
https://helda.helsinki.fi

Synthesis and characterization of rigid

[2.2]paracyclophane-porphyrin conjugates as scaffolds for

fixed-distance bimetallic complexes

Knoll, Daniel M.

2019-09-25

Knoll , D M , Wiesner , T B , Marschner , S M , Hassan , Z , Weis , P , Kappes , M , Nieger ,

M & Bräse , S 2019 , ' Synthesis and characterization of rigid [2.2]paracyclophane-porphyrin

conjugates as scaffolds for fixed-distance bimetallic complexes ' , RSC Advances , vol. 9 ,

no. 52 , pp. 30541-30544 . https://doi.org/10.1039/c9ra07055a

http://hdl.handle.net/10138/306278

https://doi.org/10.1039/c9ra07055a

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
Se

pt
em

be
r 

20
19

. D
ow

nl
oa

de
d 

on
 1

0/
23

/2
01

9 
8:

35
:0

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Synthesis and ch
aInstitute of Organic Chemistry, Karls

Fritz-Haber-Weg 6, 76131 Karlsruhe, Germa
bInstitute of Physical Chemistry, Karlsruhe I

Weg 2, 76131 Karlsruhe, Germany
cDepartment of Chemistry, University of Hels

00014 Helsinki, Finland
dInstitute of Toxicology and Genetics, Karlsru

von-Helmholtz-Platz 1, 76344 Eggenstein-Le
eInstitute of Nanotechnology, Karlsruhe

Helmholtz-Platz 1, 76344 Eggenstein-Leopol

† Electronic supplementary information
1877701 (3a). For ESI and crystallograp
format see DOI: 10.1039/c9ra07055a

‡ These two authors contributed equally t

Cite this: RSC Adv., 2019, 9, 30541

Received 3rd September 2019
Accepted 9th September 2019

DOI: 10.1039/c9ra07055a

rsc.li/rsc-advances

This journal is © The Royal Society of C
aracterization of rigid [2.2]
paracyclophane–porphyrin conjugates as scaffolds
for fixed-distance bimetallic complexes†

Daniel M. Knoll, ‡a Thomas B. Wiesner,‡a Stefan M. Marschner,a Zahid Hassan,a

Patrick Weis, b Manfred Kappes,be Martin Niegerc and Stefan Bräse *ad

This work presents a new approach to prepare mono- and disubstituted linear rigid bimetallic [2.2]

paracyclophane–porphyrin conjugates via palladium-mediated Stille cross-coupling reaction. The

metalated porphyrin moiety can be varied allowing convenient access to modular metal–metal fixed-

distance Cu/Zn complexes.
Catalysis is a key concept in chemistry that allows conducting
reactions efficiently, using milder conditions.1 In homogeneous
catalysis, metal-catalysed reactions traditionally comprise one
catalyst with one transition metal centre that activates one
substrate. This paradigm has been pursued for several decades.
More recently, alternate catalytic approaches are being
explored. They promise to allow access to difficult or otherwise
unachievable reactions by for example activating two or more
substrates (synergistic catalysis)2 or using two metals to activate
one substrate (bimetallic catalysis).3 To understand the inter-
play between metal centres when introducing two or more
catalytic sites in one molecule, fundamental research on coop-
erativity is needed. This work proposes a molecular platform for
the investigation of xed-distance metal–metal interactions
relying on metalated-porphyrins and [2.2]paracyclophane as
building blocks.

Because of their rigid and planar geometry, wide spectral
range, absorption and emission properties, strong aromaticity
and rich metal coordination chemistry, porphyrins have been
extensively investigated for their vast applicability ranging from
photodynamic therapy (PDT),4 mimicking enzymes,5 metal
sensing,6 to organic photovoltaics.7,8 To gain access to tailor-
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made porphyrin derivatives, which are necessary for specic
applications, rational design and targeted functionalization
have been applied systematically.9–14 The porphyrin core, a tet-
radentate ligand, can coordinate to a large range of transition
metal ions and form stable metal complexes which constitute
useful synthetic intermediates for diverse applications.15,16

These complexes are facile in preparation and can change their
photophysical properties if the metal is inuenced by e.g., redox
state variation, thus making porphyrins suitable scaffolds for
the study of metal–metal interactions.17

[2.2]Paracyclophane (PCP) was chosen as backbone due to
its rigidity and the possibility to precisely control the distance
of the metal centres through exploiting its regioselective
substitution/functionalization pattern (Fig. 1). PCP consists
of two co-facially stacked, strongly interacting benzene rings
with an average ring-to-ring distance of 3.09 �A. Furthermore
the unique electronic structure of the PCP backbone allows
through bond as well as through space p–p interactions of
the substituents because of the close proximity of the co-
Fig. 1 The metal–metal distance can be controlled by using different
substitution patterns on the [2.2]paracyclophane.
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Fig. 2 Molecular structure of the paracyclophane–porphyrin conju-
gate 3a (minor disordered part omitted for clarity, displacement
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facially stacked benzene rings and resulting p-system
overlapping.18

Metalated porphyrins linked to [2.2]paracyclophanes
prepared by condensation of PCP–carbaldehyde and pyrrole
have been described in literature.19–21 A theoretical study to
understand the importance of through-space interactions and
the rather strong effects of a PCP moiety in zinc–porphyrin
molecular wires and their comparison to oligo(p-phenyl-
enevinylene) for photovoltaic applications have been investi-
gated.22,23 Furthermore, Malinski et al. reported the formation
of a directly linked conjugate from a mixed condensation in low
yields requiring tedious workup.21 Martin et al. formed a vinylic
bridge between PCP and porphyrin via a Horner–Wadsworth–
Emmons reaction in about 40% yield.14 However, a linear linker
would allow for a more careful planning of the molecular
geometry while exploiting the high rigidity of [2.2]para-
cyclophane.24 The facile variation of the metal coordinated to
the porphyrin moiety and the possibility of tuning the distance
between the metal centres using the different [2.2]para-
cyclophane regioisomers make this ensemble a suitable scaf-
fold for assessing modular xed-distance bimetallic complexes.

Since the previously reported optimization of reaction
conditions to achieve this did not lead to satisfying yields,21

a different approach was pursued in this study.
The Stille cross-coupling reaction protocol was shown to be

applicable to both, porphyrins and [2.2]paracyclophanes.25,26

The reaction parameters including palladium source, temper-
ature, and solvent were carefully optimized.

The use of free-base porphyrin 2a and (rac)-4-stannyl[2.2]
paracyclophane 1, which was synthesized according to a litera-
ture known procedure starting from (rac)-4-bromo[2.2]para-
cyclophane,26,27 resulted in the formation of the copper-complex
3a in 20% yield (Scheme 1). The copper(II)-ions are assumed to
originate from impurities of CuBr2 in the used CuBr or from an
undesired oxidation side reaction. The absence of the free-base
product indicates that the reaction only proceeds with meta-
lated porphyrins and the free-base porphyrin remains inert
under these conditions. Therefore, protection of the porphyrin
core with Cu(II)-ions (2b) or Zn(II)-ions (2c) was performed,25

leading to an increase of the yield of the respective resulting
coupling products up to 48 and 52% (Scheme 1). The molecular
structure of compound 3a was unambiguously conrmed by X-
Scheme 1 Synthesis of [2.2]paracyclophane–porphyrin conjugates linke

30542 | RSC Adv., 2019, 9, 30541–30544
ray single crystal analysis (Fig. 2) and further characterized
using collision induced dissociation (CID) experiments in ESI
mass spectrometry (see ESI†).

In a further approach the functionalities of the two coupling
reactants as described in Scheme 1 were mutually exchanged to
investigate the comparative reactivity and improve yields, by
reacting (rac)-4-bromo[2.2]paracyclophane with the corre-
sponding zinc containing stannyl-porphyrin 6 as nucleophilic
reacting partner. The reaction gave 3bwith a similarly high yield
of 41%.

Aer successful demonstration of mono-functionalization,
disubstitution using the bifunctionalized [2.2]paracyclophane
derivatives 4 and 5 was attempted (Scheme 2). Purication of
the distannyl [2.2]paracyclophane 4 proved to be challenging
and the crude reaction product was used in the synthesis of the
pseudo-para disubstituted derivative 7. The impurities that
remained are most likely the reason for the signicant drop in
yield in the reaction with brominated porphyrin 2c. The desired
product was obtained in a yield of 2% and serves as a rst proof
d by a phenyl unit via Stille cross-coupling protocol.

parameters are drawn at 50% probability level; details see ESI†).

This journal is © The Royal Society of Chemistry 2019
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Scheme 2 Synthesis of (rac)-4,16-di-(4-((10,15,20-triphenylporphyrin)zinc(II))phenyl) [2.2]paracyclophane(7)
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of concept. The functionalities of the reactants were exchanged
again, in order to use compounds which are easier to handle.
When the porphyrin stannane 6 and the pseudo-para dibromo
[2.2]paracyclophane 5, which was synthesized according to
a literature known procedure,28 were used, the yield increased
up to 30%. The bisporphyrin 7 was characterized via mass
spectrometry. Methanol and formic acid needed to be added to
the solution in DCM before the compound could be detected
with the nano-ESI method in positive mode, because of its low
polarity and difficult ionization.

This new class of modular compounds might serve a molec-
ular platform for the investigations of xed-distance metal–
metal interactions, held together by a rigid [2.2]paracyclophane.
To access enantiomerically pure mono- and disubstituted PCP
derivatives, various procedures of chiral resolution using
optimum chiral auxiliaries, for instance, derivatives of L-amino
acids, (+)-naproxen, (S)-(�)-camphanoyl chloride, (S)-(+)-10-
camphorsulfonic acid, (�)-menthol and others have been re-
ported as promising methodology towards a wide range of
precursors in an enantiopure form.29–33 Synthesis of homo- and
heterobimetallic pseudo-ortho, -meta and -geminal derivatives of
this class and screening of different metals for catalytic activi-
ties is currently underway and we believe that may serve to
highlight the immense potential for the study of intermetallic
cooperative effects in complexes.
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Chem. Soc. Rev., 2018, 47, 6947–6963; Z. Hassan,
E. Spuling, D. M. Knoll and S. Bräse, Angew. Chem., Int.
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S. Bräse, Adv. Synth. Catal., 2016, 358, 1664–1670.

27 D. J. Cram and A. C. Day, J. Org. Chem., 1966, 31, 1227–1232.
30544 | RSC Adv., 2019, 9, 30541–30544
28 H. J. Reich and D. J. Cram, J. Am. Chem. Soc., 1969, 91, 3534–
3543.

29 G. J. Rowlands and R. J. Seacome, Beilstein J. Org. Chem.,
2009, 5, 9.

30 R. Parmar, M. P. Coles, P. B. Hitchcock and G. J. Rowlands,
Synthesis, 2010, 4177–4187.

31 R. Zhuravsky, Z. Starikova, E. Vorontsov and V. Rozenberg,
Tetrahedron: Asymmetry, 2008, 19, 216–222.

32 Y. Morisaki, R. Hifumi, L. Lin, K. Inoshita and Y. Chujo,
Chem. Lett., 2012, 41, 990–992.

33 Y. Morisaki, M. Gon, T. Sasamori, N. Tokitoh and Y. Chujo, J.
Am. Chem. Soc., 2014, 136, 3350–3353.
This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c9ra07055a

