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Abstract

Background: Standard RNAseq methods using bulk RNA and recent single-cell RNAseq methods use DNA
barcodes to identify samples and cells, and the barcoded cDNAs are pooled into a library pool before high
throughput sequencing. In cases of single-cell and low-input RNAseq methods, the library is further amplified by
PCR after the pooling. Preparation of hundreds or more samples for a large study often requires multiple library
pools. However, sometimes correlation between expression profiles among the libraries is low and batch effect
biases make integration of data between library pools difficult.

Results: We investigated 166 technical replicates in 14 RNAseq libraries made using the STRT method. The patterns
of the library biases differed by genes, and uneven library yields were associated with library biases. The former bias
was corrected using the NBGLM-LBC algorithm, which we present in the current study. The latter bias could not be
corrected directly, but could be solved by omitting libraries with particularly low yields. A simulation experiment
suggested that the library bias correction using NBGLM-LBC requires a consistent sample layout. The NBGLM-LBC
correction method was applied to an expression profile for a cohort study of childhood acute respiratory illness,
and the library biases were resolved.

Conclusions: The R source code for the library bias correction named NBGLM-LBC is available at https://shka.
github.io/NBGLM-LBC and https://shka.bitbucket.io/NBGLM-LBC. This method is applicable to correct the library
biases in various studies that use highly multiplexed sequencing-based profiling methods with a consistent sample
layout with samples to be compared (e.g., “cases” and “controls”) equally distributed in each library.
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Background
RNA sequencing (RNAseq) utilizing next generation
sequencers has allowed for rapid and comprehensive
expression profiling. Due to the reduction of required
RNA amount and increasing multiplexity in RNAseq
libraries, RNAseq is increasingly used also for large-scale
cohort studies based on bulk tissues, as well as tissue
complexity studies even at the single-cell scale. However,
large-scale studies often require sample processing as
multiple libraries, resulting in the risk of batch effect
bias. As an example, using our published RNAseq proto-
col [1], we include up to 48 samples in one library using

barcode sequences for multiplexing, processing typically
up to four libraries in 3 days, and larger studies often re-
quire even more libraries. After sequencing and prepro-
cessing, we sometimes observe a library bias – for
example, reference samples in two different libraries
may cluster apart by the libraries. Similar issues, espe-
cially in studies using single-cell RNAseq methods [2–4],
have been recently reported. Therefore, further investi-
gation of the sources of library bias, development of
correction methods, and guidelines for a bias-tolerant
experiment design are required. In this report, we
investigated library biases using 166 technical replicates
distributed over 14 libraries. We developed a bias
correction method named NBGLM-LBC, and suggest
library design guidelines, applicable to many large-scale
RNAseq studies.
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Materials and methods
Preparation of reference RNAs
The present study was based on reference samples in
two projects: one performed with BEAS-2B cells, a
human bronchial epithelial cell line, and the other with
THP-1 cells, a human monocytic cell line. The cells were
obtained from the American Type Culture Collection.
For RNA extraction, 0.5 × 106 BEAS-2B cells or 1.0 × 106

THP-1 cells were seeded on 12-well plates 48 h/24 h
before extraction, respectively. The cells were washed
twice with ice-cold Phosphate Buffered Saline (PBS) and
lysed with 350 μl of Buffer RLT Plus supplemented with
β-mercaptoethanol (AllPrep DNA/RNA/miRNA Univer-
sal Kit, Qiagen, Hilden, Germany). The lysates were ho-
mogenized and the total RNA was extracted according
to manufacturer’s instructions. The quality and quantity
of the total RNA samples were checked by NanoDrop
(ThermoFisher, Carlsbad, CA) and Qubit (Thermo-
Fisher) instruments. RNA integrity was measured by
Bioanalyzer with an Agilent RNA 6000 Nano kit (Agilent
Technologies, Santa Clara, CA). The RNA samples were
used for sequencing by single-cell tagged reverse
transcription (STRT) RNAseq method.

Preparation and sequencing of STRT libraries
High-quality RNA samples were diluted to 10 ng/μl
based on Qubit fluorometer (ThermoFisher) measure-
ments. Illumina-compatible RNA-seq libraries were pre-
pared according to our published STRT protocol [1]
using 10 PCR cycles. The ready library QC was per-
formed by TapeStation DNA HS1000 assay (Agilent
Technologies) and quantified by qPCR-based KAPA
Library Quantification Kit (KK4835, KAPA Biosystems,
Cape Town, South Africa). Sequencing was performed
using Illumina’s HiSeq 2000 instrument (Illumina, San
Diego, CA) according to [1].

Preprocessing of STRT sequencing results
The sequenced STRT raw reads were processed by
STRTprep [1], v3dev branch b866538 commit at https://
github.com/shka/STRTprep/tree/v3dev. In brief, the
reads were demultiplexed by the barcode sequences, and
the best quality reads among redundant reads were
selected. The nonredundant reads were aligned to hg19
human reference genome sequences, ERCC spike-in
sequences and human ribosomal DNA unit (GenBank:
U13369) with RefSeq [5] transcript alignments as a guide
of exon junctions, by TopHat2 [6] with bowtie1 [7].
Uniquely mapped reads within (i) the 5′-UTR or the
proximal upstream (up to 500 bp) of the RefSeq protein
coding genes, and (ii) within the first 50 bp of spike-in
sequences, were counted.

Statistics and figures
All statistics and figures were performed in R (version
3.5.1 on macOS 10.13), and the core source code is
provided in Additional file 1. Spike-in normalization
was based on the sum of spike-in reads as in [8].
Quantile normalization [9] via the preprocessCore
package at https://github.com/bmbolstad/preproces-
sCore and VST normalization [10] were done after
adding 1 to all reads to avoid log2(0). The sum of all
counts per sample was used as the mapped depth for
RPM normalization [11]. Half of the minimum ex-
pression level was added to all before log2 transform-
ation for spike-in and RPM normalized levels, to
avoid log2(0). Hierarchical clustering of the Spearman
correlation matrix and the corresponding plots were
made using a heatmap function in the NMF package
[12]; non-log normalized levels with zero-expression
masking (by NA) were applied for calculation of the
Spearman correlation matrix. Principal component
analysis (PCA) and the corresponding plots were pro-
duced using the factoextra package at http://www.
sthda.com/english/rpkgs/factoextra; log2 normalized
levels were applied. Genes with biological variation
(fluctuated genes) in the GEWAC dataset had a sig-
nificantly higher gene-to-spike-in ratio in the squared co-
efficient of variation, described in Supplementary Text S1
of [1]; for the definition of fluctuated genes, see [13].

Implementation
NBGLM-LBC is developed for correction of library
bias in large-scale RNAseq experiments. It is imple-
mented in R, and requires the “MASS” and “parallel”
core packages. The source code and documentation
are available at https://shka.github.io/NBGLM-LBC
under the MIT license; the site is mirrored at
https://shka.bitbucket.io/NBGLM-LBC. A read count
matrix before normalization (rows are genes, and col-
umns are samples), a vector of sequencing depths,
and a factor of libraries are given for the function
named “library_bias_correction”. Optionally, multiple
CPU cores can be allocated, to speed up the analysis.
NBGLM-LBC estimates regression lines between the
raw read count and the sequencing depths per library
in each gene based on the negative binomial distribu-
tion, and then corrects the library biases by making
intercepts of the regression lines equivalent based on
the assumption that average levels per library are
equivalent between libraries; the statistical back-
ground of this implementation is explained in the
Results section. The output is a corrected count
matrix. After the correction, another traditional
normalization method will be required for the down-
stream analysis.
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Results
Definition and investigation of library bias
The present study was based on reference samples in
two projects: one performed with BEAS-2B cells, a
human bronchial epithelial cell line, and the other with
THP-1 cells, a human monocytic cell line. We used
STRT RNAseq [1] for both projects, using 10 ng of total
RNA per sample. A reference sample (total RNA from
one aliquot of untreated BEAS-2B and THP-1 cells,
respectively) for each project was put into 99 wells over
eight STRT libraries for BEAS-2B, and 67 wells over six
libraries for THP-1 as technical replicates (out of 360
and 271 samples, respectively; Additional file 2); there
were samples with specific treatments and their controls
in the other wells. As with most highly multiplexed
RNAseq methods, these samples were barcoded and
amplified per sample, followed by pooling and amplifica-
tion per library. In one experiment, a maximum of four
parallel libraries were made by the same experienced
laboratory engineer, and all libraries were sequenced to
the same depth, three Illumina HiSeq 2000 lanes per
library (Table 1). After preprocessing to deconvolute the
samples to raw sequences, there were at least one million
total reads for all the replicates, and there was no signifi-
cant RNA degradation in any sample (Additional file 2).
The processed raw reads (Additional files 3 and 4) were
used for the downstream analysis.
Although the reference samples were technical repli-

cates of the same RNA, hierarchical clustering as well as
PCA grouped the samples by the libraries (Fig. 1a and b).
This is the “library bias” that we are investigating in this
report. The library bias remained despite using spike-in
[8], quantile [9], RPM [11] or VST [10] normalization

methods (Additional file 5: Figure S1 & S2). Amplification
bias should be independent of the library bias, as we are
using UMIs [14] in this STRT protocol. In the BEAS-2B li-
braries, CCDC85B and RRM2 were the most biased genes
because of their high contribution to the principal compo-
nents (Fig. 1c). The biases between libraries were more
than 16-fold, and the patterns were different between the
biased genes (Fig. 1d; CCDC85B was high in BEASb and d
libraries, while RRM2 was high in BEASh), but the pat-
terns were conserved in the normalization methods (Add-
itional file 5: Figure S3). Therefore, an additional
correction should be applied for each gene before the
normalization.

Implementation of a library bias correction method,
NBGLM-LBC
While investigating possible correction methods, we
found that the raw read counts and the sequencing
depth were correlated in each library, but the regressions
differed between the libraries (Fig. 2a, top). Therefore,
the library bias of each gene can be reduced by (i) calcu-
lating a linear approximation between the depths and
the raw counts in each library, and (ii) transforming the
raw counts to approximations which overlap each other
(Fig. 2a, bottom). Based on this approach, a library bias
correction method using a generalized linear model of
the negative binomial family with a logarithmic link,
named NBGLM-LBC, was implemented. After the
library bias correction (Additional files 6 & 7), overall
correlation coefficients between the replicates were
much improved (Additional file 5: Figure S4) for both
reference types (Additional file 5: Figure S5), and the repli-
cates were more similar (Additional file 5: Figure S6) in

Table 1 The history of library preparation and sequencing for investigation of the library biases

Library Library synthesis (date) Sequencing (flowcell:lane)

Project ID RNA into capture plate Started Finished Quantity (nM) 1st 2nd 3rd

BEAS a 2015/12/30 2016/01/04 2016/01/07 0.50 A:6 B:1 C:1

BEAS b 2015/12/30 2016/01/04 2016/01/07 0.26 A:7 B:2 C:2

BEAS c 2015/12/30 2016/01/04 2016/01/07 1.71 A:8 B:3 C:3

BEAS d 2015/12/30 2016/01/04 2016/01/07 0.82 B:4 C:4 D:5

BEAS e 2015/12/30 2016/01/08 2016/01/11 1.11 B:5 C:5 D:6

BEAS f 2015/12/30 2016/01/08 2016/01/11 1.10 B:6 C:6 D:7

BEAS g 2015/12/30 2016/01/08 2016/01/11 1.01 B:7 C:7 D:8

BEAS h 2015/12/30 2016/01/08 2016/01/11 1.40 B:8 C:8 E:1

THP1 a 2015/12/04 2015/12/07 2015/12/09 1.50 A:1 F:3 G:2

THP1 b 2015/12/04 2015/12/07 2015/12/09 2.10 A:2 F:4 G:3

THP1 c 2015/12/04 2015/12/08 2015/12/10 2.00 F:5 G:4 G:5

THP1 d 2015/12/04 2015/12/08 2015/12/10 1.90 A:3 F:6 G:6

THP1 e 2015/12/07 2015/12/08 2015/12/10 2.90 A:4 F:7 G:7

THP1 f 2015/12/07 2015/12/08 2015/12/10 2.70 A:5 F:8 G:8
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the four normalization methods (Additional file 5:
Figure S7). However, even after correction, the BEASb
library tended to be an outlier (Fig. 2b and c). This
library was characterized by (i) the lowest number of
processed reads (TOTAL_READS in Additional file 2)
due to the highest sequence redundancy according to
the UMIs (REDUNDANCY in Fig. 2d and Additional
file 2), (ii) the lowest library quantity (Fig. 2d and
Table 1; the quantity tends to negatively correlate to
the redundancy), and (iii) the lowest mapping rate to
protein coding genes (CODING_RATE in Fig. 2d and
Additional file 2), suggesting low performance of the
reverse transcriptase, or high contamination of reads
derived from non-mRNAs, during BEASb library syn-
thesis. In contrast, library biases between all THP-1
libraries were well corrected (Additional file 5: Figure S6
bottom). The THP-1 library quantities were very similar,
supporting their importance for the effectiveness of
the correction (Additional file 5: Figure S8 bottom).
In summary, although it was difficult to recover
libraries with problems in the library synthesis,
NBGLM-LBC reduced the library biases which we
observed in technical replicates of the large
experiments.

Simulations suggested that consistent sample layout is
required for NBGLM-LBC
In actual studies, we typically compare groups of sam-
ples to find differences between them. To evaluate
whether NBGLM-LBC is applicable to more common
study designs, we tested the method on artificially
perturbed expression profiles. The artificial profiles were
made for the BEAS-2B libraries by choosing half of the
samples as “case” samples. The raw counts of 10% of
genes in the case samples were increased twofold, and
another 10% of the genes were decreased twofold (Fig. 3
top). When we set half of the samples in each library as
“case” samples and half as “controls” (hereafter called
“consistent sample layout”), PCA after NBGLM-LBC
showed evident differences between control and the case
samples (Fig. 3 left). This is expected, as the fold differ-
ences between the cases and the controls in each library
are conserved – NBGLM-LBC finds regression lines
between the cases and the controls in each library, and
applies the same transformation to both sample types in
same library. On the contrary, when each library only
has either “case” samples or “controls” (here called
“inconsistent sample layout”), NBGLM-LBC neutralized
the differences between the cases and the controls

a

c d

b

Fig. 1 Biases between BEAS-2B libraries. a Spearman correlation coefficients between the 99 technical replicates over 8 libraries and the
similarities; the color scheme for representation of the libraries is common also for the following panels. b PCA on VST [10] normalized expression
levels of the replicates. c The top 5 contributing genes to the dimensions. Red dashed lines correspond to the expected value if the contributions
are uniform. d The normalized levels of CCDC85B and RRM2
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(Fig. 3 right). This is due to NBGLM-LBC transform-
ing regression lines of the case and control libraries
so they overlap. The simulation thus suggests that
NBGLM-LBC requires a sample layout where both
cases and controls are equally present in each library.

Application case – NBGLM-LBC for a large-scale leukocyte
expression profile
GEWAC (Gene Expression in Wheezing and Asthmatic
Children) is a study of childhood acute respiratory ill-
ness [15, 16]. A leukocyte expression profile using STRT

a

b

d

c

Fig. 2 Library bias correction to the BEAS-2B libraries. a Correlation between the sequencing depths (x-axis) and the raw read counts (y-axis) of
CCDC85B (left) and RRM2 (right) before (top) and after NBGLM-LBC (bottom); solid lines were the linear regressions, and the transparent bands
were the 95% prediction intervals. b Spearman correlation coefficients between the replicates after NBGLM-LBC. c PCA on VST normalized
expression levels after the library bias correction. d Relation between the library quantity (x-axis of the left panel), proportions of mapped reads
on protein coding genes (x-axis of the right panel), and the library redundancy (y-axis)
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RNAseq [1] with 80 ng of total RNAs and GlobinLock
[17] was performed in patients and healthy volunteers.
We arranged the same numbers of the controls and the
cases in all eight libraries as much as possible, to obtain
a consistent sample layout. In unsupervised hierarchical
clustering of 2516 fluctuated protein coding genes, li-
brary 5 and libraries 7 + 8 tended to cluster together
(Fig. 4a). The library biases were observed also in PCA
(Fig. 4b). The quantity of the libraries and the COD-
ING_RATE were exceptionally low in library 5, and
the redundancy of library 5 was higher than the
others (Fig. 4c). We therefore decided to exclude li-
brary 5, and applied NBGLM-LBC to the raw counts
before normalization and the downstream analysis.
Although the major variation between CASE1 samples
and the others (at the first branch) was still evident
even after the correction, clusters of the library 5 and
the libraries 7 + 8 disappeared (Fig. 4d). Therefore,
down-stream analysis using the corrected expression
profile is less influenced by the library biases. For
example, to detect correlating gene modules, and to
relate the modules to clinical traits, the biases must
be minimized before WGCNA [18].

Conclusions
The NBGLM-LBC method described here can correct
library biases which cannot be corrected by more
traditional normalization methods. A consistent sample

layout for all libraries in a study is required for the library
bias correction by NBGLM-LBC. This is similar to “a bal-
anced study design” proposed by Tung and collaborators
[4]. Several library-bias tolerant statistics have been
reported previously, such as SAM [19] with block permu-
tations as an example of a bias-tolerant differential expres-
sion test. However, the proposed correction method
enables various traditional statistical approaches, e.g.,
hierarchical clustering, PCA, WGCNA or unsupervised
clustering of scRNAseq data (reviewed in [20]). Moreover,
we can test differential expression using the corrected read
counts (but without normalization) by various test
methods, e.g., DESeq [10] or SAMstrt [8].
The NBGLM-LBC is potentially applicable also to

other studies using highly multiplexed RNAseq methods
for single-cells or low-input samples by equivolume
pooling of barcoded cDNAs and amplification of the
pool. Moreover, it may also be worth applying NBGLM-
LBC to other sequencing-based profiling methods (e.g.
short-RNAseq or ChIPseq), where significant library
biases may be seen. Studies based on lower multiplexity
(e.g. 6-plex) or equimolar pooling as performed in
several large-input RNAseq protocols, are less likely to
benefit from NBGLM-LBC, due to the smaller number
of samples per library, or lower variation of the sequence
depth between the samples. UMIs are useful for
reducing amplification bias [14], but are alone likely not
sufficient to reduce library bias. Redundancy, which can

Fig. 3 NBGLM-LBC required consistent sample layout. Tables (top) are sample layouts of two simulation datasets. A consistent sample layout (left)
is defined as the number of control samples and case samples in each library being almost the same, while in an inconsistent sample layout
(right) each library has either control or case samples. Panels (bottom) are PCAs on VST normalized expression levels before (left in each sample
layout) and after (right in each sample layout) NBGLM-LBC
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be estimated by UMIs, was associated with the library
quality, but we can find the redundancy only after se-
quencing. Therefore, one practical thing to highlight is
that measurement of library quantity before sequencing
is an important checkpoint. Exceptionally low-quantity
libraries in a study should be discarded even if they
initially appear to be adequate for sequencing, as the
sequence data quality is likely to be insufficient for the
expression analysis.

Availability and requirements
Project name: NBGLM-LBC.
Project home page: https://shka.github.io/NBGLM-LBC

(mirrored at https://shka.bitbucket.
io/NBGLM-LBC).

Operating system: Platforms supporting the fork system
call (ex. Linux or macOS).

Programming language: R (version 3.0 or higher).
License: MIT.
Any restrictions to use by non-academics: No.

Additional files

Additional file 1: Sample script. This script demonstrates the library bias

correction by NBGLM-LBC, performs the simulation experiments for Fig. 3,

and draws Figs. 1b, 2a, c and 3 bottoms. Before running this script using

R, LBC-additionalFile2.txt (Additional file 2) and LBC-additionalFile3.txt

(Additional file 3) must be placed within the working directory, and the

preprocessCore, DESeq2 and factoextra packages must be installed. (R 10 kb)

Additional file 2: Layout of reference samples and the qualities. There
are seven quality measures provided in the STRTprep pipeline; (i)
TOTAL_READS is a read count after the redundant read exclusion based
on UMI; (ii) REDUNDANCY is redundancy based on UMI; (iii)
MAPPED_RATE is the rate of mapped reads; (iv) SPIKEIN_5END_RATE
is the 5′-end capture rate of spike-in molecules; (v)
CODING_5END_RATE is the 5′-end capture rate of protein coding
genes; (vi) CODING_READS is reads that were aligned to exons of
protein coding genes; and (vii) CODING_RATE is calculated by
CODING_READS/(TOTAL_READS*MAPPED_RATE). See also detailed
instruction at https://github.com/shka/STRTprep/blob/v3dev/doc/result.
md#outbygenesamples_allcsv. (TXT 16 kb)

Additional file 3: Raw read counts of BEAS-2B libraries before the library
bias correction (TXT 3580 kb)

Additional file 4: Raw read counts of THP-1 libraries before the library
bias correction (TXT 2541 kb)

a

d

b c

Fig. 4 Library biases and the correction in GEWAC study. a Hierarchical clustering of GEWAC subjects using the leukocyte expression profile
without the library bias correction. Upper bar below tree represents the libraries, and lower bar represents the sample types. b PCA of the
expression profile without the library bias correction. c Relation between the library quantity (x-axis of the left panel), proportions of mapped
reads on protein coding genes (x-axis of the right panel), and the library redundancy (y-axis). d Hierarchical clustering of GEWAC subjects using
the leukocyte expression profile with the library bias correction. The upper bar below tree represents the libraries, the lower bar represents the
sample types
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Additional file 5: Figure S1. Spearman correlation coefficients between
the technical replicates of normalized expression levels by four different
normalization methods and the libraries. Figure S2. PCA of the BEAS-2B
technical replicates of normalized expression levels by four different
normalization methods. Figure S3. Normalized expression levels by the
four different normalization methods, and the ranks, of three library-
biased genes. Figure S4. Pairwise comparison of raw read counts and
the Spearman correlation coefficients before and after the library bias
correction. Figure S5. Spearman correlation coefficients between the
technical replicates of the normalized expression levels before and after
the library bias correction. Figure S6. PCA of the technical replicates of
the spike-in normalized expression levels before and after the library bias
correction. Figure S7. PCA of normalized expression levels of the BEAS-
2B technical replicates by four different normalization methods, before
and after the library bias correction. Figure S8. Quantity of the library
before sequencing, and REDUNDANCY and CODING_RATE after the
sequencing. (PDF 2469 kb)

Additional file 6: Raw read counts of BEAS-2B libraries after the library
bias correction (TXT 3574 kb)

Additional file 7: Raw read counts of THP-1 libraries after the library
bias correction (TXT 2536 kb)

Abbreviations
GEWAC: Gene Expression in Wheezing and Asthmatic Children; PCA: Principal
component analysis; STRT: Single-cell tagged reverse transcription;
UMI: Unique molecular identifier
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