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of U.S. Great Plains plant production
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Abstract. Productivity throughout the North American Great Plains grasslands is generally considered to
be water limited, with the strength of this limitation increasing as precipitation decreases. We hypothesize
that cumulative actual evapotranspiration water loss (AET) from April to July is the precipitation-related
variable most correlated to aboveground net primary production (ANPP) in the U.S. Great Plains (GP). We
tested this by evaluating the relationship of ANPP to AET, precipitation, and plant transpiration (Tr). We
used multi-year ANPP data from five sites ranging from semiarid grasslands in Colorado and Wyoming to
mesic grasslands in Nebraska and Kansas, mean annual NRCS ANPP, and satellite-derived normalized dif-
ference vegetation index (NDVI) data. Results from the five sites showed that cumulative April-to-July AET,
precipitation, and Tr were well correlated (R2: 0.54–0.70) to annual changes in ANPP for all but the wettest
site. AET and Tr were better correlated to annual changes in ANPP compared to precipitation for the drier
sites, and precipitation in August and September had little impact on productivity in drier sites. April-to-July
cumulative precipitation was best correlated (R2 = 0.63) with interannual variability in ANPP in the most
mesic site, while AET and Tr were poorly correlated with ANPP at this site. Cumulative growing season
(May-to-September) NDVI (iNDVI) was strongly correlated with annual ANPP at the five sites (R2 = 0.90).
Using iNDVI as a surrogate for ANPP, we found that county-level cumulative April–July AET was more
strongly correlated to ANPP than precipitation for more than 80% of the GP counties, with precipitation
tending to perform better in the eastern more mesic portion of the GP. Including the ratio of AET to potential
evapotranspiration (PET) improved the correlation of AET to both iNDVI and mean county-level NRCS
ANPP. Accounting for how different precipitation-related variables control ANPP (AET in drier portion, pre-
cipitation in wetter portion) provides opportunity to develop spatially explicit forecasting of ANPP across
the GP for enhancing decision-making by land managers and use of grassland ANPP for biofuels.

Key words: aboveground net primary production; cumulative actual evapotranspiration water loss; cumulative
growing season normalized difference vegetation index; North American Great Plains grasslands.
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INTRODUCTION

Grassland and savanna ecosystems make
up > 30% of the global land surface (Asner et al.
2004, Li et al. 2017). Grassland ecosystems store
large amounts of carbon in soil organic matter
and have a large impact on the interannual varia-
tions in net ecosystem carbon exchange (Zhang
et al. 2010). Net primary production of grass-
lands is primarily controlled by precipitation,
soil water content, and evapotranspiration, while
other factors such as temperature and solar radi-
ation have less direct impact on plant production
(Parton et al. 2012, Mowll et al. 2015, Del Grosso
et al. 2018). Numerous studies (Lauenroth 1979,
Sala et al. 1988, Del Grosso et al. 2008) have
shown that mean annual precipitation (MAP) is
the major factor determining grassland above-
ground net primary production (ANPP) with
ANPP increasing linearly with increasing MAP
at the site, regional, and global scales. Lauenroth
and Sala (1992) have shown that ANPP increases
linearly with increasing MAP at the site and
regional levels for Great Plains (GP) grasslands;
however, the slope of the change in annual
ANPP with increasing precipitation at the site
level is much lower than the slope for regional
changes in mean ANPP with increasing MAP. In
addition, sites with lower MAP tend to have
steeper slopes than more mesic sites, suggest-
ing that water limitations are strongest in drier
grasslands.

Other climate-related variables, in addition to
MAP, are also predictors of ANPP (Day et al.
1993, Lauenroth and Bradford 2006, Good et al.
2017). For example, Day et al. (1993) evaluated
the correlation of nine different climate/weather
variables with ANPP for grasslands in Australia.
They found that transpiration and actual evapo-
transpiration (AET) were both highly correlated
to ANPP (R2 > 0.70) and that the ratio of daily
transpiration to vapor pressure deficit (VPD) had
the highest correlation to observed ANPP. This
suggests that ANPP is directly proportional to
the amount of water passing through the plant
and inversely proportional to the water loss rate.

Potential increases in air temperatures associ-
ated with climate change (IPCC 2013) have led to
several studies evaluating the impact of air tem-
perature on annual changes in ANPP (e.g., Epstein
et al. 1997). More recently, Mowll et al. (2015)
investigated the impact of temperature on grass-
land ANPP in the GP using ANPP data sets from
semiarid grasslands along a latitudinal gradient.
Their results showed that ANPP decreases slightly
with increasing growing season mean tempera-
ture; however, the major factor that controlled
annual changes in ANPP was precipitation. Simi-
larly, Chen et al. (2017) found that including
growing season temperature and potential evapo-
transpiration (or potential water loss [PET]) along
with precipitation did not increase correlations
with ANPP compared to precipitation alone for a
grassland in Northeastern Colorado.
Although long-term ANPP measurements

exist for a number of grassland sites across the
North American GP (Petrie et al. 2018), remote
sensing provides spatially extensive data
for > 30 yr. Satellite-derived normalized differ-
ence vegetation index or NDVI (Tucker 1979)
measurements can be used to predict grassland
daily to seasonal net carbon exchange and gross
primary production (GPP) (Gilmanov et al. 2005,
Morgan et al. 2016, Del Grosso et al. 2018). Gil-
manov et al. (2005) developed a model to predict
daily grassland GPP for different grasslands in
the northern GP as a function of NDVI, solar
radiation, VPD, and soil water content. Del
Grosso et al. (2018) formulated regression mod-
els for predicting daytime net carbon and AET
uptake as functions of NDVI and soil water con-
tent and showed that NDVI was strongly related
to GPP. Integrated growing season NDVI is well
correlated with ANPP (Paruelo et al. 1997, 2000,
Irisarri et al. 2012, An et al. 2013, Hermance
et al. 2015) or grassland live plant biomass (Par-
ton et al. 2012), thereby providing spatially expli-
cit ANPP estimates across the GP.
In this paper, we use different site-level and

regional-scale data sets to investigate how pre-
cipitation-related variables and NDVI are related
to spatial and temporal patterns of ANPP. The
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overarching goal of the analysis is to determine
which precipitation-related variables (i.e., precip-
itation, Tr, or AET) are primary predictors of
ANPP across the semiarid (300–450 mm precipi-
tation/yr) to mesic (>700 mm precipitation/yr)
portions of the U.S. GP. We hypothesize that
cumulative April-to-July AET will be the best
predictor of ANPP in the GP as AET includes soil
water storage from snow and rainfall during the
prior fall and winter time periods as well as pre-
cipitation during spring and early summer grow-
ing season months. We also evaluated how
strongly the ratio of precipitation to PET, the
ratio of AET to PET, and other drought indices
(e.g., Palmer drought severity index [PDSI]) are
correlated to ANPP using site-level interannual
ANPP and county-level mean annual NRCS
ANPP data from the GP. Daily plant transpira-
tion and AET rates were simulated by the Day-
Cent model (Parton et al. 1998, Del Grosso et al.
2001, 2011). The AET results from DayCent
model have been validated for several GP grass-
land sites (Parton et al. 1998, Chen et al. 2016,
2017).

A secondary goal of our analysis was to deter-
mine whether a general function could be
derived that describes the relationship between
mean ANPP and satellite-derived growing sea-
son (May-to-September) NDVI (iNDVI) for the
entire GP. Whereas prior efforts (e.g., Paruelo
et al. 1997, Chen et al. 2016) have focused at the
individual site level, our efforts here were region-
ally specific with a focus on determining whether
a differential relationship was observed in the
correlation between ANPP and iNDVI between
the northern and southern GP. Cool-season (C3)
plants dominate in the northern GP; warm-sea-
son (C4) plants dominate in the southern GP. The
correlations at both site and county levels were
evaluated. At the site level, observed annual
ANPP and iNDVI at five sites with different
levels of precipitation (semiarid to mesic grass-
lands) were used to develop a general function
between the two. At the county level, estimates
of mean annual ANPP (2004–2014) derived from
Natural Resources Conservation Service (NRCS)
data sets (Sala et al. 1988) were used to deter-
mine the regional spatial patterns in ANPP and
correlations of county-level iNDVI to precipita-
tion-related controls. Because the county-level
ANPP data are annual means and cannot be

used to investigate the environmental controls
on temporal variability within the growing sea-
son, we used county-level annual iNDVI data
from 1982 to 2015 as a surrogate for ANPP.

METHODS

Descriptions of the five sites with long-term ANPP
data
Table 1 summarizes the basic information (i.e.,

location, climate, vegetation, and soil type) of the
five GP sites.
The Central Plains Experimental Range

(CPER) is a Long-Term Agroecosystem Research
network site in northcentral Colorado (near
19 km northeast of Nunn). The site is typical of
mid-continental semiarid grasslands with peak
precipitation occurring during May and June
(Chen et al. 2017). Central Plains Experimental
Range has higher inter- and intra-annual vari-
ability than most forest sites (Knapp and Smith
2001). Central Plains Experimental Range has a
winter (DJF) mean temperature of �1.92°C and a
summer (JJA) mean temperature of 19.76°C
between 1912 and 2016. This shortgrass steppe
site has a history (since 1939) of grazing by cattle
during the growing season (mid-May to October)
at a moderate stocking rate (Lauenroth et al.
1978). The plant production is mainly limited by
water supply (Lauenroth et al. 1978).
The High Plains Grasslands Research Station

(HPGRS) site is a northern mixed-grass prairie
site located in southeastern Wyoming near Chey-
enne (Zelikova et al. 2014). The precipitation at
HPGRS peaks during April and May. High
Plains Grasslands Research Station had a winter
(DJF) mean temperature of �2.21°C and a sum-
mer (JJA) mean temperature of 18.77°C between
1915 and 2016.
The Barta Brothers Ranch (BBR) site is located

11 km northwest of Rose, NE in Rock and Brown
Counties, Nebraska. The BBR site is dominated
by upland Sandhills prairie with scattered wet-
lands.
The Gudmundsen Sandhills Laboratory (GSL)

site is located 8 km northeast of Whitman,
Nebraska. About 80% of its precipitation occurs
during the April through September growing
season (Hendrickson et al. 2000).
The Konza Prairie (KNZ) is a Long-Term Eco-

logical Research site located in the Flint Hills of
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northeastern Kansas (Wilcox et al. 2016). KNZ is
a native tallgrass prairie. Most of its precipitation
occurs during the growing season (Wilcox et al.
2016).

ANPP data sets
The 31-yr ANPP data at the CPER site from

1983 to 2014 were estimated from the observed
live biomass levels of the five plant functional
groups (i.e., Bouteloua spp, C3 annual grasses, C3
perennial grasses, C4 perennial grasses, and forbs
and recent standing dead biomass) from clipped
biomass plots (1.8-m2 quadrants) in four pastures
(Midslope, Ridge, Owl Creek, and Swale). The
data were collected at peak biomass, generally in
late July or early August. The details of the CPER
ANPP data are described in Lauenroth (2013).

The 35-yr ANPP data at HPGRS site from 1982
to 2016 were obtained by averaging peak stand-
ing crop (between the end of July and the end of
August) from the moderate and heavy grazing
treatments (Derner and Hart 2007). Biomass was
hand clipped from 1.5-m2 plots or derived from a
capacitance meter reading (Derner and Hart
2007).
The ANPP data sets from BBR and GSL

included annual estimates of peak standing crop
from 1999 to 2015. Sampling methodology was
the same for both BBR and GSL locations and
included hand-clipping all vegetation to ground
level in 0.25 m2 quadrats and sorted into plant
functional groups of C4 grasses, C3 grasses, forbs,
sedges, shrubs, and standing dead and litter
(Volesky et al. 2005). Clipping was conducted in

Table 1. Basic location, climate, vegetation, and soil type information of the five Great Plains sites.

Site Location

Mean annual
temperature

(°C)

Mean annual
precipitation

(cm)
Dominant vegetation cover and

plant species Dominant soil type

Central Plains
Experimental
Range
(CPER)

40°490N,
104°460W,
1646.0 m

8.59 38.2 C4 perennial shortgrass blue
grama (Bouteloua gracilis) with
some C3 perennial graminoids
(western wheatgrass
[Pascopyrum smithii], needle
and thread [Hesperostipa
comata], and threadleaf sedge
[Carex eleocharis]) (Lauenroth
et al. 1978, Chen et al. 2017)

Aridic Argiustolls and
Ustic Torriorthents
(Yonker et al. 1988)

High Plains
Grasslands
Research
Station
(HPGRS)

41°110N,
104°540W,
1920.2 m

7.66 45.8 Most of the vegetation is C3
graminoids, C4 grasses make
up about 25% of the plant
community, and about 20% of
the plant community consists
of sedges, forbs, and small
shrubs (Zelikova et al. 2014)

Fine-loamy, mixed, mesic
Aridic Argiusoll, pH 7.9
(Zelikova et al. 2014)

Barta Brothers
Ranch (BBR)

42°140N,
99°390W

9.10 50.8 Dominant warm-season
grasses: prairie sandreed
(Calamovilfa longifolia), sand
bluestem (Andropogon hallii),
little bluestem (Schizachyrium
scoparium), and switchgrass
(Panicum virgatum L.);
common cool-season species:
needle grasses (Stipa spp.)
(Schacht et al. 2000)

Sandy soils. Soils of the
uplands are in the
Valentine series (mixed,
mesic Typic
Ustipsamments) (Schacht
et al. 2000).

Gudmundsen
Sandhills
Laboratory
(GSL)

42°070N,
101°430W

8.33 44.8 Similar to BBR (Volesky et al.
2005)

Similar to BBR (Volesky
et al. 2005)

Konza Prairie
(KNZ)

39°050N,
96°350W

12.5 83.8 Rhizomatous, C4 perennial
grass species (i.e., Andropogon
gerardii and Sorghastrum
nutans) (Wilcox et al. 2016)

Silty clay loams (typical of
North American
grassland Mollisols) with
high concentrations of
organic carbon in the
surface A horizons
(Melzer et al. 2010)
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mid-August each year with a total of 60 quadrats
clipped at the BBR location and 30 at GSL. Analy-
sis of the ANPP, AET, and PET rates from the BBR
and GSL sites showed that mean values were
quite similar for both sites. Therefore, the
observed ANPP and NDVI data sets from BBR
and GSL sites were combined as the Nebraska
(NEB) site in our correlations of environmental
variables to iNDVI and ANPP. We excluded
observed ANPP data from BBR from 2001 and
2002 and NDVI data from GSL from 2006 and
2012 from our statistical analysis because they
were outliers relative to the observed data
(Appendix S1).

The 35-yr ANPP data at KNZ site from 1982 to
2016 were obtained by clipping 20 0.1-m2 plots
between August and October. The details of the
KNZ ANPP data are described in Wilcox et al.
2016, . The data from the KNZ site came from the
upland site representing typical ANPP observed
at the KNZ site located on more shallow, rocky
soils (Knapp et al. 1998).

The decadal mean county-level NRCS ANPP
observations were determined for each of the GP
counties by averaging all the site-level ANPP
values (the “estimated average production”)
within each county during 2004–2014 (g
biomass�m�2�yr�1) (Appendix S2: Table S1)
(USDA-NRCS 2018). The NRCS measures
clipped plot ANPP for multiple locations within
each county using a technique described by Sala
et al. (1988). The ANPP county-level estimates
were determined for 254 U.S. GP counties. All
ANPP estimates < 10.0 g biomass�m�2�yr�1

and > 700 g biomass�m�2�yr�1 were excluded
since those are unrealistically low or high ANPP
values for the GP. We also excluded counties with
mountainous terrain where NDVI signal may
include trees as well as grasses. It is worth noting
that NRCS ANPP data for GP counties were not
used in the DayCent model tuning process. They
are only used to compare with the NDVI data
and to correlate with DayCent-simulated county-
level AET and other rain-related variables.

NDVI data sets
The Advanced Very High Resolution Radio-

meter (AVHRR) biweekly NDVI measurements
(NOAA 1992) from multiple pixels around the
CPER Pasture 24 SW in Colorado (1-km pixels
centered at 40.82°N, 104.73°W) were averaged to

represent the NDVI values at CPER site from
1982 to 2016. We averaged numerous pixels
because the pasture was much larger than 1 km2.
Following the procedure described in Chen et al.
(2017), the NDVI base value (NDVIbase = 0.20),
typical of NDVI during the non-growing season
(November to March), was subtracted from each
biweekly value from May to September, and
these values were accumulated to compute
iNDVI (Eq. 1). AVHRR biweekly NDVI measure-
ments around the HPGRS site is averaged from
the 1-km pixels centered at 41.22°N and
104.86°W. For this site, we also computed iNDVI
for years 1982–2016 using a base NDVI value of
0.20.

iNDVI ¼
XSep30

wk¼May1

ðNDVIwk �NDVIbaseÞ: (1)

The BBR and GSL sites are both located in
Nebraska. Barta Brothers Ranch is situated in Rock
and Brown counties, and GSL is located in Cherry,
Grant, and Hooker counties. The specific site
AVHRR NDVI data location for BBR is 42.23°N
and 99.65°W, while GSL is at 42.06°N and
101.52°W. For these sites, we computed iNDVI
using a NDVI base value of 0.22. The time period
for BBR is 1999 to 2015, and GSL is 2004 to 2015.
KNZ is located in the northeastern part of Kan-

sas. For KNZ, the specific site location for the
observed AVHRR NDVI data is 39.08°N and
96.56°W. We calculated the iNDVI values using
the base NDVI value of 0.28. The time period for
KNZ is 1984 to 2015.
For the regional analysis, we used third gener-

ation Global Inventory Modeling and Mapping
Studies normalized difference vegetation index
(NDVI3 g; Pinzon and Tucker 2014) data to cal-
culate county-level bimonthly grassland iNDVI
from 1982 to 2015. We removed all NDVI obser-
vations that were flagged as snow- or cloud-
covered (Pinzon and Tucker 2014), to isolate
grasslands. We excluded pixels identified as bar-
ren, forest, or crop using Moderate Resolution
Imaging Spectroradiometer land cover data
(Friedl et al. 2010). Like site-level iNDVI, county-
level iNDVI was also computed by subtracting
base NDVI values (0.10 to 0.15). This iNDVI data
set was then correlated to the mean annual
county-level NRCS ANPP data (270 counties).
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DayCent model description
The long-term actual evapotranspiration (AET)

and transpiration (Tr) data are simulated using
the DayCent model. DayCent is a biogeochemical
model that simulates the fluxes of water, carbon,
and nitrogen (or nutrients) among the atmo-
sphere, plants, and soil in crop/grassland, forest,
and savanna ecosystems (Parton et al. 1998, Del
Grosso et al. 2001, 2011, Straube et al. 2018). The
primary inputs to DayCent include site location,
daily weather data (e.g., maximum and minimum
temperature, precipitation, and solar radiation
[optional]), soil texture and hydraulic properties,
vegetation parameters, and land management
practices (e.g., grazing intensity) (Chen et al.
2016, Del Grosso et al. 2016). The functionality of
DayCent is implemented in four primary sub-
models: plant growth and production, soil
decomposition, land surface, and trace gas fluxes
(Del Grosso et al. 2001, 2011).

In DayCent, daily AET is simulated in its land
surface submodel (Parton et al. 1998). The major
factors, which control daily AET in the model,
include the potential daily evapotranspiration
rate (PET), live leaf biomass, and soil water con-
tent. More specifically, AET from two sources is
simulated. First, water inputs (e.g., precipitation,
irrigation, and snow melt) intercepted by plants
and litter are evaporated at the rate of PET,
where PET is calculated as a function of air tem-
perature, latitude, and time of year (Parton et al.
1998). Then, remaining water either passes
through soil layers as saturated or unsaturated
flow, or goes to surface runoff (Parton et al.
1998). During these processes, if the water con-
tent in the first soil layer is higher than its mini-
mum soil water content threshold, water is
evaporated from this layer at the rate of PET
(Parton et al. 1998). In addition, the transpiration
at each soil layer is simulated as a function of
plant live biomass and rooting depth (Parton
et al. 1998). It is worth noting that the correla-
tions of ANPP to AET are not connected to the
way that AET is calculated. The well-calibrated
DayCent model was used to estimate AET for all
of the years when ANPP is observed. Previous
work (Chen et al. 2016, 2017) has demonstrated
that the DayCent-simulated AET agreed with the
observations at CPER site from 1980s to early
2000s (R2 = 0.55, 0.81, and 0.92 for daily, weekly,
and monthly aggregations, respectively). Results

in the online material (Appendix S3: Fig. S1–S3)
show similar R2 values for the comparison of
eddy covariance observed AET from the KNZ
site with the simulated AET and also show that
there is little year to year variations in the sea-
sonal patterns in AET at the KNZ site. Both
model results and observed AET data from KNZ
and CPER (Appendix S3: Figs. S1, S2) show that
AET rates are low during the winter (because
there is no transpiration and low PET), high dur-
ing the summer (because PET and leaf area are
high). Yearly differences in AET and soil water
are primarily controlled by seasonal patterns in
daily precipitation.
For both the site-level and the regional-level

analyses, we used the DayCent model to simu-
late daily bare soil evaporation, Tr, interception
of precipitation by vegetation, sublimation, run-
off, and PET. AET was the sum of bare soil evap-
oration, Tr, and interception. Site-level soils,
vegetation, and weather data were used to drive
the simulations for the 5 sites. For the regional
analysis, we extracted relevant variables from
DayCent simulations of native grassland con-
ducted at the county level (1982–2016) for all of
the GP counties described in Hartman et al.
(2011) and Parton et al. (2015).

Site-level and county-level analyses
Yearly DayCent estimates of AET, transpiration,

and PETwere used to determine the correlation of
site-level seasonal changes in ANPP for the CPER,
HPGRS, BBR, GSL, and KNZ sites to cumulative
(i.e., April-to-May, April-to-June, April-to-July,
April-to-August, April-to-September, and annual
sums of) precipitation, AET, and Tr using the
long-term ANPP observations. We developed
quadratic and linear regressions of yearly site-
level ANPP to yearly iNDVI and the ratio of
April-to-July AET to April-to-July PET from the
same years. As part of our analysis, we also
looked at the site-level correlation of the April-to-
July Palmer drought severity index (PDSI) (Dai
2017) to ANPP for the five sites.
For the county-level analyses, we quantified the

correlation between iNDVI and ANPP by compar-
ing mean annual 1982–2015 iNDVI to mean
annual 2004–2014 NRCS ANPP. We used DayCent
estimates of mean (1982–2015) April-to-July and
mean annual total AET, precipitation, and PET to
determine the correlations precipitation-related
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variables (AET and precipitation) and drought
indices (AET/PET, PPT/PET) to NRCS mean
(2004–2014) county-level ANPP. We also correlated
yearly (1982–2015) values of April-to-July AET
and April-to-July AET/PET to yearly (1982–2015)
AVHRR cumulative May-to-September NDVI
(iNDVI).

RESULTS

We first compared mean annual ANPP, precip-
itation-related variables (annual average precipi-
tation, sublimation, transpiration water loss,
runoff, bare soil evaporation water loss, and
interception water loss) along with their percent-
ages of precipitation for the five long-term ANPP
sites along the precipitation gradient (Table 2).
As expected, mean ANPP generally increased
with increasing MAP and transpiration water
loss, and decreasing aridity index (i.e., PET/PPT).
The absolute amount of water loss from transpi-
ration increased with increasing annual precipi-
tation, while the bare soil evaporation and plant
interception water loss were similar for all of the
sites with the fraction of water loss from evapo-
ration (bare soil water loss plus plant intercep-
tion) decreasing with increasing precipitation
and decreasing aridity index (43% [32.8 + 10.5%]
for CPER vs. 23% [16.8 + 6.0%] for KNZ). The
relative amount of annual precipitation lost as
transpiration was similar for all of the sites (45%
to 47%) while as expected the fraction of water
loss from runoff (deep soil drainage plus surface
runoff) increased with increasing precipitation.

Sublimation water losses are small with the frac-
tion of water loss as sublimation ranging from
8.4% at BBR to 3.0% at KNZ. Theoretically, Good
et al. (2017) showed that the fraction of water
lost as transpiration increases with increasing
precipitation (not shown with our data), that
evaporation water loss (bare soil plus intercep-
tion) increases with increasing aridity and pre-
cipitation (consistent with our results), and that
runoff increases with increasing precipitation
(consistent with our results).
We then computed the correlations of annual

ANPP to cumulative precipitation, AET, and Tr
for different time periods (April to May, April to
June, April to July, April to August, April to
September, and annual) at the 5 sites (Table 3).
Results for the two drier sites (CPER and
HPGRS) show that the correlation of all three
variables to ANPP increases from the cumulative
April-to-May period to the cumulative April-to-
July period; for CPER, this increase continues
through the April-to-August period for AET and
Tr. For these two sites, results from most time
periods (Table 3) show that ANPP was most
strongly correlated to Tr and AET, although
cumulative precipitation variables tended to
have only slightly lower correlation coefficients
and sometimes had the highest. Results from
both dry sites show that the correlation of ANPP
to cumulative precipitation decreased rapidly
when extending from the April-to-July to April-
to-August, as well as longer time periods.
Results from the two Nebraska sites (BBR and

GSL, intermediate drought stress) show that the

Table 2. Mean annual precipitation (PPT, cm/yr), aboveground net plant production (ANPP, g
biomass�m�2�yr�1), the ratio between potential evapotranspiration (PET, cm/yr) and PPT, transpiration water
loss (Tr, cm/yr), bare soil evaporation water loss (Evap, cm/yr), interception water loss (Intcpt, cm/yr), sublima-
tion water loss (Sublim, cm/yr), and runoff (deep soil drainage plus surface runoff, cm/yr) at the five sites
across the precipitation gradient. The long-term average percent of precipitation lost as bare soil evaporation,
transpiration, runoff, and plant interception are listed in parentheses. PET, Tr, Evap, Inctp, Sublim, and runoff
were simulated by the DayCent model (years 1982–2016).

Site PPT ANPP PET/PPT Tr (%Tr/PPT) Evap (%Evap/PPT)
Intcpt

(%Intcpt/PPT)
Sublim

(%Sublim/PPT)
Runoff

(%runoff/PPT)

CPER 38.23 72.06 2.16 18.07 (47.26) 12.54 (32.80) 4.03 (10.54) 1.91 (5.01) 1.67 (4.37)
HPGRS 46.45 122.51 1.59 18.89 (47.30) 12.17 (30.48) 4.17 (10.45) 2.69 (6.74) 2.00 (5.01)
BBR 50.79 198.49 1.43 22.93 (45.45) 14.30 (28.34) 3.47 (6.87) 4.23 (8.39) 5.52 (10.95)
GSL 51.15 213.79 1.63 22.85 (44.67) 15.14 (29.61) 3.56 (6.97) 4.00 (7.83) 5.59 (10.92)
KNZ 83.84 385.30 0.94 36.86 (46.65) 13.30 (16.83) 4.75 (6.02) 2.35 (2.98) 21.74 (27.51)

GSL, Gudmundsen Sandhills Laboratory; HPGRS, High Plains Grasslands Research Station.
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correlations for the precipitation-related vari-
ables (AET, Tr, and precipitation) all increased
when extending from the April-to-May time per-
iod with maximum values during the April-to-
July time period. Tr had higher correlations to
ANPP, but correlations were similar for AET and
precipitation, and there was a gradual drop-off
in the correlations of all the variables to ANPP
for time periods greater than April to August as
observed for the dry HPGRS and CPER sites.
The results for the KNZ (the wettest site) show a
different pattern where cumulative precipitation
was much better correlated to interannual vari-
ability in ANPP compared to cumulative Tr and
AET for all of the time periods. We compared the
time series of annual ANPP with cumulative
April-to-July AET and precipitation for the
CPER, and KNZ sites (see Appendix S3: Fig. S4)
with the results showing that precipitation and
AET had a similar pattern of high annual vari-
ability for the CPER site (both well correlated to
ANPP), while the results from the KNZ site
showed that annual variations in AETwere quite
small while precipitation had much higher vari-
ability and was well correlated to ANPP.

Annual ANPP was strongly correlated with
cumulative (May-to-September) AVHRR iNDVI
(1-km scale) at the site level (GSL and BBR were

combined) using a linear equation for each site
and a quadratic function across sites (Fig. 1). The
slope of the equations increased with increasing
precipitation going from CPER to KNZ (dry to
wet sites), while the intercept value decreases
with increasing precipitation. The quadratic
function showing the relationship between
ANPP and iNDVI (higher iNDVI with increasing
precipitation) has an R2 value equal to 0.90. We
developed a linear equation, which included
interactive impact of water stress (ratio of annual
cumulative April-to-July AET to cumulative
April-to-July PET, i.e., iAET/iPET) on the inter-
cept and slope for the linear regression of iNDVI
to ANPP (Eq. 2).

ANPP¼ INTER
iAET
iPET

� �
þSLOPE

iAET
iPET

� �
� iNDVI

INTER
iAET
iPET

� �
¼ 39:67�465:58

iAET
iPET

SLOPE
iAET
iPET

� �
¼ 43:07þ 152:04

iAET
iPET

ð2Þ

where INTER(iAET/iPET) is the impact of iAET/
iPET on the intercept, and SLOPE(iAET/iPET) is
the impact of iAET/iPET on the slope term. We
used the observed site-level annual ANPP, and

Table 3. The correlations (linear regression R2) of annual aboveground net primary production (ANPP; g
biomass�m�2�yr�1) to three precipitation-related variables, precipitation (cm), transpiration (cm), and actual evap-
otranspiration (AET, cm) for different time periods (April to May, April to June, April to July, April to August,
April to September, and annual (January to December)) at the CPER, HPGRS, BBR, GSL, and KNZ sites.

Site
Precipitation-related

variable Apr–May Apr–Jun Apr–Jul Apr–Aug Apr–Sep Annual

CPER Precipitation 0.24 0.35 0.60 0.44 0.35 0.43
Transpiration 0.07 0.36 0.61 0.64 0.57 0.57

AET 0.11 0.35 0.60 0.64 0.56 0.50
HPGRS Precipitation 0.38 0.53 0.58 0.33 0.18 0.20

Transpiration 0.04 0.28 0.54 0.44 0.41 0.41
AET 0.20 0.39 0.63 0.49 0.44 0.39

BBR/GSL Precipitation 0.44 0.63 0.69 0.59 0.53 0.53
Transpiration 0.37 0.60 0.70 0.60 0.55 0.53

AET 0.33 0.56 0.66 0.56 0.48 0.47
KNZ Precipitation 0.25 0.38 0.63 0.55 0.54 0.53

Transpiration 0.00 0.00 0.01 0.00 0.00 0.00
AET 0.00 0.00 0.00 0.01 0.02 0.02

Notes: ANPP, annual aboveground net primary production; BBR, Barta Brothers Ranch; CPER, Central Plains Experimental
Range; GSL, Gudmundsen Sandhills Laboratory; HPGRS, High Plains Grasslands Research Station.

The R2 values from low to high are highlighted by five type styles: italics underscore (<0.10), italics (0.10–0.25), regular (0.25
–0.40), underscore (0.40–0.55), and bold (>0.55). The slope term in the regressions was significant (0.05 level) for all of the regres-
sions except the correlations of transpiration and AET for the KNZ site.
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iNDVI data to fit the parameters in the equa-
tions. The R2 values of the correlation between
ANPP and iNDVI were both equal to 0.90 either
with Eq. 2 or with the quadratic equation of
iNDVI. Both equations had similar AIC values
(928.7 for Eq. 2 vs. 927.3 for the quadratic equa-
tion), and the root mean square errors are similar
(44.3 for Eq. 2 vs. 43.6 for the quadratic equa-
tion). Either of these functions can be used to pre-
dict ANPP as a function of iNDVI in the GP
because they used observed ANPP data from
sites with low, medium, and high values of pre-
cipitation and plant production. Later in the text,
we will demonstrate that the ratio of annual
cumulative AET to annual cumulative PET is the
environmental variable most strongly correlated
with annual NRCS county-level ANPP for all of
the GP counties.

After establishing that site-level interannual
variability in ANPP was well correlated to annual
iNDVI (Fig. 1), we investigated how well mean
county-level iNDVI can explain spatial variability
in ANPP across the region. The county-level
NRCS 2004–2014 mean ANPP was also found to
be well correlated with county-level mean 1982–
2015 AVHRR iNDVI (R2 = 0.72), and the correla-
tion of ANPP to iNDVI is similar for the northern

(blue sold circles) and southern (red solid trian-
gles) parts of the GP (Fig. 2) despite C4 grasses
dominating the southern GP and C3 grasses the
northern GP (Tieszen et al. 1997).
Observed mean annual ANPP for the GP

counties based on the mean 2004–2014 NRCS
ANPP data showed a strong west to east gradi-
ent of increasing ANPP (Fig. 3A) with a ten-
dency for a slight increases in ANPP going
northward in the GP. This pattern is similar to
the observed pattern in the ratio of the mean
April-to-July AET to PET (Fig. 3B) with the ratio
increasing going eastward in the GP and increas-
ing slightly going northward in the GP. Correla-
tions of mean annual NRCS ANPP data to
environmental variables (AET, precipitation, the
ratio of AET to PET, and the ratio of precipitation
(PPT) to PET for cumulative April-to-July and
annual time periods) show that ANPP is most
correlated to the ratio of AET to PET for both
time periods (R2 = 0.68 for April-to-July AET/
PET vs. 0.58 for April-to-July iAET, R2 = 0.70 for
annual AET/PET vs. 0.50 for annual AET). In
addition, the correlation with ANPP is higher for
the ratio of PPT to PET compared to PPT alone
(R2 = 0.62 for April–July PPT/PET vs. 0.58 for
April–July PPT, R2 = 0.68 for annual PPT/PET vs.

Fig. 1. The correlation of observed annual aboveground net primary production (ANPP) to observed pasture-
level AVHRR iNDVI from the Central Plains Experimental Range (CPER), High Plains Grasslands Research Sta-
tion (HPGRS), Barta Brothers Ranch (BBR), Gudmundsen Sandhills Laboratory (GSL), and KNZ sites.
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0.50 for annual PPT). The lower correlation of
AET to NRCS mean ANPP compared the ratio of
AET to PET occurs because observed AET shows
a pattern of decreases in AET going northward
from Nebraska to North Dakota (Appendix S4)
while observed ANPP increases going northward.
The ratio of AET to PET increases going north-
ward from Nebraska to North Dakota (Fig. 3B)
because of larger drops in PET rates compared to
the decreases in the AET rates (Appendix S4:
Figs. S1, S2). The general pattern of decreasing
PET rates in the GP causes plant water stress to
decrease going northward in the region.

The correlation of yearly (1982–2015) county-
level cumulative April-to-July AET to county-
level iNDVI found that annual changes in iNDVI
were well correlated to AET (Fig. 4A) with a
mean R2 value of 0.47 for all of the GP counties.
More than 70% of the counties have the R2 value
greater than 0.40. The majority of the counties
with a low R2 value (<0.20) occurred in the far
eastern part of the GP. We also evaluated the dif-
ference between the R2 from the correlation of
cumulative April-to-July county-level iAET to
iNDVI and the R2 from the correlation of April-
to-July precipitation to iNDVI (Fig. 4B, R2 for
AET minus that for precipitation). We found that

the correlation was higher for AET compared to
precipitation for > 80% of the counties in the GP
with the correlation coefficient related to AET
being at least 0.10 greater than the correlation
coefficient for precipitation for more than 60% of
the counties. Moreover, the major exception of
AET being more highly correlated with ANPP
than precipitation was in the southeastern part of
Oklahoma. The Oklahoma results are consistent
with our results from the KNZ site, which
showed much higher correlations of ANPP to
precipitation compared to AET and Tr. The likely
reason for the low correlation of AET and to
iNDVI in Oklahoma is low annual variability in
AET as seen at the KNZ site (Appendix S3:
Fig. S4) where the larger variability in precipita-
tion was correlated to annual changes in ANPP.
We also calculated the correlation of cumulative
April-to-July AET and cumulative April-to-July
precipitation (Appendix S4: Fig. S3), and coeffi-
cient of variation (CV, standard deviation divided
by mean) for April-to-July AET and April-to-July
precipitation (Appendix S4: Figs. S4, S5) for all of
the GP counties. The results showed that AET
and precipitation are well correlated (R2 > 0.70)
for counties in the western part of the GP, while
there is a steep decrease in the correlation of AET

Fig. 2. Correlation of NRCS mean aboveground net primary production (ANPP) to county-level mean iNDVI
for all of the Great Plains (GP) counties. Red triangles represent data from the southern GP, while blue dots repre-
sent counties in the northern GP.
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to precipitation going eastward in the GP (wet
sites) with R2 values less than 0.10 for counties in
the far eastern part of the GP. The observed pat-
terns show that CV for AET drops off going east-
ward in the GP with a rapid drop-off in the far
eastern part. CV for precipitation also has a gen-
eral pattern of decreases going eastward in the
GP; however, rate of decrease is much less for
precipitation compared to AET.

Similar to the analysis performed at the site
level, we looked at the impact of the ratio of iAET
to iPET for the county-level interannual correla-
tions of iNDVI to both iAET/iPET and iAET. The
results showed that the correlation of iAET/iPET
to iNDVI was slightly stronger than the correla-
tions of iAET to iNDVI, but that the P-value for
the slope of regressions was not significant
(P > 0.05 for most counties) for the iAET/iPET
regressions, and some slopes were negative. The
P-values for the slopes were highly significant for

the iAET correlations to iNDVI (P < 0.01 for all
counties). A detailed analysis of the results
showed that interannual variations in iPET were
quite small (<15% of the iPETmean values), while
there are large interannual variations in iAET (see
Appendix S4: Figs. S4, S5).
Finally, as part of our analysis we determined

the impact of another drought index, PDSI, on
site-level ANPP in the GP (Dai 2017). We calcu-
lated the PDSI at the five ANPP sites and com-
pared the R2 values of PDSI to ANPP with the
correlation of April-to-July AET to ANPP. The
results showed that the PDSI was not well corre-
lated to ANPP with R2 values substantially lower
(by 20% to 84%) compared to the R2 values for
the April-to-July AET for CPER, HPGRS, BBR,
and GSL. The correlation of precipitation to
ANPP for the KNZ site (highest correlated vari-
able—see Table 3) was much higher compared to
PDSI index (R2 values 23% lower for PDSI).

Fig. 3. The spatial distribution of the observed (NRCS) mean annual aboveground net primary production
(ANPP) data for the Great Plains (GP) counties between 2004 and 2014 (A). Mean annual ratio of the cumulative
April-to-July actual evapotranspiration and potential evapotranspiration (PET) for the Great Plains (GP) counties (B).
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DISCUSSION

One of the primary goals of this study was to
assess the relationships between different precipi-
tation-related variables to spatial and temporal
patterns of ANPP across the semiarid and mesic
portions of the North American GP. Our results
show that mean site-level ANPP was positively
correlated to annual precipitation (PPT), plant
transpiration (Tr), and cumulative April-to-July
AET. The results for the ratio of transpiration to
precipitation (Tr/PPT) range from 45 to 47% for all
of our sites and do not change with drought stress
or total precipitation. The results show that the
fraction of water loss from evaporation (intercep-
tion plus bare soil water loss) decrease with
decreasing water stress and increasing precipita-
tion (from 43% to 23%) and that the fraction of
water loss due to runoff (deep drainage and sur-
face runoff) increases from 4% to 28% going from
the driest site (CPER) to the wettest site (KNZ).

The Tr/AET ratio for the KNZ site is 67% and near
54% for the other four sites. Han et al. (2018)
reported Tr/AET ratios for the semiarid grassland
in northeast of Inner Mongolia, China (59 to 62%),
that were a little greater than those for our four
U.S. semiarid sites, but this ratio could drop to
51% during prolonged drought periods in China.
The Tr/PPT ratio that we calculated for CPER
(47%) is similar to those from Lauenroth and Brad-
ford (2006), which showed that the Tr/PPT ratio
ranged from 40% to 75% on an annual basis with
a mean value of 51% for the CPER site. Our results
showing increased evaporation fraction with
increased water stress and increased runoff with
increased precipitation are consistent with Good
et al. (2017); however, Good et al. (2017) suggest
that Tr/PPT ratio should increase with decreasing
water stress (our results show little change in Tr/
PPT with decreasing water stress). Our results
show that the Tr/AET ratio is highest for the KNZ
site (67% vs. 52% for the other four sites).

Fig. 4. The spatial distribution of the correlation of county-level seasonal changes in iNDVI to cumulative
April April-to-July actual evapotranspiration (AET) (A), and the difference in the correlation coefficients between
cumulative April-to-July AET vs. precipitation and annual changes in iNDVI for all of the Great Plains counties
(B).
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At the site level, annual ANPP and iNDVI from
five grassland sites across the precipitation gradi-
ent in the GP have a high correlation for a quad-
ratic equation and a linear equation (R2 = 0.90 for
both equations), which includes the impact the
mean iAET/iPET ratio on the slope and intercept.
On a broader scale, county-level correlations of
ANPP and iNDVI for grasslands in southern and
northern GP were also high (R2 = 0.72, Fig. 2).
Therefore, the correlation of ANPP to iNDVI was
similar for the C4-dominated southern GP coun-
ties and the C3-dominated northern counties.
These results are similar to the results found by
Paruelo et al. (1997) and Chen et al. (2017) for
grasslands in the GP with a high correlation of
iNDVI to ANPP. Similar high correlations have
also been found in Africa (Schucknecht et al.
2017), Argentina (Paruelo et al. 2000), and Cen-
tral Asia (Formica et al. 2017).

We expected that AET would be the best pre-
dictor of ANPP across the semiarid and mesic
portions of the GP. Our results for dry grassland
sites (CPER, HPGRS, BBR, and GSL) show
(Table 3) that maximum correlations of annual
ANPP occurred for the cumulative April-to-July
or April-to-August time periods with the maxi-
mum correlations to ANPP mostly occurring for
AET and Tr. The results for the semiarid sites
(CPER and HPGRS) also showed that there was
a large decrease in the correlation coefficient of
precipitation to ANPP for time periods after July
(approximately 18–42% decrease), suggesting
that August and/or September precipitation is
not as effective at promoting grassland plant
growth. The results from Hermance et al. (2015)
at the CPER site showed that precipitation use
efficiency was highest in the spring and
decreased rapidly in the summer months (July to
September), while Derner and Hart (2007)
showed that ANPP at the HPGRS was most cor-
related with cumulative April-to-June precipita-
tion. These results are also consistent with the
grass production (GRASP) Australian grassland
model assumption that daily ANPP is directly
correlated to plant transpiration (McKeon et al.
1990) and results from Good et al. (2017), sug-
gesting that plant transpiration is one of major
factors controlling plant growth.

The results from our site-level comparisons of
the precipitation variables that control ANPP
and regional correlations of iNDVI to cumulative

April-to-July precipitation and AET show that
April-to-July AET variable is typically most cor-
related to annual changes in ANPP (>83% of the
GP counties), while precipitation is more corre-
lated to ANPP for the mesic grassland sites in the
southeastern part of the GP (Fig. 4A, B and
Table 3). The KNZ site-level analysis and regio-
nal analysis of the annual variations in AET
(Appendix S3: Fig. S4 and Appendix S4: Fig. S1)
suggest that the low correlation of AET to ANPP
for the mesic grassland sites results from the low
interannual variability of AET at the mesic grass-
land sites. The correlations of annual changes in
cumulative April-to-July AET and precipitation
(Appendix S4: Fig. S1) show high correlations of
AET to precipitation for the semiarid grassland
sites in the western GP (R2 > 0.70), while annual
changes in AET and precipitation are poorly cor-
related (R2 < 0.10) for the wet grassland sites in
the far eastern part of the GP.
Comparison of the impact of water and nutri-

ents on grassland plant production for the CPER
(Dodd and Lauenroth 1979) and the tall grass
prairie (Owensby et al. 1970) showed that as
expected water stress has a great impact on plant
production for the dry grasslands, while nutrient
availability has a larger impact of plant produc-
tion for the tall grass site. Chen et al. (2017)
showed that there are large interannual changes
in cumulative AET and ANPP for the CPER site,
while the eddy covariance data (Appendix S3:
Figs. S1, S2) show that there are relatively small
changes in the seasonal patterns and amount of
annual AET at the KNZ site. Another factor that
impacts the relative role of water and nutrient
stress on plant production is the amount of soil
water storage during the winter. There is very lit-
tle water storage (<2 cm on average) during the
winter for dry grasslands (Chen et al. 2017),
while soil water storage at the KNZ site
is > 4 cm per year. Risser (1981) showed that
winter non-growing season precipitation is
higher for KNZ compared to CPER and Briggs
and Knapp (1995) show that soil moisture tends
to be maximal in the late winter/early spring at
KNZ. It is unclear why annual changes of ANPP
are well correlated to cumulative April-to-July
changes in precipitation for the mesic grasslands;
however, it is possible that changes in precipita-
tion are correlated to changes in nutrients avail-
able for plant growth (primarily nitrogen). The
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potential for annual variations in nitrogen avail-
ability to control yearly changes in ANPP is sup-
ported by results from the Owensby et al. (1970)
irrigation and nitrogen addition studies for a site
near the KNZ site, which showed that nitrogen
additions have a bigger impact on ANPP com-
pared to irrigation.

NRCS county-level observations of ANPP
show a strong decrease in ANPP going westward
across the GP, consistent with results from the
Sala et al. (1988) for the GP; however, Sala et al.
(1988) show a pattern of decreasing ANPP going
northward in the GP (opposite of our results).
The reason for this discrepancy is not clear; how-
ever, we used county-level ANPP estimate, while
the Sala et al. (1988) used state-level Major Land
Resource Areas average ANPP data. Our county-
level ANPP analysis uses a much fine spatial
scale (>5-time finer spatial scale), which should
be better able to represent the spatial patterns in
ANPP. Sala et al. (1988) assessed the impact of
annual precipitation on ANPP in the GP, while
our results show that the ratio of annual AET to
PET is the best correlated variable to spatial pat-
terns of mean NRCS ANPP in the GP. The ratio
of AET to PET and the observed mean ANPP
results show a general pattern of slight increases
in ANPP going northward in the GP, while the
observed precipitation and April-to-July AET
data both show a pattern of decreasing precipita-
tion and AET going northward from Nebraska to
North Dakota.

A summary of the results shows that at the site
level the cumulative April-to-July AET is a good
indicator of the annual changes of ANPP, and at
the regional scale, AET is also the major factor
controlling spatial ANPP patterns (for > 83% of
the GP counties) with a strong pattern of decreas-
ing AET and ANPP going westward across the
GP. The cumulative April-to-July AET is also
well correlated to iNDVI, and iNDVI can be used
to estimate ANPP. Results from the mesic grass-
land sites (see Appendix S3: Fig. S4) show that
April-to-July precipitation is better correlated
with ANPP because of the low interannual vari-
ability of AET for the mesic grassland sites.

Six major conclusions can be drawn from this
work: (1) Interannual variability in site-level
ANPP was correlated better to AET than precipi-
tation at all but the most mesic site considered; (2)
interannual variability of site-level ANPP is well

correlated with cumulative May-to-September
NDVI (iNDVI), and this relationship can be
expressed as a function of the ratio of April-
to-July AET to April-to-July PET; (3) spatial pat-
terns in mean ANPP at the county-level are highly
correlated with iNDVI; (4) interannual variability
in county-level iNDVI is correlated better to AET
than precipitation in the majority of counties
across the GP with most of the exceptions located
in the mesic eastern portion of the region where
precipitation is more variable than AET; (5) grow-
ing season accumulations of precipitation-related
variables, such as AET and Tr, have stronger cor-
relations to iNDVI and ANPP than annual values
do at both the site and county levels; and (6) that
the April-to-July AET/PET drought index was the
variable most correlated to mean county-level
ANPP.
Different precipitation-related variables con-

trolling ANPP across the drier portions of the GP
(cumulative April-to-July AET) to more mesic
portions of the GP (cumulative April–July pre-
cipitation) provide opportunities to develop spa-
tially explicit forecasting of ANPP for enhancing
decision-making by land managers and use for
biofuel grassland plant production. County-level
correlations of AET to iNDVI and the correlation
of iNDVI to ANPP are currently being used by
the Grass-Cast model (http://grasscast.agsci.c
olostate.edu/) to predict ANPP for all of the GP
counties on a biweekly basis starting from the
middle of April to the end of July. Results in this
paper suggest that using precipitation instead of
AET for the eastern counties would improve
model predictions.
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