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Abstract. We present results of theoretical calculations of positron annihilation signals in 

InGaN alloys with and without vacancies. We demonstrate the sensitivity of the signals to the 

different configurations of the In/Ga atoms in In1-xGaxN supercells. 

1. Introduction 

The two most used methods in defect studies with positron annihilation are the positron lifetime and 

Doppler broadening (of the positron-electron annihilation radiation) spectroscopy [1]. These techni-

ques are very efficient in giving important information on vacancy defects in metals and semi-

conductors: vacancies can be identified (sublattice in compounds, size in the case of vacancy clusters, 

and decoration by impurities), their charge states can be determined and their concentrations can be 

evaluated in the technologically important range from 1015 to 1019 cm-3. Thanks to recent 

developments in theoretical calculations, computational studies can be directly compared with positron 

experiments providing possibilities for very detailed interpretations of experimental data [2–6]. 

The identification of a vacancy defect is at its best when the host lattice has perfect crystalline 

order. Good examples of such cases include the vacancy-donor complexes in Si [7–10], the Ga and As 

vacancies in GaAs [11–14], or the Ga vacancy-impurity complexes in GaN [15–18]. In some cases 

even small substitutional impurities can act as vacancy defects and be identified, such as LiZn in ZnO 

[19,20]. As positron trapping to negative defects is temperature dependent, manipulation of the defect 

charge states through optical illumination can be used to bring additional detail to the identification, as 

in the case of the EL2 defect in GaAs [21,22] or vacancy clusters in diamond [23–25]. 

Many of the technologically important semiconductors are in fact alloys instead of simple 

elemental or compound systems. Detailed identification of vacancy defects has been possible for 

example in Si1-xGex: vacancy-fluorine [26,27] and vacancy-donor [28–30] complexes have been 

studied quite extensively. However, the random nature of the alloy brings additional complication to 

the analysis, as the immediate vicinity of the vacancy defect is not well defined. For example, the three 

group IV atoms surrounding the vacancy in the V-Sb complex in Si1-xGex can all be Ge (or all Si). As 

the core electron shells of Ge and Si are very different, the effect on the annihilation signals is strong. 

The main advantage of the III-nitride family of compounds (AlN, GaN and InN) is the possibility 

to synthesize alloys in order to tune the optical properties (band gap) for the fabrication of opto-

electronic devices. Hence it is important to understand the physics of defects in these alloys. In 

addition, the alloying seems to generate material with elevated point (vacancy) defect concentrations 
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[31–33]. However, the random alloy nature makes the detailed identification of the detected defects 

very difficult [34,35], even if it is possible in the respective binary compounds [36–40]. 

In this paper we present results of theoretical calculations of positron annihilation signals in InGaN 

systems with and without vacancies. We demonstrate the sensitivity of the signals to the different 

configurations of the In/Ga atoms. We discuss these results in the light of published experimental data 

in thin film InGaN alloys and other alloyed materials systems. We also present our view on future 

developments required for more detailed analysis of defects in semiconductors with less perfect 

crystalline order. 

2. Methods 

Our computational scheme [4] is based on the zero-positron density limit of the two-component 

density functional theory [41]. Valence electron densities are calculated self-consistently using the 

local density approximation (LDA) and projector augmented-wave method (PAW) [42] implemented 

in the VASP code [43]. The electronic structure calculations for bulk systems are performed using a 

16-atom InGaN wurtzite supercell, with 34 different ways of distributing the In and Ga atoms in the 

cell. For systems containing a vacancy the supercell size was increased to 128 atoms by multiplying 

the original 16-atom cell. Ionic positions are relaxed with a convergence criterion of 0.01 eV/Å for 

forces. Gallium 3d and indium 4d electrons are included as valence electrons and an energy cutoff of 

400 eV is chosen. The Brillouin zone is sampled with a 4×4×4 Monkhorst-Pack k-point mesh. After 

deriving the electron densities in the lattice, the positron densities are solved independently in the 

calculated Coulomb potential due to electrons and nuclei and the e-p correlation potential evaluated 

with in LDA [41]. This is the so-called “conventional scheme”, in which the positron does not affect 

the average electron density, and further, the e-p correlation potential is approximated in the zero-

positron-density limit. Momentum densities of annihilating electron-positron pairs are calculated using 

the state-dependent enhancement model [44] within LDA. 

In order to compare the calculated three-dimensional (3D) momentum density to one-dimensional 

(1D) experimental spectra, we integrate the calculated spectra over the wurtzite m plane. To account 

for the experimental detector resolution, the calculated momentum distributions are additionally 

convoluted with a Gaussian resolution function of 0.66 a.u. FWHM The line-shape parameters are 

calculated from the spectra using momentum windows S < 0.40 a.u. and 1.53 < W < 3.93 a.u. The 

positron lifetime τ is determined as the inverse of the annihilation rate λ obtained from the 

calculations. For further details on the computational methods, the reader is referred to [3,4,38]. 

3. Results and discussion 

3.1. Bulk InGaN systems  

Figures 1–3 show the S and W parameters and the positron lifetimes calculated in 16-atom InGaN 

supercells with varying In content and In-Ga distributions. Interestingly, the S and W parameters 

(figures 1 and 2) change in different ways with increasing In content. The change in W parameter is 

very close to linear, while the S parameter exhibits strong bowing. The dotted curves are drawn to 

guide the eye, but also represent a simple model where positrons are considered to be attracted to 

GaN-resembling and InN-resembling lattices in different ways. For example, in figure 1 the dotted 

curve is drawn assuming that the relative weights of GaN and InN S parameters are 64% and 36%, 

respectively. Hence it would seem that from the S parameter point of view, positrons are almost twice 

as likely to annihilate in the GaN-resembling part than in the InN-resembling part of the InGaN lattice. 

On the other hand, the W parameters and the positron lifetimes do not exhibit any significant bowing 

(or preference), here the relative weights can be modelled as 53% and 47% for GaN and InN, 

respectively. The bowing seen in figure 4 hence fully originates from the S parameter bowing. 

Both the S and W parameters for a given In content exhibit scatter as a function of the In-Ga 

distribution in the supercell, and the largest variations are seen for In0.5Ga0.5N. The variations are much 

smaller in the positron lifetime (figure 3). Interestingly, also the largest variations in S and W follow 

the simple model (dotted curve in figure 4), even if they cross the linear behaviour in figures 1 and 2. 
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The largest variations in the In0.375Ga0.625N – In0.625Ga0.375N supercells (points clearly separated from 

the others) are due to effective superlattice structure produced by the supercell. 

 

 

 

 

Figure 1. S parameters for InxGa1-xN supercells 

with varying In-Ga distributions as a function of 

In content. 

 Figure 2. W parameters for InxGa1-xN supercells 

with varying In-Ga distributions as a function of 

In content. 

 

It is important to note that the above calculated positron annihilation parameters are not directly 

comparable on the absolute scale to experimental values. For example, the bulk positron lifetimes for 

both InN and GaN are 25–30 ps shorter than those determined experimentally. This is in line with 

earlier comparisons when the LDA approximation is employed [17,34,38]. The relative changes in the 

positron lifetime can, however, be considered reliable as found in these reports. The situation with the 

S and W parameters is more complex. In experiments we have SInN / SGaN ≈ 1.045 [36], while in the 

calculations the ratio is 1.028. For the W parameter experiments give WInN / WGaN ≈ 0.86, and the 

calculated ratio is 0.89. Interestingly, the experiments and theory are closer matched for the W 

parameter. 

  

 

 

 

Figure 3. Positron lifetimes for InxGa1-xN 

supercells with varying In-Ga distributions as a 

function of In content. 

 Figure 4. S and W parameters for InxGa1-xN 

supercells with varying In-Ga distributions as a 

function of In content. 
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Figure 5. S parameters for metal vacancy 

containting InxGa1-xN supercells with varying 

In-Ga distributions as a function of In content. 

 Figure 6. W parameters for metal vacancy 

containting InxGa1-xN supercells with varying 

In-Ga distributions as a function of In content. 

3.2. Vacancy-containing InGaN systems 

Figures 5–7 show the S and W parameters and the positron lifetimes calculated in 128-atom InGaN 

supercells containing one metal vacancy with varying In content and In-Ga distributions. The removed 

metal atom was chosen at random in the cell, and only one vacancy for each of the 34 above-descibred 

systems was considered. Agreement with experiment is similar as in the case of bulk systems. 

 

 

 

 

Figure 7. Positron lifetimes for metal vacancy 

containting InxGa1-xN supercells with varying 

In-Ga distributions as a function of In content. 

 Figure 8. S and W parameters for metal vacancy 

containting InxGa1-xN supercells with varying 

In-Ga distributions as a function of In content. 

 

The dotted lines in the figures represent a similar model as for the bulk (relative weights for VGa 

and VIn are 64% and 36%, respectively, in figures 5 and 6), but as the scatter is much more important 

than in the bulk supercells, the main observation that should be made is that the points are clearly 

below the linear behaviour in figure 5 and above in figure 6. The scatter is very large also for the 

calculated positron lifetimes, covering 70% of the total difference between VGa and VIn for the 

In0.5Ga0.5N supercell (figure 7). Interestingly, as seen in figure 8, the S and W parameters do not 

deviate strongly from the VGa-VIn line, even if the strong scatter (shown by the green arrow 
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In0.5Ga0.5N) is evident. The number of Ga/In atoms in the 12-atom next-neighbor shell surrounding the 

metal vacancy has a strong influence on the annihilation parameters too, but detailed correlation of 

these effects requires further studies. 

3.3. Notes and comparison to other alloys 

An important observation is that the above considerations suggest that it is very difficult to distinguish 

the effects of low vacancy concentrations from alloy homogeneity effects in conventional Doppler 

broadening experiments in In1-xGaxN materials. Experimental investigations also in elemental 

semiconductor alloys, namely Si1-xGex, have suggested similar interpretations [28-30]: after 

introducing vacancy defects by irradiation and then removing them by annealing, the lattice Si/Ge 

distribution changes in such a way that the S and W parameters are different from the original 

situation. Further investigations, both theoretical and experimental, are necessary in order to elucidate 

whether positron annihilation methods could be used to assess, e.g., In clustering in In1-xGaxN in a 

similar manner as in metal alloys [45]. 

4. Summary 

We have performed preliminary theoretical calculations of positron annihilation signals in InGaN 

supercelles with and without metal vacancies. Our results demonstrate the strong sensitivy of the 

Doppler broadening S and W parameters as well as of the positron lifetime to the alloy (dis)order in 

In1-xGaxN. Related observations can be made in other alloyed semiconductors such as Si1-xGxe. 
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