass
model: a0(B)yt = a0(B−1)εt. Whenever the roots of the AR polynomial coincide with the recip-
rocals of the roots of the MA polynomial, the process yt is weak white noise. This can be seen
by noting that the spectral density of the process yt is constant σ2

0 /(2π). Polynomials a0(B) and
a0(B−1) do not cancel out, and the data is not iid. For example, the squared observations of the
data can be shown to be correlated (Lanne et al., 2013, Appendix A.2. in).
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In this section we apply our test statistics to evaluate the fit of the non-
invertible ARMA models to the quarterly measured stock portfolio returns
compiled of U.S. stocks. We use three value-weighted, size-ordered stock
portfolios, and the market portfolio, which include data from NYSE, AMEX,
and NASDAQ stocks from January 1947 to December 2007, the same data
that was used by Lanne et al. (2013). Data is obtained from Kenneth French’s
website.11 Monthly returns are transformed into quarterly quantities by con-
tinuous compounding and means are subtracted from the series.

Estimation results are presented in Table 2.1. The left side of the table
shows the estimated values of the parameters. It is worth noting that the
parameters are estimated with good precision, they are statistically different
from zero, and AR and MA parameters are close to each other. This suggests
that the series are very mildly autocorrelated, but dependent in some non-
linear way. Estimation has been based on the Student’s t-distribution. The
estimates of the degrees of freedom parameter λ0 suggest that the innovation
processes in all of the cases have finite fifth moments. This is enough to satisfy
the moment condition imposed on the Qac test, but it fails to meet the assump-
tion of the finite eight moment of the Qhs test. Nevertheless, the Monte Carlo
experiment in the previous section encourages us to still carry out the tests,
with caution, as the size properties of the test were not too distorted by this
relatively modest deviation from the moment condition.

The columns on the right give the p-values of the Qac and Qhs tests for
three different lag lengths, m = 5, 9, and 12. For three out of four portfolios,
the null can not be rejected, suggesting that there is no autocorrelation left
in the residuals or squared residuals. The noninvertible ARMA(1,1) model
seems like an adequate model for the Market, Middle 40% and Top 30% port-
folios in the light of our checks. The heteroskedasticity in the residuals of
the noninvertible ARMA(1,1) model for the Bottom 30% portfolio can not be
ruled out, but it turns out that the noninvertible ARMA(2,2) model is suitable
to control for that.12

11http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html,
downloaded Jan. 10, 2017

12All the estimated parameters of the noninvertible ARMA(2,2) model are statistically highly
significant (all p-values < .01) and the p-values of the Qac and Qhs tests with m = 5 are 0.783 and
0.143 for the Qac and Qhs tests, respectively, and similar for different choices of m as well.
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Qac,T Qhs,T

Portfolio a b σ2 λ 5 9 12 5 9 12

Market .748
(.083)

.759
(.090)

8.074
(.673)

5.012
(1.803)

.982 .911 .961 .606 .845 .794

Bottom 30% .846
(.039)

.936
(.037)

11.855
(.969)

5.285
(2.519)

1.000 .959 .942 .001 .001 .000

Middle 40% .684
(.093)

.780
(.092)

9.826
(.751)

5.404
(2.117)

.880 .861 .924 .304 .376 .577

Top 30% .746
(.081)

.721
(.092)

7.679
(.603)

5.152
(1.842)

1.000 .931 .963 .501 .850 .856

Table 2.1: The noninvertible ARMA(1,1) model has been estimated to four stock return index
series. Table indicates the parameter estimates and their standard errors. Test statistics Qac and
Qhs have been calculated from the residuals of the fitted models and their p-values have been
reported for three different lag lengths m for each test.

2.6 Conclusions

In this article we derived asymptotic properties for two residual-based test
statistics for evaluating model adequacy of the noninvertible ARMA model.
The Qac test statistic is designed to detect remaining autocorrelation in the
residuals and it is analogous to the Box-Pierce Q-statistic in the standard
causal and invertible case. The asymptotic distribution of the Qac test statistic
is not invariant to the estimation uncertainty of the model, so it must be taken
into account in the construction of the test. Also, the need to assume a non-
Gaussian error process implies a more involved form for the test statistic than
in the Box-Pierce setting. The Qhs test statistic is designed to capture autocor-
relation in the squared residuals, and detect possible heteroskedasticity in the
residuals. This test, in turn, is invariant to the estimation uncertainty, so we
found that the McLeod-Li Q-statistic is an asymptotically valid test for this
purpose among the noninvertible models as well, as long as the noninvertibil-
ity is correctly taken into account in estimation of the model, and the residuals
are calculated correctly recursively from the last to the first. Both tests have
an asymptotic χ2 distribution. We also showed that the test statistics have ad-
equate size properties and power against different types of misspecifications.

Our empirical example was designed to evaluate the adequacy of the non-
invertible ARMA model to the quarterly U.S. stock return data. The model
was found, in light of our tests, a potential candidate in modeling these mildly
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autocorrelated, but possibly nonlinearly dependent, data. This finding pro-
vides good grounds for looking for nonlinear predictability in the asset re-
turns. Work in this direction has recently been done by Lanne et al. (2013),
where the noninvertibility was implicitly assumed in their testing procedure.
Our findings thus support their assumption and moreover their conclusions
of possible nonlinear predictability.

In this article we based the asymptotic properties of the tests on ML es-
timators of the model parameters. We do note that there are other possible
estimation methods available as well, for example the least absolute deviation
method by Breidt et al. (2001) and Wu and Davis (2010). These methods may
lack some of the efficiency of the ML method, but there are certain benefits
to not having to define the error distribution. We would expect to find that,
with modest modifications, our diagnostic testing strategy could incorporate
other estimation methods as well, as long as the non-Gaussianity and some
moment conditions hold for the error process.
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Appendix

Appendix

2.A Assumptions

This section lists the assumptions under which the main results are derived
in the main text. Let us introduce some notations. Let (Ω,F ,P) be a prob-
ability space and Ft a σ-algebra generated by random variables {ηs}s<t. The
true but unknown parameters of the model are θ0,a = (a0,1, . . . , a0,P), θ0,b =
(b0,1, . . . , b0,Q), σ0, and λ0 = (λ0,1, . . . , λ0,d). Let us collect these parameters
into a (P + Q + 1 + d) vector θ0 = (θ0,a, θ0,b, σ0, λ0).

Polynomials a(z, θ) = 1 − a1z − · · · − aPzP and b(z−1, θ) = 1 − b1z−1 −
· · · − bQz−Q define a counterpart for the model (2.1) for any parameter values
θ = (θa, θb, σ, λ), with θ = (a1, . . . , aP) and θb = (b1, . . . , bQ). Clearly, in
model (2.1), a0(z) = a(z, θ0) and b0(z) = b(z, θ0).

The partial derivative of the density function fη(x; λ) is denoted by sub-
index: fη,x(x; λ) = ∂

∂x fη(x; λ), fη,λ(x; λ) = ∂
∂λ fη(x; λ), and fη,yz(x; λ) =

∂
∂x∂y′ fη(x; λ) for y, z ∈ {x, λ}. For the derivatives of the log-likelihood, we
use the shorthand notations

ex,t(θ) =
fη,x(σ−1ut(θ); λ)

fη(σ−1ut(θ); λ)
and eλ,t(θ) =

fη,λ(σ
−1ut(θ); λ)

fη(σ−1ut(θ); λ)
.

When evaluated at the true parameter value θ0, we use the shorthand notation
ex,t(θ0) = ex,t.

The first assumption summarizes the restrictions imposed on the error
process εt.

Assumption 1. The error process is εt = σ0ηt with ηt an iid sequence with E[ηt] = 0
and E[η2

t ] = 1. The distribution of ηt is symmetric and non-Gaussian with the density
function fη(x; λ0). In addition to the finite second moments, the process has either

(a) finite fourth moments, E[η4
t ] < ∞, or

(b) finite eight moments, E[η8
t ] < ∞.

Polynomials a(z, θ) and b(z−1; θ) satisfy the causality and invertibility con-
ditions for all θ ∈ Θ, where Θ is the permissible parameter space.
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Assumption 2. The permissible parameter space is Θ = Θa×Θb×Θσ×Θλ, where

Θa ={θa ∈ RP ; a(z) 6= 0 ∀ |z| ≤ 1},
Θb ={θb ∈ RQ ; b(z−1) 6= 0 ∀ |z−1| ≤ 1},
Θσ ={σ ∈ R+}, and

Θλ ={λ ∈ Rd}.

The true parameter θ0 is an interior point of some compact and convex set Θ0 ⊂ Θ.

The following high level assumptions are used in showing the asymp-
totic results for the ML estimation, and can be found in Meitz and Saikkonen
(2013).

Assumption 3.

A1. (i) For all x ∈ R and λ ∈ Θλ, fη(x; λ) is twice continuously differentiable
w.r.t. (x, λ).

(ii) For all λ ∈ Θλ,
∫

x fη(x; λ)dx = 0 and
∫

x2 fη(x; λ)dx = 1.
(iii) The matrix E[eλ,t(θ0)eλ,t(θ0)

′] is positive definite.
(iv) For all x ∈ R and all λi, i = 1, . . . , d, functions

x4 f 2
η,x(x; λ0)

f 2
η (x; λ0)

and
f 2
η,λi

(x; λ0)

f 2
η (x; λ0)

are dominated by d1(1+ |x|d2) with some d1, d2 ≥ 0 s.t.
∫
|x|d2 fη(x; λ0)dx <

∞.
(v) For all x ∈ R and λ ∈ Θλ, the function |x2 fη,λ(x; λ)| is dominated by

function f̄ (x) s.t.
∫

f̄ (x)dx < ∞.

A2. (i) For all x ∈ R and λ ∈ Θλ, the function | fη,λλ(x; λ)| is dominated by
some f̄ (x) s.t.

∫
f̄ (x)dx < ∞.

(ii)
∫

fη,xx(x; λ0)dx = 0.

(iii)
∫

x2 fη,xx(x; λ0)dx = 2.

A3. (i) For all x ∈ R and λ ∈ Θλ, for all λi, i = 1, . . . , d, the functions

x4 f 4
η,x(x; λ)

f 4
η (x; λ)

,
f 4
η,λi

(x; λ)

f 4
η (x; λ)

, x4 f 2
η,xx(x; λ)

f 4
η (x; λ)

,
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f 2
η,λix

(x; λ)

f 4
η (x; λ)

, and

∣∣∣∣∣ fη,λλ(x; λ)

fη(x; λ)

∣∣∣∣∣
are dominated by d1(1+ |x|d2) for some d1, d2 ≥ 0, and

∫
|x|d2 fη(x; λ0)dx <

∞.

A4. (i) For all x ∈ R, ∆x ∈ R, and λ ∈ Θλ, for some C < ∞ and d1, d2 ≥ 0,

|v(x + ∆x; λ)− v(x; λ)| ≤ C((1 + |x|d1)|∆x|+ |∆x|d2)

for the following functions v(x; λ),

(i) v(x; λ) =
fη,x(x; λ)

fη(x; λ)
, (ii) v(x; λ) =

fη,λ(x; λ)

fη(x; λ)
,

(iii) v(x; λ) =
fη,λλ(x; λ)

fη(x; λ)
, (iv) v(x; λ) =

fη,λx(x; λ)

fη(x; λ)
, and

(v) v(x; λ) =
fη,λλ(x; λ)

fη(x; λ)
.

Assumptions 1, 2, and 3 are enough to state the following properties of
(yt, εt).

Lemma A1. Under Assumption 1 (a) and 2, the process (yt, εt) defined in (2.1) is
stationary and ergodic. Moreover, the process yt is Ft+Q-measurable with E[y4

t ] < ∞,
and εt is Ft-measurable with E[ε4

t ] < ∞. If Assumption 1 (b) also holds, then
E[y8

t ] < ∞ and E[ε8
t ] < ∞.

The proof will be omitted here, but essentially it can be found in Meitz and
Saikkonen (2013) Appendix A, where series presentations of rational func-
tions like a(z, θ)−1, b(z−1, θ)−1, a(z, θ)b(z−1, θ)−1 and a(z, θ)−1b(z−1, θ) are
discussed in depth. For future reference, we list the definitions of these sums
here:

a(z, θ)−1 =
∞

∑
j=0

ψ
(a)
j zj, b(z−1, θ)−1 =

∞

∑
j=0

ψ
(b)
j z−j

a(z, θ)−1b(z, θ) =
∞

∑
j=−P

ψjzj and a(z, θ)b(z−1, θ)−1 =
∞

∑
j=−Q

πjz−j.
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These series are well defined for all z in some area containing the unit circle,
and the coefficients of the expansions are always geometrically decaying for
all θ ∈ Θ, given in Assumption 2.

2.B Derivatives of ut(θ) and ũt(θ)

The sequence ut(θ) was defined in (2.2) and the discussion therein, and its fea-
sible counterpart in (2.3). For what follows, we need a notion of the derivatives
of these quantities. The derivative of ut(θ) w.r.t. the pth AR parameter and the
qth MA parameter are denoted by uap ,t(θ) =

∂
∂bq

ut(θ) and ubq ,t(θ) =
∂

∂bq
ut(θ),

respectively, for p = 1, . . . , P and q = 1, . . . , Q. These functions are given by

uap ,t(θ) = −
ut−p(θ)

a(B)
= −

∞

∑
j=0

ψ
(a)
j ut−p−j(θ) and

ubq ,t(θ) =
ut+q(θ)

b(B−1)
=

∞

∑
j=0

ψ
(b)
j ut+q+j(θ).

Using a representation ũt(θ) = ∑T−t
j=0 ψ

(b)
j a(B)yt+j (Andrews et al., 2006), the

derivatives of the feasible quantities ũt(θ) are given by

ũap ,t(θ) = −
T−t

∑
j=0

ψ
(b)
j yt−p−j and ũbq ,t(θ) =

T−t

∑
j=0

ψ(b)j ũt+q+j(θ).

For convenience, the P and Q vectors of the derivatives of ut(θ) are denoted
by

∂

∂θa
ut(θ) = ua,t(θ) =


ua1,t(θ)

...

uaP ,t(θ)

 and
∂

∂θb
ut(θ) =


ub1,t(θ)

...

ubQ ,t(θ)

 ,

and respectively for ũa,t(θ) and ũb,t(θ) in an obvious manner.
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2.C Intermediate results for the model

In this section we provide some details for the proofs of the results presented
in the main text. The approximation of the log-likelihood function was pre-
sented in (2.4). Its feasible counterpart is

L̃T(θ) = T−1
T

∑
t=1

l̃t(θ) with l̃t = log fη

(
σ−1ũt(θ); λ

)
− log σ.

The (P + Q + 1 + d) dimensional score vector of a single observation at θ is
denoted by lθ,t(θ) =

∂
∂θ lt(θ), and it is

lθ,t(θ) =


σ−1ex,t(θ)ua,t(θ)

σ−1ex,t(θ)ub,t(θ)

−σ−1 (σ−1ex,t(θ)ut(θ) + 1
)

eλ,t(θ)

 .

The score vector of the model is given by Lθ,T(θ) = T−1 ∑T
t=1 lθ,t(θ).

The Hessian of the noninvertible ARMA model is substantially more in-
volved than that of the invertible ARMA model (although it is simplified sub-
stantially from the Hessian presented in Meitz and Saikkonen (2013) as we
neglect the ARCH error term). It is not shown here, but one can confirm that

−E[lθθ′ ,t(θ0)] = lim
T→∞

Cov

(
T−1/2

T

∑
t=1

lθ,t(θ0)

)
,

where the limit is positive definite, continuous, and finite in Θ0, given in
Assumption 2. This matrix is (see Proposition 1)

I =


A11 B′21 0P×1 0P×d

B21 A22 0Q×1 0Q×d

01×P 01×Q A33 A′43

0d×P 0d×Q A43 A44

 . (2.7)
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Straightforward but rather long calculations give

A11 =− σ−2
0 E[e2

x,t]E[uθa ,t(θ0)uθ′a ,t(θ0)], A22 = σ−2
0 E[e2

x,t]E[uθb ,t(θ0)uθ′b ,t(θ0)],

A33 =σ−2
0 (E[e2

x,tη
2
t ]− 1)2, A43 = −σ−1

0 E[ex,teλ,tηt], A44 = −E[eλ,teλ′ ,t], and

B21 =− σ−2
0 E[uθa ,t(θ0)uθ′b ,t(θ0)].

The block B21 is due to the serial correlation of the score vector whereas the the
rest of the blocks capture the contemporaneous correlation. The expressions
above have feasible counterparts obtained by setting

ẽx,t =
fη,x(σ

−1
0 ũt(θ0); λ0)

fη(σ
−1
0 ũt(θ0); λ0)

, and ẽλ,t(θ0) =
fη,λ(σ

−1
0 ũt(θ0); λ0)

fη(σ
−1
0 ũt(θ0); λ0)

.

The set of results in Lemma C2 is used by Meitz and Saikkonen (2013) to
derive the results we presented in Proposition 1, but it is also needed in the
proof of Lemma C3 and Lemma C4, and Lemmas D5-D7.

Lemma C2. Under Assumptions 1 (a), 2 and 3,

(i)

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

< ∞, (ii)

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ut(θ)

a(B)

∣∣∣∣
∥∥∥∥∥

4

< ∞,

(iii)

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ ut(θ)

b(B−1)

∣∣∣∣
∥∥∥∥∥

4

< ∞, (iv)

∥∥∥∥∥ sup
θ∈Θ0

|eλ,t(θ)|
∥∥∥∥∥

2

< ∞,

(v)

∥∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)|
∥∥∥∥∥

2

< ∞, (vi) E[ex,t] = 0,

(vii) E[ex,tεt] = −σ0, (viii) E[ex,tε
2
t ] = 0, (ix) E[ex,tε

3
t ] = −3σ3

0 ,

(x) E[eλ,t] = 0, (xi) E[eλ,tε
2
t ] = 0.

Proof. Proofs for the results in this section are given in a supplementary ap-
pendix.

The next lemma provides some insight between the feasible and unfeasible
quantities.
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Lemma C3. Under Assumptions 1 (a), 2, and 3,

(i)

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

≤ CKt, (ii)

∥∥∥∥∥ sup
θ∈Θ0

|uap ,t(θ)− ũap ,t(θ)|
∥∥∥∥∥

4

≤ CKt,

(iii)

∥∥∥∥∥ sup
θ∈Θ0

|ubp ,t(θ)− ũbp ,t(θ)|
∥∥∥∥∥

4

≤ CKt, (iv)

∥∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)− ẽx,t(θ)|
∥∥∥∥∥

r1

≤ CKt,

(v)

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)
2 − ũt(θ)

2|
∥∥∥∥∥

2

≤ CKt,

where C < ∞ is a constant and may vary from part to part, Kt is a constant that
may depend on t and decays to zero at geometric rate as T → ∞, and r1 is some small
positive number.

The following results are used directly in the proofs of Lemmas 1 and 3.

Lemma C4. Under Assumptions 1 (a), 2, and 3, as T → ∞,

(i) T1/2 sup
θ∈Θ0

∣∣Lθ,T(θ)− L̃θ,T(θ)
∣∣ a.s.→ 0 and (ii) sup

θ∈Θ0

∣∣Lθθ′ ,T(θ)− L̃θθ′ ,T(θ)
∣∣ a.s.→ 0.

2.D Intermediate results for the test statistics

The next three Lemmas are used in the proofs of Lemmas 1-4. Lemma D5
gives some essential uniform convergence results for the unfeasible autocor-
relation functions. Lemma D6 justifies the asymptotic normal distribution of
the vectors (Lθ,T(θ0), γac) and (Lθ,T(θ0), γhs) that we encounter in Lemmas
2 and 4. Lemma D7 is used in the proofs of Lemmas 1-4 to ensure that the
asymptotic properties hold for the feasible quantities as well as the unfeasible
ones.

For what follows, let gac,t(θ) = (ut(θ)(ut−1(θ), . . . , ut−m(θ))) and ghs,t(θ) =

(ut(θ)2 − σ2)(ut−1(θ)
2 − σ2, . . . , ut−m(θ)2 − σ2).
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Lemma D5. Under Assumptions 1 (a), 2, and 3, for j = 1 . . . , m, as T → ∞,

(i) sup
θ∈Θ0

∣∣∣∣ ∂

∂θ′
γac(θ)−Gac(θ)

∣∣∣∣ a.s.→ 0, and (ii) sup
θ∈Θ0

∣∣∣∣ ∂

∂θ′
γhs(θ)−Ghs(θ)

∣∣∣∣ a.s.→ 0,

where constant matrices Gac(θ) = E[ ∂
∂θ′ gac,t(θ)] and Ghs(θ) = E[ ∂

∂θ′ ghs,t(θ)] are
finite and continuous. Moreover, Gac(θ0) = Gac = −Σl,γac given in Lemma 2 and
(2.5), and Ghs(θ0) = Ghs = 0m×(P+Q+1+d).

Proof. Results follow from Theorem 2.7. in Straumann and Mikosch (2006),
if we show that the summands gac,t(θ) and ghs,t(θ) are bounded in a sup-
norm sense: ‖ supθ∈Θ0

|gac,t(θ)|‖ < ∞ and ‖ supθ∈Θ0
|ghs,t(θ)|‖ < ∞. Details

can be found in the supplementary appendix. Exact forms of the matrices
Gac and Ghs are straightforward to verify and the details can be found in the
supplementary appendix.

Lemma D6. Let ξac,t(θ) = (lt(θ), gac,t(θ)) and ξhs,t(θ) = (lt(θ), ghs,t(θ)), then

A under Assumptions 1 (a), 2, and 3,

(i) vectors ξac,t(θ0) and ξhs,t(θ0) form a stationary and ergodic process with
E[ξac,t(θ0)] = E[ξhs,t(θ0)] = 0,

(ii) ξac,t(θ0) has a finite covariance matrix E[ξac,t(θ0)ξac,t(θ0)
′] < ∞,

(iii) for all conformable nonrandom vectors a 6= 0, sequences a′ξac,t(θ0) and
a′ξhs,t(θ0) are L2-mixingales of size −1 w.r.t. the filtration {Fs}s≤t, and

(iv) there is a finite and positive definite limiting covariance matrix Σξac s.t.

lim
T→∞

Cov

(
T−1/2

T

∑
t=1

ξac,t(θ0)

)
a.s.→ Σξac .

B under Assumptions 1 (b), 2, and 3,

(i) ξhs,t(θ0) has a finite covariance matrix E[ξhs,t(θ0)ξhs,t(θ0)
′] < ∞, and

(ii) there is a finite and positive definite limiting covariance matrix Σξhs
s.t.

lim
T→∞

Cov

(
T−1/2

T

∑
t=1

ξhs,t(θ0)

)
a.s.→ Σξhs

.
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Proof. Part A (i) holds because vectors ξac,t(θ0) and ξhs,t(θ0) can be expressed
in terms of convergent power series expansions of the ergodic and stationary
process ut(θ0) = εt. A (ii) is a consequence of A (iv). A (iii) is trivial, since, by
Lemma 3 in Meitz and Saikkonen (2013), for a conformable size vector a1 6= 0,
a′1lt(θ0) is an L2-mixingale of size −1, and Vectors gac,t(θ0) and ghs,t(θ0) are
Ft-measurable mean zero processes. Part B (i) is a consequence of B (ii).
Rather long derivations for the proofs of parts A (iv) and B (ii) can be found
in the supplementary appendix. The exact forms of the matrices Σξac and Σξhs
are presented in Lemmas 1 and 3. For the details, see the proofs of A (iv) and
B (ii) in the supplementary appendix.

Proposition 2. (i) Under Assumptions 1 (a), 2, and 3, T1/2(Lθ,T(θ0), γac)
d→

N(0, Σξac), and (ii) under Assumptions 1 (b), 2, and 3, T1/2(Lθ,T(θ0), γhs)
d→

N(0, Σξhs
).

Proof. A direct application of Lemma D6 and Lemma A.4. in Meitz and

Saikkonen (2013) gives T1/2a′(Lθ,T(θ0), γac)
d→ N(0, a′Σξac a) and

T1/2a′(Lθ,T(θ0), γhs)
d→ N(0, a′Σξhs

a), for all conformable size vectors a 6= 0.
Proposition 2 follows by Cramér-Wold device.

Lemma D7. Under Assumptions 1 (a), 2, and 3, as T → ∞

(i) sup
θ∈Θ0

|T1/2γac(θ)− T1/2γ̃ac(θ)|
a.s.→ 0,

(ii) sup
θ∈Θ0

|T1/2γhs(θ)− T1/2γ̃hs(θ)|
a.s.→ 0

(iii) sup
θ∈Θ0

∣∣∣∣ ∂

∂θ′
γac(θ)−

∂

∂θ′
γ̃ac(θ)

∣∣∣∣ a.s.→ 0, and

(iv) sup
θ∈Θ0

∣∣∣∣ ∂

∂θ′
γhs(θ)−

∂

∂θ′
γ̃hs(θ)

∣∣∣∣ a.s.→ 0.

Proof. Results follow by Theorem 2.7. in Straumann and Mikosch (2006), and
Lemma C3. Details can be found in the supplementary appendix.

55



Residual-based diagnostic tests for noninvertible ARMA models

Supplementary appendix for the Residual-based
diagnostic tests for noninvertible ARMA models

Proof of Lemma C2.

(i) Recall the representation (2.2), ut(θ) = ∑∞
j=−P πjyt+j. By Lemma A1 (i),

E[y4
t ] < ∞. The result follows by Lemmas A.1. and A.2. in Meitz and Saikko-

nen (2013) (MS13 hereafter). (ii) Because a(B)−1ut(θ) = ∑∞
j=0 ψ

(a)
j ut−j(θ),

result follows from part (i) and Lemmas A.1. and A.2. in MS13. (iii) This is
analogous to part (ii). Parts (iv) and (v) follows from the continuous differ-
entiability of fη(x; λ) w.r.t. (x, λ). Parts (vi)− (xi) can be found in Lemma
C.1. in MS13.

Proof of Lemma C3.

Proof of Lemma C3 is very close to the Lemma E.1. in MS13. (i) Using
the presentation ut(θ) = a(B)b(B−1)−1yt = ∑∞

j=0 ψ
(b)
j a(B)yt+j together with

ũt(θ) = ∑T−t
j=0 ψ

(b)
j a(B)yt+j gives

ut(θ)− ũt(θ) =
∞

∑
j=T−t+1

ψ
(b)
j a(B)yt+j.

Triangle inequality and Hölder’s inequality implies∥∥∥∥∥sup
θ∈θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

≤
∞

∑
j=T−t+1

|ψ(b)
j |
∥∥∥∥∥ sup

θ∈Θ0

|a(B)yt+j|
∥∥∥∥∥

4

.

As the Laurent series coefficients ψ
(b)
j are geometrically decaying, there are

constants C1 < ∞ and |ρ| < 1 s.t. ψ
(b)
j ≤ C1ρj. Finite fourth moments of pro-

cess yt, together with compactness of Θ0, a, ensures that
∥∥∥supθ∈Θ0

|a(B)yt+j(θ)|
∥∥∥

4
≤ C2, for some constant C2 < ∞. Using these, we get∥∥∥∥∥ sup

θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

≤
∞

∑
j=T−t+1

ρjC1C2 =
ρT−t+1

1− ρ
C1C2,
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noninvertible ARMA models

and the result follows.
(ii) Recall expressions uap ,t(θ) = −∑∞

j=0 ψ
(a)
j ut−p−j(θ) and ũap ,t(θ)

= −∑T−t
j=0 ψ

(b)
j yt−p+j in Appendix 2.B, and note that∥∥∥∥∥ sup

θ∈Θ0

∣∣∣uap ,t(θ)− ũap ,t(θ)
∣∣∣∥∥∥∥∥

4

≤
∞

∑
j=T−t+1

sup
θ∈Θ0

|ψ(b)
j |
∥∥yt−p+j

∥∥
4 .

Because | supθ∈Θ0
ψ
(b)
j | ≤ C1ρj, and process yt has finite fourth moment,

E[y4
t ] ≤ C2 < ∞,∥∥∥∥∥ sup

θ∈Θ0

|uap ,t(θ)− ũap ,t(θ)|
∥∥∥∥∥ ≤ ∞

∑
j=T−t+1

ρjC1C2 =
ρT−t+1

1− ρ
C1C2.

(iii) Recall expressions ubq ,t(θ) = ∑∞
j=0 ψ

(b)
j ut+q+j(θ) and ũbq ,t(θ) =

∑T−t
j=0 ψ

(b)
j ũt+q+j(θ) in Appendix 2.B,

|ubq ,t(θ)− ũbq ,t(θ)| =
∣∣∣∣∣ ∞

∑
j=0

ψ
(b)
j ut+q+j −

T−t

∑
j=0

ψ
(b)
j ũt+q+j(θ)

∣∣∣∣∣
=

∣∣∣∣∣ ∞

∑
j=0

ψ
(b)
j ut+q+j(θ)−

T−t

∑
j=0

ψ
(b)
j ut+q+j(θ)

+
T−t

∑
j=0

ψ
(b)
j ut+q+j(θ)−

T−t

∑
j=0

ψ
(b)
j ũt+q+j(θ)

∣∣∣∣∣
≤

∞

∑
j=T−t+1

|ψ(b)
j ut+q+j(θ)|

+
T−t

∑
j=0
|ψ(b)

j ||ut+q+j(θ)− ũt+q+j(θ)|

=
∞

∑
j=T−t+1

|ψ(b)
j ut+q+j(θ)|

+
T−t−q

∑
j=0
|ψ(b)

j ||ut+q+j(θ)− ũt+q+j(θ)|
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+
T−t

∑
T−t−q+1

|ψ(b)
j ut+q+j(θ)|,

where the first equality follows by adding and subtracting terms, the first
inequality follows by the triangle inequality, and the last equality follows,
because for t > T, ũt(θ) = 0. Taking sup-norm on both sides gives∥∥∥∥∥ sup

θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|
∥∥∥∥∥

4

≤
∞

∑
j=T−t+1

sup
θ∈Θ
|ψ(b)

j |
∥∥∥∥∥ sup

θ∈Θ0

|ut+q+j(θ)|
∥∥∥∥∥

4

+
T−t−q

∑
j=0

sup
θ∈Θ0

|ψ(b)
j |
∥∥∥∥∥ sup

θ∈Θ0

|ut+q+j(θ)− ũt+q+j(θ)|
∥∥∥∥∥

4

+
T−t

∑
j=T−t−q+1

sup
θ∈Θ0

|ψ(b)
j |
∥∥∥∥∥ sup

θ∈Θ0

|ut+q+j(θ)|
∥∥∥∥∥

4

.

Using Lemma C2, the first term is bounded by

∞

∑
T−t+1

ρjC1C2 =
ρT−t+1

1− ρ
C1C2.

From part (i), the second term can be bounded by

T−t−q

∑
j=0

C3ρj ρT−t−q−j+1

1− ρ
C4C5 ≤ (T − t + 1)

ρT−t+1

1− ρ
C6.

The last term is bounded by

T−t

∑
j=T−t−q+1

C7ρjC8 = C7C8
ρT−t−q+1 − ρT−t+1

1− ρ
=

ρT−t+1

1− ρ
C9.

Combining these yields the result,∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)‖
∥∥∥∥∥

4

≤ (T − t + 1)
ρT−t+1

1− ρ
C,
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where C < ∞ is not dependent on T or t.
(iv) Assumptions 3 A4 (i) directly implies

|ex,t(θ)− ẽx,t(θ)|
≤C((1 + |σ−1ut(θ)|d1)σ−1|ut(θ)− ũt(θ)|+ (σ−1|ut(θ)− ũt(θ)|)d2).

Taking sup-norms on both sides yields∥∥∥∥∥ sup
θ∈Θ0

ex,t(θ)− ẽx,t(θ)|
∥∥∥∥∥ ≤C1

[∥∥∥∥∥ sup
θ∈Θ0

|(1 + ut(θ)
d1)|ut(θ)− ũt(θ)||

∥∥∥∥∥
r

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|d2

∥∥∥∥∥
r

]

≤C1

[∥∥∥∥∥ sup
θ∈Θ0

|1 + ut(θ)
d1 |
∥∥∥∥∥

2r

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

2r

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|d2

∥∥∥∥∥
r

]

where the first inequality follows from Lòeves inequality and the second is
due to Cauchy-Schwartz inequality. Now, choose r s.t. r ≤ min{2/d1, 2, 4/d2},
and note that the first term is bounded by some constant C2 by Lemma C2 (i),
and the second and the third are bounded by part (i), so∥∥∥∥∥ sup

θ∈Θ0

|ex,t(θ)− ẽx,t(θ)|
∥∥∥∥∥

r

≤ C1

[
C2

ρT−t+1

1− ρ
C3C4 +

ρT−t+1

1− ρ
C5C6

]

= C7
ρT−t+1

1− ρ
.

(v) Applying inequality |x2 − z2| ≤ |x− z|2 + 2|x||x− z|, the sup-norm is
bounded by

≤
∥∥∥∥∥ sup

θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

2

4

+ 2

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4(
ρT−t+1

1− ρ
C1C2

)2

+ C3
ρT−t+1

1− ρ
C1C2.
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Proof of Lemma C4

Part (i) is a simplified versions of Lemma 7 (ii) in MS13. We demonstrate
the proof of part (i) for the element |Lbq ,T(θ)− L̃bq ,T(θ)|. The same technique
applies to all the elements in that vector.

The line of the proof is the following. First, use the triangle inequality to
obtain

T1/2 sup
bq∈Θ0,bq

|Lbq ,T(θ)− L̃bq ,T(θ)| ≤ T−1/2
T

∑
t=1

sup
bq∈Θ0,bq

|lbq ,t(θ)− l̃bq ,t(θ)|.(2.8)

The result follows by justifying that the sum on the majorant side has a finite
limit as T → ∞. In order to do so, note that

sup
θ∈Θ0

|lbq ,t(θ)− l̃bq ,t(θ)| = sup
θ∈Θ0

|σ−1(|ex,t(θ)ubq ,t(θ)− ẽx,t(θ)ũbq ,t(θ))|.

Making use of the inequality |xz− x̃z̃| ≤ |x− x̃||z|+ |x− x̃||z− z̃|+ |z− z̃||x|,
we find that

|lbq ,t(θ)− l̃bq ,t(θ)| ≤|σ−1|[|ex,t(θ)− ẽx,t(θ)||ubq ,t(θ)|
+ |ex,t(θ)− ẽx,t(θ)||ubq ,t(θ)− ũbq ,t(θ)|
+ |ubq ,t(θ)− ũbq ,t(θ)||ex,t(θ)|]

for all θ ∈ Θ0. The Lp-norm of the sup of the l.h.s. is bounded by

C1

∥∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)− ẽx,t(θ)|
∥∥∥∥∥

2p

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)|
∥∥∥∥∥

2p

+ C1

∥∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)− ẽx,t(θ)|
∥∥∥∥∥

2p

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|
∥∥∥∥∥

2p

+ C1

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|
∥∥∥∥∥

2p

∥∥∥∥∥ sup
θ∈Θ0

|ex,t(θ)|
∥∥∥∥∥

2p

,

which follows from Minkowski inequality and Cauchy-Schwartz inequality
and the fact that Θ0 is compact, so |σ−1| < C1 for some constant C1 < ∞.
Making use of Lemmas C2 and C3, we know that there is a positive constant
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p small enough, s.t. the r.h.s. is bounded by

C2
ρT−t+1

1− ρ
+ C3

ρT−t+1

1− ρ
(T − t + 1)

ρT−t+1

1− ρ
+ C4(T − t + 1)

ρT−t+1

1− ρ

=
ρT−t+1

1− ρ
(C2 + (C3 + C4)(T − t + 1)) ,

so that ∥∥∥∥∥ sup
θ∈Θ0

|lbq ,t(θ)− l̃bq ,t(θ)|
∥∥∥∥∥

p

→ 0 as T → ∞.

Consider next a sequence l•t = supθ∈Θ0
|lbq ,T−t+1(θ)− l̃bq ,T−t+1(θ)| for t =

1, . . . , T, and note that ∑T
t=1 l•t = ∑T

t=1 supθ∈Θ0
|lbq ,t(θ) − l̃bq ,t(θ)|. We show

that the l.h.s. has a finite limit as T → ∞. This follows from Lemma A.2. in
Meitz and Saikkonen (2011), because

‖γtl•t ‖p ≤ γt ρT−(T−t+1)+1

1− ρ
(C2 + (C3 + C4)(T − (T − t + 1))) ,

where γ is a positive constant s.t. (γρ) ∈ (0, 1). Because ‖γtl•t ‖p → 0 as
t→ ∞, it follows that limT→∞ ∑T

t=1 l•t < ∞ a.s., and also

lim
T→∞

T

∑
t=1

sup
θ∈Θ0

|lbq ,t(θ)− l̃bq ,t(θ)| < ∞ a.s.,

and the result follows by inequality (2.8).

Details for the proof of part (ii) can be found in the proof of Theorem
1 in MS13. The arguments are very similar to those given above. It is also
necessary to derive results similar to those of Lemma C3 for the second order
derivatives of different terms, but they do not need any additional assump-
tions. Details are omitted here.
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Proof of Lemma D5

(i) The m× (P + Q + 1 + d) matrix is of the form

∂

∂θ′
gac,t(θ) =

(
A(θ)
m×P

B(θ)
m×Q

0m×(1+d)

)
,

with matrices A(θ) and B(θ) having k, l elements

[A(θ)]k,l = −
ut−l(θ)

a(B)
ut−k(θ)− ut(θ)

ut−k−l(θ)

a(B)

for k = 1, . . . , m and l = 1, . . . , P,

[B(θ)]k,l =
ut+l(θ)

b(B−1)
ut−k(θ) + ut(θ)

ut−k+l(θ)

b(B−1)

for k = 1, . . . , m and l = 1, . . . , Q. By Hölder’s and Minkowski inequalities,∥∥∥∥∥ sup
θ∈Θ0

|[A(θ)]k,l |
∥∥∥∥∥ ≤

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ut−l(θ)

a(B)

∣∣∣∣
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ut−k−l(θ)

a(B)

∣∣∣∣
∥∥∥∥∥

2

and ∥∥∥∥∥ sup
θ∈Θ0

|[B(θ)]k,l |
∥∥∥∥∥ ≤

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ut+l(θ)

b(B−1)

∣∣∣∣
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

∣∣∣∣ut−k+l(θ)

b(B−1)

∣∣∣∣
∥∥∥∥∥

2

,

where the majorant sides are bounded by Lemma C2.

(ii) The m× (P + Q + 1 + d) derivative matrix ∂
∂θ′ ghs,t(θ) can be character-

ized by matrix

∂

∂θ′
ghs,t(θ) =

(
A(θ)
m×P

B(θ)
m×Q

C(θ)
m×1

0m×d

)
.
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The typical (k, l) element of matrix A(θ) has a sup-norm∥∥∥∥∥ sup
θ∈Θ0

|[A(θ)]k,l |
∥∥∥∥∥

=

∥∥∥∥∥ sup
θ∈Θ0

|2ut(θ)ual ,t(θ)(ut−k(θ)
2 − σ2) + 2ut−k(θ)ual ,t−k(θ)(ut(θ)

2 − σ2)|
∥∥∥∥∥

≤2

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ual ,t(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)
2 − σ2|

∥∥∥∥∥
2

+ 2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ual ,t−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)
2 − σ2|

∥∥∥∥∥
2

.

This is bounded by the Lemma C2, and compactness of set Θ0. Matrix B(θ)
can be shown to have bounded sup-norm with exactly the same arguments
using the point (iii) in Lemma C2, instead of (ii).

The sup-norm of the typical k element of C(θ) can be bounded by∥∥∥∥∥ sup
θ∈Θ0

|[C(θ)]k|
∥∥∥∥∥ ≤4

∥∥∥∥∥ sup
θ∈Θ0

|σ3|
∥∥∥∥∥+ 2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)
2|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|σ|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)
2|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|σ|
∥∥∥∥∥

2

.

The majorant is finite by compactness of Θ0 and by Lemma C2.

Remaining parts of the proof of Lemma D6

In order to justify part A (iv), we will find out the form of the asymptotic
covariance matrix of T−1/2 ∑T

t=1 ξac,t(θ0), and show that it is finite and positive
definite. It can be shown, that if exists, the covariance matrix is of the form

Σξac(θ0) =
∞

∑
s=−∞

E[ξac,t(θ0)ξ
′
ac,t−s(θ0)].
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For any s ∈ Z, let us write

E[ξac,t(θ0)ξ
′
ac,t−s(θ0)] =

 E[lθ,t(θ0)l′θ,t−s(θ0)] E[lθ,t(θ0)g′ac,t−s(θ0)]

E[gac,t(θ0)l′θ,t−s(θ0)] E[gac,t(θ0)g′ac,t−s(θ0)]


de f .
=

E[lθ,t(θ0)l′θ,t−s(θ0)] Ψs′
ac

Ψs
ac Hs

ac

 .

The first diagonal element of Σξac is I given in (2.7). The second block of
matrix Ψs

ac has a representative element

[Ψs
ac,B]k,l = E

[
εtεt−kex,t−s

1
σ0

∞

∑
j=0

ψ
(b)
0,j εt−s+l+j

]

=

{
0, k 6= s
−σ2

0 ψb
0,k−l k = s

.

The third block of Ψs
ac has a representative element

[Ψs
C]k = E

[
− 1

σ0
εtεt−k

(
ex,t−s

εt−s

σ2
0

+ 1

)]
= 0

for all s. This is evident from observing that k is always a positive integer and
then using Lemma C2.

The last block, Ψs
ac,D, has a representative element [Ψs

D]k,l =

E[εtεt−keλl ,t−s] = 0, since k > 0 and Lemma C2.
The off-diagonal block of the covariance matrix Σξac is,

∞

∑
s=−∞

Ψac = σ2
0

(
Λm 0m×(1+d)

)
,

Λm given in (2.5).
Next, we take a look at the lower diagonal element Hs

ac(θ0) =
E[gac,t(θ0)g′ac,t−s(θ0)]. This matrix has a representative (k, l) element
E[εtεt−kεt−sεt−s−l ], so the lower diagonal block of matrix Σξac is thus σ4

0 Im×m.
In order to conclude that the obtained covariance matrix is positive def-

inite, we claim that there is a (P + Q + 1 + d + m) vector X s.t. Cov(X ) =
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Υac(θ0), where

X =



xa,t

xb,t(
ex,t

εt

σ0
− 1
)

1
σ0

eλ,t

gac,t


,

xa,t =


− 1

σ0
∑∞

j=0 ψ
(a)
0,j ζ

(a)
t,j+1

...

− 1
σ0

∑∞
j=0 ψ

(a)
0,j ζ

(s)
t,j+P

 , xb,t =


1
σ0

∑∞
j=0 ψ

(b)
0,j ζ

(b)
t,j+1

...
1
σ0

∑∞
j=0 ψ

(b)
0,j ζ

(b)
t,j+Q

 ,

ζ
(a)
t,j+p = ex,tεt−j−p, and ζ

(b)
t,j+qex,t−j−qεt. Note that random variables ζ

(a)
t,j and

ζ
(a)
t,k are correlated only for j = k and the same applies for the correlations of

the pairs (ζ
(b)
t,j , ζ

(b)
t,k ) and (ζ

(a)
t,j , ζ

(b)
t,k ). Using this fact we can further write the

vectors xa,t and xb,t as a sum of two uncorrelated random vectors as xa,t =

x(1)a,t + x(2)a,t and xb,t = x(1)b,t + x(2)b,t . Let us define K = max{P, Q}, and write

x(1)a,t =



− 1
σ0

∑K−1
j=0 ψ

(a)
0,j ζ

(a)
t,j+1

− 1
σ0

∑K−2
j=0 ψ

(a)
0,j ζ

(a)
t,j+2

...

− 1
σ0

∑K−P
j=0 ψ

(a)
0,j ζ

(a)
t,j+P


, x(2)a,t =



− 1
σ0

∑∞
j=K−1+1 ψ

(a)
0,j ζ

(a)
t,j+1

− 1
σ0

∑∞
j=K−2+1 ψ

(a)
0,j ζ

(a)
t,j+2

...

− 1
σ0

∑∞
j=K−P+1 ψ

(a)
0,j ζ

(a)
t,j+P


,
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x(1)b,t =



1
σ0

∑K−1
j=0 ψ

(b)
0,j ζ

(b)
t,j+1

1
σ0

∑K−2
j=0 ψ

(b)
0,j ζ

(b)
t,j+2

...
1
σ0

∑K−Q
j=0 ψ

(b)
0,j ζ

(b)
t,j+Q


and x(2)b,t =



1
σ0

∑∞
j=K−1+1 ψ

(b)
0,j ζ

(b)
t,j+1

1
σ0

∑∞
j=K−2+1 ψ

(b)
0,j ζ

(b)
t,j+2

...
1
σ0

∑∞
j=K−Q+1 ψ

(b)
0,j ζ

(b)
t,j+Q


.

Now we can split X into two uncorrelated parts as X = X1 +X2 with obvious
definitions

X1 =



x(1)a,t

x(1)b,t
1
σ2

0
εtex,t

eλ,t

gac,t(θ0)


and X2 =



x(2)a,t

x(2)b,t

− 1
σ0

0

0


.

In order to show that Cov(X ) is positive definite, it suffices to show that
Cov(X1) is positive definite. To this end, let us define vectors z(a)

t = (ζ
(a)
t,1 , . . . , ζ

(a)
t,K)

and z(b)t = (ζ
(b)
t,1 , . . . , ζ

(b)
t,K) and write the random vector X1 yet in a different

form as

X1 =



φa 0 0 0 0

0 φ(b) 0 0 0

0 0
1
σ2

0
0 0

0 0 0 Id×d 0

0 0 0 0 Im×m





z(a)
t

z(b)t

ζ
(a)
t,0

eλ,t

gac,t(θ0)
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with (P× K) and (Q× K) matrices

φ(a) =



− 1
σ0

ψ
(a)
0,0 − 1

σ0
ψ
(a)
0,1 − 1

σ0
ψ
(a)
0,2 . . . − 1

σ0
ψ
(a)
0,K−1

0 − 1
σ0

ψ
(a)
0,0 − 1

σ0
ψ
(a)
0,1 . . . − 1

σ0
ψ
(a)
0,K−2

...
...

...
. . .

...

0 0 0 . . . − 1
σ0

ψ
(a)
0,K−P


and

φ(b) =



1
σ0

ψ
(b)
0,0

1
σ0

ψ
(b)
0,1

1
σ0

ψ
(b)
0,2 . . .

1
σ0

ψ
(b)
0,K−1

0
1
σ0

ψ
(b)
0,0

1
σ0

ψ
(b)
0,1 . . .

1
σ0

ψ
(b)
0,K−2

...
...

...
. . .

...

0 0 0 . . .
1
σ0

ψ
(b)
0,K−Q


.

These matrices have ranks P and Q respectively, so the first matrix in the
definition of X1 has a full row rank of (P + Q + 1 + d + m). This implies that
Cov(X1) is positive definite if and only if vector

(z(a)
t , z(b)t , ζ

(a)
t,0 , eλ,t, gac,t(θ0)) (2.9)

has a positive definite covariance matrix. To this end, let K < m. The opposite
K ≥ m can be shown in a similar manner.

If K < m, let us re-organize the vector (2.9) as(
ζ
(a)
t,1 , ζ

(b)
t,1 , εtεt−1, . . . , ζ

(a)
t,K , ζ

(b)
t,K , εtεt−K, εtεt−K−1, . . . , εtεt−m, ζ

(a)
t,0 , eλ,t

)
.
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This vector has a block diagonal covariance matrix

ϕ1 0 . . . 0 0 0

0 ϕ2 . . . 0 0 0
...

...
. . .

...
...

...

0 0 . . . ϕK 0 0

0 0 . . . 0 Σ 0

0 0 . . . 0 0 ϑ


,

where ϕ1, . . . , ϕK are 3× 3 matrices,

ϕk =Cov


ζ
(a)
t,k

ζ
(b)
t,k

εtεt−k

 for k = 1, . . . , K,

Σ =Cov


εtεt−K−1

...

εtεt−m

 and ϑ = Cov

ζ
(a)
t,0

eλ,t

 .

This covariance matrix is positive definite because all the blocks are positive
definite matrices. To show this, we start from the last one. Matrix ϑ is positive
definite if a1ζ

(a)
t,0 + a′2eλ,t = 0 only for a1 = 0 and a2 is zero vector. Taking

expectations and using Lemma C2 yields a1σ0 = 0 that holds only for a1 = 0.
If a1 = 0, it must be that a′2eλ,t = 0, but by Assumption 3, A.1. (iii), this holds
only if a2 is a zero vector. That is, ϑ is positive definite.

The second covariance matrix Σ is positive definite as it is (m− K)× (m−
K) diagonal matrix with σ4

0 on the diagonal.

In order to show that ϕk is positive definite for all k = 1, . . . , K we have to
show that

a1ζ
(a)
t,k + a2ζ

(b)
t,k + a3εtεt−k = 0 (2.10)

only if a1 = a2 = a3 = 0. To this end, we multiply both sides of (2.10) by
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ζ
(a)
t,k and take expectations of both sides, yielding a3σ3

0 = a1σ2
0 E[e2

x,t] + a2σ2
0 .

Multiplying both sides of (2.10) by ζ
(b)
t,k and taking expectations, yields

a3σ3
0 = a1σ2

0 + a2σ2
0 E[e2

x,t]. (2.11)

Equating the r.h.s.’s of both equations yields a1σ2
0 (1 + E[e2

x,t]) = a2σ2
0 (1 +

E[e2
x,t]1). As we have assumed non-Gaussian distribution for εt, terms in the

parenthesis are always greater than 2 (Andrews et al. (2006), Remark 2), we
obtain a1 = a2. If a1 = a2 = 0, squaring both sides of (2.10) and taking
expectation conditional on Ft would give a2

3ε2
t ε2

t−k = 0, which would be con-
tradictory.

Assuming that a1 = a2 = a 6= 0 and solving for a3 in (2.11) gives

a3 =
a(1 + E[e2

x,t])

σ0
.

Multiplying both sides of (2.10) by εtεt−k and taking expectations gives a3 =

2aσ−1
0 . But this contradicts with (2.11), because together these expressions for

a3 would imply that 2 = 1 + E[e2
x,t], but as we have already noted, this cannot

hold because 1 + E[e2
x,t] > 2. That is, (2.10) holds only for a1 = a2 = a3 = 0

and thus ϕk is a positive definite matrix.
These arguments imply that the covariance matrix Υac is positive definite

and Lemma D6 A (iv) holds.
Proof of Lemma D6 B (ii) is simpler than the previous proof, because sub-

vectors of ξhs,t(θ0), lt(θ0) and ghs,t−s(θ0) are not correlated on any lag length
s. Let us recall the notation

E[ξhs,t(θ0)ξhs,t−s(θ0)
′] =

E[lθ,t(θ0)lθ,t−s(θ0)
′] Ψs′

hs

Ψs
hs Hs

hs


and

Σξhs
=

∞

∑
s=−∞

E
[
ξhs,t(θ0)ξhs,t−s(θ)

′] =
 I Υ′hs,Ψ

Υhs,Ψ Υhs,H

 .

Let us denote κt
de f
= ε2

t − σ2
0 and note that κt is an iid sequence with mean
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zero and E[κ2
t ] = E[ε4

t ]− σ4
0 . Moreover, E[κtex,t] = 0 by points (vi) and (viii),

E[κtex,tεt] = −2σ3
0 < ∞ by points (vii) and (viii) and E[κteλl ,t] = 0 by (x) and

(xi) of Lemma C2.

For s = 0, matrix Hs
hs(θ0) has a typical k, l element

E[κ2
t κt−kκt−l ] =

{
E[κ2

t ]
2 k = l

0 k 6= l
.

For s 6= 0 we have the expression Hs
hs = E[κtκt−kκt−sκt−s−l ] = 0, because if

s = k, then t − s − l = t − k − l 6= t because k and l are positive. There is
no way to have an expression without odd powers of κt. Independence of κt
and κt−s for s 6= 0 implies the zero expectation. To sum up, Σξhs

has a clearly
positive definite lower diagonal block E[κ2

t ]
2 Im×m.

The summands in the off-diagonal block of Υhs can be written as

Ψs
hs(θ0) =

(
Ψs

hs,A
m×P

Ψs
hs,B

m×Q
Ψs

hs,C
m×1

Ψs
hs,D

m×d

)
.

The first block is (m× P) matrix and it has a typical element

[Ψs
hs,A]k,l = E

[
−κtκt−kex,t−s

∞

∑
j=0

ψ
(a)
0,j εt−s−l−j

]
= 0 ∀s.

For s = 0 it can be seen by writing the expectation as

−E [κtex,t]E

[
κt−k

∞

∑
j=0

ψ
(a)
0,j εt−l−j

]
= 0,

and noting that the first term has finite expectation and the latter is zero. For
s 6= 0, expectation can always be written as

−E [κt]E

[
κt−kex,t−s

∞

∑
j=0

ψ
(a)
0,j εt−s−l−j

]
= 0.

The first expectation is clearly zero, and the latter is as well, because for s = k,
we have t− k− l − j < t− k for positive j, l and k.
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The second block has k, l element

[Ψs
hs,B(θ0) ]k,l = E

[
κtκt−kex,t−s

∞

∑
j=0

ψ
(b)
0,j εt−s+l+j

]
= 0 ∀s.

If s = 0, the expectation is

E[κtex,t]E[κt−k]E

[
∞

∑
j=0

ψ
(b)
0,j εt+l+j

]
= 0,

because the last two terms are zero. For s = k the expectation is

E[κt−kex,t−k]E[κt

∞

∑
j=0

ψ
(b)
0,j εt−s+l+j] = 0,

because the latter term has zero expectation for all s.

The third block has a representative element

[Ψs
hs,C]k = E

[
− 1

σ0
κtκt−k

(
ex,t−s

εt−s

σ2
0

+ 1

)]
= 0 ∀ s.

There is no chance of having coinciding indices for κt. If s = k, simply note
that E[κt] = 0. Otherwise, note that E[κtκt−k] = 0.

The k, l element of the last block can be written as

[Ψs
hs,D]k,l = E

[
κtκt−keλl ,t−s

]
= 0 ∀ s,

because if s = 0 or s = k, the expectation is E[κteλl ,t]E[κt−k] = 0. Otherwise it
is E[κt]E[κt−k]E[eλl ,t−s] = 0.

To sum up, all the blocks are zero matrices for all s:

Υhs,Ψ = 0m×(P+D+1+d).

The first diagonal block of the asymptotic covariance matrix was positive def-
inite I . The block diagonal structure of Σξhs

, with positive definite blocks on
the diagonal, implies the result.
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Proof of Lemma D7

In order to prove D7 (i), note that

sup
θ∈Θ0

∣∣∣∣∣T−1/2
T

∑
t=1

gac,t(θ)− T−1/2
T

∑
t=1

g̃ac,t(θ)

∣∣∣∣∣ ≤ T−1/2
T

∑
t=1

sup
θ∈Θ0

|gac,t(θ)− g̃ac,t(θ)| .

The result follows after showing that the sum on the r.h.s. has a finite limit.
To this end, write the kth element of supθ∈Θ0

|gt(θ)− g̃t(θ)| as

sup
θ∈Θ0

|ut(θ)ut−k(θ)− ũt(θ)ũt−k(θ)|

and bound it from above using inequality

|xy− x̃ỹ| ≤ |x− x̃| |y|+ |x− x̃| |y− ỹ|+ |y− ỹ| |x| (2.12)

by

sup
θ∈Θ0

|ut(θ)− ũt(θ)| sup
θ∈Θ0

|ut−k(θ)|+ sup
θ∈Θ0

|ut(θ)− ũt(θ)| sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|

+ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)| sup
θ∈Θ0

|ut−k(θ)| .

Consider the L1-norm and use Minkowsis’ inequality and Cauchy-Schwartz
inequality to bound it by∥∥∥∥∥ sup

θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

2

(2.13)

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

∣∣utk (θ)
∣∣∥∥∥∥∥

2

≤C1ρT−t+1 + C2ρT−t+1ρT−t+k+1 + C3ρT−t+1,
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where the last inequality follows from Lemmas C2 and C3. That is,
supθ∈Θ0

|gac,t(θ)− g̃ac,t(θ)| converges to zero in L1-norm as T → ∞.

Denote g•t = supθ∈Θ0
|gac,T−t+1(θ)− g̃ac,T−t+1(θ)|, and note

T

∑
t=1

g•t =
T

∑
t=1

sup
θ∈Θ0

|gac,t(θ)− g̃ac,t(θ)| .

The wanted result follows if the l.h.s. has a finite limit, which is the case, since
using inequality (2.13),∥∥γtg•t

∥∥ ≤ (γρ)tρ−1(C1 + C2ρt+k + C3ρk)→ 0 as t→ ∞

for some constant γ s.t. |γ| > 1 and |γρ| < 1. By Lemma A.2. in Meitz and
Saikkonen (2011), limT→∞ ∑T

t=1 g•t < ∞ a.s. These arguments hold for each el-
ement in vector supθ∈Θ0

|gac,t(θ)− g̃ac,t(θ)| so the result follows elementwise.

For part (ii), denote κt(θ)
de f
= ut(θ)2 − σ2 and κ̃t(θ)

de f
= ũt(θ)2 − σ2. Then∥∥∥∥∥ sup

θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

(2.14)

≤
∥∥∥∥∥ sup

θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

[∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

+

∥∥∥∥∥ sup
θ∈Θ0

|ũt(θ)|
∥∥∥∥∥

4

]
≤CρT−t+1

for some C < ∞ and |ρ| < 1 by Lemma C2, C3, and the fact that∥∥∥∥∥ sup
θ∈Θ0

|ũt(θ)|
∥∥∥∥∥

4

≤
T−t

∑
j=0

sup
θ∈Θ0

|ψ(b)
j |
∥∥∥∥∥ sup

θ∈Θ0

∣∣a(B)yt+j
∣∣∥∥∥∥∥

4

< ∞,

because Θ0 is compact and E[y4
t ] < ∞. Moreover, ‖ supθ∈Θ0

|κt(θ)|‖2 < ∞
because of Lemma C2 (i) and compactness of Θ0.

Following the lines of the proof of part (i), we show that the sum

T

∑
t=1

sup
θ∈Θ0

∣∣ghs,t(θ)− g̃hs,t(θ)
∣∣
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converges by showing that all the elements converges to zero in L1-norm as
T → ∞. To see this, consider the kth element and write∥∥∥∥∥ sup

θ∈Θ0

|κt(θ)κt−k(θ)− κ̃t(θ)κ̃t−k(θ)|
∥∥∥∥∥

≤
∥∥∥∥∥ sup

θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)− κ̃t−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)− κ̃t−k(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)|
∥∥∥∥∥

2

≤C1ρT−t+1 + C2ρ2(T−t+1)+k + C3ρT−t+k+1.

The majorant clearly goes to zero as T → ∞. The rest follows exactly as in
the previous part. The same arguments also apply for all the elements in the
vector, so the statement is true elementwise.

Part (iii) follows by similar arguments. Start by noting that

sup
θ∈Θ0

∣∣∣∣∣T−1
T

∑
t=1

gac,θ,t(θ)− T−1
T

∑
t=1

g̃ac,θ,t(θ)

∣∣∣∣∣ (2.15)

≤T−1
T

∑
t=1

sup
θ∈Θ0

|gac,θ,t(θ)− g̃ac,θ,t(θ)|.

The Sum on the r.h.s. has a finite limit as T → ∞. To see this, let us con-
sider the derivatives w.r.t. bq. Write the derivative of the kth element of
supθ∈Θ0

|gac,θ,t(θ)− g̃ac,θ,t(θ)| as

sup
θ∈Θ
|ubq ,t(θ)ut−k(θ) + ubq ,t−k(θ)ut(θ)− ũbq ,t(θ)ũt−k(θ)− ũbq ,t−k(θ)ũt(θ)|

≤ sup
θ∈Θ0

|ubq ,t − ũbq ,t(θ)| sup
θ∈Θ0

|ut−k(θ)|

+ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)| sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|

+ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)| sup
θ∈Θ0

|ubq ,t(θ)|
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+ sup
θ∈Θ0

|ubq ,t−k(θ)− ũbq ,t−k(θ)| sup
θ∈Θ0

|u f t(θ)|

+ sup
θ∈Θ0

|ubq ,t−k(θ)− ũbq ,t−k| sup
θ∈Θ0

|ut(θ)− ũt(θ)|

+ sup
θ∈Θ0

|ut(θ)− ũt(θ)| sup
θ∈Θ0

|ubq ,t−k(θ)|,

where the inequality follows from inequality (2.12). Using Minkowski and
Cauchy-Schwartz inequalities and Lemmas C2 and C3, we see that this this is
bounded in L1-norm by

C1ρT−t+1(T − t + 1) + C2ρT−t+k+1ρT−t+k+1(T − t + k + 1)

+ C3ρT−t+1 + C4ρT−t+k+1(T − t− k + 1)

+ C5ρT−t+k+1(T − t + k + 1)ρT−t+1 + C6ρT−t+1,

which clearly converges to zero as T → ∞. Again, following the line of the
proof of part (i), denote g•θ,t = supθ∈Θ0

|gac,θ,T−t+1(θ) − g̃ac,θ,T−t+1(θ)|, and
note that

T

∑
t=1

g•θ,t =
T

∑
t=1

sup
θ∈Θ0

|gac,θ,t(θ)− g̃ac,θ,t(θ)|.

Lemma A.2. in Meitz and Saikkonen (2011) implies that these sums have a.s.
finite limits as T → ∞ because

‖γtg•θ,t‖ ≤γt[C1ρtt + C2ρ2(t+k)(t + k) + C3ρt

+ C4ρt+k(t + k) + C5ρ2(t+k)(t+k) + C6ρt],

where the majorant converges to zero as t→ ∞ for some constant γ s.t. γ > 1
and |γρ| < 1. Thus

lim
T→∞

T

∑
t=1

sup |gac,θ,t(θ)− g̃ac,θ,t(θ)| < ∞ a.s.,

and the majorant in inequality (2.15) has an a.s. limit zero as T → ∞ and the
result has been shown for the element corresponding to the derivative w.r.t.
bq. The same arguments are applicable to the rest of the elements as well.

In part (iv) we have to show that ∑T
t=1 supθ∈Θ0

|ghs,θ,t(θ)− g̃hs,θ,t(θ)| con-
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verges, and in order to do so, we show that the elements of the matrix
supθ∈Θ0

|ghs,θ,t(θ)− g̃hs,θ,t| converge to zero in L1-norm. For the sake of brevity,
we only consider the derivative w.r.t. parameters bq and σ. The kth element
corresponding to the derivative w.r.t. bq has a sup-norm∥∥∥∥∥ sup

θ∈Θ0

|2ut(θ)ubq ,t(θ)κt−k(θ)− 2ũt(θ)ũbq ,t(θ)κ̃t−k(θ)

−2ut−k(θ)ubq ,t−k(θ)κt(θ)− 2ũt−k(θ)ũbq ,t−k(θ)κ̃t(θ)|
∥∥∥

≤
∥∥∥∥∥ sup

θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt−k|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)− κ̃t−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)− ũt(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)− ũbq ,t(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κtk (θ)− κ̃t−k(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|κtk (θ)− κ̃tk |
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)|
∥∥∥∥∥

4

+

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t−k(θ)− ũbq ,t−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t−k(θ)− ũbq ,t−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)|
∥∥∥∥∥

2

76



Supplementary appendix for the Residual-based diagnostic tests for

noninvertible ARMA models

+

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)− ũt−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

∥∥∥∥∥ sup
θ∈Θ0

|ut−k(θ)|
∥∥∥∥∥

4

∥∥∥∥∥ sup
θ∈Θ0

|ubq ,t(θ)|
∥∥∥∥∥

4

,

where the inequality follows from Cauchy-Schwartz and Minkowski inequal-
ities and using inequality (2.12) twice. Using Lemmas C2 and C3 and the
inequality (2.14), the majorant can be bounded by

C1(T − t + 1)ρT−t+1 + C2(T − t + 1)ρ2(T−t+1)

+ C3(T − t + 1)ρT−t+1C4ρT−t+1

+ C5(T − t + 1)ρ2(T−t+1) + C6(T − t + 1)ρT−t+1

+ C7(T − t + 1) + C8ρ2(T−t+1)

+ C9ρT−t+1 + C10ρT−t+1

+ C11ρT−t+k+1 + C12(T − t + k + 1)ρ2(T−t+k+1)

+ C13(T − t + k + 1)ρT−t+k+1 + C14ρT−t+k+1

+ C15ρT−t+1,

which converges to zero as T → ∞.
In order to show the same result for the elements of the derivative matrix

w.r.t. σ, note that the sup-norm of the kth element is∥∥∥∥∥ sup
θ∈Θ0

| − 2σ(κt(θ)− κ̃t(θ))− 2σ(κt−k(θ)− κ̃t−k(θ))|
∥∥∥∥∥

≤
∥∥∥∥∥ sup

θ∈Θ0

|σ|
∥∥∥∥∥

2

(∥∥∥∥∥ sup
θ∈Θ0

|κt(θ)− κ̃t(θ)|
∥∥∥∥∥

2

+

∥∥∥∥∥ sup
θ∈Θ0

|κt−k(θ)− κ̃t−k(θ)|
∥∥∥∥∥

2

)
≤C1ρT−t+1 + C2ρT−t+k+1,

which converges to zero as T → ∞. Applying these arguments to all elements
in the derivative matrix and the techniques introduced in the previous parts,
the convergence result can be shown elementwise. This completes the proof.
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3 Maximum likelihood
estimation for noninvertible
ARMA model with α-stable
errors1

3.1 Introduction

Financial time series data is often found to exhibit occasional large jumps
around its average values. These large sudden movements may be asymmet-
ric, meaning that large sudden crashes, for example, may be more common
than sudden booms. These movements may seem like “spikes”, or perhaps
outliers, when financial time series data is plotted. Common methods in time
series analysis often rely on the assumption of finite second moments of the
observations. By doing so, in many cases estimators of the model parameters
are shown to be n1/2-consistent and asymptotically Gaussian; a results that
follows using standard arguments applying a suitable central limit theorem.
Then again, the aforementioned sudden jumps should not exist in light of this
assumption on finite second moments.

1I am grateful for the guidance and suggestions of Markku Lanne, Mika Meitz, and Pentti
Saikkonen. I am also thankful to Henri Nyberg and to all the participants at CFE-CMStatistics
conference 2017, and HECER Econometrics Workshop, for useful comments. Detailed com-
ments from Beth Andrews and Alain Hecq are gratefully acknowledged. I want to thank
John Nolan for providing STABLE library for Matlab (http://academic2.american.edu/ jp-
nolan/stable/stable.html). Financial support from the Academy of Finland, Yrjö Jahnsson Foun-
dation, and OP-Pohjola Research Foundation is gratefully acknowledged.
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Jumps are not the only feature of financial data which is cumbersome for
conventional linear time series models. Nonlinear behavior of the data is both
well documented in the empirical financial literature, and also backed up by
dynamic asset pricing theory (e.g. Singleton, 2009, Chapter 9). Clustering of
the volatility of observations is perhaps the most common manifestation of
these nonlinearities.

In this paper, we consider a simple univariate time series model that is po-
tentially capable of controlling these feature in financial data: the noninvert-
ible ARMA model with α-stable error term process. Noninvertible time series
models have been shown to fit well in many applications to financial time se-
ries data, see for example, Breidt, Davis, and Trindade (2001), Andrews, Davis,
and Breidt (2006), Lanne, Meitz, and Saikkonen (2013), and Huang and Pawi-
tan (2000), and also Nyholm (2017). For example, these models are shown to
control mild heteroskedasticity and they are capable of producing data that is
only mildly autocorrelated, but still dependent in a nonlinear manner.

Forward looking nature of the noninvertible ARMA model relates closely
to the (mixed causal) noncausal AR models. Both of these models can be writ-
ten in a linear form of current, past, and future error terms. Gouriéroux and
Zakoïan (2017) and Fries and Zakoïan (2019) shows how this forward looking
presentation of the mixed causal-noncausal process is useful in modeling local
explosive bubble patterns in commodity prices. They provide ordinary least
square estimation theory for the AR parameters, as well as residual based
diagnostic checks for the model selection.

Identification of this class of models is not possible under the assumption
of a Gaussian error process, but α-stable distribution allows us to distinguish
invertible and noninvertible models apart. For more information on the iden-
tification of the model, see Rosenblatt (2012), Chapter 1.

Maximum likelihood (ML) estimation in causal and invertible ARMA mod-
els with infinite variance has been considered by Davis, Knight, and Liu
(1992), and Davis (1996), among others. Corresponding results for noncausal
AR models were derived by Calder (1998) and Andrews, Calder, and Davis
(2009). To the best of our knowledge, this paper is the first to consider ML
estimation in noninvertible ARMA models with infinite variance errors. Re-
lated results for least absolute deviation estimation in general (possibly non-
invertible) ARMA models were provided by Wu and Davis (2010), and for
M-estimation by Wu (2013).

Our paper intersects with the papers by Calder (1998), and Andrews et al.
(2009). They consider noncausal AR processes, whereas we consider causal
and noninvertible ARMA models. Nevertheless, the estimation theory is very
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similar in both cases, and the asymptotics of the MA parameters are similar
to those of the AR parameters in both cases. Large parts of the derivations in
this paper are adopted from their work.

This paper overlaps substantially with Wu (2013), where M-estimation of
a general ARMA model is considered. Our model is nested by their more
general model specification, and ML estimation can be seen as a special case
of their M-estimation procedure, although they do not consider ML estima-
tion explicitly. There are, however, a few benefits in our approach. Our model
specification is slightly different than the one in Wu (2013). In our specifi-
cation, the observations are explicitly written in terms of future and current
error terms, and the past observations, and we assume that AR polynomial
satisfies the normal causality condition, and we write the MA polynomial in
terms of the lead operator (in contrast to the standard way of writing it in
terms of the lag operator) and assume that the roots of this polynomial situate
outside the unit circle. In Chapter 3.2 we argue, that our specification simpli-
fies the estimation and it has some practical benefits when hypothesis testing
is considered. We will clarify these points when the model is introduced in
detail in Section 3.2. Another difference is that we estimate the parameters of
the α-stable distribution at the same time as the AR and MA parameters. ML
estimation is a special case of their M-estimation, if we assumed that these
error distribution parameters were known. Estimation of the distribution pa-
rameters comes in handy, since the asymptotic distribution of the AR and MA
parameters is dependent on the tail parameter α of the stable distribution. To
be precise, the tail parameter defines the rate of convergence of the estima-
tors to their limiting distribution. Using the now proposed ML estimation
method, we get the estimate for these parameters at once, and it can be used,
for example, to calculate the confidence regions for the parameter estimates.

The estimation theory of ARMA models without finite second moments
is based on the theory of weak convergence of point processes. Davis and
Resnick (1985, 1986) provided weak convergence results for infinite order
moving averages of stable distributed random variables. These results serves
as a base for the estimation theory in ARMA literature, since these models
have the MA(∞) representation. These results were used in estimation theory
for ARMA models for example in ML estimation method of ARMA models
without finite second moments are based on the theory of weak convergence
of the point processes (e.g. Davis et al., 1992; Andrews et al., 2009). Using
these methods, we are able to show the convergence in distribution of the
estimators of the AR and MA parameters, as well as the estimators of the
parameters of the stable distribution of the error process. The latter is n1/2-
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consistent and has an asymptotic Gaussian distribution, whereas the former
converges at a faster rate to some non-standard distribution.

The remainder of this paper is organized as follows. Chapter 3.2 de-
scribes the noninvertible ARMA model and discusses the model specification
by Meitz and Saikkonen (2013). It also recaps some of the key features of the
α-stable distribution. In section 3 we give the main convergence results for
the parameter estimators and provide an outline of the proof for the main
theorem, with the most essential intermediate results. In Chapter 3.4 we illus-
trate the asymptotic properties in a small scale Monte Carlo simulation study
and also apply the theory to trading volume data of Wal-Mart stock on New
York Stock Exchange. SChapter 3.5 concludes. Lengthy steps for the proof
of the main result are given in Appendix, as well as some assumptions and
further notation. This paper comes with a supplementary appendix, where
the detailed proofs of the main theorem can be found.

3.2 The noninvertible ARMA model with α-stable
errors

3.2.1 The noninvertible ARMA model

The noninvertible process under consideration is

a0(B)yt = b0(B−1)εt (3.1)

with an AR polynomial a0(z) = 1− a0,1z− · · · − a0,PzP and MA polynomial
b0(z−1) = 1− b0,1z−1− · · · − b0,Qz−Q. B is a backshift operator (e.g. Bk = yt−k
for k = 0,±1, . . . ). We assume that the following conditions for the roots of
the polynomials a0(z) and b0(z−1) are satisfied:

a0(z) 6= 0 for all |z| ≤ 1 and b0(z−1) 6= 0 for all |z−1| ≤ 1. (3.2)

Under these root conditions, the MA(∞) and AR(∞) representations of yt and
εt reads as

yt =
b0(B−1)

a0(B)
=

∞

∑
j=−Q

π0,jεt−j and εt =
a0(B)

b0(B−1)
yt =

∞

∑
j=−P

ψ0,jyt+j,
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where the geometrically decaying sequences π0,j and ψ0,j are the coefficients
of the Laurent series expansions of the rational polynomials b0(z−1)a0(z)−1

and a0(z)b0(z−1)−1 respectively.
The formulation of noninvertible ARMA(P,Q) model is adopted from Meitz

and Saikkonen (2013). In this formulation, observation yt is linearly depen-
dent on its P lagged values, the current error term εt, and Q future error terms.
This formulation differs slightly from presentations in the other literature (for
example Lii and Rosenblatt, 1996). In our formulation, the dependence of yt
on the future error terms is made explicit by writing the MA polynomial in
terms of the lead operator B−1, whereas in the previous papers, noninvertibil-
ity is implied by using MA polynomial in terms of B, and instead of imposing
the root condition (3.2), the polynomial is assumed to have its roots inside
the unit circle. Although both formulations imply the same set of noninvert-
ible ARMA models, the present formulation is preferable for two reasons.
First, this formulation slightly simplifies the ML estimation, because the log-
likelihood function (presented in the next section) is well defined also if any
of the parameters gets the value zero. In our formulation, the log-likelihood
function is absent of a term like ln |b0,Q|, whereas this terms occurs in the alter-
native presentation, see for example Lii and Rosenblatt (1996); Andrews et al.
(2006). This also relates to the second reason: Testing for the true order of the
MA polynomial would imply b0,Q = 0, which would make the log-likelihood
function undefined. These tests, however, are not considered in this paper,
and are left for the future research.

We assume that the error terms of the model follow an α-stable distribution
with infinite second moments. Let the iid sequence {εt} have an α-stable
distribution with α ∈ (0, 2). This means, by definition, that there are sequences

{αn} and {βn} (n = 1, 2, . . . ) s.t. αn(ε1 + · · ·+ εn) + βn
d
= ε1.2 Property 1.2.3

in Samoradnitsky and Taqqu (1994) generalizes this property for the infinite
sums, and it follows that the process yt = ∑∞

j=−∞ ψjεt−j has also a stable
distribution with the characteristic exponent α0. Thus, the ARMA process
yt in (3.1) has finite moments up to α0, E|yt|δ < ∞ for δ ∈ [0, α0). The tail
probabilities of the α-stable distributions are characterized, for α0 < 2, as (see
Property 1.2.15. in Samoradnitsky and Taqqu, 1994)

lim
x→∞

xα0 P(|εt| > x) = c̃(α0)σ
2
0 , withc̃(α0) =

(∫ ∞

0
t−α0 sin(t)dt

)
.

2Abbreviation X d
= Y means that X and Y share the same distribution function.
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The tails of the distribution behaves as x−α0 .
Other parameters that index the stable distributions are the location and

scale parameters µ0 ∈ R and |σ0| ∈ (0, ∞). Parameter of symmetry is denoted
by |β0| ≤ 1 and for β0 = 0 the distribution is symmetric around µ0. These
parameters fully index the the characteristic function of the distribution and
for now on we denote the index by λ0 = (α0, β0, σ0, µ0).

Although, in general, there is not a closed form presentation for the distri-
bution function, there is a known characteristic function that can be used in
the estimation (Nolan, 1997).

Class of α-stable distributions is large, so that this assumption is not very
restrictive. For example, Gaussian distribution belongs to this class and
N(µ0, 2σ2

0 ) is obtained by setting α0 = 2 and β0 = 0. Since we are interested
in processes with heavier tails, we should expect a distribution other than
Gaussian. Gaussianity must also be assumed away in order to achieve the
identification of the model. We get a symmetric Cauchy distribution by setting
α0 = 1 and β0 = 0. For these two distributions, there is a known closed form
for the density functions.

This is the main technical reason for choosing to work with stable distri-
butions. The scaled sum preserves the distribution of the summands, and
we utilize this property when we derive asymptotic results for the estimators.
Stable distributions are limits to scaled sums of iid random variables with
heavy tails, much like Gaussian distribution serves as a limit of a scaled sums
of iid random variables with finite second moments. It was pointed out by
Calder (1998), that if the error term εt in our noninvertible ARMA model re-
sults additively from multiple sources, this distributional may provide a close
approximation for this distribution.

3.3 Maximum likelihood estimation

3.3.1 Preliminaries

Our task is to estimate the parameter τ0 = (θ0, λ0) where θ0 = (a0, b0) with
a0 = (a0,1, . . . , a0,P) and b0 = (b0,1, . . . , b0,Q), and λ0 = (α0, β0, σ0, µ0). Sub-
index zero is used to denote the true but unknown values of the parameters
of (3.1). For all values τ = (θ, λ) with θ = (a1, . . . , aP, b1, . . . , bQ) = (a, b) and
λ = (α, β, σ, µ), we define a counterpart of the process (3.1) as

a(B)yt = b(B−1)ut(θ),
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where a(z) = 1 − a1z − · · · − aPzP and b(z−1) = 1 − b1z−1 − · · · − bQz−Q.
In Assumption (1) in Appendix we define a permissible parameter space Θ0
which obtains all the values of τ0, for which our asymptotic results apply. For
all the AR and MA parameters in this set Θ0, root conditions similar to those
in (3.2) are satisfied. Process ut(θ) is a counterpart of the error process εt, and
in Θ0 it has the corresponding AR(∞) representation

ut(θ) =
a(B)

b(B−1)
yt =

∞

∑
j=−P

ψjyt+j for all θ ∈ Θθ ,

with geometrically decaying coefficients ψj. For θ = θ0 we have ut(θ0) = εt.
For the derivatives of ut(θ) we have the following expression,

(θ − θ0)
T ∂

∂θ
ut(θ0)

de f
=

∞

∑
j=−∞

cj(θ)εt−j, (3.3)

and the coefficients cj(θ) are defined in (3.11) in Appendix. It can be seen, that
for a fixed θ, the sequence cj(θ) is a geometrically decaying, so (θ− θ0)

∂
∂θ ut(θ)

is also in the domain of attraction of stable distribution with characteristic
exponent α0.

Using the sequence ut(θ), we can define the log-likelihood function as

Ln(θ; λ) = ln f (ut(θ); λ). (3.4)

The sequence ut(θ) is not feasible in practice since we do not observe the
infinite future of the process yt. For this reason we must use an approximate
log-likelihood function in estimation. However, expression (3.4) is useful in
the derivations of the main result.

We base our estimation on n + P observations {yt}n
t=1−P. Solving for ut(θ)

would require the infinite future of yt, so we have to approximate ut(θ) by
its feasible counterpart ũt(θ). To this end, we initialize by ũn+1(θ) = · · · =
ũn+Q(θ) = 0 and solve for ut(θ) top-down, for t = n, . . . , 1

ũt(θ) = yt − a1yt−1 − · · · − aPyt−P + b1ũt+1(θ) + · · ·+ bQũt+Q(θ),

and obtain an observable set {ũt(θ)}n
t=1, which can be used in ML estimation.
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The approximate log-likelihood function to be maximized is3

L̃n(θ; λ) =
n

∑
t=1

ln f (ũt(θ); λ). (3.5)

The main contribution of this paper is to provide asymptotic results for the
maximizer of the log-likelihood function, τ̃n = (θ̃n, λ̃n) = arg maxτ∈Θ0

L̃n(θ; λ).

3.3.2 Asymptotic results

Before we state the main asymptotic results for the maximizer τ̃n, we introduce
another random functions Q(v),

Qn(v, w)
de f
= Ln(θ0 + n−1/α0 v; λ0 + n−1/2w)−Ln(θ0; λ0), and (3.6)

Q(v) de f
=

∞

∑
k=1

∑
j 6=0

[ln f (εk,j + c̃(α0)
1/α0 σ0cj(v)δkΓ−1/α0

k ; λ0)− ln f (εk,j; λ0)],(3.7)

where

1. εk,j is an iid sequence with εk,j
d
= ε1,

2. δk is an iid with P(δk = 1) = (1 + β0)/2 and P(δk = −1) = 1− (1 +
β0)/2,

3. Γk = E1 + · · · + Ek where Ek is an iid series of exponential r.v.’s with
mean one,

4. εk,j, δk and Ek are mutually independent, and

5. cj(θ) is defined in (3.11).

Maximizing Ln(θ; λ) in (3.5) w.r.t. θ and λ is equivalent to maximizing
Qn(v, w) in (3.6) w.r.t. v = n1/α0(θ − θ0) and w = n1/2(λ− λ0). It turns out,
that in the derivations, the form (3.6) is easier to work with, than the log-
likelihood Ln(θ; λ) in (3.5), which is the objective function in practice. Ran-
dom function Q(v) in (3.7) is not dependent on n. This random function de-
fines part of the limiting distribution of the modified log-likelihood Qn(v, w)
on C(RP+Q+4), the space of all the continuous functions on RP+Q+4. The
following Proposition ensures, that the random function Q(v) has a unique
maximizer ξ almost surely.

3For a detailed derivation of this, see Meitz and Saikkonen (2013).
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Proposition 1. Random function Q(v) in (3.7) is almost surely finite for all v ∈
RP+Q, and has a unique maximum.

Proof. See Theorem 3.1. in Andrews et al. (2009), and Remark 2 in Davis et al.
(1992).

The next theorem gives the asymptotic distribution for the ML estimator
of τ0. Assumptions for this results are given in Assumption 1 in Appendix,
and they are standard in the related literature (Wu, 2013; Calder, 1998). The
parameter vector θ0 must be in the interior of a permissible parameter space
that contains all the parameter values that satisfy the root conditions in (3.2).
Moreover, for α0 ∈ (1, 2), we only consider symmetric distributions, β0 = 0.
This assumption is needed in order to show some of the necessary conver-
gences in the proofs of the theorem.

Theorem 1. Let yt be generated by process (3.1) and εt an iid sequence of α-stable
distributed random variables with λ ∈ Θλ (defined in Assumption 1 in Appendix).
Then, there exists a sequence of local maximizers τ̃n of L̃n(θ; λ) s.t. as n→ ∞,

n1/α0(θ̃n − θ0)
d→ ξ and n1/2(λ̃n − λ0)

d→ Y ∼ N(0, I−1(λ0))

where ξ is a unique maximizer of Q(·), ξ and Y are independent and I−1(λ0) =

−E
[

∂2

∂λ∂λT ln f (ε1; λ0)
]
.

The proof follows from Lemmas 1-6 in Appendix, where the proofs of the
Lemmas can also be found. We illustrate briefly the key ideas in the following.

Outline of the proof

Our goal is to show functional convergence of the modified likelihood func-
tion Qn(v, w) on C(RP+Q+4) to some limiting random function

Qn(v, w)
d→ Q(v)− 1

2
wTI(λ0)w + wTN (3.8)

with Qn(v, w) and Q(v) given in (3.6) and (3.7), N ∼ N(0, I(λ0)) and N in-
dependent of Q(v). We begin by showing the weak convergence in (3.8) on
RP+Q+4. This has been done in Lemmas 1-4. Proofs rely heavily on the con-
vergence results of the point processes, and the methods are adopted form
Calder (1998) and Andrews et al. (2009). Convergence results for the point
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processes in time series context has been developed for example in Davis and
Resnick (1985) and Davis and Resnick (1986).

Lemma 5 establishes the tightness of Qn(v, w). Using Theorem 7.1. in
Billingsley (1999), convergence (3.8) on RP+Q+4 and the tightness on Qn(v, w)
implies the weak convergence (3.8) on C(RP+Q+4), which was our aim to
show.

In Lemma 6 we show a uniform convergence in probability of the unfeasi-
ble (3.4) and feasible (3.5) version of the log-likelihoods.

Unimodality of ln f (·; λ0) and strict convexity around θ0 ensures that there
are unique maximizers of Qn(v, w) and Q(v)− 1

2 wTI(λ0)w + wTN: (ṽn, w̃n)

and (ξ, I−1(λ0)N). Lemma 2.2. in Davis et al. (1992) states the weak conver-
gence of these maximizers,

(ṽn, w̃n)
d→ (ξ, I−1(λ0)N) on RP+Q+4.

The result in Theorem 1 follows now by the relation between the maximizers
ofQn(v, w) and L̃n(θ, λ). The asymptotic properties of the maximizer (ṽn, w̃n)
are the same as those of (n1/α0(θ̃n − θ0), n1/2(λ̃n − λ0)).

3.4 Numerical results

3.4.1 Simulation study

Theoretical results derived in the previous section are illustrated by a sim-
ulation study. We have simulated data using (3.1) with α-stable distributed
error terms using six different combination of model parameters. For each
combination, 1,000 data sets with 250 observations have been simulated and
noninvertible ARMA(1,1) model has been estimated to each data. The estima-
tion results are illustrated in Table 3.1. A moderate number of observations
have been selected to present a realistic setting in empirical applications. 250
observations is commonly encountered for example in low frequency financial
and macro economic data.

The first set of results (the first six rows in Table 3.1) represents the estima-
tion under infinite mean process εt (α = 0.8 < 1). We study this process under
autocorrelated observations (a0,1 = 0.2 and b0,1 = 0.8, left part) and non-
correlated observations (a0,1 = b0,1 = 0.5, right part). All of the parameters
are estimated with adequate accuracy since the mean of the estimates deviates
only slightly from the true parameter values. Also the standard deviation of
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Empirical Asymptotic Empirical Asymptotic
mean std. dev. std. dev. mean std. dev std. dev

a0,1 = 0.2 0.200 0.004 a0,1 = 0.5 0.500 0.003
b0,1 = 0.8 0.787 0.098 b0,1 = 0.5 0.500 0.003
α0 = 0.8 0.798 0.058 0.072 0.798 0.057 0.072
β0 = 0 -0.003 0.108 0.094 -0.006 0.100 0.094
σ0 = 1 1.029 0.178 0.109 0.991 0.107 0.109
µ = 0 -0.007 0.086 0.077 0.003 0.080 0.077

a0,1 = 0.2 0.196 0.071 a0,1 = 0.5 0.454 0.236
b0,1 = 0.8 0.804 0.052 b0,1 = 0.5 0.459 0.245
α0 = 1.8 1.805 0.094 0.089 1.801 0.091 0.088
β0 = 0 -0.014 0.506 0.360 0.000 0.495 0.360
σ0 = 1 0.998 0.061 0.057 0.994 0.058 0.057
µ = 0 0.002 0.282 0.110 0.005 0.267 0.110

a0,1 = 0.2 0.194 0.065 a0,1 = 0.5 0.45 0.249
b0,1 = 0.8 0.802 0.046 b0,1 = 0.5 0.458 0.261
α0 = 0.8 0.797 0.089 0.086 0.794 0.088 0.086
β0 = 0.5 0.515 0.402 0.331 0.472 0.431 0.331
σ0 = 1 0.997 0.062 0.056 0.991 0.059 0.056
µ = 0 0.021 0.276 0.110 0.012 0.167 0.110

Table 3.1: Estimation results for the parameters of noninvertible ARMA(1,1) in (3.1) with α-
stable error term process with n = 250 observations. Number of simulations is 1,000.

the estimate of λ0 is close to its asymptotic values. For the non-correlated case,
the AR and MA parameters are estimated slightly smaller than their correct
values. This is likely due to the fact that the likelihood function has another
local maximum close to the origin. A small part of the estimates are drawn
toward it which makes the mean of the sample slightly smaller than expected.
This happens despite of the fact that the noninvertible ARMA model is iden-
tified even in the non-correlated case.

The same pattern repeats for the other combinations of the parameters as
well. The middle part illustrates the case of infinite variance but finite mean
(α0 = 1.8 < 2) and the last part illustrates the case of skewed error process
(β0 = 0.5) with infinite mean (α0 = 0.8).
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3.4.2 Application to financial data

We follow the example of Andrews et al. (2009), Wu and Davis (2010), and
Cui, Fisher, and Wu (2014) and study the daily volume traded of Wal-Mart
stock on the New York Stock Exchange from December 1st, 2003 to December
31st, 2004. This period spans over 271 transaction days, which is similar in
size than the sample sizes in the simulation study in the previous subsection.

Although the data may not be generated by a process with finite second
moments, sample autocorrelation functions may be useful in illustrating some
of its properties. In Figure 3.1 we have plotted the sample autocorrelation
functions of the observations and the squared observations. Both of these
series seem to exhibit some autocorrelation, which indicates that there are
dependencies, both linear and nonlinear, potentially controllable with nonin-
vertible ARMA(1,1) model. The top row of figure 3.1 shows that there are
some considerable "spikes" in the logarithmic trading volume data. These
points together makes the noninvertible ARMA model a reasonable starting
point for modeling.
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Figure 3.1: TOP: The demeaned logarithm of daily trade volume of Wal-Mart stock on the
NYSE from December 1, 2003 to December 31, 2004. BOTTOM LEFT: Sample autocorrelation
function for observed trading logarithmic trading volumes. BOTTOM RIGHT: Sample autocorre-
lation functions for squared observations of logarithmic trading volumes.
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Figure 3.2: TOP: Residuals of the estimated model. BOTTOM LEFT: Sample autocorrelation
functions for the residual series. BOTTOM RIGHT: Sample autocorrelation functions for the
squared residuals.

The ML estimates of the noninvertible ARMA(1,1) model parameters θ0 =
(a0,1, b0,1) and λ0 = (α0, β0, σ0, µ0) are

θ̃n = (0.720, 0.339) and λ̃n =

(
1.826
(.077)

, 0.601
(.335)

, 0.160
(.008)

,−0.031
(.017)

)
.

Small numbers in the parenthesis indicate the standard errors of the estimated
values. Estimated values enforces the findings of autocorrelated data as the
AR and MA parameters are clearly different from zero and apart from each
other. Estimated value of the tail index α0 is smaller than two suggesting that
the variance of the error process εt is infinite. This process is also skewed to
the right as the estimate of β0 is positive.

Residual series of the estimated model has been plotted in Figure 3.2 to-
gether with its sample autocorrelation functions and sample autocorrelation
functions of its squared values. Confidence bounds to the sample autocorre-
lation pictures are obtained by simulating 10,000 iid series of n = 275 from
the stable distribution with parameter values λ̃n and finding the 2.5 and 97.5
percentiles of the sample autocorrelation coefficients calculated from these se-
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ries. The "spikiness" is visible in the residual series and the iid assumption on
the residual series seems plausible by the sample autocorrelation functions.

According to these observations, the noninvertible ARMA(1,1) model with
α-stable error distribution seems like an adequate model to capture the fea-
tures of this trading volume data.

3.5 Conclusions

In this article we have derived asymptotic properties for the ML estimators of
nonivertible ARMA model with α-stable errors with infinite variance. The rate
of convergence of the estimators of AR and MA parameters is n1/α0 , which is
faster than the normal n1/2 rate. The limiting distribution of the estimators is
nonstandard. Parameters of the α-stable distributions converge to the Gaus-
sian distribution at the conventional n1/2 rate of convergence. Asymptotic
results are derived by applying point process techniques.

Combination of noninvertible ARMA model and α-stable error process im-
plies many appealing features. Noninvertible model allows us model some
nonlinearities that are often encountered with financial time series data. For
example, in our empirical example, we saw that mild heteroskedasticity in
trading volume data of Wal-Mart stock, was successfully controlled by this
model. At the same time, the model was capable of controlling for the au-
tocorrelation in the data. Our results indicated, that the distribution of the
trading volume data has heavy tails. If this is not incorporated in the estima-
tion procedure, the asymptotics of the estimators might be distorted. Large
visible jumps or spikes around the mean of the process can be seen as an ev-
idence of the heavy tails. The α-stable distribution with infinite variance was
also used to identify the noninvertible model from its invertible counterpart,
which is not possible under assumption of Gaussian error term.

Hypothesis testing for the distribution parameters can be done in a usual
manner, since the distribution is Gaussian and not dependent on the distri-
bution of the AR and MA parameter estimators. Then again, hypothesis con-
sidering the AR and MA parameters is more difficult, because the limiting
distribution is nonstandard. A bootstrap methods for estimating the distribu-
tion of the estimators of AR parameters in noncausal AR model is proposed
in Andrews et al. (2009). These methods are outside the scope of this study,
but they are reflected upon as a topic for future research.
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Appendix

Appendix

3.A Assumptions and details for ut(θ) and ũt(θ)

Assumption 1. The true AR and MA parameters belong to an interior of a permis-
sible parameter space Θτ = Θa ×Θb where

Θa =
{
(a1, . . . , aP) ∈ RP ; a(z) 6= 0 for |z| ≤ 1

}
Θb =

{
(b1, . . . , bQ) ∈ RQ ; b(z) 6= 0 for |z−1| ≤ 1

}
, and

Moreover, (a) for α0 ≤ 1, then Θλ = Θα ×Θβ ×Θσ ×Θµ with

Θα = {α0 ∈ (0, 1]}, Θβ = {β0 ∈ (−1, 1)}, Θµ = {µ0 ∈ R}, and

Θσ = {σ0 ∈ R+}.

(b) If α0 > 1, then Θλ = Θα ×Θβ ×Θσ ×Θµ with

Θα = {α0 ∈ (1, 2)}, Θβ = {0}, Θµ = R, and Θσ = R+.

The permissible parameter space is Θ = Θτ ×Θλ.

Process ut(θ)

The counterpart of εt = ut(θ0) = b0(B−1)−1a0(B)yt for θ 6= θ0 is given by

ut(θ) =
a(B)

b(B−1)
yt =

∞

∑
j=−P

πjyt+j

with a(z) = a1z− · · · − aPzP and b(z−1) = b1z−1 − · · · − bQz−Q. For all θ ∈
Θθ , where Θθ is defined in Assumption 1, ut(θ) is well defined. Geometrically
decaying sequence πj is the coefficients of zj of the Laurent series expansion

of a(z)b(z−1)−1 de f .
= π(z).

Derivatives of ut(θ0) w.r.t. ap, (p = 1, . . . , P) and bq, (q = 1, . . . , Q) gives
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the elements of uθ,t(θ)
de f
= ∂

∂θ ut(θ),

uap ,t(θ0)
de f
= ∂

∂ap
ut(θ0) = −a0(B)−1εt−p = −

∞

∑
j=0

ψ
(a)
j εt−p−j, and (3.9)

ubq ,t(θ0)
de f
= ∂

∂bq
ut(θ0) = b0(B−1)−1εt+q =

∞

∑
j=0

ψ
(b)
j εt+j+q. (3.10)

Power series expansions of a0(z)−1 de f
= ψ(a)(z) and b0(z)−1 de f

= ψ(b)(z) defines
ψ
(a)
j and ψ

(b)
j as the coefficients of zj respectively. These power series are well

defined, and it follows that the coefficients ψ
(a)
j and ψ

(b)
j are geometrically

decaying as j→ ∞.

Utilizing the notation θ = (a1, . . . , aP, b1, . . . , bQ), we have

(θ − θ0)
T ∂

∂θ ut(θ0) =(a1 − a0,1)
∂

∂a1
ut(θ0) + · · ·+ (aP − a0,P)

∂
∂aP

ut(θ0)

+ (b1 − b0,1)
∂

∂b1
ut(θ0) + · · ·+ (bQ − b0,Q)

∂
∂bQ

ut(θ0).

Let us use the sum expressions in (3.9) and (3.10) and collect the coefficients
of all εt−j, j = . . . ,−1, 0, 1, . . . we get the expression

(θ − θ0)
T ∂

∂θ ut(θ0)
de f
=

∞

∑
j=−∞

cj(θ − θ0)εt−j

with

cj(θ − θ0) =



−∑P
p=1(ap − a0,p)ψ

(a)
0,j−p for j ≥ P

−∑
j
p=1(ap − a0,p)ψ

(a)
0,j−p for 1 ≤ j < P

0 for j = 0

∑
j
q=1(bq − b0,q)ψ

(b)
0,q−j for −Q < j ≤ −1

∑Q
q=1(bq − b0,q)ψ

(b)
0,q−j for j ≤ −Q

. (3.11)

Because ψ
(a)
0,j and ψ

(b)
0,j are geometrically decaying sequences, it is not hard to

show that also cj(θ) decays to zero at the geometric rate as j→ ∞.

For the derivation of the second derivatives, note that uap ,t(θ) =
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−b0(B−1)−1yt−p for p = 1, . . . , P, so ∂2

∂ap∂ap′
ut(θ) = 0 for p, p′ = 1, . . . , P.

From a(B)yt = b(B−1)ut(θ) we obtain 0 = ∂
∂bq

b(B−1)ut(θ) = −B−qut(θ) +

b(B−1)ubq ,t(θ) for q = 1, . . . , Q. Taking derivatives w.r.t. ap, p = 1, . . . , P and
bq′ , q′ = 1, . . . , Q,

∂2

∂ap∂bq
ut(θ) = b(B−1)−1uap ,t+q(θ)

∂2

∂bq∂b′q
ut(θ) = b(B−1)−1ubq′ ,t+q(θ)− B−q′b(B−1)−2ut+q(θ).

Rearranging terms gives

∂2

∂ap∂bq
ut(θ) = −b(B−1)−1a(B)−1ut+q+p(θ) and

∂2

∂bq∂bq′
ut(θ) = 2b(B−1)−2ut+q+q′(θ).

Lemma A1. For all η ∈ (0, α0), and θ ∈ Θθ described in Assumption 1,

(i) E[|ut(θ)|η ] < ∞, (ii) E[|uap ,t(θ)|η ] < ∞,

(iii) E[|ubq ,t(θ)|η ] < ∞, (iv) E[|uap ,ap′ ,t(θ)|
η ] < ∞,

(v) E[|uap ,bq ,t(θ)|η ] < ∞, and (vi) E[|ubq ,bq′ ,t(θ)|
η ] < ∞.

Proof. Results follow by the definition of Θθ , the series presentations given
above, and Lemmas A.1. and A.2. in Meitz and Saikkonen (2013).

Feasible counterpart of ut(θ)

In practice, we do not observe the process ut(θ), so they can not be used
for maximizing the likelihood. For this reason, in practice, we use feasible
counterpart ũt(θ) instead. Set ũn+1(θ) = · · · = ũn+Q(θ) = 0 and, using
observations {yt}n

t=1−P, solve recursively for ũn(θ), . . . , ũ1(θ) as

ũn(θ) = a(B)yn

ũn−1(θ) = a(B)yn−1 + b1ũn(θ)

...
ũn−Q(θ) = a(B)yn−Q + b1ũn−Q+1(θ) + · · ·+ bQũn(θ)
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...
ũ1(θ) = a(b)y1 + b1ũ2(θ) + · · ·+ bQũ1+Q(θ),

or as in Andrews et al. (2009), for t = 1, . . . , n,

ũt(θ) =
n−t

∑
j=0

ψ
(b)
j a(B)yt+j.

The feasible quantities ũt(θ) gets closer to its theoretical counterpart
ut(θ) = ∑∞

j=0 ψ
(b)
j a(B)yt+j, as n → ∞ but note that the values at the both

ends of the time line can differ substantially. The difference between these
quantities is

ut(θ)− ũt(θ) =
∞

∑
j=n−t+1

ψ(b)a(B)yt+j. (3.12)

The derivatives of ũt(θ) are given by (see p. 251 Meitz and Saikkonen,
2013)

ũap ,t(θ) = −
n−t

∑
j=0

ψ
(b)
j yt−p+j and ũbq ,t(θ) =

n−t

∑
j=0

ψ
(b)
j ũt+q+j(θ). (3.13)

Lemma A2. For all η ∈ (0, α0), for any mn = O(n1/2), v ∈ RP+Q, and θ ∈ Θθ

defined in Assumption 1,

(i) E[|ũt(θ)|η ] < ∞, (ii) E[|ũap ,t(θ)|η ] < ∞,

(iii) E[|ũbq ,t(θ)|η ] < ∞, (iv) E[|ũapap′ ,t(θ)|
η ] < ∞

(v) E[|ũapbq ,t(θ)|η ] < ∞, (vi) E[|ũbqbq′ ,t(θ)|
η ] < ∞,

(vii) E

[(
n−mn

∑
t=mn

|ũt(θ0)− ut(θ0)|
)η]

→ 0, and

(viii) E

[(
n−mn

∑
t=mn

vT |ũθ,t(θ0)− uθ,t(θ0)|
)η]

→ 0.

Proof. Proof is given in a supplementary appendix.
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3.B Details for the proof of Theorem 1

The first three Lemmas in this section are in order to establish the weak con-
vergence in (3.8) on RP+Q+4. To this end, for any fixed v ∈ RP+Q and w ∈ R4,
we introduce a random function4

Q∗n(v, w)
de f
=

n

∑
t=1

[ln f (εt + n−1/α0 vTuθ,t(θ0); λ0)− ln f (εt; λ0)] (3.14)

+ n−1/2wT
n

∑
t=1

eλ,t(εt; λ0)

de f
=Q+

n (v) + Nn(w)

and show that

Lemma B3. For any v ∈ RP+Q and w ∈ R4,

Qn(v, w)−Q∗n(v, w) =
1
2

wTI(λ0)w + op(1).

Proof. Proofs for the Lemmas in this section are given in supplementary ap-
pendix.

The next step is to show that Q∗(v, w) converges weakly for any (v, w) ∈
RP+Q+4. In order to do so, we must make use of the weak convergence results
of the point processes. 5 Let us introduce two new random functions,

Wm,n(·)
de f
=

n

∑
t=1

I(εt ,c(α0)−1σ−1
0 n−1/α0 εt,m)(·) and

Wm(·)
de f
=

∞

∑
k=1

∑
j∈{−m,...m}\0

I(
εk,j ,ιjδkΓ

−1/α0
k

)(·),
where εt,m = (εt−m, . . . , εt−1, εt+1, . . . , εt+m),

ιj = (0, . . . , 0︸ ︷︷ ︸
m+j

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j

),

4Remember the expression ut(θ0) = εt.
5Our treatment of point processes is adapted from Calder (1998), Chapter 2.3. Textbook mate-

rial can be found in Embrechts, Klüppelberg, and Mikosch (1997) and Kallenberg (1983).
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a (2m× 1) vector where the 1 is located at the (m + j + 1)th element for j < 0,
and (m + j)th element for j > 0. δk is an iid random variable with P(δ = 1) =
(1 + β0)/2 and P(δk = −1) = 1− P(δk = 1), and Γk = E1 + · · ·+ Ek with Ei
an iid exponential random variable for i = 1, . . . , ∞. These functions define
a random measure for any (compact) set E ∈ R2, for which Wm,n(E) < ∞
and Wm(E) < ∞. Following Andrews et al. (2009), we start by providing
a finite dimensional convergence result for point processes Wm,n(·) for any
fixed sets A that makes the mapping measurable. We also show that limiting
distribution of Nn(w) is independent from the point processes distribution.

Lemma B4. For any fixed (relatively compact subset) As ∈ R× (R2m \ 0) of the
form As = (as,0, as,0] × (as,−m, as,−m] × · · · × (as,−1, as,−1] × (as,1, as,1] × · · · ×
(as,m, as,m], and for any w ∈ R4,

(Wm,n(A1), . . . ,Wm,n(Al), Nn(w))
d→ (Wm(A1), . . . ,Wm(Al), wTN),

as n→ ∞, andWm(Ak) is independent of wTN for all k = 1, . . . , l.

This Lemma is essentially the same as Lemma A.9. in Andrews et al.
(2009), and we can see that the simultaneous estimation of the distributional
parameters λ with the AR and MA parameters θ complicates the estimation
theory slightly, because we have to take care of the joint distribution of the
parameters θ and λ (see for example Wu (2013)).

To see how the previous weak convergence result comes in useful in our
context, we define two random functions

W∗n (·)
de f
=

n

∑
t=1

I(
εt , n−1/α0 ∑∞

j=1 cj(v)εt−j , n−1/α0 ∑∞
j=1 c−j(v)εt+j

)(·) and

W∗(·) de f
=

∞

∑
t=1

[
−∞

∑
j=−1

I(
εk,j , c(α0)

1/α0 σ0cj(v)δkΓ
−1/α0
k , 0

)(·)

+
∞

∑
j=1

I(
εk,j , 0, c(α0)

1/α0 σ0cj(v)δkΓ
−1/α0
k

)(·)
]

.

If we define a continuous mapping

(εt−m, . . . , εt, . . . , εt+m)
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7→
(

εt, c(α0)
1/α0 σ0

−m

∑
j=−1

cj(v)εt−j, c(α0)
1/α0 σ0

m

∑
j=1

cj(v)εt−j

)
,

and apply this together with continuous mapping theorem to the random
vector

(Wm,n(A1), . . . ,Wm,n(Al))

in Lemma B4, and let m→ ∞, we find that

(W∗n (A1), . . . ,W∗n (Al))
d→ (W∗(A1), . . . ,W∗(Al)) (3.15)

for all As, s = 1, . . . , l defined in Lemma B4.
Next we make use of definition 5.2.1. in Embrechts et al. (1997). The

weak convergence of the finite dimensional random vector (3.15) for all As ∈
R× (R2m \ 0) implies the weak convergence of W∗n (·) to W∗(·) on R. This
in turn implies that for all positive valued functions g on E = R× (R2m \ 0),
(Remark 3 in Embrechts et al., 1997, p. 234))∫

E
g(·)dW∗n

d→
∫

E
g(·)dW∗,

and the integrals simplifies to

n

∑
t=1

g

(
εt, n−1/α0

∞

∑
j=1

cj(v)εt−j, n−1/α0
∞

∑
j=1

c−j(v)εt+j

)
(3.16)

d→
∞

∑
k=1

∞

∑
j=1

g((εk,j, c(α0)
1/α0 σ0cj(v)δkΓ−1/α0

k , 0)

+ g(εk,−j, 0, c(α0)
1/α0 σ0c−j(v)δkΓ−1/α0

k )).

We can now see how to make statements about the weak convergence of
the likelihood function at fixed (v, w) on RP+Q+4. Recalling (3.7) and (3.14),
it would be tempting to set g(x, y, z) = ln f (x + y + z ; λ0)− ln f (x ; λ0) and

find out that (Q+
n (v), Nn(w))

d→
(
Q(v), wTN

)
, from which we could postu-

late, using (3.16), that

Q∗n(v) =
[
1 1

] Q+
n (v)

Nn(w)

 d→
[
1 1

] Q(v)
wTN
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⇔Qn(v, w)
d→ Q(v) + 1

2
wTN− wTI(λ0) (3.17)

on RP+Q+4. The reason why this is not straight forward is that function g(x)
does not have a compact support on E. That is, there is no compact K ⊂ E s.t.
g(x) = 0 for all x ∈ Kc (the complement of K). The way to get around this
problem is to use

g̃(x, y, z) = [ln f (x + y + z ; λ0)− ln f (x ; λ0)]

× I {|x| ≤ M} I {(|y| > ε) ∪ (|z| > ε)}

for some possibly large M < ∞ and small ε > 0. To see why the convergence
in (3.17) is attained using g instead of g̃, we refer to Theorem 3.2. in Billingsley
(1999) and the following two lemmas.

Lemma B5. For

g̃(x, y, z)
= [ln f (x + y + x ; λ0)− ln f (x ; λ0)] I {|x| ≤ M} I {(|y| > ε) ∪ (|z| > ε)}

and for any fixed v ∈ RP+Q,

∞

∑
k=1

∞

∑
j=1

g̃((εk,j, c(α0)
1/α0 σ0cj(v)δkΓ−1/α0

k , 0)

+ g̃(εk,−j, 0, c(α0)
1/α0 σ0c−j(v)δkΓ−1/α0

k ))
p→ Q(v)

on RP+Q as M→ ∞ and ε→ 0,

and

Lemma B6. For g(x, y, z) = ln f (x + y + z; λ0)− ln f (x; λ0), for any fixed v ∈
RP+Q, and for any κ > 0,

lim
M→∞

lim
ε→0

lim sup
n→∞

P

(∣∣∣∣∣Q+
n (v)−

n

∑
t=1

g̃

(
εt, n−1/α0

∞

∑
j=1

cj(v)εt−j, n−1/α0
∞

∑
j=1

c−j(v)εt+j

)∣∣∣∣∣ > κ

)
= 0.
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That is, let

Xn,ε,M =
n

∑
t=1

g̃

(
εt, n−1/α0

∞

∑
j=1

cj(v)εt−j, n−1/α0
∞

∑
j=1

c−j(v)εt+j

)
and

Zε,M =
∞

∑
k=1

∞

∑
j=1

g̃((εk,j, c(α0)
1/α0 σ0cj(v)δkΓ−1/α0

k , 0)

+ g̃(εk,−j, 0, c(α0)
1/α0 σ0c−j(v)δkΓ−1/α0

k )),

then Xn,ε,M
d→ Zε,M on RP+Q as n→ ∞ by the previous arguments. In Lemma

B5 we showed that Zε,M
d→ Q(v) on RP+Q as M → ∞ and ε → 0. By Lemma

B6 we have that limM→∞ limε→0 lim supn→∞ P(|Xn,ε,M −Q+
n (v)| > κ) = 0 for

all κ > 0. Theorem 3.2. in Billingsley (1999) then implies that Q+
n (v)

d→ Q(v)
on RP+Q.

Weak convergence on C(RP+Q+4) follows by the finite dimensional con-
vergence and tightness of Qn(v, w) on C(RP+Q+4), which is the same as tight-
ness on C(K) for any K = [−K, K]4.

Lemma B7. For any M, K > 0 and κ > 0,

lim
ε→0+

lim sup
n→∞

P

 sup
||v′−v′′ ||<ε
||w′−w′′ ||<ε

||v′ ||,||v′′ ||,||w′ ||,||w′′ ||<K

∣∣Qn(v′, w′)−Qn(v′′, w′′)
∣∣ > κ

 = 0.

Tightness of Qn(v, w) together with the finite dimensional convergence
(3.17) implies the weak convergence

Qn(v, w)
d→ Q(v)− 1

2
wTI(λ0)w + wTN

on C(RP+Q+4) by Theorem 7.1 in Billingsley (1999).
Finally, we have to show that the initialization in calculating ũt(θ) does not

alter our asymptotic results. To this end, we show that
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Lemma B8. For any (v, w) ∈ RP+Q+4, as n→ ∞,

sup
v,w

∣∣Q̃n(v, w)−Qn,m(v, w)
∣∣ = op(1),

where Q̃m,n(v, w) = L̃n(θ0 + n−1/α0 v; λ0 + n−1/2w)− L̃n(θ0; λ0) and
L̃n(θ0; λ0) = ∑n

t=1 ln f (ũt(θ0) ; λ0).
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Supplementary appendix for the Maximum like-
lihood estimation for noninvertible ARMA model
with α-stable errors

Additional notation

Let fx(x; λ)
de f
= ∂

∂x f (x; λ), fλ(x; λ)
de f
= ∂

∂λ f (x; λ), fxx(x; λ)
de f
= ∂2

∂x2 f (x; λ),

fλλ(x; λ)
de f
= ∂2

∂λ∂λT f (x; λ), and fxλ(x; λ)
de f
= ∂2

∂x∂λ f (x; λ). The following nota-
tion for the derivatives of the log-densities will be used extensively,

ex(xt; λ)
de f
=

fx(xt; λ)

f (xt; λ)
, eλ(xt; λ)

de f
=

fλ(xt; λ)

f (xt; λ)
,

exx(xt; λ)
de f
=

fxx(xt; λ)

f (xt; λ)
− fx(xt; λ)2

f (xt; λ)2 ,

exλ(xt; λ)
de f
=

fλx(xt; λ)

f (xt; λ)
− fλ(xt; λ)dx(xt; λ)

f (xt; λ)2 ,

exx(xt; λ)
de f
=

fxx(xt; λ)

f (xt; λ)
− fx(xt; λ)2

f (xt; λ)2 , and

eλλ(xt; λ)
de f
=

fλλ(xt; λ)

f (xt; λ)
− fλ(xt; λ) fλ(xt; λ)T

f (xt; λ)2 .

Proof of Lemma A2

Proof. (i) − (vi) follows by Lemmas A.1 and A.2. in Meitz and Saikkonen
(2013), because they have series presentation in terms of quantities with finite
η-moments.

(vii) follows using (3.12), and the fact that ψ
(b)
j ≤ δ|j| for some |δ| < 1,

E

[(
n−mn

∑
t=mn

|ũt(θ0)− ut(θ0)|
)η]

≤ C
n−mn

∑
t=mn

∞

∑
j=n−t+1

δη j

=C
n−mn

∑
t=mn

(
∞

∑
j=0

δη j −
n−t

∑
j=0

δη j

)
= C

n−mn

∑
t=mn

(
1

1− δη −
1− δη(n−t+1)

1− δη

)
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=
C

1− δη

(
nn+1

∑
t=0

δηt −
n−mn

∑
t=0

δηt

)

=
C

(1− δη)2

(
δη(n−mn+1) − δη(mn+2)

)
→ 0,

as n→ ∞.

In order to show (viii), we show that

E

[(
n−mn

∑
t=mn

|ũap ,t(θ0)− uap ,t(θ0)|
)η]

→ 0 and

E

[(
n−mn

∑
t=mn

|ũbq ,t(θ0)− ubq ,t(θ0)|
)η]

→ 0

for all p = 1, . . . , P and q = 1, . . . , Q, as n → ∞. (viii) follows then, because
v ∈ RP+Q.

Using (3.9) and (3.13),

E

[(
n−mn

∑
t=mn

|ũap ,t(θ0)− uap ,t(θ0)|
)η]

≤ C
n−mn

∑
t=mn

∞

∑
j=n−t+1

δη j

=
C

1− δη

n−mn

∑
t=mn

δη(n−t+1) =
C

(1− δη)2

(
δη(mn+1) − δη(n−mn+2)

)
→ 0

as n→ ∞.

Using (3.9) and (3.13),

|ũbq ,t(θ0)− ubq ,t(θ0)|

≤
∣∣∣∣∣n−t

∑
j=0

∞

∑
i=n−t−q−j

ψ
(b)
j ψ

(b)
i a(B)yt+q+i+j

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
j=n−t+1

ψ
(b)
j ut+q+j(θ0)

∣∣∣∣∣ .

Thus,

E

[(
n−mn

∑
t=mn

|ũbq ,t(θ0)− ubq ,t(θ0)|
)η]
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≤C
n−mn

∑
t=mn

(
n−t

∑
j=0

δη j ∑
i=n−t−q−j

δηi +
∞

∑
j=n−t+1

δη j

)

=
C

1− δη

(
δ−η(q+1)

n−mn

∑
t=mn

δη(n−t+1)(n− t + 1) + δη(n+mn+1) − δη(2n−mn+2)

)

=
C

1− δη

(
δη 1− (n−mn + 1)δη(n−mn) + (n−mn)δη(n−mn+1)

(1− δη)2

−δη 1−mnδηmn + (mn − 1)δηmn

(1− δη)2 + δη(n+mn+1) − δη(2n−mn+2)
)

→ 0

as n→ ∞.

Proofs for the Asymptotic results

Proof of Lemma B3

Step I For v ∈ RP+Q and w ∈ R4,

n

∑
t=1

ln f (ut(θ0 + n−1/α0 v) ; λ0 + n−1/2w)

−
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0 + n−1/2w) = op(1)

as n→ ∞.

Proof. Using mean vale theorem, the previous equals to

n

∑
t=1

ex(x∗t,n(v) ; λ0 + n−1/2w)× [ut(θ0 + n−1/α0 v)− εt − n−1/α0 vTuθ,t(θ0)]

=
n

∑
t=1

ex(x∗t,n(v) ; λ0 + n−1/2w)× n−2/α0 vTuθθ,t(θ
∗
n(v))v

with x∗t,n(v) between ut(θ0 + n−1/α0 v) and εt + n−1/α0 vTuθ,t(θ0), and θ∗n(v)
between θ0 and θ0 + n−1/α0 v. Let us consider values of v and w inside a δ-
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ball dδ, such that for v ∈ dδ,v and v ∈ dδ,w, we have ‖v‖ < (P + Q)1/2δ and
‖w‖ < 2δ. For v ∈ dδ,v and w ∈ dδ,w, the previous can be bounded above by

sup
v∈dδ,v ,w∈dδ,w

∣∣∣e(x∗t,n(v); λ0 + n−1/2w)
∣∣∣× n−2/α0(P + Q)2δ2

n

∑
t=1

sup
v∈dδ,v

|uθθ,t(θ
∗
n(v))| .

The first part is finite since f (·; ·) is bounded and continuously differentiable.
The second part can be evaluated with Markov’s inequality as

P

(∣∣∣∣∣n−2/α0(P + Q)2δ2
n

∑
t=1

sup
v∈dδ,v

|uθθ,t(θ
∗
n(v))|

∣∣∣∣∣ > ε

)
0≤κ1≤1
≤

(
n−2/α0(P + Q)2δ2

ε

)κ1

E

[∣∣∣∣∣ n

∑
t=1

sup
v∈dδ,v

|uθθ,t(θ
∗
n(v))|

∣∣∣∣∣
κ1
]

≤
(

n−2/α0(P + Q)2δ2

ε

)κ1

nE

[∣∣∣∣∣ n

∑
t=1

sup
v∈dδ,v

|uθθ,t(θ
∗
n(v))|

∣∣∣∣∣
κ1
]

=n1−2κ1/α0

(
(P + Q)2δ2

ε

)κ1

E

[∣∣∣∣∣ n

∑
t=1

sup
v∈dδ,v

|uθθ,t(θ
∗
n(v))|

∣∣∣∣∣
κ1
]

.

Provided by Lemma A1, there is α0/2 < κ1 < 1 such that the the latter part is
finite. For any small ε, let n→ ∞, and the result follows.

Step II For v ∈ RP+Q and w ∈ R4,

n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0 + n−1/2w)

−
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0)

− n−1/2wT
n

∑
t=1

eλ(εt; λ0) +
1
2

wTI(λ0)w = op(1).

Proof. Approximating the expression with 2nd order Taylor approximation
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gives

n−1/2wT

[
n

∑
t=1

eλ(εt + n−1/α0 vTuθ,t(θ0) ; λ0)−
n

∑
t=1

eλ,t(εt ; λ0)

]

+
1

2n
wT

n

∑
t=1

eλλ(εt + n−1/α0 vTuθ,t(θ0) ; λ∗n(w))w +
1
2

wTI(λ0)w.

Second row is clearly op(1) by the ergodic theorem and by the fact that f (·; ·)
is twice continuously differentiable. To see that the first row is also op(1), use
the mean value expansion to get

n−1/2−1/α0 wT
n

∑
t=1

exλ(x∗∗n,t(v) ; λ0)vTuθ,t(θ0)

with x∗∗n,t(v) between εt and εt + n−1/α0 vTuθ,t(θ0). This can be bounded from
above by

n−1/2−1/α0 sup
w∈dδ ,x∈R

∣∣∣wTexλ(x; λ0)
∣∣∣ n

∑
t=1

sup
v∈dδ

∣∣∣vTuθ,t(θ0)
∣∣∣

The term in the middle is bounded because because f (· ; ·) is twice continu-
ously differentiable. Using (3.11), the last part is

n

∑
t=1

sup
v∈dδ

∣∣∣∣∣ ∞

∑
j=−∞

cj(v)εt−j

∣∣∣∣∣ ≤ n

∑
t=1

∞

∑
j=−∞

K1c|j||εt−j|.

Evaluate the probabilities by Markov’s inequality,

P

(∣∣∣∣∣n−1/2−1/α0 sup
w∈dδ ,x∈R

∣∣∣wTeλx (x; λ0)
∣∣∣ n

∑
t=1

∞

∑
j=−∞

K1c|j||εt−j||
∣∣∣∣∣ > ε

)
|κ2|≤1
≤

(
n−1/2−1/α0 supw∈dδ ,x∈R

∣∣wTeλx(x; λ0)
∣∣

ε

)κ2

E

[∣∣∣∣∣ n

∑
t=1

∞

∑
j=−∞

K1c|j||εt−j|
∣∣∣∣∣
κ2
]

≤
(

n−1/2−1/α0 supw∈dδ ,x∈R

∣∣wTeλx(x; λ0)
∣∣

ε

)κ2

|K1|κ2
n

∑
t=1

∞

∑
j=−∞

c|j|E [|εt|κ2 ]
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≤
(

n−1/2−1/α0 supw∈dδ ,x∈R

∣∣wTeλx(x; λ0)
∣∣

ε

)κ2

|K1|κ2 nE [|εt|κ2 ]
∞

∑
j=−∞

∣∣∣c|j|∣∣∣κ2
.

The result follows by choosing κ2 such that

κ2 =

{
1 if α0 ≥ 1
α0
2 + α0

2+α0
if α0 < 1

.

This way |κ2| < 1, E[|ε|κ2 ] < ∞, and n1−(1/2−1/α0)κ2 → 0 as n→ ∞.

Step III For v ∈ RP+Q and w ∈ R4, and

Q∗n(v) =
n

∑
t=1

[ln f (ut(θ0 + n−1/α0 vTuθ,t(θ0)) ; λ0)− ln f (εt ; λ0)]

+ n−1/2wT
n

∑
t=1

eλ(εt; λ0)

we have

Qn(v, w)−Q∗n(v) = wTI(λ0)w + op(1).

We obtain the result by re-writing the left hand side by adding and sub-
tracting a term, and then using Step I and Step II,

Qn(v, w)−Q∗n(v) =
n

∑
t=1

ln f (ut(θ0 + n−1/α0 vTuθ,t(θ0)) ; λ0 + n−1/2w)

+
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0 + n−1/2w)

−
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0 + n−1/2w)

−
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0)

− n−1/2wT
n

∑
t=1

eλ(εt; λ0)
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=
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0 + n−1/2w)

−
n

∑
t=1

ln f (εt + n−1/α0 vTuθ,t(θ0) ; λ0)

− n−1/2wT
n

∑
t=1

eλ(εt; λ0) + op(1)

=
1
2

wTI(λ0)w + op(1).

Proof of Lemma B4

The result follows by Theorem 3 on p. 37 of Rosenblatt (1985), by showing that
for all the cumulants cumk(γ1Wm,n(As) + γ2Nn(w)) → cumk(γ1Wm(As) +
γ2wTN), where cumk(X) is the kth order cumulant cum(X, . . . , X) (k times
X’s). If this holds for all γ1, γ2 ∈ R, then by Cramér-Wold theorem (Wm,n(As),

Nn(w))
d→ (Wm(As), wTN).

Begin by noticing that

cumk(γ1Wm,n(A) + γ2Nn(w)) =γk
1cumk(Wm,n(A)) + γk

2cumk(Nn(w))

+
k−1

∑
j=1

(
k
j

)
γ

j
1γk

2cumj,k−j (Wm,n(A), Nn(w)) ,

where

cumj,k−j

(
n

∑
t=1

I(εt ,c(α0)−1σ−1
0 n−1/α0 et)(A), n−1/2

n

∑
t=1

wTeλ (εt ; λ0)

)

=
n

∑
t1=1
· · ·

n

∑
tk=1

n−
k−j

2 cum(φt1,n(A), . . . , φtj ,n(A), ϕtj+1(w), . . . , ϕtk (w))(3.18)

with φt,n(A) = I(εt ,c(α0)−1σ−1
0 n−1/α0 et)(A) and ϕt(w) = wTeλ(εt; λ0).
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Step I: (3.18) converges to zero as n→ ∞

The next step makes use of the dependence structure of these random vari-
ables. Independence of φt,n(A) and ϕt+j(w) is clear for all |j| > m. Also,
φt,n(A) and φt+s,n(A) are independent for all |s| > 2m.

Fix t1 and consider φts ,n(A) for any s = 2, . . . , j, such that |t1 − ts| >
2m(j − 1). For these indices, φt1,n(A) and φts ,n(A) are always independent
and we can find a subset of random variables from (φt1,n(A), . . . , φtj ,n(A))

that is independent of the rest of that set. In expression (3.18) the summands
where one of the indices satisfy |t1 − ts| > 2m(j − 1) can be pruned since
they do not contribute to the sum. Using the same logic, we can extend
this idea also to the indices ts with s = (j + 1), . . . , k. If there is a subsets
in the set (φt1,n(A), . . . , φtj ,n(A)) that is independent of every other subsets,
ϕtl (w), l = j + 1, . . . , k, can be dependent only with that particular subset or
some other subsets, never both. Then again, if |t1 − tl | > m(2j− 1) for some
l = j + 1, . . . , k, we can apply the previous reasoning again.

We have an equivalent expression for the sum in (3.18) as

n

∑
t1=1

∑
|t1−t2|≤2m(j−1)

· · · ∑
|t1−tj |≤2m(j−1)

∑
|t1−tj+1|≤m(2j−1)

· · · ∑
|t1−tk |≤m(2j−1)

n−
k−j

2 cum(φt1,n(A), . . . , φtj ,n(A), ϕtj+1(w), . . . , ϕtk (w)). (3.19)

Next we show that the expression (3.19) is o(1). To this end, notice that the
expression (3.19) is made up of n(4m(j− 1) + 1)j−1(2m(2j− 1) + 1)k−j terms.
Note, that the cumulant in (3.19) is always finite since |φts ,n(A)| ≤ 1 and
E[|ϕtl (w)|r] < ∞ for all s = 1, . . . , j, l = j + 1, . . . , k and r < ∞. As the number

of terms in the sum increases linearly with n, scaling by n−
k−j

2 is enough to
ensure the convergence as long as k− j ≥ 3.

We show the same result for k − j < 3 in parts. This means, that in the
cumulant above there are up to two ϕtl (w) terms. The cumulant in expression
(3.19) consists of terms like

(i) E [φt1,n(A)ϕt2(w)] and

(ii) E
[
φt1,n(A)ϕt2(w)ϕt3(w)

]
,

terms with more coefficients φtl ,n(A), and their products. Terms with more
than one φtl ,n(A) coefficients have expectation less or equal than that in (ii), so
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we do not have to handle those explicitly. We show that n1/2 times the terms
(i) and (ii) are o(1) for all indices, which ensures that expression (3.19) is o(1).

Let us begin by showing this for (i). Using the continuous differentiability
of the density function and Lemma 1 (ii), (iv) and (v), we can find constants
Ce and De such that∣∣∣wTeλ(εt; λ0)

∣∣∣ ≤ Ce + De|x|α0/4, for all x ∈ R.

Using this finding we can bound (i) by

CeE
[

I(εt1 ,c(α0)−1σ−1
0 n−1/α0 et1)

(A)
]
+ (3.20)

DeE
[
|εt2 |α0/4 I(εt1 ,c(α0)−1σ−1

0 n−1/α0 et1)
(A)

]
.

Recall that the origin is not included in the set A = (a−m, a−m]× · · ·× (am, am].
Assume that (a1, a1] does not contain zero, the index does not matter here.
Expression (3.20) can be further bounded above by

CeP
(

εt1+1 ≥ a1c(α0)σ0n1/α0
)
+ DeE

[
|εt2 |α0/4 I

{
εt1+1 ≥ a1c(α0)σ0n1/α0

}]
.

The first term is o(n) and Karamata’s theorem6 (Feller, 1971, p. 283) implies
that the second part has the same limit as

(const)× De(a1c(α0)σ0n1/α0)α0/4P
(
|εt′ | ≥ a1c(α0)σ0n1/α0

)
= o(n3/4).

Multiplied by n1/2, these terms still converges to zero.

Very similar steps can be used to establish (ii) as well.

It has been shown that

cumk(γ1Wm,n(A) + γ2Nn(w))→γk
1cumk(Wm,n(A)) + γk

2cumk(Nn(w)).

6See Stochastic Models with Power-Law Tails: The Equation X = AX + B by Mikosch et al.,
Appendix B3.
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Step II: cumk (Wm,n(A))→ cumk (Wm(A)) as n→ ∞

Using previous arguments, we have seen that

cumk(Wm,n(A)) =
n

∑
t1=1
· · ·

n

∑
tk=1

cum(φt1,n(A), . . . , φtk ,n(A))

=
n

∑
t1=1

∑
|t1−t2|≤2m(k−1)

· · · ∑
|t1−tk |≤2m(k−1)

cum(φt1,n(A), . . . , φtk ,n(A)). (3.21)

From the page 42 in Rosenblatt (2012) we have

cum(φt1,n(A), . . . , φtk ,n(A))

= ∑(−1)p−1(p− 1)! E

[
∏
j∈ν1

φj,n(A)

]
· · ·E

∏
j∈νp

φj,n(A)

 ,

with ν1, . . . , νp one particular partition of (t1, . . . , tk) and the summation is
over all possible partitions (number of partitions depends only on k, not n).
For our purpose, in each partition, there are two different classes of subsets νj:
one where all the indices in νj are the same, and one with at least one index
different from the rest. In the former case, say νj = (1, . . . , 1),

E [φ1,n(A)s] = E [φ1,n(A)] < ∞.

For the latter case, consider, say νj = (1, 1, 2, 2, 2). From the definition of the
set A in Lemma B4, fix the interval that does not contain zero, say (a1, a1]. We
get

nE
[
φ1,n(A)2φ2,n(A)3

]
= nE [φ1,n(A)φ2,n(A)]

≤ nP
(
(|c(α0)

−1σ−1
0 n−1/α0 ε2| > a1)

⋂
(|c(α0)

−1σ−1
0 n−1/α0 ε3| > a1)

)
→ 0,

as n → ∞. Same logic can be used to obtain this result for all the terms
E
[
∏j∈νj

φj,n(A)
]

where the subset νj consists of at least two different indices.

There are exactly n summands in (3.21) where all the indices (t1, . . . , tk)
coincide. Also the number of the rest of the summands is growing linearly in
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n, so we can write (3.21) as

cumk(Wm,n(A)) = n cumk(φ1,n(A)) + resid.

with resid.→ 0 as n→ 0. Using the fact that

nE[φ1,n(A)]E[φ1,n(A)]→ 0

as n→ ∞, it boils down to showing that

nP
(

ε1, c(α0)
−1σ−1

0 n−1/α0e1 ∈ A
)
→ µ(A)

where µ(A) is a mean measure of Poisson random variableWm(A) for a fixed
A (see section 3.4. in Calder (1998)).

Step III: cumk(Nn(w))→ cumk(wTN) as n→ ∞

Notice that

cumk

(
n−1/2

n

∑
t=1

eλ(εt; λ0)

)
= n1−k/2cumk(wTeλ(εt; λ0)). (3.22)

For k > 2 this converges to zero. For k = 2 (3.22) is

E[wTeλ(εt; λ0)eλT (εt; λ0)w] = wTI(λ0)w.

For k = 1, (3.18) is zero. We have established cumulants of a normally dis-
tributed random variable wTN ∼ N(0, wTI(λ0)w).

Steps I-III establish that (Wm,n(A), Nn(w))
d→ (Wn(A), wTN) on R2 for all

A defined in Lemma B4. Same arguments can be used to generalize this result
to a three dimensional vector (Wm,n(A1),Wm,n(A2), Nn(w)), and iterativaly to
(l + 1)-dimensional vector in Lemma B4. To this end, notice that

cumk(γ1Wm,n(A1) + γ2Wm,n(A2) + γ3Nn(w))

=γk
1cumk(Wn,n(A1)) + cumk(γ2Wm,n(A2) + γ3Nn(w)) (3.23)

+
k−1

∑
j=1

(
k
j

)
cumj,k−j(γ1Wm, n(A1), γ2Wm,n(A2) + γ3Nn(w)). (3.24)
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We have already established the limit of the first row (3.23), which is

cumk(Wm(A1),Wm(A2), wTN).

For (3.24), we write

cumj,k−j(γ1Wm,n(A1), γ2Wm,n(A2) + γ3Nn(w))

=
k−j

∑
l=0

(
k− j

l

)
cumj,l,k−j−l(γ1Wm,n(A1), γ2Wm,n(A2), γ3Nn(w))

=
k−j

∑
l=0

(
k− j

l

)
n−

k−j−l
2 γ

j
1γl

2γ
k−j−l
3

n

∑
t1=1
· · ·

n

∑
tk=1

cum(φt1,n(A1), . . . , φtj ,n(A1), φtj+1,n(A2), . . .

. . . , φtj+l ,n(A2), ϕtj+l+1,n(w), . . . , ϕtk ,n(w)).

Previous arguments can be applied to show that this converges to zero as
n → ∞, and furthermore that (3.24) converges to zero, and thus, Lemma B4
holds for any dimension l.

Proof of Lemma B5

We begin by repeating the arguments in Calder (1998), Lemmas 5-8, which
provides the proof relying on the symmetry arguments.

We begin by repeating the arguments in Calder (1998), Lemmas 5-8 to
show the result for 0 < α0 < 2, relying on the symmetry arguments of the
density function. After that we show that for 0 < α0 < 1 the result follows
without any assumption on the symmetry.

Let us denote Kk,j = c(α0)
1/α0 σ0cj(v)δkΓ−1/α0

k , and IM,δ
t,n = I{|εk,j| ≤ M}I{|Kk,j| ≥

δ}. Note that 1− IM,delta
t,n = I{|Kk,j| ≤ δ} + I{|εk,j| > M}I{|Kk,j| > δ} de f .

=

IA,δ
k,j + IB,M

k,j , with M and δ some possibly large and small positive real num-
bers, respectively.

We show that

P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ln f (εk,j + Kk,j ; λ0)− ln f (εk,j; λ0)
∣∣∣× (1− IM,δ

k,j ) > ε

)
(3.25)
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→ 0

as M→ ∞ and δ→ 0. Using Taylor’s approximation we get

P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ex(εk,j; λ0)Kk,j + (ex(ξk,j; λ0)− ex(εk,j; λ0))Kk,j

∣∣∣× (1− IM,δ
k,j ) > ε

)

≤P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ex(εk,j; λ0)Kk,j

∣∣∣× (1− kM,δ
k,j ) >

ε

2

)

+ P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣(ex(ξk,j; λ0)− ex(εk,j; λ0))Kk,j

∣∣∣× (1− kM,δ
k,j ) >

ε

2

)

with |εk,j − ξk,j| ≤ Kk,j. Using this, together with continuity of ex(·; λ0), and
the partition of 1− IM,δ

k,j , we get

≤P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ex(εk,j; λ0)Kk,j

∣∣∣× IA,δ
k,j >

ε

4

)

+ P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ex(εk,j; λ0)Kk,j

∣∣∣× IB,M,δ
k,j >

ε

4

)

+ P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣Kk,j

∣∣∣2 × IA,δ
k,j >

ε

4

)
+ P

(
∞

∑
k=1

∞

∑
j=1

∣∣∣ex(εk,j; λ0)Kk,j

∣∣∣× IB,M,δ
k,j >

ε

4

)
.

Each of these terms go to zero as M→ ∞ and δ→ 0, by Lemmas 5-8 in Calder
(1998), provided that E[ex(εt; λ0)] = 0.

Next we look at the situation 0 < α0 < 1. The absolute value in (3.25) can
be approximated by

Kk,jex(ξk,j; λ0) ≤ Kk,j sup
x∈R

|ex(x; λ0)|,

where ξk,j is between εk,j and εk,j + Kk,j. For 0 < α < 1, ∑∞
n=1 Γ−1/α0

k < ∞
a.s. (Samoradnitsky and Taqqu, 1994, p. 30). Using this, and the geometric
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convergence of the sequence cj(v),

c0(α)
1/α0 σ0 sup

x∈R

|ex(x; λ0)
∞

∑
j=1
|cj(v)|

∞

∑
k=1
|Γ−1/α0

k | < ∞ a.s..

This gives the convergence in (3.25) as δ→ 0.

Proof of Lemma B6

This proof is similar to the proof of Lemma A.10. in Andrews et al. (2009). In
order to show the result, we need results like those in Calder (1998), Lemmas
1-4 and Proposition A.2. (a)-(c) in Davis et al. (1992).

Let X+
t (v)

de f
= ∑∞

j=1 c−j(v)εt+j and X−t (v)
de f
= ∑∞

j=1 cj(v)εt−j. Note, that

X+
t (v) and X−t (v) are α-stable. Let U+

t,n(v)
de f
= n−1/α0 X+

t (v) and U−t,n(v)
de f
=

n−1/α0 X−t (v). Now, X+
t (v) is independent of X−t (v), and thus U+

t,n(v) is inde-
pendent of U−t,n(v). For the sake of brevity, for now on, we will not write U±t,n

as a function of v, explicitly. Let IM,δ
t,n

de f
= I{|εt| < MI{|U+

t,n| > δ ∪ |U−t,n| > δ}.
Using the complements of these events, we have

1− IM,δ
t,n =I{|U+

t,n| < δ}I{|U−t,n| < δ}+ I{|εt| > M}I{|U+
t,n| > δ}

+ I{|ε| > M}I{|U−| > δ} − I{|εt| > M}I{|U+
t,n| > δ}I{|U−| > δ}

de f
= IA,δ

t,n + IB,M,δ
t,n + IC,M,δ

t,n − ID,M,δ
t,n . (3.26)

Using 2nd order Taylor approximation, we need to show that

lim
M→∞

lim
δ→0

lim sup
n→∞

P

(∣∣∣∣∣ n

∑
t=1

[(U+
t,n + U−t,n)ex(εt; λ0) +

1
2
(U+

t,n + U−t,n)
2exx(x∗t ; λ0)]

∣∣∣∣∣ (3.27)

×(1− IM,δ
t,n ) > ε

)
= 0

with x∗t,n between εt and εt + U+
t,n + U−t,n. Using additivity of probability and
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expression (3.42), the probability in (3.43) can be bounded from above by

P

(∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)ex(εt; λ0)

∣∣∣∣∣× IA,δ
t,n >

1
8

ε

)
(3.28)

+P

(∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)ex(εt; λ0)

∣∣∣∣∣× IB,M,δ
t,n >

1
8

ε

)
(3.29)

+P

(∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)ex(εt; λ0)

∣∣∣∣∣× IC,M,δ
t,n >

1
8

ε

)
(3.30)

+P

(∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)ex(εt; λ0)

∣∣∣∣∣× ID,M,δ
t,n >

1
8

ε

)
(3.31)

+P

(∣∣∣∣∣ n

∑
t=1

1
2
(U+

t,n + U−t,n)
2exx(x∗t,n; λ0)

∣∣∣∣∣× IA,δ
t,n >

1
8

ε

)
(3.32)

+P

(∣∣∣∣∣ n

∑
t=1

1
2
(U+

t,n + U−t,n)
2exx(x∗t,n; λ0)

∣∣∣∣∣× IB,M,δ
t,n >

1
8

ε

)
(3.33)

+P

(∣∣∣∣∣ n

∑
t=1

1
2
(U+

t,n + U−t,n)
2exx(x∗t,n; λ0)

∣∣∣∣∣× IC,M,δ
t,n >

1
8

ε

)
(3.34)

+P

(∣∣∣∣∣ n

∑
t=1

1
2
(U+

t,n + U−t,n)
2exx(x∗t,n; λ0)

∣∣∣∣∣× ID,M,δ
t,n >

1
8

ε

)
, (3.35)

where all the summands have limM→∞ limδ→0 lim supn→∞ zero, as will be
shown next.

Because

IA,δ
t,n =I{|U+

t,n| < δ} − I{|U+
t,n| < δ}I{|U−| > δ}

=I{|U−t,n| < δ} − I{|U−t,n| < δ}I{|U+| > δ},

the first summand (3.28) can be bounded above by

P

(∣∣∣∣∣ n

∑
t=1

U+
t,nex(εt; λ0)

∣∣∣∣∣× I{|U+
t,n| < δ} > 1

32
ε

)
(3.36)
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+P

(∣∣∣∣∣ n

∑
t=1

U+
t,nex(εt; λ0)

∣∣∣∣∣× I{|U+
t,n| < δ}I{|U−t,n| > δ} > 1

32
ε

)
(3.37)

+P

(∣∣∣∣∣ n

∑
t=1

U−t,nex(εt; λ0)

∣∣∣∣∣× I{|U−t,n| < δ} > 1
32

ε

)
(3.38)

+P

(∣∣∣∣∣ n

∑
t=1

U−t,nex(εt; λ0)

∣∣∣∣∣× I{|U−t,n| < δ}I{|U+
t,n| > δ} > 1

32
ε

)
. (3.39)

By Markov’s inequality, (3.36) is bounded by

32
ε

E

[∣∣∣∣∣ n

∑
t=1

U+
t,nex(εt; λ0)

∣∣∣∣∣× I{|U+
t,n| < δ}

]
. (3.40)

If E[ex(εt; λ0)] = 0, (3.40) is zero, given that

E

∣∣∣∣∣ n

∑
t=1

U+
t,nex(εt; λ0)× I{|U+

t,n| < δ}
∣∣∣∣∣
2
 < ∞,

which in turn is a consequence of independence of U+
t,n and εt, Minkovski

inequality and Karamata’s theorem,

E

∣∣∣∣∣ n

∑
t=1

U+
t,n

∣∣∣∣∣
2

× I{|U+
t,n| < δ}

 ≤nE[(U+
t,n)

2 × I{|U+
t,n| < δ}]

∼n× (const)× δ2P(U+
t,n > δ)

=n× (const)× δ2P(X+
t,n > n1/α0 δ)

n→∞→ (const)× δ2 < ∞.

For E[ex(εt; λ0)] 6= 0 and α0 < 1, for some C ∈ R, C > supx |ex(x; λ0)|,
expression (3.40) can be bounded by

C
32
ε

E

[∣∣∣∣∣ n

∑
t=1

U+
t,n I{|U+

t,n| < δ}
∣∣∣∣∣
]
≤ nC

32
ε

E[|U+
t,n|I{|U

+
t,n| < δ}]
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∼nC
32
ε
× (const)× δP(|U+

t,n| > δ) = nC
32
ε
× (const)× δP(|X+

t,n| > n1/α0 δ)

n→∞→ C
32
ε
× (const)× δ

δ→0→ 0.

Probability in (3.37) is bounded by (3.36). Same reasoning applies to (3.38)
and (3.39), where only the order of "+" and "−" signs is reverted.

Probabilities in (3.29) and (3.30) are bounded by nP(|εt| > M)P(|U+
t,n| > δ)

and nP(|εt| > M)P(|U−t,n| > δ), respectively. The first one has limM→∞ limδ→0
lim supn→∞ zero, as

nP(|εt| > M)P(|U+
t,n| > δ)

n→∞∼ (const)× P(|εt| > M)

M→∞→ 0.

Same reasoning applies to (3.30) as well. Probability (3.31) can be shown to
have limM→∞ limδ→0
lim supn→∞ zero by observing that it is also bounded by nP(|εt| > M)P(|U+

t,n| >
δ).

Probability (3.32) can be bounded by

P

(∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)

2exx(x∗t ; λ0)I{|U+
t,n + U−t,n| < 2δ}

∣∣∣∣∣
)

≤C
8
ε

E

[∣∣∣∣∣ n

∑
t=1

(U+
t,n + U−t,n)

2 I{|U+
t,n + U−t,n| < 2δ}

∣∣∣∣∣
]

≤C
8
ε

nE[(U+
t,n + U−t,n)

2 I{|U+
t,n + U−t,n| < 2δ}]

n→∞∼ (const)× C
8
ε

n4δ2P(|U+
t,n + U−t,n| > 2δ)

n→∞→ (const)× C
8
ε

4δ2.

The first row follows by the additivity of probability, the second row is due to
Markov’s inequality, the third row is an application of the Karamata’s theorem
and the fact that 0 < α0 < 2, and the last row is due to the fact that U+

t,n +

U−t,n = n−1/α0(X+
t,n + X−t,n) is an α-stable r.v.

Probabilities (3.33), (3.34) and (3.35) can be shown to have limM→∞ limδ→0
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lim supn→∞ zero the same way as (3.28).

Proof of Lemma B7

First we show that {Q+
n (·)} is tight on C ([−T, T]). That is, for any ε > 0,

(v′, v′′) ∈ RP+Q, and T > 0,

lim
ε→0+

lim sup
n→∞

P

 sup
||v′−v′′ ||<ε
||v′ ||,||v′′ ||<T

|Q+
n (v

′)−Q+
n (v

′′)| > κ

 = 0.

Using mean value theorem and triangle inequality, we find that

|Q+
n (v

′)−Q+
n (v

′′)| =
∣∣∣∣∣ n

∑
t=1

ex(ξt,n; λ0)n−1/α0(v′ − v′′)Tuθ,t(θ0)

∣∣∣∣∣
≤

n

∑
t=1
|[ex(ξt,n; λ0)−

∂

∂x
ex(εt; λ0)]n−1/α0(v′ − v′′)Tuθ,t(θ0)|

+
n

∑
t=1
|ex(εt; λ0)n−1/α0(v′ − v′′)Tuθ,t(θ0)|

with |ξt,n − εt| ≤ |n−1/α0(v′ − v′′)Tuθ,t(θ0)|. Using this and the continuity of
ex(x; λ0), the above can be bounded by

≤Kn−2/α0
n

∑
t=1

[(v′ − v′′)Tuθ,t(θ0)]
2

+ n−1/α0
n

∑
t=1
|ex(εt; λ0))(v′ − v′′)Tuθ,t(θ0)|, (3.41)

where K > 0 is a constant. The result follows by showing that the sums above
are Op(1). To this end, the first one can be written as

Kn−2/α0
n

∑
t=1

∑
i 6=0

c2
i ε2

t−i + Kn−2/α0
n

∑
t=1

∑
i 6=0

∑
j 6=i

cicjεt−iεt−j
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=Kn−2/α0
n

∑
t=1

∑
i 6=0

c2
i ε2

t−i + op(1),

where the first row follows by re-arranging the terms and the second row
follows by Proposition 4.2. in Davis and Resnick (1986). Using Markov’s
inequality, we can evaluate the first term in the last row as

P

(∣∣∣∣∣Kn−2/α0
n

∑
t=1

∑
i 6=0

c2
i ε2

t−i

∣∣∣∣∣ > ε

)
≤ ε−δKδn−2δ/α0E

∣∣∣∣∣ n

∑
t=1

∑
i 6=0

c2
i ε2

t−i

∣∣∣∣∣
δ


≤ε−δK−δn−2δ/α0E

[
n

∑
t=1

∑
i 6=0

c2δ
i ε2δ

t−i

]
= ε−δK−δn−2δ/α0 nE[ε2δ

t−i] ∑
i 6=0

c2δ
i ,

where the second inequality follows from triangle inequality. Inequality holds
for any δ > 0 s.t. δ < α0/2, thus the r.h.s. is finite and n1−2δ/α0 → 0 as n→ ∞.

For the second sum in (3.41), observe that

P

(∣∣∣∣∣n−1/α0
n

∑
t=1

ex(εt; λ0) ∑
j 6=0

cjεt−j

∣∣∣∣∣ > κ

)

=P

(∣∣∣∣∣n−1/α0
n

∑
t=1

ex(εt; λ0) ∑
j 6=0

cjεt−j I

{∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣ ≤ δ

}

+ n−1/α0
n

∑
t=1

ex(εt; λ0) ∑
j 6=0

cjεt−j I

{∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣ > δ

}∣∣∣∣∣ > κ

)

≤κ−1E

[
n

∑
t=1
|ex(εt; λ0)|

∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣ I

{
n−1/α0 ∑

j 6=0
cjεt−j ≤ δ

}]

+ κ−1E

[
n

∑
t=1
|ex(εt; λ0)|

∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣ I

{
n−1/α0 ∑

j 6=0
cjεt−j > δ

}]

≤κ−1E

[
n

∑
t=1
|ex(εt; λ0)|γ

∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣
γ

I

{
n−1/α0 ∑

j 6=0
cjεt−j ≤ δ

}]

+ κ−1E

[
n

∑
t=1
|ex(εt; λ0)|γ

∣∣∣∣∣n−1/α0 ∑
j 6=0

cjεt−j

∣∣∣∣∣
γ

I

{
n−1/α0 ∑

j 6=0
cjεt−j > δ

}]
,
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where first inequality holds by Markov’s inequality, and the second inequality
holds by Hölder’s inequality for γ = 1 if α0 > 1 and 0 < γ < α0 if α0 < 1. By
the fact that ex(x; λ0) is bounded and n−1/α0 ∑j 6=0 cjεt−j is α-stable indepen-
dent of ex(εt; λ0), by Proposition A.2. (a) and (b) in Davis et al. (1992),

lim sup
n→∞

P

(∣∣∣∣∣n−1/α0
n

∑
t=1

ex(εt; λ0) ∑
j 6=0

cjεt−j

∣∣∣∣∣ > κ

)
≤κ−1K1E[ex(εt; λ0)]δ

α0−γ + K2δ−α0 P(|ex(εt; λ0)| > 0).

We have established that

sup
||v′−v′′ ||<ε
||v′ ||,||v′′ ||<T

∣∣Q+
n (v

′)−Q+
n (v

′′)
∣∣ = Op(1)

and it has a majorant that is linear in (v′ − v′′), thus the result follows by
letting ε→ 0.

Proof of Lemma B8

After repeating Steps I and II in the proof on Lemma 1, for Q̃n(v, w), this
proof is essentially the same as the proof of Lemma 8 in Wu (2013). Let us
define a O(n1/2) sequence mn =

⌊√
n
⌋

and show that the sup of

mn−1

∑
t=1

n−mn

∑
t=mn

n

∑
t=n−mn+1

(3.42)

(ln f (ũt(θ0) + n−1/α0 vT ũθ,t(θ0); λ0)− ln f (ũt(θ0); λ0)

− ln f (εt + vTuθ,t(θ0); λ0 − ln f (εt; λ0))

=
mn−1

∑
t=1

n

∑
t=n−mn+1

(ln f (ũt(θ0) + n−1/α0 vT ũθ,t(θ0); λ0)− ln f (ũt(θ0); λ0))

+
mn−1

∑
t=1

n

∑
t=n−mn+1

(ln f (εt + n−1/α0 vTuθ,t(θ0); λ0)− ln f (εt; λ0))

+
n−mn

∑
t=mn

(ln f (ũt(θ0) + n−1/α0 vT ũθ,t(θ0); λ0)− ln f (ut(θ0)+
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n−1/α0 vTuθ,t(θ0); λ0))

+
n−mn

∑
t=mn

(ln f (ũt(θ0); λ0)− ln f (εt; λ0))

is op(1). We will show this for the first and the third rows. Same arguments
can be applied to the second and the fourth as well, respectively.

The first term on the r.h.s. is bounded in absolute value by

mn−1

∑
t=1

n

∑
t=n−mn+1

|n−1/α0 vT ũθ,t(θ0)ex(ũt(θ0); λ0)| (3.43)

+
mn−1

∑
t=1

n

∑
t=n−mn+1

|e′x(ξt; λ0)n−2/α0(vT ũθ,t(θ0))
2|

In order to show that both of these terms are op(1), we show that they con-
verge to zero in η-mean for some η > 0, which in turn implies the convergence
in probability. To this end, for 0 < η ≤ 1, we have

E

[(
mn−1

∑
t=1

n

∑
t=n−mn+1

|n−1/α0 vT ũθ,t(θ0)ex(ũt(θ0); λ0)|
)η]

≤n−η/α0
mn−1

∑
t=1

n

∑
t=n−mn+1

E[|vT ũθ,t(θ0)|3η/2]2/3E[|ex(ũt(θ0); λ0)|3η ]1/3,

where the Hölder’s inequality has been utilized. The expectations on r.h.s. are
bounded by some constant C for any 0 < η < 2α0/3, so the sum is O(mn).
Thus, the majorant goes to zero for any 1/2α0 ≤ η ≤ 2α0/3.

Using similar steps, and the fact that e′x(·; λ0) is bounded, the η-mean of
the second term in (3.43) is bounded by

Cn−2η/α0
mn−1

∑
t=1

n

∑
t=n−mn+1

E[|vT ũθ,t(θ0))|2η ].

Choosing α0/4 ≤ η ≤ α0/2, the η-mean has limit zero.
Combining these results, we have shown that (3.43) is op(1).
The second row of (3.42) can be shown to be op(1) using similar steps, and

by noticing that ut(θ0) is independent of uθ,t(θ0).
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Next we show that the third row on the r.h.s. of (3.42) is op(1). In absolute
value, it can be bounded by∣∣∣∣∣n−mn

∑
t=mn

ex(ut(θ0 + n−1/α0 vTuθ,t(θ0)); λ0)

×(ũt(θ0)− ut(θ0) + n−1/α0 vT(ũθ,t(θ0)− uθ,t(θ0)))

+
1
2

e′x(ξt; λ0)(ũt(θ0)− ut(θ0) + n−1/α0 vT(ũθ,t(θ0)− uθ,t(θ0)))
2
∣∣∣∣

≤
n−mn

∑
t=mn

|ex(εt; λ0)||ũt(θ0)− ut(θ0)|

+
n−mn

∑
t=mn

|ex(εt; λ0)|n−1/α0 |vT(ũθ,t(θ0)− uθ,t(θ0))|

+
n−mn

∑
t=mn

|e′x(ξt; λ0)|n−1/α0 |vTuθ,t(θ0)||ũθ,t(θ0)− uθ,t(θ0)|

+
n−mn

∑
t=mn

|e′(ξt; λ0)|n−2/α0 |vTuθ,t(θ0)||vT(ũθ,t(θ0)− uθ,t(θ0))|

+
n−mn

∑
t=mn

|e′x(ξt; λ0)||(ũt(θ0)− ut(θ0))
2 + n−2/α0(vT(ũθ,t(θ0)− uθ,t(θ0)))

2|.

We show that the first and the last rows above are op(1) by showing that for
some 0 < η ≤ 1, their η-mean converges to zero. The rest of the rows can be
shown to be op(1) using very similar arguments.

The η/2-mean of the first row can be bounded by

n−mn

∑
t=mn

(E[|ex(εt; λ0)|η ])1/2(E[|ũt(θ0)− ut(θ0)|η ])1/2

where the first expectation is a constant. For any 0 < η ≤ α0, the majorant has
a zero limit by Lemma A2.

Using the boundedness of ex(·), the last term is bounded by

n−mn

∑
t=mn

|e′x(ξt; λ0)||ũt(θ0)− ut(θ0)|2
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+ n−2/α0
n−mn

∑
t=mn

|e′x(ξt; λ0)||vT(ũθ,t(θ0)− uθ,t(θ0))|2

≤C
n−mn

∑
t=mn

|ũt(θ0)− ut(θ0)|2

+ n−2/α0 C
n−mn

∑
t=mn

|vT(ũθ,t(θ0)− uθ,t(θ0))|2.

The η-mean of the first term on the majorant side has zero limit for all 0 <
η < α0/2, and the same is true for the second term as well. This completes
the proof that (3.42) is op(1) for any v.

The uniform convergence on compact sets in RP+Q follows by continuity
of the functions at any v, and the boundedness of the functions.
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4 Nonlinear predictability
of asset returns1

4.1 Introduction

The purpose of this study is to answer a question: To what extent are U.S.
stock portfolio returns and stock returns predictable? We answer this ques-
tion by utilizing the properties of a noninvertible ARMA model and a simple
predictability testing procedure developed in Lanne, Meitz, and Saikkonen
(2013). The answer to that question is: predictability is often encountered in
low frequency returns and the best one-step-ahead prediction is nonlinearly
dependent on past observations.

Testing for predictability was long considered as a test for the efficient
market hypothesis, as it was formalized in Fama (1970). Using this terminol-
ogy, our study is related to the weak form of market efficiency. It is said to
hold if future returns are not predictable using information on past prices.
Lim and Brooks (2011) provides a thorough literature review of this sort of
predictability. Campbell, Lo, and MacKinlay (1997), Chapter 2 reviews some
of the empirical methods used to study predictability.

Since Fama (1970), theoretical dynamic asset pricing models have evolved,
and predictability is no longer seen as a matter of efficiency. In fact, in
consumption-based asset pricing models, predictability is an implication of
agents risk aversion (Singleton, 2009, Chapter 10). These theories do not,

1I am grateful for the guidance and suggestions of Markku Lanne, Mika Meitz and Pentti
Saikkonen. I have also benefited of the comments by Henri Nyberg, Niklas Ahlgren and Matthijs
Lof. I want to thank all of the participants at the Graduate School of Finance summer school in
Turku for good comments. Financial support from University of Helsinki Research funds, Yrjö
Jahnsson foundation and the O-P Group research foundation is gratefully acknowledged.
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however, imply autocorrelation between the returns. Predictability may be
nonlinear as well.

Using ARMA models for testing for linear predictability is not meaning-
less, although we do not assume that it is the true data generating process.
By Wold (1938), any purely nondeterministic second-order stationary pro-
cesses can be presented in MA(∞) form, which in turn can be closely ap-
proximated by a finite order ARMA(P, Q) process. Many nonlinear processes
admit ARMA representation. A list of some of these models can be found in
Francq, Roy, and Zakoïan (2012). It is also a common practice to linearize a
structural model around its steady state, and analyze the model as if it were
linear. These presentations are often in the form of ARMA models. In some
situations, ARMA(1,1) arises as a natural candidate for stock returns, such as
in the mean reversions model of Poterba and Summers (1988) and price-trend
model of Taylor (1982).

Testing for predictability with conventional causal and invertible ARMA
models is, however, a non-standard procedure. Andrews and Ploberger (1994)
and Nankervis and Savin (2010) provide valid tests for autocorrelation in
ARMA(1,1) models under very general assumptions, but these tests are not
easily extended to more general ARMA(P,Q) models. Despite being capa-
ble of producing very flexible autocorrelation structures, causal and invertible
ARMA models are unable to produce any nonlinear dependence between the
observations. Keeping these considerations in mind, there are a few advan-
tages to the noninvertible ARMA model. First, on top of being as flexible
with its autocorrelation structure as its invertible counterpart, the noninvert-
ible ARMA model also imposes nonlinear structure between the observations.
In a sense, the noninvertible model offers a more general model for testing
the dependencies between observations. Second, autocorrelation tests can
be performed with Wald or likelihood ratio test statistics that obey standard
asymptotic results. Third, there is a special class of noninvertible models
that produce nonlinearly predictable observations with zero autocorrelation.
These so-called all-pass models are especially useful in studying stock re-
turns, where the autocorrelation between observations is very mild at best,
but it is easy to find nonlinear dependencies. For example, a mild ARCH type
heroskedasticity is an example of nonlinearity, that the noninvertible ARMA
model is capable of controlling.

Some theoretical justification for noninvertible ARMA model can be found
in the seminal work of Hansen and Sargent (1981) and Hansen and Sargent
(1991). Noninvertibility (or nonfundamentalnes) arises under assumptions
that agents know more than the econometrician who tries to model the econ-
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omy. More recently, similar ideas have been utilized in the asset pricing
models (Kasa, Walker, and Whiteman, 2014), fiscal foresight models (Leeper,
Walker, and Yang, 2013), news shock models (Blanchard and Perotti, 2002;
Forni and Gambetti, 2014) and in permanent income models (Fernández-
Villaverde, Rubio-Ramírez, Sargent, and Watson, 2007). What all the refer-
ences above have in common is that they construct a structural economic
model that has a noninvertible linearized solution. Alessi, Barigozzi, and
Capasso (2011) provides a thorough survey of the literature on noninvertible
economic models.

From the empirical point of view, the noninvertible model has been found
to provide an adequate fit for financial time series in Andrews, Calder, and
Davis (2009), Breidt, Davis, and Trindade (2001) and Huang and Pawitan
(2000). The formulation and estimation theory of the noninvertible ARMA
model used in this study is due to Meitz and Saikkonen (2013). As men-
tioned, the predictability testing procedure is introduced in Lanne et al. (2013).
Model selection utilizes Ljung-Box and McLeod-Li type of portmanteau tests
designed for purely noninvertible ARMA models.

Chapter 4.2 is devoted to the methodology. We introduce the noninvertible
ARMA model at the depth needed to explain the predictability testing proce-
dure. We also discuss how linear and nonlinear predictability arise from that
model. The predictability tests of Lanne et al. (2013) are also introduced in
Section 2, with the model selection procedure. Empirical results can be found
in Chapter 4.3. Chapter 4.4 concludes.

4.2 Methodology

4.2.1 Noninvertible ARMA(P, Q) model

The formulation of the noninvertible ARMA(P, Q) model used in this study
is given in Meitz and Saikkonen (2013), where its maximum likelihood (ML)
estimation is also discussed. Without going into the details, we discuss the
most important features of that model here.

We define noninvertible ARMA(P, Q) model as

a0(B)yt = b0(B−1)εt, (4.1)

where a0(z) = 1− a0,1z− · · · − a0,PzP is a Pth order polynomial with all the
roots outside the unit circle: a0(z) 6= 0 for all |z| ≤ 1, z ∈ C. Correspondingly,

131



Nonlinear predictability of asset returns

we define b0(z−1) = 1− b0z−1− · · · − bQz−Q, a Qth order polynomial with all
the roots outside the unit circle in complex plane, b0(z−1) 6= 0 for all |z−1| ≤ 1,
z ∈ C. B is backward shift operator, i.e. Bkxt = xt−k for all k = . . . ,−1, 0, 1, . . . .
In contrast to the conventional causal and invertible ARMA(P, Q) model, the
invertibility condition considering the MA polynomial is given in terms of
argument z−1. Another way of defining a noninvertible process is to have
b0(z) 6= 0 for all |z| ≥ 1. εt is a non-Gaussian iid process, εt ∼ (0, σ2). Specific
high-level assumptions for this model are given and discussed in Meitz and
Saikkonen (2013) and Lanne et al. (2013).

4.2.2 Linear and nonlinear predictability

Conditional expectation is denoted by Et[Xt+1]
de f .
= E[Xt+1|Xt−s, s ≥ 0]. Pre-

dictability of the process yt means that its conditional mean is not constant,
Et−1[yt] 6= 0, for some t = . . . ,−1, 0, 1, . . . .

It is well known that, for causal and invertible ARMA models, lack of
autocorrelation implies the unpredictability of the process. This is not the
case with the noninvertible ARMA model. This can be seen by looking at the
spectral density function of process yt in (4.1):

fy(ζ) =
σ2

0
2π

b0(eiζ)b0(e−iζ)

a0(e−iζ)a0(eiζ)
.

As pointed out in Lanne et al. (2013), an interesting special case is one where
P = Q and a0(z) = b0(z). In this case the spectral density is not dependent on
ζ, and the autocorrelation is zero. This is the so-called all-pass model, studied
for example by Breidt et al. (2001) and Andrews, Davis, and Breidt (2006). It
is important to notice that, even for the all-pass model, the observations are
dependent. In the fashion of (4.1), the model can be written as

a0(B)yt = a0(B−1)εt,

where the polynomials do not cancel out since the polynomial on the right
hand side has an argument z−1 instead of z. Formal justification for the non-
linear predictability of the all-pass model can be shown in the same way as
in Lanne et al. (2013), Appendix A, where it has been shown for noninvert-
ible ARMA(1,1) model. The predictability of yt boils down to the question, if
a0(z) = b0(z) = 1, and, yt = εt.
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4.2.3 Predictability testing procedure

The noninvertible ARMA model has a major advantage in hypothesis testing
over its invertible counterpart. Consider a causal and invertible ARMA(P, P)
model

a0(B)yt = b0(B)εt, (4.2)

that satisfies the assumptions listed below (4.1). Testing for linear predictabil-
ity would result in testing a hypothesis a0(z) = b0(z) in (4.2). Note that under
the null, the AR and MA polynomials would cancel out and there are sev-
eral parameters that would be present only under the alternative hypothesis.
Such a setting results in unconventional testing theory which has been stud-
ied by Andrews and Ploberger (1994) and Nankervis and Savin (2010), and is
very hard to generalize to models larger than ARMA(1,1). The noninvertible
ARMA model allows us to test for linear predictability in a standard manner
because AR and MA parameters are present also under the null.

ML estimation theory for the model (4.1), with an ARCH(R) type of error
terms, is derived in Meitz and Saikkonen (2013), which includes a set of high-
level assumptions on (4.1). These assumptions are very standard in nature (see
e.g. Lii and Rosenblatt (1996), Breidt et al. (2001) or Andrews et al. (2009).) The
set of assumption in Meitz and Saikkonen (2013) is tailored to the formulation
of the noninvertible model (4.1), which differs slightly from the formulation in
other references. Also, the assumptions used here account for the ARCH(R)
type error term, which is not present in the other references mentioned above,
nor in our model. We use ML estimation method with re-scaled Student’s
t-distribution, which is well in line with the assumptions.

Next, we set some notation. Let θ̃ = (ã, b̃) with ã = (ã1, . . . , ãP) and
b̃ = (b̃1, . . . , b̃Q) be the ML estimators of the AR and MA parameters of (4.1).
Let δ̃ = (θ̃, σ̃, λ̃) denote the (P + Q + 1+ d× 1) parameter vector of all the pa-
rameters of the model, where σ̃ is the standard deviation of the error process
εt. Density function of the iid error term εt is σ−1

0 fε(σ
−1
0 x; λ0), is (possibly)

dependent on λ0. In our case, λ0 is the degrees of freedom parameter of
Student’s t-distribution.

Local maximizer of approximative likelihood function2

L(δ) = n−1
n

∑
t=1

(log fε(σ
−1εt; λ)− 1

2
log σ2)

2The details for this approximate likelihood functions are in Meitz and Saikkonen (2013)
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is consistent and asymptotically normally distributed,

n1/2(δ̃− δ0)
d→ N(0, I(δ0)

−1),

as the sample size n goes to infinity. The positive definite covariance matrix
I(δ0)

−1 is obtained as a probability limit of the Hessian of the log-likelihood
function in the usual manner:

− ∂2

∂δ∂δT L(δ̃)
de f
= J̃ p→ I(δ0). (4.3)

In the fashion of Lanne et al. (2013) and in the light of the previous sub-
section, we have two hypotheses we wish to test. The first is the test for linear
predictability. We test for the all-pass hypothesis against an unrestricted non-
invertible ARMA(P, P) model,

Hap : a0,p = b0,p for all p = 1, . . . , P, in (4.1).

Testing Hap involves jointly testing P linear restrictions and a corresponding
Wald test is

Wap = (ã− b̃)T(n−1R(J11 −J12J −1
22 J12)

−1RT)−1(ã− b̃) d→ χ2
P, under Hap

with

R =
(

IP×P −IP×P

)
,

IP×P is a (P× P) identity matrix, and Iij are the blocks of

I(δ̃) =

I11 I12

I21 I22

 .

If δ̃ap = (θ̃ap, σ̃ap, λ̃ap) is the vector of ML estimates of the constrained
model satisfying Hap, then the likelihood ratio test for Hap is

LRap = 2n[L(δ̃)− L(δ̃ap)]
d→ χ2

P under Hap.

134



4.2 Methodology

The second hypothesis we wish to test is the unpredictability hypothesis

Hiid : a0,p = b0,p = 0, for all p = 1, . . . , P, in (4.1),

against the alternative of Hap. After noninvertible ARMA(P, P) model in (4.1)
has been estimated under the Hap, Wald test reads as

Wiid = nθ̃T
ap(J̃ap,11 − J̃ap,12J̃ −1

ap,2J̃ap,12)θ̃ap
d→ χ2

P, under Hiid,

where J̃ap,11 − J̃ap,12J̃ −1
ap,2J̃ap,12 in the middle is the upper-left block of the

inverse of the Hessian matrix of the model estimated under Hap.
Likelihood ratio test is formulated in the usual manner,

2n[L(δ̃ap)− L(δ̃iid)]
d→ χ2

P, under Hiid,

where δ̃iid is a vector of estimates under Hiid, δ̃iid = (0T
(P×1), σT

iid, λiid). The
drawback of using the likelihood ratio statistics is, as usual, that the model
must be estimated under the null hypothesis, in addition to the alternative.

4.2.4 Model selection

Model selection can be based on a Box and Pierce (1970) and McLeod and
Li (1983) type of portmanteau tests Qac and Qhs. In the case of noninvertible
ARMA models, the properties of these tests have been derived in Nyholm
(2017). In order to execute the tests, we have to calculate the residuals of the
fitted models. By the way the model (4.1) is written, the residuals must be
solved recursively top-down. Assume that we observed {yt}n

t=1−P, and let ut

denote the residual that satisfies yt − ã1yt−1 − · · · − ãPyt−P = ut − b̃1ut+1 −
· · · − b̃Put+P for t = n, . . . , 1, with initialization un+1 = · · · = un+P = 0.

In order to test for the autocorrelation, we use test statistic

Qac = nρT
acΩ̃−1

ac ρac,

where ρac is a (m× 1) vector of empirical autocorrelation coefficients of ut,

ρi,ac =
∑n

t=i+1 utut−i

∑n
t=1 utut

, and ρac = (ρ1,ac, . . . , ρm,ac)
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for some m. The covariance matrix in the middle is

Ω̃ac = Im×m − Λ̃mJ̃ 11Λ̃T
m,

and J̃ is the upper diagonal block of J̃ −1, given in (4.3), and

Λ̃m =


ψ̃
(a)
0 . . . ψ̃

(a)
1−P −ψ̃

(b)
0 . . . −ψ̃

(b)
1−Q

...
. . .

...
...

. . .
...

ψ̃
(a)
m−1 . . . ψ̃

(a)
m−P −ψ̃

(b)
m−1 . . . −ψ̃

(b)
m−Q

 ,

where ψ̃
(a)
i and ψ̃

(b)
i are the coefficients of the power series expansions of

1
1− ã1z− · · · − ãPzP =

∞

∑
j=0

ψ̃
(a)
j zj and

1
1− b̃1z− · · · − b̃PzP

=
∞

∑
j=0

ψ̃
(b)
j zj,

respectively. For negative indices i, ψ
(·)
i = 0. If we conduct the test for nonin-

vertible ARMA(1,1) model, we use

Λ(1,1)
m =


1 −1

ã1 −b̃1
...

...

ãm−1
1 −b̃m−1

1

 .

Under the null hypothesis of correctly specified ARMA model in (4.1), then
asymptotically Qac ∼ χ2

m, and we reject the null with confidence level α if
Qac > k1−α, with P(χ2

m ≥ k1−α) = α.

Heteroskedasticity is tested by using

Qhs = nρT
hsρhs,

where ρhs is a (m×m) vector of empirical autocorrelations of u2
t ,

ρi,hs =
∑n

t=i+1(u
2
t−i − σ̃2)(u2

t − σ̃2)

∑n
t=1(u

2
t − σ̃2)

and ρhs = (ρ1,hs, . . . , ρm,hs)
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for some m. If the model is correctly specified, Qhs ∼ χ2
m asymptotically, and

we can calculate the critical values for the tests the same way as above.

4.3 Predictability of the asset return portfolios

As pointed out by Lanne et al. (2013), noninvertible ARMA model has several
advantages against other methods of predictability testing. Linear predictabil-
ity can be tested in a straightforward manner by calculating the sample auto-
correlation function and comparing it to a suitable critical value. Usually this
value is the asymptotic 95% critical value calculated under the assumption of
iid returns. This method does, however, suffer from poor power properties, as
explained in Campbell et al. (1997), Chapter 2.

Imposing more structure on the testing procedure improves the power of
the testing. A natural way of doing so is to impose ARMA(1,1) structure to
the asset returns, which arises naturally from the price-trend model of Taylor
(1982) and mean reversion model of Poterba and Summers (1988). As pointed
out earlier, it is a nonstandard procedure to test for the autocorrelation in the
ARMA(1,1) model, as the AR and MA parameters are present only under the
hypothesis of linear predictability.

Nonlinear predictability is searched using some particular nonlinear model.
For example, sign predictability or smooth transition models have been pop-
ular in recent literature. Also GARCH-in-mean models have been used to
study the relation between volatility and excess returns, see e.g. Bollerslev,
Engle, and Wooldridge (1988). Another branch of literature derives nonlinear
predictability in a closed form from a theoretical asset pricing model. A clas-
sical example of this is the estimation of the parameters of the stochastic Euler
equation, for example in Hansen and Singleton (1982). Our method, falls in
the first category, as we do not test for a hypothesis implied by a structural
economic model, although the noninvertible ARMA model may be compatible
with such a model.

It is superior to the conventional causal and invertible ARMA model be-
cause it incorporates all the same autocorrelation structures, but the test for
linear predictability is a standard procedure. Furthermore, if no linear pre-
dictability is found, we may still conduct a test for nonlinear predictability.
For conventional ARMA models, the lack of linear predictability always im-
plies the lack of any predictability.

The main aim of this study is to test whether or not there is any predictabil-
ity in U.S. stock returns that can be detected with a noninvertible ARMA
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model, and to what extent.

4.3.1 U.S. stock portfolios returns

We start our analyses by evaluating the fit of the noninvertible ARMA model
to the return series of 10 value-weighted portfolios formed on size. Return se-
ries are continuously compounded using monthly data from Kenneth French’s
data library, which combines data from the NYSE, AMEX and NASDAQ. The
data spans from the first quarter of 1947 to the second quarter on 2019. We
present estimation results of the noninvertible ARMA(1,1) model for the mar-
ket portfolio and 10 value-weighted size-ordered portfolios, ranked decile-
by-decile, see Table 4.1. The estimated AR and MA coefficients are very
close to each other for all the portfolios, which points towards the all-pass
hypothesis. Parameters are also relatively far from zero, compared to their
estimated standard deviations. The residuals of these portfolios do not de-
pict any signs of autocorrelation, which can be seen by calculating the Qac
statistic for testing the autocorrelation. The p-values of these tests are so large
that the hypothesis of no autocorrelation cannot be rejected on any mean-
ingful significance level. There are some signs of heteroskedasticity in the
residuals of two portfolios. These are the portfolios of the smallest companies
and the group in the second decile. This suggests that a larger noninvertible
ARMA model might be more adequate for these portfolios, and indeed, for
the Decile 2 portfolio, a noninvertible ARMA(2,2) model is capable of captur-
ing the dependencies in the residuals. The estimated model for this portfolio
is (1− 0.621B + 0.649B2)yt = (1− 0.644B−1 + 0.604B−2)εt. Now the p-values
for the autocorrelation in the residuals and in the squared residuals for m = 12
are 0.758 and 0.638, respectively, so there is no sign of dependencies left in the
residuals. Numbers are similar for other lag lengths as well.

Next we concentrate on the quarterly returns of 46 different stock return
portfolios. Quarterly returns are again composed from monthly data, span-
ning from January 1947 to December 2017. There are 284 observations in each
portfolio. We use 25 portfolios formed according to the size and book-to-
market values of the companies in the stock exchanges (5× 5). Market portfo-
lio represents the return on the value weighted market portfolio of all of the
companies in all of the stock exchanges, in excess to risk-free rate. We use 5
industry portfolios, where the companies are divided into Consumer, Manu-
facturing, High Tech, Health Care or other industries. We also analyze 10 in-
dustry portfolios where the companies are classified as No Durable, Durable,
Manufacturing, Energy, High Tech, Telecommunications, Health Care, Shop-
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4.3 Predictability of the asset return portfolios

Qac,T Qhs,T
Portfolio a b σ2 λ 5 9 12 5 9 12
Market .775

(.037)
.758
(.039)

8.074
(.436)

5.012
(0.793)

.807 .625 .746 .812 .845 .679

Decile 1 −0.489
(.151)

−0.542
(.138)

12.448
(.890)

6.750
(2.271)

.551 .491 .464 .121 .164 .001

Decile 2 −0.574
(.045)

−0.576
(.032)

11.782
(.594)

6.415
(1.929)

.792 .746 .740 .345 .330 .012

Decile 3 −0.418
(.055)

−0.419
(.055)

11.122
(.580)

6.382
(2.135)

.568 .551 .581 .268 .494 .280

Decile 4 .746
(.050)

.721
(.035)

7.679
(.573)

5.152
(1.181)

.974 .963 .963 .387 .500 .856

Decile 5 .742
(.060)

.821
(.061)

10.816
(.541)

4.958
(1.621)

.636 .615 .743 .290 .415 .209

Decile 6 −0.462
(.038)

−0.484
(.050)

10.392
(.525)

4.667
(1.150)

.853 .753 .846 .723 .839 .802

Decile 7 .723
(.050)

.806
(.055)

9.795
(.549)

4.953
(0.634)

.719 .571 .672 .221 .288 .308

Decile 8 .691
(.046)

.806
(.043)

10.014
(.466)

3.999
(0.819)

.794 .665 .775 .347 .490 .455

Decile 9 .669
(.049)

.692
(.047)

8.671
(.488)

4.039
(.666)

0.466 .391 .942 .580 .353 .411

Decile 10 0.789
(.033)

0.734
(.047)

7.678
(.409)

4.844
(1.031)

1.000 .783 .835 .754 .941 .900

Table 4.1: The noninvertible ARMA(1,1) model has been estimated to 11 stock return index
series: the CRSP market portfolio returns and returns of 10 value weighted-portfolios formed on
size. Table indicates the parameter estimates and their standard errors. Test statistics Qac,T and
Qhs,T have been calculated from the residuals of the fitted models and their p-values have been
reported for three different lag lengths m for each test.

ping, Utilities and other industries. On top of these, we analyze four Dow-
Jones Average indices: Industrial, Composite, Transportation and Utility, and
the S&P 500 Index.

Linear and nonlinear predictability has been tested in all the 46 portfo-
lios using a noninvertible ARMA(1,1) model. The results are listed in Tables
4.2 and 4.3 in the Appendix for the Likelihood ratio test and Wald test, re-
spectively. Of all the 46 portfolios, the all-pass hypothesis is rejected in seven
cases using the likelihood ratio test and ten cases using the Wald test, with
5% significance level. All of these rejections suggest that there might be lin-
ear predictability in these portfolios. Almost all of these portfolios belong
to the set of 25 portfolios formed according to size and book-to-market val-
ues. Eyeballing, the test results do not resemble any clear systematic relation,
but linear predictability is never found for the portfolios of the high book-
to-market firms. Of those portfolios, where the likelihood ratio test did not
reject the all-pass hypothesis, the iid hypothesis was rejected 14 times. These
14 portfolios exhibit signs of nonlinear predictability. For example, the CRSP
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market portfolio belongs to this set. Using the Wald test, this set is even larger.
Altogether, 28 portfolios show sign of nonlinear predictability, but no sign of
linear predictability. For example, all except one of the CRSP 10 industry port-
folios are nonlinearly predictable, but not linearly, as well as three out of four
Dow-Jones Average indices and the S&P500 index.

4.3.2 S&P 500 financial sector firms’ stock returns

We have analyzed the stock returns of 21 financial sector companies in the S&P
500 list. Returns are continuously compounded from monthly stock prices,
adjusted for dividend payments. Data availability restricts the set of compa-
nies we can analyze. We only analyze companies with price data available
prior to 1990 and spans until the end of 2017. Names of the companies are
listed in Table 4.4 in Appendix, together with the test results.

We start by estimating noninvertible ARMA(1,1) model for the stock re-
turns of each of the companies. This model is extended to nonivertible
ARMA(2,2) model, if either Qac or Qhs test rejects at 95% significance level. P-
values of the Wald test for linear and nonlinear predictability are reported for
all the estimated models in Table 4.4. Among the returns on these companies’
stocks, we find very little signs of autocorrelation. Noninvertible ARMA(1,1)
model seems adequate for 14 out of 21 occasions. Hap is not rejected in any of
these cases. Hiid is rejected in 9 cases out of these 14.

If the noninvertible ARMA(1,1) is not capable of controlling for the het-
eroskedasticity in the data, the noninvertible ARMA(2,2) model is rarely bet-
ter. For Comerica Inc., extending noninvertible ARMA(1,1) to ARMA(2,2)
helps to control for the dependencies in the residuals. In this case, Hap and
Hiid are clearly rejected.

4.4 Conclusions

We have applied the two-stage predictability testing procedure of Lanne et al.
(2013) to a set of returns on stock portfolios and financial sector firms stocks.
The results show clear signs of predictability in asset returns, which is not
linear in many cases. This result is well in line with the dynamic consumption-
based asset pricing literature, see e.g. Singleton (2009), Chapter 9. The second
contribution is a straightforward extension of the testing procedure of Lanne
et al. (2013) to incorporate larger models than nonivertible ARMA(1,1).
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We used diagnostic tests for the residuals of noninvertible ARMA(P, Q)
model to analyze the goodness of fit of the model. Qac and Qhs statistics
for testing autocorrelation in the residuals and squared residuals give very
valuable insights into the goodness of fit of the noninvertible ARMA model.
We showed how these tests works in practice in a small-scale example, and
results were encouraging. Noninvertible ARMA models were successful in
controlling the dependence structure in the data according to these tests, many
of the return series.

Nonlinear predictability was not exceptional among the data we used. Our
testing procedure revealed linear predictability in a few cases, but around half
of the portfolios showed signs of some kind of predictability. Among differ-
ent portfolio classes, we were not able to see any systemic pattern, although
linear predictability seems to be less likely to occur among the high book-to-
market value firm portfolios, or portfolios formed by industries. Also, large
financial sector firms showed very little sign of autocorrelation, but nonlin-
ear predictability was present in most of the cases in which noninvertible
ARMA(1,1) model was shown to be an adequate model.
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Test tables

Table appendix

4.A Tables

LR test P-values P-values P-values
Hap Hiid Hap Hiid Hap Hiid

CRSP Market Portfolio 0,87 0,01

CRSP 25 portfolios formed CRSP 5 industry Dow-Jones
on size and book to market portfolios Averages
Size B / M Consumer 0,89 0,10 Industrial 0,66 0,09
Small Low 0,03 1,00 Manuf 0,96 0,01 Composite 0,96 0,01

2 0,31 0,26 HiTec 1,00 0,64 Transportation 0,07 0,05
3 1,00 0,11 Hlth 0,97 1,00 Utility 0,04 0,02
4 0,17 1,00 Other 0,32 0,04

High 0,06 1,00
2 Low 0,04 0,03 CRSP 10 Industry

2 0,03 1,00 Portfolios SP 500 Index 0,58 0,14
3 0,04 0,16 noDur 0,80 0,00
4 0,19 0,43 Durbl 0,33 0,10

High 0,06 1,00 Manuf 0,04 0,02
3 Low 0,06 0,04 Energy 0,55 0,01

2 1,00 0,01 HiTec 0,36 0,18
3 0,10 0,04 Telcm 0,12 0,00
4 0,09 0,30 Shop 0,04 0,33

High 0,06 1,00 Hlth 0,83 0,61
4 Low 0,14 0,00 Utils 0,46 0,08

2 0,23 0,01 Other 0,14 0,04
3 0,24 0,19
4 0,01 0,03

High 0,12 0,01
Large Low 0,38 0,13

2 0,13 0,07
3 0,05 0,08
4 0,23 0,48

High 0,85 0,30

Table 4.2: Likelihood ratio tests for linear and nonlinear predictability. We have
tested for linear and nonlinear predictability using the LR-test and the noninvertible ARMA(1,1)
model. The data is quarterly measured, and it spans the years from 1947 to 2017. Linear pre-
dictability can be found in seven portfolios using the 5% significance level. Nonlinear predictabil-
ity was found in 14 portfolios.
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Wald test P-values P-values P-values
Hap Hiid Hap Hiid Hap Hiid

CRSP Market Portfolio 1,00 0,00

CRSP 25 portfolios Formed CRSP 5 industry Dow-Jones
on Size and Book to Market Portfolios Averages
Size B / M Consumer 0,87 0,00 Industrial 0,96 0,00
Small Low 0,01 0,00 Manuf 1,00 0,00 Composite 0,96 0,00

2 0,03 0,14 HiTec 0,95 0,67 Transportation 0,11 1,00
3 0,20 1,00 Hlth 0,98 0,00 Utility 0,05 0,00
4 0,11 0,00 Other 0,84 1,00

High 0,05 0,00
2 Low 0,87 0,00 CRSP 10 Industry

2 0,03 0,00 Portfolios SP 500 Index 0,55 0,00
3 0,01 0,00 noDur 0,89 0,00
4 0,13 0,00 Durbl 0,56 0,00

High 0,02 0,00 Manuf 0,04 0,00
3 Low 0,05 0,00 Energy 0,98 0,00

2 0,24 1,00 HiTec 0,94 0,00
3 0,08 0,00 Telcm 0,10 0,00
4 0,02 0,00 Shop 0,61 0,00

High 0,04 0,00 Hlth 0,98 0,00
4 Low 0,11 0,00 Utils 0,45 0,01

2 0,21 0,00 Other 0,84 1,00
3 0,04 0,99
4 0,00 0,00

High 0,09 0,00
Large Low 0,40 0,00

2 0,62 0,97
3 0,53 0,00
4 0,49 0,76

High 0,86 0,03

Table 4.3: Wald tests for linear and nonlinear predictability. We have executed
Wald tests for testing the hypothesis on linear and nonlinear predictability using the ARMA(1,1)
model. The p-values are reported. The data is quarterly measured, and it spans the years from
1947 to 2017. Linear predictability can be found in seven portfolios using the 5% significance
level. Nonlinear predictability was found in 28 portfolios.
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1.30e −

14
0.1717

0.064

Table
4.4:

W
ald

test
for

linear
and

nonlinear
predictability

of
S&

P
500

Financial
sector

stock
returns.W

e
have

analyzed
21

S&
P500

list
financialcom

panies’quarterly
stock

return
series.

R
eturns

are
adjusted

for
dividend

paym
ents,and

the
com

panies
are

chosen
such

that
there

w
as

price
data

available
prior

to
1990

to
the

end
of

2017.
W

e
have

tested
for

linear
and

nonlinear
predictability

using
the

A
R

M
A

(1,1)
m

odel
w

henever
the

Q
ac

and
Q

hs
tests

do
not

reject.
W

hen
there

is
a

rejection,w
e

have
expanded

to
the

noninvertible
A

R
M

A
(2,2)

m
odel.

The
p-values

of
the

W
ald

tests
are

reported.
W

e
found

A
R

M
A

(1,1)
as

a
suitable

m
odelfor

the
testing

purpose
for

14
return

series,and
in

nine
of

these
cases

there
w

ere
signs

of
nonlinear

predictability.
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