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Abstract 

Physiological arousal can be a signal of attention, 
reflecting predictability and significance of stimuli or 
events. We explored temporal patterns in task-related 
physiological arousal and their connection to 
performance in repeated trials of a visuomotor steering 
task. Participants (N = 9) played a total of forty trials of a 
high-speed steering task in eight sessions over a period 
of 2-3 weeks. Temporal changes in electrodermal 
activity during task performance were modelled as 
habituation, and connections between performance, 
perceived importance and individual differences in 
habituation rate were examined. Additionally, within-
subject changes in habituation were compared to 
deviations from predicted performance. We found that   
sustained task-related arousal (slow habituation) was 
connected to better performance both between groups 
and within participants. Slow habituation was also 
related to higher subjective reports of perceived 
importance. Taken together, these results suggest that 
temporal changes in task-related arousal during learning 
are related to the processing of task-relevant cues and 
may reflect motivational states that direct selective 
attention. 
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Introduction  

Physiological arousal is a marker of attentional 
processing, signalling the predictability and 
significance of stimuli, and reflecting motivation 
(Bradley, 2009). Studying temporal patterns in 
physiological arousal during learning, in a longitudinal 
design, can shed light on some of the elemental 
processes involved in learning and selective attention: 
here, we studied habituation and motivation. We did 
this by modelling patterns in electrodermal activity 
(EDA) during repeated performance in a novel task 
and analysing them with respect to behavioural 
measures of learning and self-reports of perceived 
importance (abbreviated as PI). The task used in our 
experiment was a high-speed steering task, and 

learning in the task has previously been found to fit 
well with a power law learning curve (Cowley et al., 
2019). Based on these findings, it is interesting to 
investigate arousal and learning in a longitudinal 
design, which allows for a consideration of the 
dynamic interactions underlying attention, learning and 
performance. 

We investigate whether the patterns of physiological 
arousal – measured by EDA – during repeated task 
performance follow the characteristics of habituation 
outlined by Grissom and Bhatnagar (2009), comprising 
four key themes. First, habituation is seen as a decline 
in responses to repeated stimuli. Second, it is 
reversible, meaning that a response can re-occur if 
stimulation is withheld (spontaneous recovery). Third, 
it is affected by frequency of stimulation: the more 
frequent the stimulation, the more rapid the habituation 
rate (potentiation of habituation). Fourth, habituation 
can progress beyond resting (baseline) levels. Note 
that only the criteria applicable in our context are 
reviewed (e.g. dishabituation by another stimulus and 
habituating stimulus strength are excluded). 

Habituation is related to increasing predictability of 
stimuli and is therefore a form of learning (Balkenius, 
2000). Repeated occurrences bring less additional 
information and need not be attended to, unless the 
stimulus is perceived as important (Bradley, 2009). 
Orienting responses observed in EDA also manifest 
action preparation with respect to salient 
(unpredictable or significant) stimuli, reflecting the role 
of the sympathetic nervous system in mobilising 
resources (Bradley, 2009). Habituation of task-related 
arousal could therefore signal increased prediction 
accuracy of expectations – i.e. learning – in the task, 
but also perceived importance of the task. 

 
Our research questions are: 
RQ1 Do the changes in task-related arousal during 

multiple trials of a steering task follow the criteria for 
habituation (Grissom & Bhatnagar, 2009)? 

RQ2 Are between-participant differences in 
habituation rate, or within-participant changes in 
habituation, related to task performance or PI? 
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a  Are there differences in performance or PI  
between groups based on habituation rate? 

b  Are deviations from predicted performance  
connected to habituation within participants? 

 

Methods 

Participants 

Nine participants (3F, 6M, 22-38 years old) were 
recruited, and they gave signed informed consent 
before participating. The study followed guidelines of 
the Declaration of Helsinki and was approved by the 
University of Helsinki Ethical review board in 
humanities and social and behavioural sciences 
(statement 31/2017; study title MulSimCoLab). 

Design 

Participants played a total of forty 2-4 minute trials of a 
high-speed visuomotor steering task in eight sessions 
over a period of 2-3 weeks. EDA during baseline and 
task was recorded in five sessions (1 and 5-8). (Heart 
rate and eye-tracking data were also recorded in these 
sessions but are not reported here.) 

In sessions 1 and 5-8, a baseline measurement of 
five minutes was recorded, where participants sat still 
while looking at a dark blue screen. Each participant 
then played five trials of the task. After each trial, 
participants filled in a self-report questionnaire, the 
Flow Short Scale (FSS; Engeser & Rheinberg, 2008). 

Materials 

Task The task was a custom high-speed visuomotor 
steering task (CogCarSim, code available at 
https://doi.org/10.6084/m9.figshare.7269467), where 
the participant steered a forward-moving cube along a 
bounded track, avoiding randomly placed stationary 
obstacles. Velocity increased at a constant rate if there 
were no collisions and dropped if obstacles were hit. 
Trial duration therefore signalled performance. 
 
Equipment The game was played on a computer with 
a 55’’ screen (LG 55UF85, 1920 x 1080 pixels) running 
Windows 10. Participants used a Logitech G920 
Driving Force steering wheel and sat on a Playseat 
Evolution Alcantara driving seat (Playseats B.V., The 
Netherlands), aligned to the horizontal midpoint of the 
screen, at 90-120 cm from eye to screen.  

EDA data was recorded at 128 Hz sampling rate 
using NeXus-10 (Mind Media B.V, Roermond-Herten, 
The Netherlands) and encoded using Trusas software 
(https://github.com/jampekka/trusas-nexus) running on 
a Debian GNU/Linux 9 OS laptop. 

Electrodermal activity Ag-AgCl electrodes were 
attached to the medial-plantar surface of the left foot. 
The plantar site was used instead of the palmar site to 
minimise movement artefacts due to steering control. 
 
Flow Short Scale PI was measured with three items 
of the FSS questionnaire, translated into Finnish 
(Cowley et al., 2019). The items were: ‘Something 
important to me is at stake here’, ‘I must not make any 
mistakes here’, and ‘I am worried about failing’. 
Participants responded on a 7-point Likert scale (1 = 
not at all, 4 = partly, 7 = very much). Cronbach’s alpha 
was .73. 

The FSS also included ten items measuring flow 
experience, and three items on perceived fit of 
demands and skills; not reported here as they do not 
relate to our research questions (see Cowley et al., 
2019 for a report on flow and performance).   

Data processing 

EDA was processed with MATLAB (MathWorks, 
Natick, MA, US) using the Ledalab 3.4.9 toolbox 
(http://www.ledalab.de). The signal was downsampled 
to 10 Hz and decomposed into tonic and phasic 
components using Continuous Deconvolution Analysis 
(CDA; Benedek & Kaernbach, 2010). Skin 
conductance responses (SCRs) were detected using a 
threshold of 0.05 μS. SCR frequency per minute was 
computed as our primary EDA feature. Because EDA 
can vary considerably between sessions due to, for 
example, differences in electrode contact from session 
to session, SCR frequency during baseline was 
subtracted from SCR frequency during trial. 

Data from 13 trials (5.8 %) was omitted due to 
missing or low-quality data. For session baselines, the 
first and last minute from each five-minute recording 
were omitted due to a large number of artefacts in 
those periods, resulting in three-minute baselines. 

Statistical methods 

Statistical analyses were conducted with R (version 
3.5.1). Linear mixed models (LMMs) were used for the 
habituation model (RQ1), as well as power-law 
learning curves and within-participant analysis of 
habituation and performance (RQ2b). LMMs were 
fitted with the lme4 R package using maximum 
likelihood. The lmerTest package was used to obtain p 
values; degrees of freedom were approximated with 
Satterthwaite's method. Linear regression was used 
for RQ2a. All p values were adjusted for multiple 
comparisons using Bonferroni-Holm.  
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Figure 1: SCR frequencies for trials 1-5 (back-
transformed from logarithmic scale) of sessions 1 

and 5-8. Lines represent the LMM fit. 

Habituation of SCR frequencies (RQ1) was modelled 
using log(trial) as a fixed effect predictor, and 
participant and session as random effect predictors. 
Both random intercept and random slope were 
included to allow for variation between participants and 
sessions. To study the potentiation of habituation 
criterion for RQ1, a similar model was used but 
session was a fixed effect predictor instead of random. 

For RQ2a, to look at differences in performance and 
PI between groups based on habituation rate, 
participants were classified as slow (n = 5) or fast (n = 
4) habituators, based on participant-level random 
slope coefficients of the habituation model for RQ1.  

For RQ2b, trial-level difference scores were used to 
explore habituation and deviations from predicted 
performance within participants, with random effect of 
participant (intercept and slope). Performance was 
predicted with a power-law learning curve (Newell & 
Rosenbloom, 1981). 

 

Results 

RQ1. Habituation Model 

The frequency of SCRs ranged from 0 to 15 per 
minute (M = 3.9, SD = 4.1) during baseline, and from 0 
to 23.62 per minute (M = 11.2, SD = 6.1) during trials 
(before baseline was removed). 

Decline in responses Trial number affected SCR 
frequency negatively on a log-linear scale (b = -3.03, 
SE = 0.44, p < .001), meaning that physiological 
responses habituated with increasing trials (Figure 1). 
For example, from trial 1 to 2, the predicted decrease 
in SCR frequency was 2.1 units. Negative random 
slopes for all nine participants and 44 sessions 
indicate that habituation occurred in every session. 
Comparison to a null model implied that variance 

explained by the two models was different (χ2 = 16.4, p 

< .001); log(trial) improved the explanatory power of 
the model. Akaike information criterion (AIC) for the full 
model was 1127 compared to 1142 for the null model. 

Spontaneous recovery There was spontaneous 
recovery in SCR frequencies between sessions. 
Change in SCR frequency between the last and first 
trials of consecutive sessions (5-8) was mostly positive 
(M = 4.08, SD = 6.31) indicating recovery of 
habituation between sessions (t(29) = 3.54, p < .001). 

Potentiation of habituation When SCR frequency 
was predicted by session number and log(trial), there 
was some indication of a main effect of session (b = -
0.38, SE = 0.18, p = .08), but no interaction effect 
between log(trial) and session was found, i.e. there 
was no clear pattern in the rate of habituation within 

sessions. Time between sessions had no effect on 
SCR frequency or habituation rate. 

Progression below baseline In 20 trials (9 %), SCR 
frequency during trial was below baseline. Most trials 
(18) were in sessions 5-8, and 14 in trials 4 or 5.  

RQ2. Habituation, Performance and PI 

Learning curves Trial duration was lower with 
increasing trial number on a log-log scale (b = -0.07, 
SE = 0.006, p < .001), indicating that all participants 
improved their performance over cumulative trials. The 
slopes and intercepts of the learning curves were very 
strongly correlated (r(7) = -0.99, p < .001). 

RQ2a. Between groups Having slow habituation rate 
corresponded to better performance (b = -0.03, SE = 
0.007, p < .001), when added as a predictor in a 
power-law model where log(duration) was the 
dependent variable and log(cumulative trial) was the 
independent variable. The model explained 43% of 
variance in performance. Figure 2 shows the learning 
curves for both groups.  

PI ranged between 1.33 and 6.00 (M = 3.77, SD = 
1.14). There were differences between habituation 
groups when analysed with linear regression with 
cumulative trial as a control variable, the effect of 
which was not significant. Average PI was 4.31 (SD = 
0.75) for the slow habituation group and 3.10 (SD = 
1.19) for the fast habituation group (t(357) = 7.63, p < 
.001, model R2 = .14). 
 
RQ2b. Within participants Slow habituation was 
linked to better-than expected performance within 
participants. Average trial-level habituation scores 
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(SCR frequency during trial – SCR frequency during 
previous trial) were -1.82 (SD = 3.22) for the fast 
habituation group and -0.90 (SD = 3.09) for the slow 
habituation group.  

Deviation scores were residuals of the learning 
curve model above. They were weakly correlated with 
trial-level habituation scores (r(162) = -0.25, p = .004),  
meaning that negative deviation scores (better-than-
predicted performance) was connected to slower 
habituation. A similar relationship was seen in a LMM 
with trial-level habituation as dependent variable, and 
trial (1-5) and deviation score as independent 
variables (Table 1). Comparison to a null model 
indicated that deviation score explained significantly 
more variance than the null model without that 

predictor (χ2 = 11.1, p = .001); AIC of the full model 

was 836 while AIC of the null model was 845. 
 

Table 1: LMM results of habituation score predicted by 
trial and deviation score, with random participant effect 

for trial (intercept and slope) 

 
 

Discussion 

For RQ1, task-related arousal decreased for all 
participants in nearly all sessions, indicating that a 
habituation model was successful in capturing 
changes in arousal in a task situation. Spontaneous 

recovery occurred between sessions, and some SCR 
frequencies progressed below baseline levels, mostly 
in later sessions and trials. However, there was no 
clear pattern in habituation slopes between sessions, 
and it cannot be inferred whether potentiation of 
habituation occurred. 

All participants improved performance across 
cumulative trials. This suggests that the observed 
habituation patterns may be associated with learning 
effects. Sustained task-related arousal (slow 
habituation) was connected to better performance both 
between groups (RQ2a) and within individuals (RQ2b). 
Slow habituation was also related to higher subjective 
reports of PI, in line with previous research, which has 
linked maintained arousal to high significance of 
stimuli (Bradley, 2009). Taken together, these results 
suggest that temporal changes in task-related arousal 
during learning are related to processing of task-
relevant cues, and may reflect learning effects and 
motivational states directing selective attention. 
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 b SE t 

Intercept -3.75*** 0.81 -4.62 
Trial 0.67* 0.23 2.96 
Deviation score -20.35** 6.00 -3.39 

*** p < .001, ** p < .01, * p < .05 

 
 

Figure 2: Duration predicted by cumulative trial and 
habituation group with linear regression. Both axes 

back-transformed from logarithmic scale. 
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