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ABSTRACT
Objectives Nuclear magnetic resonance (NMR) 
metabolomics is high throughput and cost-effective, with 
the potential to improve the understanding of disease 
and risk. We examine the circulating metabolic profile by 
quantitative NMR metabolomics of a sample of Australian 
11–12 year olds children and their parents, describe 
differences by age and sex, and explore the correlation of 
metabolites in parent–child dyads.
Design The population-based cross-sectional Child Health 
CheckPoint study nested within the Longitudinal Study of 
Australian Children.
Setting Blood samples collected from CheckPoint 
participants at assessment centres in seven Australian 
cities and eight regional towns; February 2015–March 
2016.
Participants 1180 children and 1325 parents provided 
a blood sample and had metabolomics data available. 
This included 1133 parent–child dyads (518 mother–
daughter, 469 mother–son, 68 father–daughter and 78 
father–son).
Outcome measures 228 metabolic measures were 
obtained for each participant. We focused on 74 
biomarkers including amino acid species, lipoprotein 
subclass measures, lipids, fatty acids, measures related 
to fatty acid saturation, and composite markers of 
inflammation and energy homeostasis.
Results We identified differences in the concentration 
of specific metabolites between childhood and adulthood 
and in metabolic profiles in children and adults by sex. In 
general, metabolite concentrations were higher in adults 
than children and sex differences were larger in adults 
than in children. Positive correlations were observed for 
the majority of metabolites including isoleucine (CC 0.33, 
95% CI 0.27 to 0.38), total cholesterol (CC 0.30, 95% CI 
0.24 to 0.35) and omega 6 fatty acids (CC 0.28, 95% CI 
0.23 to 0.34) in parent–child comparisons.
Conclusions We describe the serum metabolite profiles 
from mid-childhood and adulthood in a population-based 
sample, together with a parent–child concordance. 
Differences in profiles by age and sex were observed. 
These data will be informative for investigation of the 
childhood origins of adult non-communicable diseases and 
for comparative studies in other populations.

INTRODUCTION
Metabolomics involves the quantitative anal-
ysis of a large number of metabolites and 
lipids involved in a diverse range of biochem-
ical pathways.1 Genetic/gene expression and 
environmental exposures are associated with 
specific metabolic changes across many tissues 
and body fluids.2 3 As such, metabolomics is 
recognised as a powerful top-down approach 
to understanding genetic and environmental 
influences on health and disease. Metabo-
lomic profiling also has considerable poten-
tial to identify clinically relevant biomarkers 
for risk stratification and disease monitoring.

Recent advances in nuclear magnetic reso-
nance (NMR) spectroscopy and mass spec-
trometry have enabled the simultaneous 
quantitative measurement of hundreds of 
metabolites. These approaches are suffi-
ciently cost-effective and high throughput 
to be applicable to large cohort studies. For 

Strengths and limitations of this study

 ► In a large population-based cohort, venous blood 
was collected for children and their attending parent 
on the same day using the same methods.

 ► Rapidly processed, high-quality serum samples with 
standardised metabolomic data generated as a sin-
gle batch.

 ► Cross-sectional design does not enable longitu-
dinal analysis of specific metabolite species over 
the short term or longer periods of time.

 ► Assessment of paternal associations with offspring 
metabolite measures is limited by a relatively small 
sample size compared with mother–child pairs, re-
ducing the precision of estimates.

 ► Factors known to influence metabolomic profile 
(such as body mass index) were not considered as 
the aim was to describe the distribution of metabo-
lites in children and their parents.
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example, NMR metabolomics of serum from the Cardio-
vascular Risk in Young Finns Study identified many 
biomarkers from multiple metabolic pathways reflective 
of fatty liver disease.4 These were also predictive of risk 
10 years prior to diagnosis, indicating that metabolic 
disruptions precede overt phenotype. Similar population 
and disease-specific studies have identified metabolomic 
profiles associated with a range of exposures and health 
outcomes with the potential to reveal clinically important 
biomarkers and information on disease mechanisms.5 In 
addition, specific serum metabolites can also be consid-
ered ‘intermediate phenotypes’ linking genetic risk with 
disease outcomes.6 7

Previous research indicates that some blood metab-
olites change with age, particularly from mid to late 
adulthood.8 9 However, in adults, sex appears to be a 
major driver of variation in metabolite profile, poten-
tially interacting with age. For example, the effects of 
sex appeared to be greater in younger (age 25–35 years) 
than older Japanese adults.10 A study of 26 000 Northern 
European adults identified many sex-specific metabolic 
species at the population level.9 In men, several lipid 
measures begin to rise at early middle age, whereas a 
similar increase is only observed in women postmeno-
pause. This pattern is consistent for all non-high-density 
lipoprotein (HDL) cholesterol measures, very low-den-
sity lipoprotein, intermediate density lipoprotein and 
low-density lipoprotein (LDL) subclass particle concen-
trations, as well as for triglycerides.9 Physiological states 
such as pregnancy also have a consistent and measur-
able influence on serum metabolome.11 However, it 
remains unclear how the serum metabolome differs in 
adults compared with children and by sex, particularly 
in childhood.

Moreover, factors regulating the metabolic trajectory 
from early life to adulthood, the role of a metabolomic 
profile in health at the population level and the extent 
to which blood metabolomic profiles are concordant 
for parents and children have not been fully explored. 
One small study has reported correlations between 
parents (n=179) and their offspring (n=255) for a range 
of cardiometabolic risk factors including standard lipid 
profile measured using conventional methods; this 
proved stronger for total cholesterol and LDL cholesterol 
than for HDL cholesterol or triglycerides.12 Considerable 
evidence exists that the metabolomic profile is regulated, 
at least in part, by genetic factors13 14 and is also influenced 
by dietary and lifestyle factors. Each of these influences is 
likely to be shared between parents and their offspring 
to varying degrees, however, parent–child correlations of 
metabolites from NMR-based platforms have not been 
reported previously.

Here, we describe (1) the distribution of NMR-based 
metabolite measures in a population-based cohort of 
11–12-year-old children and their parents, differences in 
metabolite concentrations; (2) by age (adults compared 
with children); (3) by sex in children and adults; and (4) 
report sex-specific parent–child concordance.

METHODS
Study design
Details of the initial Longitudinal Study of Australian 
Children (LSAC) study design and recruitment are 
outlined elsewhere.15 16 The LSAC commenced in 2004 
when two cohorts (the ‘B’ and ‘K’ cohorts, of which the 
B cohort only was included in the present study) were 
recruited who have since been followed biennially. The 
Child Health CheckPoint comprised a detailed cross-sec-
tional assessment of physical health and biomarkers in a 
population-based national sample of children (age 11–12 
years) and their parents between February 2015 to March 
2016. The CheckPoint was nested between waves 6 (2014) 
and 7 (2016) of the LSAC. Further details regarding the 
CheckPoint study design and methods are available else-
where.17 18

Participants
Of the 8921 families contacted to be part of the LSAC B 
cohort, 5107 families (57%) agreed to take part in the 
first wave of data collection in 2004; 4484 families were 
retained for Wave 6 in 2014. During the Wave 6 LSAC 
home visit, B cohort families were introduced to the 
upcoming Child Health CheckPoint and asked to consent 
to their contact details being shared with the CheckPoint 
team. A total of 3513 families provided permission to 
receive an information pack by mail and an informa-
tion and recruitment phone call regarding the Check-
Point study (78% of Wave 6 cohort, 69% of the original 
cohort). Of the families agreeing to receive information 
about the CheckPoint study, 1874 families took part (53% 
of eligible participants, 42% of Wave 6 cohort and 37% of 
the original cohort).

Consent
The attending parent/caregiver provided written 
informed consent for themselves and their child to partic-
ipate in the study, and asked to provide optional consent 
for the collection and use of biological samples.

Procedure
The specialised CheckPoint assessment centre sequen-
tially visited seven Australian cities and eight regional 
towns between February 2015 and March 2016.18 Each 
participating child attended the centre with one parent 
or caregiver (usually the biological mother) at which 
both participated in a wide range of measures relevant 
to non-communicable disease. Those families that could 
not attend a centre were offered a home visit. Participants 
were included in the current analyses if metabolomic 
data from CheckPoint were available (figure 1). Venous 
blood was not available for home-visit participants but was 
collected at all city and most regional assessment centres. 
Participant pairs were excluded from the concordance 
analyses in this study if the attending parent was not the 
biological parent.

An experienced phlebotomist collected approximately 
28 mL of blood from the brachial vein of the non-dominant 
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arm of semi-reclining, semi-fasted participants (at the 
time of collection, participants reported when they last 
ate or drank). Blood was collected sequentially into four 
Becton Dickinson (BD) Vacutainer tubes using a butterfly 
needle so only a single venepuncture was required. Order 
of collection was (1) 2.7 mL EDTA, (2) 9 mL EDTA, (3) 
9 mL serum and (4) 7.5 mL Lithium Heparin. The latter 
two tubes were immediately inverted six times to ensure 
mixing with anticoagulant, and all tubes were transferred 
to the on-site laboratory. Time of collection was sched-
uled earlier in the visit for parents than for children.

Collection tube barcodes were linked to the partici-
pant and samples were immediately transported to an 
on-site laboratory where they were processed within 
2 hours. Blood clotting was allowed at room tempera-
ture for at least 30 min after collection. The sample tubes 
were spun at 550 g relative centrifugal force for 10 min at 
room temperature and distributed into 0.5 mL aliquots 
of plasma, serum, buffy coat (lymphocytes), whole blood 
and/or an aliquot tube containing a blood clot (1.0 mL 

FluidX screwcap tubes, Cheshire, UK) and stored imme-
diately at −80 °C (Thermo Fisher Scientific, Waltham, 
Massachusetts,USA). Each FluidX tube contained a 
unique 2D barcode linked to the original collection 
tube and participant. As each assessment centre closed, 
samples were shipped on dry ice to the Melbourne Chil-
dren’s Bioresource Centre for long term storage at −80°C 
(serum, whole blood, plasma, blood clot) or vapour phase 
liquid nitrogen (lymphocytes). At a later date, single 
0.5 mL serum aliquot was removed for every CheckPoint 
participant and the combined aliquots were shipped in a 
single batch to Nightingale Health (Helsinki, Finland) on 
dry ice for NMR metabolomics.

Measures
Metabolomic profiling
The Nightingale NMR metabolomics platform (Helsinki, 
Finland) was used to obtain metabolomics for children 
and parents using the 2016-version quantification algo-
rithm. Details of this platform and methodology have 
been extensively described elsewhere,6 19 and epidemi-
ological applications were recently reviewed.20 Briefly, 
metabolites were measured from 0.35 mL of serum using 
a single high-throughput experimental set up for the 
simultaneous quantification of routine lipids, lipopro-
tein subclass distributions, particle size and composition, 
fatty acids and other low-molecular-weight metabolites 
such as amino acids and glycolysis-related metabolites. 
This generated data on 228 serum metabolite measures 
in absolute concentration units (eg, millimoles per litre) 
and ratios (summarised in table 1). Although widely used 
for epidemiological research, the NMR-based quantifica-
tion has not been certified for clinical diagnostics. Further 
analytical validation of the quantification protocols for 
the biomarker subset routinely used in clinical settings 
(eg, established cholesterol measures and creatinine) is 
expected to lead to a recalibration of certain metabolite 
concentrations to better match clinical gold standards.20

Many of the 228 metabolomics measures correlate 
substantially both in children (see the online supplemen-
tary figure 1) and adults (see the online supplementary 
figure 2) and the pattern of correlations were similar 
for children and adults. For clarity, we therefore focused 
on a subset of 74 metabolites in analyses. We eliminated 
the five ratio measures for each of the 14 lipoprotein 
subclass particles. In addition, the seven other measures 
within each of the lipoproteins (esterified cholesterol, 
free cholesterol, total cholesterol, triglycerides, phos-
pholipids, total lipids and particle concentration) are all 
highly correlated and therefore we only reported total 
lipids for each of the lipoprotein subclass particles.

Other measures and sample characteristics
Age and sex: for children, LSAC provided date of birth 
(DOB) and sex, which were originally exported from 
the Medicare Australia database. In parents, DOB and 
sex were self-reported in the CheckPoint questionnaire, 
which was administered on an iPad using the Research 

Figure 1 Participant flow chart. *Unable to analyse due 
to insufficient volume or poor quality sample. Data from six 
non-biological child–parent pairs excluded from concordance 
analyses. c, number of children; HV, home visit; LSAC, 
Longitudinal Study of Australian Children; MAC, main 
assessment centre; mAC, mini assessment centre; n, number 
of families; p, number of attending adults.
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Electronic Data Capture (REDCap) tool.21 Age in years 
was calculated as the difference between date of the 
CheckPoint assessment and DOB divided by 365.

Disadvantage index: LSAC provided contact details 
of families consenting to be contacted by CheckPoint. 
The family's residential postcode was confirmed during 
the CheckPoint recruitment phone call and updated 
if required. The disadvantage index score of postcode 
was used to summarise neighbourhood socioeconomic 
position. Generated by the ABS from the 2011 national 
Census, the index numerically summarises the social 
and economic conditions of Australian neighbourhoods; 
national mean 1000, SD 100; higher scores indicate less 
disadvantage.22

Time of blood collection, processing and fasting time: time of 
blood collection and the start of laboratory processing 
were recorded. When missing, collection time was esti-
mated using the midpoint between the time the Check-
Point visit began and time that processing of the sample 
commenced. Processing lag time was calculated as the 
minutes between blood collection and the processing 
commencement. Most samples were processed within 
2 hours.

Fasting time was calculated as the hours between last 
eating/drinking to the time of blood collection. The 
last time of eating/drinking was cross-checked against 
when the participant was taking part in other CheckPoint 
stations (and known not to be eating) as well as sleep and 

Table 1 Summary of biomarkers and derived variables obtained via high-throughput NMR

Metabolic group Species and derived measures

Amino acids Alanine, glutamine, glycine, histidine

Branched chain: isoleucine, leucine, valine

Aromatic: phenylalanine, tyrosine

Cholesterol VLDL, LDL, HDL, HDL2, HDL3, total, free, esterified, remnant

Triglycerides and 
phospholipids

Triglycerides (VLDL, LDL, HDL, total)

Phosphoglycerides

Ratio of triglycerides to phosphoglycerides*

Phosphatidylcholine

Sphingomyelins

Total cholines

Apolipoproteins ApoA-1

Apo B

Ratio of ApoB/Apo A-1*

Fatty acids (FA) Total, omega-3, omega-6, PUFA, SFA

MUFA, DHA, LA

Estimated degree of unsaturation

Fatty acid ratios Omega-3/total FA*, omega-6/total FA*, PUFA/total FA* (all %)

SFA/total FA*, MUFA/total FA*, DHA/total FA*, LA/total FA* (all %)

Lipoprotein subclasses* 12 lipid measures in each of 14 subclasses
VLDL (XXL, XL, L, M, S, XS), IDL, LDL (L,M,S), HDL (XL, L, M,S): particle concentration, total lipids, 
esterified cholesterol, total cholesterol, phospholipids, free cholesterol, triglycerides and
esterified cholesterol/total lipids (%), free cholesterol/total lipids (%), total cholesterol/total lipids 
(%), triglycerides/total lipids (%) and phospholipids/total lipids (%)

Lipoprotein size* Mean diameter of VLDL, LDL and HDL particles

Ketone bodies Acetate, acetoacetate, 3-hydroxybutyrate

Glycolysis related Glucose, lactate, pyruvate, citrate, glycerol

Fluid balance Creatinine, albumin

Inflammation Glycoprotein acetyls (GlycA)

Information obtained from https://nightingalehealth.com/science/biomarkers.
*Ratio.
ApoA-1, apolipoprotein A-1; Apo B, apolipoprotein B; DHA, docosahexaenoic acid; GlycA, glycoprotein acetyls; HDL, high-density 
lipoprotein; IDL, intermediate density lipoprotein; L, large; LA, linoleic acid; LDL, low-density lipoprotein; M, medium; MUFA, monounsaturated 
fatty acid; PUFA, polyunsaturated fatty acid; S, small; SFA, saturated fatty acids; VLDL, very low-density lipoprotein; XL, very large; XXL, 
chylomicrons and extremely large; XS, very small.
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wake times from accelerometry data (to identify the usual 
activity, and therefore likely eating patterns) when avail-
able. Further details of cleaning processes for the time of 
last eat/drink can be found elsewhere.23

Statistical analysis
Sample characteristics
Continuous descriptive variables and metabolite 
measures were summarised using means and SD for chil-
dren and adults separately, by sex and overall. For skewed 
metabolites, geometric means and relative SD were 
reported. To provide visual comparisons of distributions 
of metabolites by age and sex, density plots were used. 
Population summary statistics were estimated by applying 
survey weights and survey procedures that corrected for 
sampling, participation and non-response biases, and 
took into account clustering in the sampling frame. 
Standard errors were calculated taking into account the 
complex design and weights.24 More detail on the calcu-
lation of weights is provided elsewhere.25

Differences in metabolite concentration by age (adults compared 
with children) and by sex (adults and children)
Skewed metabolites (skewness ≥2) were log-transformed. 
We used two-sided paired and unpaired t-tests (as appro-
priate) to assess differences in mean metabolite concen-
trations between adults and children in parent–child 
dyads, and between males and females for adults and 
children separately. P values were adjusted using Benja-
mini-Hochberg (B-H) with a false discovery rate (FDR) of 
10% to account for multiple comparisons.

Parent–child concordance
Concordance between parents and children was assessed 
by (1) Pearson’s correlation coefficients (CC) with 95% 
CIs, and (2) partial correlation coefficients (PCC), 
adjusting for child and parent age, disadvantage index, 
fasting time and processing lag time (and for child and 
parent sex where appropriate). Scatterplots of parent 
versus child metabolites (log-transformed where needed 
as above) were examined to check for outliers and to 
ensure assumptions were met.

The analyses were repeated using weighted multilevel 
survey analyses and compared with unweighted analyses. 
As there appeared to be no major effect of response 
patterns on results, we reported results from unweighted 
analyses. Analyses were undertaken using Stata V.14.2 and 
R V.3.3.2.26

Patient and public involvement
Because LSAC is a population-based longitudinal study, 
no patient groups were involved in its design or conduct. 
To our knowledge, the public was not involved in the 
study design, recruitment or conduct of the LSAC study 
or its CheckPoint module. Parents received a summary 
health report for their child and themselves at or soon 
after the assessment visit. They consented to take part 
knowing that they would not otherwise receive individual 
results about themselves or their child.

RESULTS
Sample characteristics
The recruitment and retention of participants in the 
Child Health CheckPoint are described elsewhere.18 
Of the 1874 families who participated in CheckPoint 
assessment centres, blood serum samples of analysable 
quality from 1180 children and 1325 parents (figure 1) 
were sent for NMR quantification of metabolites. The 
majority of excluded families undertook home visits or 
attended a regional centre, where blood samples could 
not be collected (n=385, 20.5%), while some partici-
pants declined a blood sample (children, n=150, 8.0%; 
adults, n=108, 5.8%). Few data were lost due to insuffi-
cient volume or poor quality samples at the assessment 
centre (figure 1). The sample characteristics of parents 
and children are outlined in table 2. Summary statis-
tics for our main child and parent metabolite measures 
are presented in the online supplementary table 1. 
Online supplementary figures 3–7 show density plots 
comparing the distributions of metabolites for boys, 
girls and adults.

Differences in metabolite levels: adults compared with 
children
Figure 2 shows mean differences in metabolite levels 
for adults relative to children in SD units. Most concen-
trations were higher in adults than in children. Values 
that were similar in adults and children included total 
lipids in very large HDL lipoprotein subclass particles, 
acetoacetate, tyrosine and glucose. Levels in children 
were higher than those of adults for the majority of 
glycolysis-related measures (lactate, pyruvate, citrate 
and glycerol), the ketone body 3-hydroxybutrate, the 
amino acid glutamine, many fatty acid ratios and all 
lipoprotein particle sizes. Online supplementary table 
2 lists the corresponding estimates in absolute concen-
tration units.

Sex differences in metabolite levels in children and adults
Figure 3 shows differences in mean metabolite levels 
by sex for children and adults separately in SD units, 
with estimates in absolute concentration units listed in 
online supplementary tables 3 and 4.

In general, sex differences were more pronounced 
in adulthood, resulting in distinct overall patterns for 
children and adults. Children generally showed smaller 
differences by sex than adults. Of note, sex differences for 
apolipoproteins and fatty acid measures showed different 
patterns in children compared with adults.

Girls had lower levels of apolipoprotein-A-1 (ApoA-1) 
and higher ApoB than boys. In adults, the opposite 
pattern was observed with women having higher ApoA-1 
and lower ApoB than men. In children, some fatty acid 
concentrations were higher in girls than boys. In contrast, 
many adult fatty acid measures were higher in men. There 
was no evidence of a difference in the level of inflamma-
tion (GlycA) by sex in children, whereas in adults, GlycA 
levels tended to be higher in men than women.
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For some metabolites, sex differences in children 
mirrored (but were smaller in magnitude than) those of 
adults, particularly for the ketone body acetate and some 
key amino acids. At both ages, the amino acid glycine was 
higher in females, but the branched-chain amino acids 
leucine and valine tended to be higher in males.

Parent–child concordance
Figure 4 shows the correlations between metabolite 
measures for all children with all parents and for boys and 
girls with mothers (but not with the 177 fathers, given the 
small numbers). The corresponding correlation coeffi-
cients and partial correlation coefficients are listed in the 
online supplementary tables 5 and 6.

Correlations for all parents and all children showed 
similar patterns to that observed for mother and child by 
sex. Although there was little suggestion of substantial 
correlation within parent–child dyads for some metab-
olites (eg, glucose and acetate), a positive correlation 
was found for many metabolite measures irrespective 
of child sex. For example, positive correlations were 
observed for isoleucine (CC 0.33, 95% CI 0.27 to 0.38), 
total serum cholesterol (CC 0.30, 95% CI 0.24 to 0.35) 
and omega 6 fatty acids (CC 0.28, 95% CI 0.23 to 0.34) 
in parent–child comparisons. Additional adjustment 
for factors that potentially influence metabolite levels 
(age, socioeconomic status, fasting time and processing 
lag time) had little effect on the degree of correlation 
in any comparison (see the online supplementary tables 
5 and 6).

DISCUSSION
Principal findings
Here we present age and sex differences, describing 
the distribution of detailed/NMR-based metabolite 
measures in Australian 11–12-year-old children and 
their parents, and demonstrate that many metabolite 
measures have moderate parent-child concordance 
and in general there is a high level of agreement in 
the magnitude of concordance across metabolites. In 
accord with previous studies, we observed major differ-
ences in metabolite levels between childhood and 
adulthood and also differences by sex in both child-
hood and adulthood. We also observed variability in the 
magnitude of differences by sex for several metabolites 
in childhood compared with adulthood and identified 
a complex interplay of correlations of specific metab-
olites between parents and their children according to 
parent–child sex relationships.

Strengths and weaknesses
This is the first major cohort study to report both sex 
and cross-generational differences in metabolomic 
concentrations in mid-childhood to adulthood utilising 
the NMR platform. Further strengths include a large 
number of parent–child dyads representing a wide 
range of parent ages, the national population-based 
sample and the state-of-the-art measurements. Replica-
tion studies exploring sex differences in earlier and later 
stages of childhood and adolescence would strengthen 
findings.

Table 2 Sample characteristics; values are weighted mean (SD)

Characteristic All Male Female

Child

  n 1152–1180 558–575 594–605

  Age (years) 12.0 (0.4) 12.0 (0.4) 12.0 (0.4)

  BMI (kg/m2) 19.4 (3.5) 19.2 (3.4) 19.6 (3.7)

  BMI z-score 0.38 (1.0) 0.40 (1.0) 0.37 (1.0)

  Disadvantage Index 1012 (63) 1011 (65) 1014 (61)

  Fasting time (hours) 4.2 (1.2) 4.3 (1.3) 4.2 (1.1)

  Time of day - blood collection 14.16 (2.0) 14.12 (2.0) 14.20 (2.1)

  Processing lag time (hours) 1.16 (0.5) 1.18 (0.5) 1.14 (0.5)

Parent

  n 1272–1325 174–177 1098–1148

  Age (years) 43.9 (5.6) 46.9 (6.9) 43.4 (5.2)

  BMI (kg/m2) 28.4 (6.4) 28.9 (4.7) 28.4 (6.6)

  Fasting time (hours) 3.3 (1.6) 3.6 (2.0) 3.2 (1.5)

  Time of day – blood collection 13.10 (2.0) 13.18 (2.1) 13.09 (2.0)

  Processing lag time (hours) 1.26 (0.5) 1.31 (0.5) 1.26 (0.5)

Values are weighted mean (SD). 
Disadvantage Index is the Index of Relative Socioeconomic Disadvantage.
n, number of participants in cohort with this measure.
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An important limitation is that paternal factors were 
not fully represented, as most parental samples were from 
mothers (a well-documented problem in longitudinal 
cohort studies). This also limited sex-specific parental 

contribution analysis; further studies including more 
fathers are warranted. Additional limitations are that, 
without samples from both parents for each child, we could 
not estimate heritability, and our results might not apply to 

Figure 2 Differences in metabolite levels between children and adults. Association measures are SD difference in metabolite 
concentration for adults compared with children. Error bars represent 95% CIs. Significant associations after p values adjusted 
for multiple testing using Benjamini-Hochberg procedure are shown in bold (FDR=0.10). Association measures in absolute 
concentration units, 95% confidence intervals and associated p-values are listed in the online supplementary table 2. HDL, 
high-density lipoprotein; IDL, intermediate density lipoprotein; LDL, low-density lipoprotein; VLDL, very low density lipoprotein.
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mid-life adults who are not parents (although we see no 
good reason why these would differ greatly). The original 
uptake of just over 50% and subsequent attrition within 
LSAC and then the CheckPoint have led to a relatively 
advantaged sample, but nonetheless, participants varied 
widely on key potential confounders (eg, disadvantage and 
age) and this was at least partly offset by application or 
consideration of survey weights. Given a large number of 
metabolites and modest sample size, considerable uncer-
tainty remains in any ranking of the various effects across 
metabolites. In addition, given the descriptive aims of the 
paper, additional factors and potential confounders not 
considered could explain some of the results observed.

Meaning and implications for clinicians and policy-makers
Overall, we found a difference in metabolite profile between 
children and their parents. This was apparent for specific 
metabolite measures (such as some amino acids) as well as 
the distribution of metabolites (such as lipid composition 
of lipoproteins of different density). Some measures were 
higher in adults, some similar, while a minority were lower. 
Previous studies, largely in adults, have identified a range 
of specific metabolite changes with age, particularly from 
mid to late adulthood.27 This includes a general decrease 
in several amino acid species, which contrasts with our find-
ings from childhood to mid-adulthood.8 Only the amino 
acid glutamine showed this pattern in our dataset.

Figure 3 Sex differences in metabolite levels in childhood and adulthood. Association measures are SD difference in 
metabolite concentration for females compared to males in children (A) and adults (B). Error bars represent 95% CIs. Significant 
associations after p values adjusted for multiple testing using Benjamini-Hochberg procedure are shown in bold (FDR=0.10). 
Association measures in absolute concentration units, 95% CIs and associated p values are listed in the online supplementary 
tables 3 and 4. HDL, high-density lipoprotein; IDL, intermediate density lipoprotein; LDL, low-density lipoprotein; VLDL, very 
low-density lipoprotein.
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Differences in children by sex (±0.2 SD) were generally 
much smaller than in adults (±0.8 SD). Large metabo-
lomic studies using alternative platforms have previously 
reported reproducible, sex-specific signatures in circu-
lating metabolite profile in adults.28 29 This includes 
differences in amino acid and lipid serum concentra-
tions, potentially influenced by sex-specific effects of 
genetic polymorphisms on metabolite levels.29 30 As in our 
study, most amino acids have usually been reported to be 
higher in men than women.29 31 For example, in a recent 
study of 507 metabolic markers in 1756 individuals (903 
women and 853 men aged ~60 years), one third of metab-
olites showed significant sexual dimorphism. These were 
predominantly related to pathways of steroid metabolism, 

fatty acids, other lipids and a large proportion of amino 
acids.31 Of particular note, branched chain amino acids 
(BCAAs) and their related metabolic products were 
among the most differentially represented, with much 
higher isoleucine, leucine and valine in men. A similar 
finding of higher leucine and valine was also noted in the 
Cooperative Health Research in the Region of Augsburg 
(KORA) follow-ups 3 (F3) and 4 (F4) analysis of >3000 
adults,29 consistent with our observations in adulthood.

In children, we found that sex differences for leucine 
and valine were smaller but in the same direction as 
adults. Several lines of evidence implicate BCAA metab-
olism with metabolic risk in humans. For example, three 
candidate genes for obesity and/or type 2 diabetes 

Figure 4 Parent–child correlation for metabolite measures. Pearson’s correlation coefficients for all children with all parents 
(A); and for boys (blue) with mothers and for girls (red) with mothers (B). Error bars represent 95% CIs. Correlation coefficients 
with associated 95% CIs are listed in the online supplementary tables 5 and 6. HDL, high-density lipoprotein; IDL, intermediate 
density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein.
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mellitus (T2DM) are involved in the BCAA metabolic 
pathway.32 In a recent large meta-analysis of metabolo-
mics in diabetes, a >30% higher risk of T2D was found 
per SD increase in isoleucine, leucine, valine or tyrosine, 
whereas glycine and glutamine were inversely associated 
with risk.32 Several clinical studies have also reported 
that BCAAs positively correlate with insulin resis-
tance, homeostatic model assessment index and levels 
of haemoglobin A1c, while longitudinal studies have 
reported that increased blood BCAAs are predictive 
of future insulin resistance and T2D.33 It is intriguing 
to speculate that the higher BCAA in males from early 
life could contribute to the well-described increasing 
prevalence of T2D in men. Levels of BCAA are elevated 
in women with polycystic ovary syndrome, potentially 
contributing to the associated insulin resistance.34 
However, it remains unclear whether BCAAs are on the 
causal pathway to T2D or result from adverse metabolic 
health. Our demonstration that the sex differences in 
BCAA possibly arise early in life offers potential to track 
their association with sex-specific measures of metabolic 
health from an early age to help clarify where they lie on 
the causal pathway.

In accord with previous adult studies,29 we found 
higher levels of glycine in mothers than fathers, and 
(less markedly) in girls than boys. Interestingly, recent 
metabolomics and genetic analyses of ~10 000 adults with 
cardiovascular disease (CVD), with replication in >53 000 
subjects, identified a genetic variant in carbamoyl-phos-
phate synthetase 1 (CPS1) (linked to plasma glycine 
levels) to be strongly associated with a reduced risk 
of CVD in women (p=6.3×10−5) but not men (p=0.95), 
suggesting a direct link between glycine levels and CVD 
risk, although whether this is a causal association remains 
unclear.35 It will be interesting in the future to explore 
the link between variants in CPS1 and circulating glycine 
levels from early life to adulthood in relation to markers 
of cardiovascular health in females.

The small sex differences of HDL cholesterol and 
ApoA-1 in children compared with adults is consistent 
with modest differences in children, whereas substan-
tial differences in adulthood have previously been 
reported.36 ApoA-1 was more abundant in boys, whereas 
ApoB was higher in girls, leading to a higher ApoB/
ApoA-1 ratio in girls. The opposite pattern was found in 
our limited sample of fathers relative to mothers. These 
data are surprising and differ from a similarly sized study 
of slightly older European adolescent children (mean 
age 15 years) that found higher ApoA-1 and ApoB in girls 
relative to boys.37 Interestingly, a higher ApoB/ApoA-1 
ratio has been strongly linked to increased coronary risk 
in adults,38–40 suggesting that sex differences may alter 
with increasing age, in keeping with the increased CVD 
risk in adult men. ApoA-1 is the main protein component 
of HDL cholesterol41 thus the differences in trajectories 
in lipids and HDL cholesterol for boys and girls across 
childhood that have been reported42 43 could partially 
explain this observation.

These are the first data on the mother–child or parent–
child correlations of NMR metabolites. Smaller studies 
have reported positive correlations between parents 
and children for a limited range of cardiometabolic risk 
factors including total cholesterol, LDL cholesterol, HDL 
cholesterol and triglycerides measured using conven-
tional methods. We found positive correlations between 
parents and children for the same lipid measures 
(although measured using NMR) consistent with previ-
ously reported findings. One study reported a positive 
association between the serum lipid levels of 4-year-old 
children (n=127) and their parents (122 mothers and 118 
fathers)44 whereas another study of children aged 6–18 
years (n=255) and their parents (n=179) found that the 
age of the child influenced the degree of correlation of 
several lipid measures, with older (10–18 years) children 
more similar to their parents in terms of triglyceride levels 
than younger individuals (6–9 years).12

Unanswered questions and future research
The temporal and sex-specific dynamism of the metabo-
lomics data we describe here offer considerable oppor-
tunities for identification of biomarkers of risk for a 
range of non-communicable diseases early in life to 
inform targeted interventions and monitor their efficacy. 
Combining metabolomics with other ‘omics data (such 
as genetics), as is increasingly reported from large adult 
studies, offers considerable promise in understanding 
the causal pathways that link early life exposures, genetics 
and intermediate phenotypes with later onset chronic 
disease and in identifying clinically relevant biomarkers.

In conclusion, we describe the metabolite profile from 
mid-childhood and adulthood in a population-based 
sample, together with parent–child concordance and 
differences by sex in children and adults. In this descrip-
tive paper, distinct differences in profiles were observed by 
age and sex, as well as considerable evidence of a correla-
tion between parent and child measures. These data will 
be informative for investigation of the childhood origins 
of adult non-communicable diseases and for comparative 
studies across populations.
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