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RESEARCH

Soybean [Glycine max (L.) Merr.] is a major crop produced 
globally for a wide range of purposes. Protein and oil are 

major components of soybean seed that contribute to its high 
value. Historically, oil and protein in soybean seed are negatively 
correlated (Yaklich et al., 2002). Oil and yield share a positive 
relationship, and protein and yield have a negative relationship 
(Morrison et al., 2008). Because of this, increases in soybean oil 
and yield must be sought after while simultaneously seeking to 
maintain adequate protein levels (Cober et al., 2009). 

Within soybean oil, there are five primary fatty acids: 
palmitic (16:0), stearic (18:0), oleic (18:1), linoleic (18:2), and 
linolenic (18:3). These typically occur in relative concentrations 
of 100, 40, 220, 540, and 100 g kg−1 of total lipids, respectively 

Context-Specific Genomic Selection Strategies 
Outperform Phenotypic Selection for Soybean 
Quantitative Traits in the Progeny Row Stage
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ABSTRACT
Evaluating different breeding selection strate-
gies for relative utility is necessary to choose 
those that maximize efficiency. Soybean 
[Glycine max (L.) Merr.] seed yield and fatty 
acid, protein, and oil contents are all commer-
cially important traits that display complex 
quantitative inheritance. A soybean popula-
tion consisting of 860 F5–derived recombinant 
inbred lines (RILs), genotyped with 4867 poly-
morphic single nucleotide polymorphism (SNPs) 
was used to compare phenotypic and context 
specific genomic selection (GS) strategies. To 
simulate progeny rows, each RIL was grown in a 
single plot in 2010 in Knoxville, TN, and pheno-
type was recorded. A subset of 276 RILs with 
similar maturity was then grown in multilocation, 
replicated field trials in 2013 to compare the 
performance of each selection method in field 
conditions. Notably, the preferred method for 
each trait was GS. Of the GS approaches evalu-
ated, Epistacy performed best for yield, and 
BayesB and/or genomic best linear unbiased 
prediction (G-BLUP) were preferred for each 
of the other traits. Yield was the only trait for 
which the predictions had a large change when 
the number of SNPs and the number of RILs 
were randomly reduced for the G-BLUP model, 
with the best predictions occurring when RILs 
with different maturity that were not grown in 
2013 were removed from the training set. These 
findings provide important information on how 
soybean breeders can maximize selections 
from the progeny row stage for yield and fatty 
acid, protein, and oil contents by using appro-
priate selection strategies. 
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(Wilson, 2004). Improving the fatty acid profile in 
soybean has gained importance recently, particularly 
with the Food and Drug Administration recently ruling 
that partially hydrogenated oils are no longer gener-
ally recognized as safe (https://www.federalregister.gov/
articles/2015/06/17/2015-14883/f inal-determination-
regarding-partially-hydrogenated-oils). Due to this 
decision, a primary goal of fatty acid improvement is to 
reduce linolenic acid (<30 g kg−1), thus reducing the need 
to partially hydrogenate soybean oil. Coinciding with this 
is the goal of increasing oxidatively stable, monounsatu-
rated oleic acid (>800 g kg−1). Oleic acid has been shown 
to lower cholesterol than saturated fatty acids in human 
consumption (Kris-Etherton and Yu, 1997). Additionally, 
soybean oil with increased oleic acid has higher oxida-
tive stability, resulting in increased shelf life of soybean 
oil food products (Kinney, 1996) and biodiesel (Kinney 
and Clemente, 2005; Fallen et al., 2012). Although much 
recent work has occurred in the improvement of soybean 
fatty acids (Pantalone et al., 2002; Pham et al., 2010; 
Bilyeu et al., 2011; Boersma et al., 2012; Gillman et al., 
2014), there is still a need for continued advancement.

In soybean cultivar development, after crossing segre-
gating parents and developing inbred populations through 
naturally occurring self-pollination, it is common to 
evaluate progeny rows derived from inbred single plants 
based on appearance or phenotypic score for advance-
ment into replicated testing and eventual cultivar release 
(Fehr, 1987). This approach has worked well for decades, 
with the average rate of yield increase in soybean from 
the 1920s to the 1980s estimated to be 15.1 kg ha−1 (0.6% 
yr−1; Specht and William, 1984). However, soybean yield 
increase trends are still falling short of the levels needed 
to feed the predicted global population by the year 2050 
(Ray et al., 2013). Because of this, it is necessary to 
explore other techniques for improving soybean yield and 
other complex traits to adequately provide for consumers 
of soybean products. 

Targeted goals have been achieved for oleic acid and 
linolenic acid using mutant alleles from relatively few loci 
(Pham et al., 2010; Bilyeu et al., 2011). However, for oleic 
acid, there is still concern that environmental variation 
may result in levels that drop below the industry standard 
of 800 g kg−1 (Fallen et al., 2012; Lee et al., 2012). In such 
cases, it would be useful to evaluate breeding strategies that 
could account for a broader range of genetic effects, fine-
tuning major effect genes to provide more consistent results. 
In addition to fatty acids, such approaches would also be 
worth exploring for oil, protein, and yield improvement.

Quantitative trait loci (QTL)-based selection strat-
egies are inherently biased, as they only account for a 
limited amount of genetic information. A more robust 
method such as genomic selection (GS), which accounts 
for the entire genome (Nakaya and Isobe, 2012), would 

be worth investigating. First described by Meuwissen et 
al. (2001), GS is the simultaneous selection of many thou-
sands of markers that densely cover the entire genome, 
with genes affecting the targeted trait expected to occur 
in linkage disequilibrium with a subset of genetic markers 
(Meuwissen, 2007). Numerous studies have explored 
the potential of GS in animal and plant breeding with 
evidence of success (Ødegård et al., 2009; Lillehammer 
et al., 2011; Poland et al., 2012; Resende et al., 2012; 
Sitzenstock et al., 2013; Crossa et al., 2014; Heslot et al., 
2015). Given this potential, there is a need to evaluate the 
accuracy of GS over multiple generations, rather than only 
reporting cross-validation results from the same genera-
tion, as has been common in crop studies ( Jonas and de 
Koning, 2013). 

However, for complex traits with low heritability, GS 
may be prone to limited success (Nakaya and Isobe, 2012). 
For marker-assisted selection (MAS) in complex traits, 
a context specific MAS (CSM) approach can be benefi-
cial for increasing the selection efficiency within target 
environments by reducing the potential for genotype ´ 
environment interaction (Sebastian et al., 2012). In a CSM 
breeding approach, biparental populations are ideal for 
training predictions due to the reduced genetic complexity 
and larger recombination blocks (Sebastian et al., 2012). 
The greater control exhibited with CSM using a biparental 
population grown in a limited number of environments can 
benefit the selection potential for complex traits that are 
otherwise difficult to improve (Sebastian et al., 2012).

Context-specific MAS has previously demonstrated 
potential for soybean yield in elite mother line popula-
tions (Sebastian et al., 2010). We were interested in trying 
a similar approach using context-specific GS for other 
soybean traits in addition to yield, with selections occur-
ring in the progeny row stage, and evaluations occurring in 
replicated field trials. Thus, the purpose of this research was 
to evaluate the relative utility for soybean yield, fatty acids, 
protein, and oil with various GS methods using a CSM 
approach in comparison with phenotypic selection (PS).

MATeRiAlS And MeThodS
Plant Materials
In keeping with a CSM approach, a biparental population 
of 860 F5–derived recombinant inbred lines (RILs) with 
both genotypic and phenotypic data was developed from the 
cross between ‘Essex’ and ‘Williams 82’ (hereafter known as 
E´W-50K). Essex is a Maturity Group (MG) V soybean cultivar 
with a determinate growth habit, purple flower, and gray 
pubescence (Smith and Camper, 1973), whereas Williams 82 is 
an MG III soybean cultivar with indeterminate growth habit, 
white flower, and tawny pubescence (Bernard and Cremeens, 
1988). To provide highly homozygous parental lines for RIL 
development, a random single plant of each parental line was 
intentionally selfed for two additional generations. The popula-
tion was advanced using single-seed descent (Brim 1966). 

https://www.crops.org
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color, plant height, and maturity were determined at the R8 
growth stage (Fehr and Caviness, 1977). For both field seasons, 
plots were harvested at maturity. Yield was measured in kilo-
grams per hectare after adjusting the plot weight to 13% moisture.

Seed Quality Trait detection
Fatty acid estimates for each plot from the 2010 and 2013 field 
tests for 16:0, 18:0, 18:1, 18:2, and 18:3 were done using gas 
chromatography with a procedure described by Spencer et al. 
(2004). This analysis was performed using an HP 6890 series 
gas chromatograph (Agilent Technologies) system equipped 
with a 7683 auto sampler, a 7673 flame ionization detector, and 
an immobilized 30-m ´ 0.53-mm-i.d. Agilent DB-23 capil-
lary column with a 0.5-mm fused stationery phase. Fatty acid 
estimates were obtained as percentage of total seed oil and 
converted to grams per kilogram of seed oil.

After harvest from the 2010 growing season, ?25 g of 
seed from each plot was ground for 20 s in a Knifetec 1095 
sample mill (FOSS Tecator) to produce ground whole soybean 
with a uniform consistency and particle size. Samples were 
analyzed for protein and oil content using the near-infrared 
reflectance spectroscopy (NIRS) instrument (NIR 6500, 
FOSS North America) as described by Panthee et al. (2006), 
except that for this study, the ground samples were scanned 
using updated ISIscan software version 2.85 (Infrasoft Inter-
national, 2007). Plots from the 2013 season were scanned as 
whole bean samples using a Perten DA 7200 diode array NIRS 
instrument in collaboration with the University of Minnesota. 
The calibration equations used for analysis were developed 
through a cooperative effort between Perten and the Univer-
sity of Minnesota (Bolon et al., 2011). For each NIRS analysis, 
values for protein and oil concentration were adjusted to grams 
per kilogram of seed on a dry weight basis.

SnP Genotyping
Single nucleotide polymorphism (SNP) genotyping was 
performed as described by Smallwood et al. (2017). Briefly, 
in 2009, samples of DNA were collected from crushed leaves 
of each F5 greenhouse single plant from this population at the 
Soybean Genomics Laboratory at the USDA Beltsville Agri-
cultural Research Center (USDA-ARS) in Beltsville, MD. 
The DNA samples were analyzed using the Illumina Infinium 

In 2010, each RIL was grown in Knoxville, TN 
(35°54¢15¢¢ N, 83°57¢13¢¢ W) in a single plot consisting of two 
adjacent rows 6.1 m in length, with the rows spaced 0.8 m apart. 
Along with the RIL and the parents, four checks with relevant 
maturities were included in the 2010 field test. The checks were 
‘LD00-3309’ (MG IV-early) (Diers et al., 2006), ‘IA4004’ (MG 
IV-early), ‘5002T’ (MG V-early) (Pantalone et al., 2004), and 
‘5601T’ (MG V-mid) (Pantalone et al., 2003). Flower color was 
determined at the R2 growth stage; pubescence color, plant 
height, and maturity were determined at the R8 growth stage 
(Fehr and Caviness, 1977). 

The 2010 RIL maturity recorded in Julian calendar date 
ranged from 251 to 288 d (Table 1). To narrow the maturity 
range for replicated field testing, 276 RIL with maturities 
ranging from 266 to 273 d (approximately MG IV-mid to 
IV-late) were chosen for advancement into replicated field 
trials in 2013. This maturity-based selection fits in with the 
context-specific approach used in this study, by growing appro-
priate maturity soybeans for a targeted environment. The MG 
IV-mid to IV-late range is of primary importance to Tennessee 
soybean producers, as evidenced by the number of lines tested 
in this maturity range relative to others in the Soybean Variety 
Performance Tests in Tennessee (Allen et al., 2011, 2012, 2013). 

In 2013, 276 RILs were tested in a randomized complete 
block design with three replications per environment at three 
environments (Knoxville, TN [35°54¢15¢¢ N, 83°57¢13¢¢ W]; 
Springfield, TN (36°28¢12¢¢ N, 86°50¢31¢¢ W); and Milan, TN 
(35°56¢3¢¢ N, 88°43¢44¢¢ W]), representative of the ecogeographic 
regions of east, middle, and west Tennessee, respectively. Soil 
type was primarily Shady loam (fine-loamy, mixed, subactive, 
thermic Typic Hapludults) and Shady–Whitwell (fine-loamy, 
siliceous, semiactive, thermic Aquic Hapludults) complex in 
Knoxville, Dickson (fine-silty, siliceous, semiactive, thermic 
Glossic Fragiudults) and Staser (fine-loamy, mixed, active, 
thermic Cumulic Hapludolls) silt loams in Springfield, and 
Loring (fine-silty, mixed, active, thermic Oxyaquic Fragiudalfs) 
and Routon (fine-silty, mixed, active, thermic Typic Epiaqualfs) 
silt loams in Milan. In addition to the RILs and parents, three 
maturity checks were included: LD00-3309 (MG early-IV), 
‘LD00-2817P’ (MG mid-IV) (Diers et al., 2010), and ‘Ellis’ (MG 
late-IV) (Pantalone et al., 2017). As in the 2010 field test, flower 
color was determined at the R2 growth stage, and pubescence 

Table 1. Simple statistics for soybean population E´W-50K (with parental line Essex and Williams 82) consisting of 860 F5–
derived recombinant inbred lines (RILs) planted in single-replication plots in 2010 in Knoxville, TN. This dataset was used to 
make performance predictions for traits of interest in a subset of the population (276 RILs) grown in replicated field trials in 
2013 at three locations (Knoxville, TN; Springfield, TN; and Milan, TN).

Trait Essex Williams 82 Min. Mean Max. SD†
Maturity (Julian d) 278.0 262.0 251.0 270.2 288.0 7.3

Height (cm) 53.3 61.0 25.4 78.5 132.1 20.0

Yield (kg ha−1) 2548.8 1566.9 686.0 2137.5 3591.2 528.3

Palmitic (g kg−1 seed oil) 107.2 100.3 90.5 106.6 165.0 9.3

Stearic (g kg−1 seed oil) 48.5 44.0 32.5 42.4 79.9 4.9

Oleic (g kg−1 seed oil) 233.5 237.3 158.4 242.5 353.0 27.7

Linoleic (g kg−1 seed oil) 534.4 551.3 436.4 535.6 601.1 22.0

Linolenic (g kg−1 seed oil) 76.4 67.1 53.9 72.9 116.6 7.3

Protein (g kg−1 seed dry wt.) 430.5 417.0 366.3 412.9 459.5 16.2

Oil (g kg−1 seed dry wt.) 217.8 232.8 200.5 226.0 247.4 7.4

† SD of least square means.
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beadchip SoySNP50K (Song et al., 2013), with marker positions 
obtained from the genetic map estimated in Song et al. (2016). 
Imputations with the ‘codeGeno’ function in the ‘synbreed’ 
package (Wimmer et al., 2012) in R (R Core Team, 2015), using 
imputation type “beagle” (Beagle Genetic Analysis Software 
Package version 3.3.1; Browning and Browning 2007, 2009) 
were used to address missing marker data. Potential genotyping 
errors were screened using the ‘calc.errorlod’ function within 
the ‘qtl’ package (Broman et al., 2003) in R. To limit the influ-
ence of duplicate SNPs, markers were screened for variation 
among RILs using the ‘findDupMarkers’ function in the R 
‘qtl’ package (Broman et al., 2003), with one marker randomly 
chosen from each duplicate set to remain for analysis. After 
removing duplicate markers, 4867 SNPs remained.

Selection Methods and Statistical Analysis
Genomic selections were performed using the ‘BGLR’ package 
(Pérez and de los Campos, 2014) in R (R Core Team, 2015). 
The 860 RILs planted in single-replication plots simulating 
progeny rows in Knoxville served as the training population 
and were used to generate predictions for yield, fatty acids (oleic 
and linolenic), protein, and oil. Because there were no repli-
cates, plots with missing phenotypic data were dropped from 
the analysis; thus yield, fatty acids, and protein and oil were 
tested with 860, 855, and 826 RILs, respectively. 

Since this population segregates for maturity at the E1 locus 
(Glyma.06g207800; Xia et al., 2012; Wolfgang and An, 2017) 
and growth habit at the Dt1 locus (Glyma.19g194300; Tian et al., 
2010), SNPs located adjacent to (<25 kbp) E1 (ss715593840) and 
Dt1 (ss715635422 and ss715635423, confirmed by field calls) loci 
based on the Wm82.a2.v1 genome sequence were used to predict 
the parental allele. The E1 and Dt1 loci were included as covari-
ates in the GS models to minimize any associated variability.

The GS models chosen for analysis were genomic best linear 
unbiased prediction (G-BLUP) and BayesB (Meuwissen et al., 
2001), because they are commonly used and have performed well 
in previous studies (de los Campos et al., 2013). Both GS and 
BayesB included the E1 and Dt1 covariates as fixed effects, as 
well as 40,000 iterations and a burn in of 10,000. Cross-valida-
tions were replicated 50 times for each trait. In each replication, 
a randomly chosen 20% of the population had phenotypic data 
removed (test set), whereas phenotypic and genotypic informa-
tion were retained for the remaining 80% of the population 
(training set). Since both prediction methods shared the training 
and test set partitioning for each of the 50 cross-validations, the 
prediction accuracies (Pearson correlation coefficients) were 
compared using a paired-t test (Pérez and de los Campos, 2014). 

An additional selection model was performed using the 
Epistacy macro version 2.0 (Holland, 1998) in SAS 9.4 (SAS 
Institute, 2013), with modifications provided by Arnold 
Saxton. This model was included in the analysis as an effort 
to account for significant (P < 0.001) epistatic interactions that 
influence yield, fatty acids, protein, and oil. Deviations due to 
these interactions for each RIL were then summed, divided by 
the number of SNPs (4867), and added to the mean to predict 
expected performance. 

The performance of each GS method (BayesB, G-BLUP, 
and Epistacy), along with PS, was then evaluated in the 276 RIL 
population subset. Many GS studies have sought to evaluate 

predictions in one growing season, without testing the perfor-
mance of predictions over time. This is commonly done by 
subsetting a portion of the population to serve as a training set, 
predicting the performance of another portion of the popula-
tion, and then evaluating the predictions using cross-validations 
(Duhnen et al., 2017). In contrast, we sought to evaluate the 
accuracy of predictions over multiple generations by making 
predictions using the whole 860-RIL population from 2010 
and validating in a subset of the population using 276 RILs 
grown in replicated field trials in 2013. To visualize the degree 
of relationship with the 2013 observed phenotypes, a regres-
sion was plotted for each selection against the observed 2013 
values in R (R Core Team, 2015). Additionally, the Spearman 
correlations between each selection method with the observed 
phenotypes in 2013 were obtained using the ‘Hmisc’ package 
in R (Harrell, 2018). In addition, 15% (41 RILs) tail selections 
chosen using each selection method were evaluated for perfor-
mance in the 2013 field season by calculating the realized gain 
compared with the population mean. Finally, the selection effi-
ciency was estimated by comparing the 15% tail selection from 
each method with the 15% tail selection based on the observed 
2013 phenotype using the formula displayed below, where S is 
the selection efficiency, B is the number selected in the alternate 
system (2010 selection method), C is the number expected by 
chance, and A is the chosen selection system (2013 observed 
rankings) (Hamblin and Zimmerman, 1986):

100
B C

S
A C

− =  − 
To determine the impact of marker density and population 
size on selection accuracy, additional G-BLUP analyses were 
performed with randomly chosen SNPs and/or RILs removed 
from the prediction model. The SNP marker densities used were 
4867, 3867, 2867, 1867, and 867. The population sizes chosen 
were 860, 714, 568, 422, and 276 for yield; 855, 709, 566, 420, 
and 275 for fatty acids; and 826, 686, 551, 405, and 271 for 
protein and oil. The different population sizes for each of the 
traits were due to missing data from the 2010 field season. Each 
combination of marker and RIL density was used for a separate 
G-BLUP analysis, for a total of 25 analyses per trait. The results 
from these G-BLUP predictions were then compared with the 
2013 phenotypic results using Spearman correlations.

Least square means were obtained from statistical analysis 
performed in SAS PROC GLIMMIX (SAS Institute, 2013). 
The model used for analysis was a randomized complete block 
design, with RIL as a fixed term; location, replicate (location), 
and RIL ´ location as random terms; and denominator df 
method set to residual. Contrast statements were used to 
compare different genotypic classes for the Dt1 stem termina-
tion locus and the E1 maturity locus. In addition, a model with 
no fixed terms and RIL, location, replicate (location), and RIL 
´ location as random terms was run to obtain the variance for 
each term. These variances were then used to estimate herita-
bility on an entry-means basis (Nyquist, 1991).

ReSulTS
Yield, fatty acids, protein, oil, maturity, and height were all 
measured in the E´W-50K 860-RIL soybean population 

https://www.crops.org
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three different phenotyping methods were used: recorded 
seed mass per unit area (yield), gas chromatography (fatty 
acids), and NIRS predictions of seed components (protein 
and oil). These traits displayed a range of heritability 
values (Table 2), with yield the lowest at 0.63, followed by 
NIRS traits (0.87), and finally gas chromatography traits 
(0.90–0.94), indicating differing potential of gains from 
selection. Thus, it was of interest to evaluate different 
selection strategies for yield, fatty acids, protein, and oil.

For the four different selection methods chosen (PS, 
BayesB, G-BLUP, and Epistacy), an initial comparison was 
performed using BayesB and G-BLUP with a cross-valida-
tion approach. Following this approach, BayesB was able 
to more accurately match (P < 0.001) the 2010 phenotypic 

grown in Knoxville in 2010. Variability among RILs 
within the population was observed for each trait, although 
this was not supported by statistical analysis, since only a 
single field replication was performed (Table 1). However, 
the 2010 nonreplicated field test provided an ideal opportu-
nity to evaluate GS and PS methods for advancement from a 
progeny row stage into multilocation replicated field trials, 
which is a routine practice in soybean breeding. A subset 
of 276 RILs selected based on maturity were advanced 
into replicated field trials in 2013 to minimize the effect 
of maturity on the traits analyzed in this research (Table 1). 
The simple statistics for the 2013 field test are displayed in 
Table 2, with each trait displaying a significant difference 
(P < 0.05) among RILs. Estimates of the effect of the Dt1 
stem termination locus and E1 maturity locus were also 
performed. There were 149 determinate, 114 indetermi-
nate, and 13 segregating RILs in this population for stem 
termination. The differences between indeterminate and 
determinate RILs were significant (P < 0.001) for each 
trait. After the population was subset based on maturity, 
there were 245 RILs with the E1 genotype, four with the 
e1-as genotype, and 27 segregating at the E1 maturity locus. 
This segregation distortion was due to selection for appro-
priate photoperiod response imposed on the original 860 
RILs. With the exception of palmitic, stearic, and linolenic 
acids (P > 0.05), the differences between the E1 and e1-as 
genotypes were significant (P < 0.05) for each trait. 

Although the magnitude of the phenotypic variances 
were smaller than seen with induced mutant studies (Pham 
et al., 2010; Bilyeu et al., 2011, 2018; Boersma et al., 2012; 
Gillman et al., 2014), they were still of interest for evalu-
ating the whole-genome selection methods in this study. 
Of the traits chosen for selection strategy evaluation, 

Table 2. Simple statistics for soybean population E´W-50K subset (with parental line Essex and Williams 82) consisting of 276 
F5–derived recombinant inbred lines (RILs) planted in replicated field trials at three locations in 2013 (Knoxville, TN; Springfield, 
TN; and Milan, TN). Information from this dataset was compared with performance predictions for traits of interest in the full 
population (860 RILs) grown in 2010 in single-replication plots planted at Knoxville.

Trait
Genotype 
P value

G´E† Z 
value Essex

Williams 
82 Min. Mean Max. SD‡ LSD value h2§

Maturity (Julian) *** *** 272.2 262.6 259.4 270.4 276.9 2.8 3.5 0.79
Height (cm) *** *** 75.6 94.0 37.8 89.1 133.5 18.8 11.7 0.95
Yield (kg ha−1) *** *** 3588.9 3002.9 1371.6 3222.9 4087.6 395.3 663.4 0.63
Palmitic (g kg−1 seed oil) *** NS¶ 108.9 98.4 92.7 105.3 117.3 4.6 4.2 0.90
Stearic (g kg−1 seed oil) *** ** 38.9 36.6 31.5 37.6 47.2 3.2 2.2 0.94
Oleic (g kg−1 seed oil) *** *** 233.3 279.1 178.1 240.7 358.5 35.7 24.8 0.94
Linoleic (g kg−1 seed oil) *** *** 545.0 521.6 447.6 545.6 592.4 28.8 21.8 0.93
Linolenic (g kg−1 seed oil) *** * 73.9 64.4 54.9 70.8 87.8 6.4 5.4 0.91
Protein (g kg−1 seed dry wt.) *** *** 423.6 421.6 376.3 410.5 444.0 12.0 12.2 0.87
Oil (g kg−1 seed dry wt.) *** *** 212.0 227.4 200.5 218.3 238.3 5.9 6.0 0.87

* Significant at the 0.05 probability level.

** Significant at the 0.01 probability level.

*** Significant at the 0.001 probability level.† G´E, genotype ´ environment.

‡ SD of least square means.

§ Heritability calculated using entry-means basis (Nyquist, 1991).

¶ NS, not significant at the 0.05 probability level.

Table 3. Comparison of cross-validations for BayesB and 
genomic best linear unbiased prediction (G-BLUP) methods 
of genomic selection for soybean population E´W-50K (with 
parental line Essex and Williams 82) consisting of 860 F5–
derived recombinant inbred lines grown in 2010 at Knoxville, 
TN. Cross-validations were replicated 50 times for each trait. 
In each replication, a randomly chosen 1/5 of the population 
had phenotypic data removed (test set), whereas phenotypic 
and genotypic information were retained for the remaining 
4/5 of the population (training set). The values displayed for 
BayesB and G-BLUP are the mean prediction accuracies 
(Pearson correlation coefficients) for the predicted and 
observed values in the test set.

Trait BayesB G-BLUP Difference P value
Yield 0.5145 0.4862 0.0283 ***
Oleic 0.6442 0.6417 0.0025 ***
Linolenic 0.5029 0.5020 0.0009 ***
Protein 0.6718 0.6715 0.0003 NS†
Oil 0.5694 0.5583 0.0111 ***

*** Significant at the 0.001 probability level.

† NS, not significant at the 0.05 probability level.
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data for each trait except protein (P > 0.05) (Table 3). The 
cross-validation accuracies ranged from 0.5029 to 0.6718 
for BayesB and 0.4862 to 0.6715 for G-BLUP, with none 
of the differences between the estimates from the two 
methods for individual traits exceeding 0.0283. 

Regression plots are displayed for each trait and selec-
tion method (Fig. 1–5) to visualize the relationship between 
the 2010 predictions and the 2013 observed phenotypes. 
For yield, each selection method displayed a weak relation-
ship with the 2013 observed phenotypes, with R2 values 
ranging from 0.041 (BayesB) to 0.058 (Epistacy) (Fig. 1). 
This trend did not continue for the other traits, with 
Epistacy displaying the lowest R2 values in relation to the 

2013 observed phenotypes (Fig. 2–5). The fatty acid predic-
tions with BayesB and G-BLUP for oleic (R2 = 0.73, Fig. 2) 
and linolenic (R2 = 0.68, (Fig. 3) were much more closely 
aligned with the observed 2013 phenotypes in comparison 
with yield. Phenotypic selection was not able to predict the 
2013 phenotypes as well as BayesB and G-BLUP for oleic 
(R2 = 0.58) or linolenic (R2 = 0.42) fatty acids (Fig. 2–3). 
The R2 values for oil and protein were somewhat lower 
than those for the fatty acids, with values for protein (Fig. 4) 
and oil (Fig. 5) ranging from 0.095 to 0.29 and 0.16 to 0.33, 
respectively. There was not much difference between PS, 
BayesB, and G-BLUP for these traits, with Epistacy as the 
least capable predictor (Fig. 4–5).

Fig. 1. Yield (kg ha−1) performance comparisons between 2010 predictions (x axis) and 2013 phenotypes (y axis) in a soybean population 
E´W-50K subset consisting of 276 F5–derived recombinant inbred lines. The 2010 predictions were estimated with phenotypic (PS) and 
genomic selection (GS) (Epistacy, BayesB, and genomic best linear unbiased prediction [G-BLUP]) strategies. Predictions with higher R2 
were more closely related to 2013 observed phenotypes.
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Spearman correlations were performed between the 
2013 observed phenotypes and each selection method 
based on 2010 data for yield, oleic acid, linolenic acid, 
protein, and oil (Table 4). For yield, the Spearman corre-
lations ranged from 0.13 (BayesB) to 0.22 (Epistacy). 
For each other trait, Epistacy had the lowest correlation 
with the 2013 phenotype. BayesB (0.87) had the highest 
correlation with 2013 phenotype for oleic acid, closely 
followed by G-BLUP (0.86). BayesB and G-BLUP tied 
for the highest correlation with the 2013 phenotype for 
both linolenic acid (0.83) and protein (0.49), whereas PS 
(0.59) had the highest correlation with the 2013 pheno-
type for oil. 

An additional comparison of selection methods was 
performed by calculating the realized gain based on 15% tail 
selections for yield, oleic acid, linolenic acid, protein, and oil 
(Table 5). The tail selections were performed in the direc-
tion appropriate for improvement of each trait, with high 
tail selections for yield, oleic acid, protein, and oil, and low 
tail selections for linolenic acid. For yield, the realized gains 
ranged from 0.5 (G-BLUP) to 4.5% (Epistacy). As with the 
other comparisons, Epistacy was only successful as a predictor 
for yield, ranking last for each other trait. For oleic acid 
(21.7%), linolenic acid (−11.6%), and oil (2.4%), G-BLUP was 
able to achieve the most realized gain, whereas for protein, 
BayesB (2.6%) had the most realized gain (Table 5). 

Fig. 2. Oleic acid (g kg−1) performance comparisons between 2010 predictions (x axis) and 2013 phenotypes (y axis) in a soybean 
population E´W-50K subset consisting of 275 F5–derived recombinant inbred lines. The 2010 predictions were estimated with phenotypic 
(PS) and genomic selection (GS) (Epistacy, BayesB, and genomic best linear unbiased prediction [G-BLUP]) strategies. Predictions with 
higher R2 were more closely related to 2013 observed phenotypes.
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Finally, a comparison of selection efficiency was 
done to compare the 15% tail selection from each selec-
tion method with the 15% tail based on the observed 
2013 phenotype (Table 5). For each trait, Epistacy had 
the lowest or tied for the lowest selection efficiency. 
For yield, PS and BayesB were tied with the highest 
selection efficiency at 8.6%. For oleic acid (62.9%) and 
protein (40%), GBLUP had the highest selection effi-
ciency, whereas for linolenic acid (57.1%) and oil (28.6%), 
BayesB and GBLUP were tied with the highest selection 
efficiency (Table 5).

Additional G-BLUP analyses were performed to 
determine the impact of marker density and population 

sized on selections. Based on Spearman correlations 
between these predictions and the 2013 phenotypic 
data, there were minimal differences between predic-
tions with varying marker densities and population sizes 
for oleic acid, linolenic acid, protein, and oil (Table 6). 
However, for yield, there was a noticeable trend toward 
higher correlations when lower population sizes were 
evaluated, with the best predictions occurring when 
only the RILs grown in 2013 were used in the 2010 
prediction (Table 6). For each trait, the correlation 
differences based on marker density were minimal, 
with each SNP density producing similar predictions 
(Table 6).

Fig. 3. Linolenic acid (g kg−1) performance comparisons between 2010 predictions (x axis) and 2013 phenotypes (y axis) in a soybean 
population E´W-50K subset consisting of 275 F5–derived recombinant inbred lines. The 2010 predictions were estimated with phenotypic 
(PS) and genomic selection (GS) (Epistacy, BayesB, and genomic best linear unbiased prediction [G-BLUP]) selection strategies. 
Predictions with higher R2 were more closely related to 2013 observed phenotypes.
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diSCuSSion
Evaluating selection methods for soybean traits of interest 
is an important strategy for determining how best to 
make improvements. In this study, four selection methods 
(PS, BayesB, G-BLUP, and Epistacy) were evaluated for 
soybean yield, oleic acid, linolenic acid, protein, and oil. 
Duhnen et al. (2017) found similar results using G-BLUP 
cross-validations to the values reported in this study for 
yield (0.49) and protein (0.67) (Table 3), with prediction 
accuracies for yield ranging from 0.45 to 0.63 and for 
protein from 0.45 to 0.59. Using a similar cross-validation 
approach, Jarquín et al. (2014) estimated a 0.64 prediction 
accuracy for soybean yield. Although many crop studies 

have evaluated GS in the same generation with cross-vali-
dations ( Jarquín et al., 2014; Duhnen et al., 2017), this 
study tested the effect of selections across generations as 
recommended by Jonas and de Koning (2013). By doing so, 
valuable insight was gained into which selection methods 
were preferable for moderate- (yield), high- (protein and 
oil), and very high-heritability (oleic and linolenic acids) 
traits (Tables 2 and 4–5). 

For yield, Epistacy was the preferred selection method 
based on each comparison except for selection efficiency 
(Tables 4–5, Fig. 1). This differs sharply from each of the 
other traits, for which Epistacy was the least effective selec-
tion method (Tables 4–5, Fig. 2–5). Duhnen et al. (2017) 

Fig. 4. Protein (g kg−1) performance comparisons between 2010 predictions (x axis) and 2013 phenotypes (y axis) in a soybean population 
E´W-50K subset consisting of 275 F5–derived recombinant inbred lines. The 2010 predictions were estimated with phenotypic (PS) and 
genomic selection (GS) (Epistacy, BayesB, and genomic best linear unbiased prediction [G-BLUP]) selection strategies. Predictions with 
higher R2 were more closely related to 2013 observed phenotypes.
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noted that prediction accuracy for yield was improved 
by including epistasis into a G-BLUP model. With yield 
having a lower heritability than protein and oil (Table 2), 
it is surprising to note that Epistacy produced a greater 
realized gain for yield than any selection method for protein 
or oil (Table 5). Given these findings, along with the many 
known QTL that influence soybean yield, further testing 
using an epistatic approach for yield is warranted.

Soybean heritability for yield has been demonstrated 
to be lower than for protein and oil (Wiggins et al., 2018), 
as well as for fatty acids (Smallwood et al., 2017). These 
differences in heritability, along with the possibility of 
greatly influencing fatty acid traits based on few loci 

(Pantalone et al., 2002; Pham et al., 2010; Bilyeu et al., 
2011; Boersma et al., 2012; Gillman et al., 2014) with 
no comparable studies for yield, demonstrate the highly 
quantitative nature of soybean yield and subsequently 
highlight the extreme challenge in making selections for 
yield improvement. As noted by Nakaya and Isobe (2012), 
GS methods for low-heritability traits may be prone to 
limited success, which matched our findings in this study, 
with BayesB and G-BLUP as the worst selection methods 
for yield (Tables 4–5; Fig. 1). 

In contrast with yield, little previous work has been 
done testing GS for soybean fatty acids. As oleic acid and 
linolenic acid displayed the highest heritability of the traits 

Fig. 5. Oil (g kg−1) performance comparisons between 2010 predictions (x axis) and 2013 phenotypes (y axis) in a soybean population 
E´W-50K subset consisting of 275 F5–derived recombinant inbred lines. The 2010 predictions were estimated with phenotypic (PS) and 
genomic selection (GS) (Epistacy, BayesB, and genomic best linear unbiased prediction [G-BLUP]) selection strategies. Predictions with 
higher R2 were more closely related to 2013 observed phenotypes.
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tested in this study (Table 2), it is not surprising that GS 
predictions were most accurate for these traits (Nakaya 
and Isobe, 2012). Notably, for every indicator analyzed 
in this study, BayesB and G-BLUP outperformed PS for 
these fatty acid traits (Tables 4–5, Fig. 2–3). This indicates 
strong potential for GS methods for advancing fatty acid 
traits at the progeny row stage. 

For protein and oil, there was little difference in selec-
tion accuracy for PS, BayesB, and G-BLUP (Tables 4–5, 
Fig. 4–5). These findings are concordant with the findings 
of Duhnen et al. (2017), where little difference was observed 
between Bayesian and G-BLUP models. However, this 
differs from Clark et al. (2011), in which BayesB was 
noted to predict more accurately than G-BLUP. Although 
PS was comparable with the GS methods for protein and 
oil, it should be noted that GS methods offer the opportu-
nity to increase gain more rapidly by making selections in 

Table 4. Spearman correlations between 2013 phenotypic 
data and 2010 predictions for soybean yield, linolenic acid, 
oleic acid, protein, and oil in a population E´W-50K subset 
(with parental line Essex and Williams 82) consisting of 276 
F5–derived recombinant inbred lines. The 2010 predictions 
were estimated with phenotypic (PS) and genomic selection 
(GS) (Epistacy, BayesB, and genomic best linear unbiased 
prediction [G-BLUP]) strategies.

Trait Observed PS BayesB GBLUP Epistacy
Yield
 Observed – 0.18 0.13 0.14 0.22
 PS ** – 0.38 0.40 0.30
 BayesB * *** – 0.99 0.32
 GBLUP * *** *** – 0.32
 Epistacy *** *** *** *** –
Oleic acid
 Observed – 0.78 0.87 0.86 0.31
 PS *** – 0.82 0.81 0.39
 BayesB *** *** – 1.00 0.38
 GBLUP *** *** *** – 0.38
 Epistacy *** *** *** *** –
Linolenic acid
 Observed – 0.68 0.83 0.83 0.41
 PS *** – 0.74 0.74 0.52
 BayesB *** *** – 1.00 0.55
 GBLUP *** *** *** – 0.55
 Epistacy *** *** *** *** –
Protein
 Observed – 0.48 0.49 0.49 0.25
 PS *** – 0.66 0.66 0.55
 BayesB *** *** – 1.00 0.49
 GBLUP *** *** *** – 0.49
 Epistacy *** *** *** *** –
Oil
 Observed – 0.59 0.56 0.54 0.38
 PS *** – 0.75 0.72 0.54
 BayesB *** *** – 0.99 0.66
 GBLUP *** *** *** – 0.67
 Epistacy *** *** *** *** –

* Significant at the 0.05 probability level.

** Significant at the 0.01 probability level.

*** Significant at the 0.001 probability level.
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nontarget winter nurseries. Additionally, in a progeny row 
scenario, selections using GS can be made prior to harvest, 
improving the efficiency in comparison with PS. 

When considering GS approaches, it is important to 
determine functional levels of marker and population densi-
ties to make the best predictions. Although this study used 
the Infinium beadchip SoySNP50K (Song et al., 2013) for 
genotyping, many soybean studies have begun genotyping 
with the less dense BARCSoySNP6k array (Song et al., 
2014). When using very dense marker arrays, many of the 
markers could map to the same genetic location based on 
limited recombination. This redundancy occurred in this 
population, with an initial 11,633 SNPs being reduced to 
4867 after removing those in duplicate locations. Given the 

findings in this study, G-BLUP was not largely affected by 
dropping from 4867 SNPs down to 867 SNPs (Table 6). 
Likewise, with the exception of yield, decreasing the number 
of RILs in the training population had little effect on predic-
tion accuracy (Table 6). For yield, the predictions were most 
accurate when the training population and the test popula-
tion were identical. In contrast with this study, Zhang et al. 
(2017) observed increased GS prediction accuracy for maize 
(Zea mays L.) with increased training population and marker 
densities. Continued refinement of training population and 
marker densities will be essential for maximizing the effi-
ciency of GS in soybean breeding operations.

ConCluSionS
Breeding method evaluation is an important strategy in maxi-
mizing genetic gains from selection. Given the importance 
of yield, fatty acids, protein, and oil in soybean production, 
it is necessary to determine the most useful approaches for 
trait improvement. Additionally, it is of interest to evaluate 
different selection strategies from the progeny row stage, 
as this is a critical step in the soybean breeding pipeline. 
In this study, we compared the relative utility of both PS 
and context-specific GS methods (BayesB, G-BLUP, and 
Epistacy). Although there was not a consensus best strategy 
for all traits tested, it is notable that for each trait, the preferred 
approach was a GS strategy. Epistacy was the best method 
for yield, which may indicate the importance of epistatic 
interactions for this trait. BayesB and/or G-BLUP were the 
preferred methods for all other, higher heritability traits. 
Yield was the only trait for which the predictions had a large 
change when the number of SNPs or RILs was reduced 
for the G-BLUP model, with the best predictions occurring 
when the training population and the test population were 
identical (Table 6). These findings provide important infor-
mation on how soybean breeders can maximize selections 
from the progeny row stage for yield, fatty acids, protein, 
and oil by using appropriate breeding strategies.
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