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Abstract: Density functional theory calculations and molecular dynamics simulations were 
performed to investigate the hydrogen storage capacity in the sII hydrate. Calculation results show 
that the optimum hydrogen storage capacity is ~5.6 wt%, with the double occupancy in the small 
cage and quintuple occupancy in the large cage. Molecular dynamics simulations indicate that these 
multiple occupied hydrogen hydrates can occur at mild conditions, and their stability will be further 
enhanced by increasing the pressure or decreasing the temperature. Our work highlights that the 
hydrate is a promising material for storing hydrogen. 

Keywords: hydrogen hydrate; stability; density functional theory; molecular dynamics simulation 
 

1. Introduction 

Hydrogen has attracted great attention as an alternative renewable and sustainable 
transportation fuel [1,2]. For the practice applications, a mass of materials have been studied for 
hydrogen storage, including nanostructured materials, carbon-based materials and metal hydrides 
[3–5]. However, it is still challenging to develop highly efficient hydrogen storage materials. In recent 
decades, clathrate hydrates have been proposed as a promising technology for hydrogen storage [6–
10]. Clathrate hydrates are solid compounds in which small gas molecules are trapped in the 
hydrogen-bonded cages of water molecules. There are three most common crystalline structures of 
hydrates: sI, sII, and sH [11,12]. Hydrogen favors to form sII hydrate, which contains sixteen small 
512 (12 pentagonal faces) cages and eight large 51264 (12 pentagonal and four hexagonal faces) cages in 
one unit cell. 

Mao et al. [6,13] experimentally synthesized sII hydrogen hydrate at about 200 Mpa and 
suggested that the cage occupancy is two H2 molecules in 512 cage and four H2 molecules in 51264 cages. 
Patchkovskii et al. [14] theoretically investigated the stability of pure hydrogen hydrate and indicated 
that the cage occupation of 512 and 51264 cages is 2.00 and 3.96 H2 molecules, respectively. They also 
demonstrated that pure hydrogen hydrates are stable at 2.5 MPa and 150 K. Quantum dynamics 
[15,16], path integral molecular dynamics [17], and the force-matching method [18] suggested that 
the maximum occupancy of 51264 cage is four hydrogen molecules at low temperatures. Raman 
spectra study [19] predicted that 512 cage can be doubly occupied by H2 molecules. Molecular 
dynamics simulations [20] indicated that H2 molecules can migrate from the 512 cages to neighboring 
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cages for hydrogen hydrate with double small-cage occupation. Papadimitriou et al. [21] suggested 
that the hydrogen occupancy of 51264 cages is considerably influenced by the lattice constant, and 
Brumby et al. [22] observed that a small number of the large cages could be occupied by five H2 
molecules. Willow and Xantheas [10] demonstrated that 512 and 51262 cages can accommodate three 
and six H2 molecules, respectively. Moreover, Lokshin et al. [23] demonstrated that 512 cages are 
singly occupied, which 51264 cages can occupied by 2~4 H2 molecules depending on pressure or 
temperature. Inerbaev et al. [24] suggested that 51264 cages are quadruply occupied by H2 molecules 
at 200 MPa and 190 K, and the cage occupancy decreases with the increase of the temperature. Raman 
measurements [25] suggested that the occupancy of 51264 cages is less than or equal to two H2 
molecules. Therefore, the cage occupancy of the pure hydrogen hydrate is still controversial [26,27], 
and great efforts should be made to address this question. 

On the other hand, high pressures are needed to form pure hydrogen hydrates, which is not 
economically feasible and leads to the research of the mixed hydrogen hydrates at lower pressures 
[28–33]. For example, Florusse et al. [34] suggested that tetrahydrofuran can stabilize the hydrogen 
hydrates at 5.0 MPa and 279.6 K, and Lee’s group [7] reported that the storage capacity is about 4.0 
wt% at 12 MPa for the binary hydrogen hydrate. In addition, multiple H2 molecules can be loaded 
into 512 and 51264 cages through the replacement of N2 hydrate by H2 gas at moderate condition [9]. 
Nevertheless, the storage capacity of hydrates is compromised because the additional molecules 
occupy the large cages instead of hydrogen clusters. 

In this paper, we carried out density functional theory calculations and molecular dynamics 
simulations to study the hydrogen storage properties of hydrogen hydrate. Our results showed that 
the optimum storage capacity of the pure hydrogen hydrate can reach up to 5.6 wt%. Moreover, these 
multiply occupied hydrogen hydrates can occur at mild pressure and low temperature, which would 
be helpful to inspire new experiments for synthesizing hydrogen hydrate with high storage capacity. 

2. Computational Details 

Firstly, we built a primitive cell (11.89 × 11.89 × 11.89 Å3) of sII hydrate [35], which consists of 
four 512 and two 51264 cages. After filling a hydrogen cluster of (H2)n = 1~6 and (H2)m = 1~8 into the 512 cage 
and the 51262 cage, respectively, we carried out the geometry optimization for the hydrates with 
three-dimensional periodic boundary conditions, in which the coordinates of atoms were 
adjusted so that the energy of the structure is brought to a stationary point. There are no 
imaginary frequencies in vibrational analysis, presenting the most stable structures. The calculations 
were implemented through DMol3 program. The Becke–Lee–Yang–Parr [36,37] (BLYP) exchange-
correlation functional and the double numerical plus polarization, with addition of diffuse functions 
(DNP+) basis set [38] were applied. The Tkatchenko–Scheffler approach [39] was used for the 
dispersion correction. The convergence criteria is 1 × 10−5 Ha for the total energy,0.002 Ha/Å for forces, 
0.005 Å for displacement, and 1 × 10−6 Ha for SCF interactions. 

The stability of the hydrates was characterized by the cohesive energy per water molecule (Ecoh) 
that was computed as following [40]: 

34
]34[ hydratewaterhydrogen

coh

EEEx
E

−⋅+⋅
=  (1) 

where hydrogenE  denotes the energy of the hydrogen molecule, waterE  denotes the energy of the 

water molecule, hydrateE  denotes the energy of the hydrate, and x denotes the number of hydrogen 

molecules. Zero-point energy is added to the electronic energy when computing and comparing 
above energies. Further, global reactivity parameters such as the electronegativity (χ) [41], global 
hardness (η) [42] and electrophilicity index (ω) [43] were calculated by the following equations: 
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where E represents the total energy, N represents number of electrons, and ( )rv   represents external 
potential. The binding ability of single H2 molecule within the hydrate was evaluated by the 
interaction energy (Eint), as [8] 

hydrateresidualH EEEE −+= )(
2int  (5) 

where 
2H

E  is the energy of single H2 molecule, and residualE  is the energy of the hydrate with one 

lost H2 molecule. The distortion of the water lattice was characterized by the deformation energy 
(Edef), as [44] 

cageoptcagedef EEE −−=  (6) 

where cageE  is the energy of the hydrate without hydrogen molecules at its geometry to 

accommodate hydrogen clusters, and cageoptE −  is the energy of the hydrate without hydrogen 

molecules at its optimized geometry. 
Subsequently, we chose the most thermodynamically stable structure of pure hydrogen 

hydrates, with two H2 molecules in 512 cages and five in 51264 cages, and investigated the effect of 
temperature and pressure on its stability. By using a large-sized unit cell (23.78 × 23.78 × 23.78 Å3) 
and three-dimensional periodic boundary conditions, molecular dynamics (MD) simulations were 
carried out in the constant-pressure and constant-temperature (NPT) ensemble as implemented in 
the Discover program modules of Materials Studio developed by Accelrys Inc. [45] Initially, the 
atomic positions of water molecules were frozen and a 200-ps simulation was carried out. Then, the 
coordinate constraints of water molecules were removed and another 100-ps simulation was 
performed. The Andersen thermostat [46] was used to control the temperature and the Berendsen 
barostat [47] was used to control the pressure. The Ewald summation method [48] and COMPASS 
force field [49–51] was used for the energy calculation, and the time step was set 1.0 fs. 

The diffusion motion of the hydrogen hydrate was characterized by the mean square 
displacement (MSD), which was calculated by the following equation: 

( ) ( )( )20ii rtrMSD  −=  (7) 

where ( ) ( )0ii rtr  −  is the shift distance of molecules in an interval t, and the angular brackets 
indicate an ensemble average. According on the Debye theory [52], the diffusion coefficient (D) can 
be obtained by the equation: 

t
MSDD

6
=  (8) 

3. Results and Discussion 

3.1. The Hydrate Stability with Respect to the Hydrogen Occupancy 

For the multiple hydrogen hydrate, we considered complexes encapsulated with a (H2)n = 1~6 
cluster in the small cage and simultaneously with a (H2)m = 1~8 cluster in the large cage. The calculated 
cohesive energies are shown in Figure 1. It can be seen that the optimum occupancy of 512 cage is two 
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H2 molecules, because the hydrate has the highest stability. For the large cage, when it encapsulates 
five or six H2 molecules, the hydrate exhibits the highest stability. Encapsulating the excess H2 
molecules in 51262 cage will decrease the stability of the hydrate. Encouragingly, the highest cohesive 
energy occurs when two H2 molecules are encapsulated in 512 cage and simultaneously five in 51262 
cage, leading to the hydrogen storage capacity of ~5.6 wt%. 

 
Figure 1. The cohesive energy of the hydrogen hydrate with a cluster of (H2)n = 1~6 in the small cage 
and (H2)m = 1~8 in the large cage. 

Figure 2 shows the global hardness (η), the electrophilicity index (ω), the interaction energy (Eint) 
and the deformation energy (Edef) for the hydrogen hydrates. As compared with the hydrate without 
encapsulating H2 molecules (η = 3.355 eV), the single occupancy in the small and large cages results 
in a large hardness (3.437 eV) of the hydrate. This suggests that the singly occupied hydrate has a 
potential to resist changes in its electron number and distribution, exhibiting the high chemical 
stability. It can be attributed to the fact that the interactions between H2 molecules and the host lattice 
stabilize the hydrate. Upon adding a second H2 molecule in the small cage, the hardness of the 
hydrate further increases to 3.487 eV, implying that this doubly occupied hydrate will be less 
polarizable if electron transfer or rearrangement is necessary for the reaction. By sequentially 
increasing the number of H2 molecules in the large cage, the hardness of the hydrogen hydrates firstly 
increases and then decreases, featuring a maximum value (3.608 eV) at m = 5. This confirms that when 
the small and the large cages accommodate two and five H2 molecules, respectively, the hydrogen 
hydrate has the highest stability. Figure 2b shows that the singly occupied hydrate has a smaller 
eletrophilicity index than the hydrate without H2 molecules (2.264 eV vs. 2.365 eV), indicating that 
the electron transfer process will be less energetically favorable in the former. As for the double 
occupancy in the small cage, the propensity of the hydrate to soak up electrons becomes poorer due 
to its smaller electrophilicity index (2.192 eV), corresponding to the higher chemical stability. 
Moreover, the electropilicity index decreases when the number of H2 molecules in the large cage 
increases to five. These results match well with the aforementioned the cohesive energies, confirming 
that the optimum storage capacity of sII hydrate should be ~5.6 wt% H2. 
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Figure 2. The global hardness (a), electrophilicity index (b), interaction energy of H2 molecule in large 
cage (c), and deformation energy (d) for the hydrogen hydrates with a cluster of (H2)n = 1~2 in the small 
cage and (H2)m = 1~8 in the large cage. 

For the singly occupied hydrate, the interaction energy per H2 molecule in the small and large 
cages was 0.168 eV and 0.137 eV, respectively. For the double occupancy in the small cage, the 
interaction energy slightly decreased to 0.160 eV in the small cage, and maintained 0.137 eV in the 
large cage. This indicates that the small cage can accommodate two H2 molecules, without 
significantly decreasing the binding ability of the H2 molecule. From Figure 2c, it can be seen that the 
interaction energy gradually increases as the number of H2 molecules in the large cage increases from 
one to five. While adding an excess H2 molecule, the interaction energy declines, suggesting that the 
optimum occupancy of the large cage is five H2 molecules. 

Figure 2d shows that the deformation energy of the host lattice is 0.008 eV for the single 
occupancy of the cage, but it increases to 0.039 eV for the double occupancy in the small cage. This 
indicates that the small cage will become slightly distorted to accommodate two H2 molecules. On 
the other hand, when the large cage accommodates 1–5 H2 molecules, the deformation energy 
fluctuates around ~0.042 eV. While the deformation energy greatly increases as the large cage 
encapsulates the excess H2 molecules. In addition, we analyzed the radial distribution functions 
(RDFs) of oxygen atoms of water molecules in hydrogen hydrates with different cage occupancy. 
From Figure 3, it can be seen that the RDF for the hydrate without encapsulating H2 molecules has a 
sharp and narrow peak at ~2.710 Å, corresponding to the hydrogen bond length of water molecules 
[53]. The second peak at ~4.350 Å indicates the tetrahedral structure of water molecules in the hydrate. 
In the case of the single occupancy, the positions of two peaks have no change, while the intensity of 
first peak becomes relatively small. Moreover, RDFs of the hydrates exhibit the same trend when a 
(H2)2 cluster resides in the small cage and a (H2)m = 1~5 cluster in the large cage. In contrast, the first 
peak is significantly broadened and weakened by sequentially increasing the number of H2 molecules 
in the large cage, corresponding to the considerable deformation of the host lattice. This result further 
suggests that the optimum cage capacity of the large cage is five H2 molecules. 
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Figure 3. Radial distribution functions of oxygen atoms of water molecules in the hydrogen hydrates 
with a cluster of (H2)n = 0~2 in the small cage and (H2)m = 0~8 in the large cage. 

3.2. Effect of Pressure on the Hydrate Stability 

Above studies mainly investigated the thermodynamic stability of the hydrogen hydrate as a 
function of the H2 occupancy, which were conducted at 0 K in vacuum. However, pressure and 
temperature can significantly affect the hydrate stability. Therefore, in the following work, we chose 
the most thermodynamically stable structure of the hydrogen hydrates, which has two H2 molecules 
in 512 cage and five in 51262 cage, and investigated the effect of temperature and pressure on its stability 

Figure 4 shows the equilibrium configurations of the dynamic trajectories for the hydrogen 
hydrate at 250 K and at the pressure of 200, 100, 20, and 5 MPa, respectively. Clearly, the hydrate can 
maintain its structure at 200 MPa, despite of little deformation caused by the thermal and structural 
fluctuations. As the pressure decreases, the deformation of the hydrate structure becomes more 
significant; however, the crystal structure can still be observed at 20 MPa. In contrast, at 5 MPa the 
positions of water molecules are considerably changed and the hydrate structure almost disappears 
during the dynamics. 
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(a) (b) 

  
(c) (d) 

Figure 4. The final configurations of 100-ps MD trajectories of the hydrogen hydrate at 250 K: (a) 200 
MPa, (b) 100 MPa, (c) 20 MPa, and (d) 5 MPa. The violet lines represent the hydrogen bonds between 
water molecules in the hydrate. Water molecules are not shown and hydrogen molecules are shown 
in dark-cyan stick model. 

Figure 5a shows RDFs of oxygen atoms of water molecules in hydrate at four different pressures. 
There are two evident peaks at ~2.710 Å and ~4.430 Å, respectively, indicating the tetrahedral bonding 
structure of water molecules. However, as the pressure decreases, the intensity of the first peak 
decreases, suggesting that the hydrogen bonds become weak. Meanwhile, the second peak becomes 
broadened and shifts to the right, implying that the hydrate has a large deformation. Further, we 
characterized the diffusion of the hydrate at different pressure. Figure 5b shows the mean square 
displacement (MSD) of molecules in the hydrogen hydrate. As the pressure decreases, MSD increases 
more quickly and has a larger slope, corresponding to the rapid diffuse of molecules in the hydrate. 
The diffusion coefficient is 0.857, 1.033, 1.329, and 1.992 × 10−5 cm2/s for the hydrate at 200, 100, 20, 
and 5 MPa, respectively. This indicates that the hydrate will exhibit significant diffusive motion at 
low pressure, and thus has a less stability. 
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Figure 5. (a) Radial distribution functions of oxygen atoms of water molecules at 250 K and 200 MPa, 
100 MPa, 20 MPa, and 5 MPa, respectively. (b) Mean square displacement of molecules in the hydrate 
at 250 K and 200 MPa, 100 MPa, 20 MPa, and 5 MPa, respectively. (c) Time evolution of the density of 
the hydrate at 250 K and 200 MPa, 100 MPa, 20 MPa, and 5 MPa, respectively. 

For the thermodynamically stable structure (at 0 K), the hydrate has the density of about 0.906 
g/cm3, while in a thermal and structural fluctuating environment its density decreases because of the 
enlarged lattice parameters. From Figure 5c, the density of the hydrate decrease to 0.897 g/cm3 at 200 
MPa, 0.880 g/cm3 at 100 MPa, and 0.859 g/cm3 at 20 MPa, but these values remain unchanged during 
the simulations. In contrast, at 5 MPa the hydrate density decreases from 0.849 g/cm3 to 0.787 g/cm3 
at 100 ps, implying that the hydrate can not maintain its structure at 5 MPa. 

3.3. Effect of Temperature on the Hydrate Stability 

Figure 6 shows the dynamically relaxed configurations of the hydrogen hydrate at mild pressure 
(20 MPa) and at temperatures of 280, 250, 200, and 150 K, respectively. It can be seen that the 
crystalline structure of the hydrate disappears at 280 K. When the temperature decreases, the hydrate 
becomes more stable and keeps its structure at the temperature of less than 200 K. 
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Figure 6. The final configurations of 100-ps MD trajectories of the hydrogen hydrate at 20 MPa: (a) 
280 K, (b) 250 K, (c) 200 K, and (d) 150 K. The violet lines represent the hydrogen bonds between water 
molecules in the hydrate. Water molecules are not shown and hydrogen molecules are shown in dark-
cyan stick model. 
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Figure 7. (a) Radial distribution functions of oxygen atoms of water molecules at 20 MPa and 280 K, 
250 K, 200 K, and 150 K, respectively. (b) Mean square displacement of molecules in the hydrate at 20 
MPa and 280 K, 250 K, 200 K, and 150 K, respectively. (c) Time evolution of the density of the hydrate 
at 20 MPa and 280 K, 250 K, 200 K, and 150 K, respectively. 
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From Figure 7a, it can be seen that there are two significant peaks at ~2.710 Å and ~4.450 Å, 
respectively, also implying the tetrahedral bonding structure of water molecules. The intensity of two 
peaks increases with the decrease of the temperature, suggesting that the stability of the hydrate is 
improved at the low temperature. Figure 7b shows that the hydrate diffuses significantly at 280 K, 
while it exhibits less diffusive at 250, 200, and 150 K. It implies that the hydrate will maintain its 
crystalline structure when the temperature decreases to 250 K. The diffusion coefficient of the hydrate 
is 4.189, 1.033, 0.682, and 0.514 × 10−5 cm2/s at 280 K, 250 K, 200 K, and 150 K, respectively. It further 
demonstrates that the hydrate become less diffusive as the temperature decreases. Further, Figure 7c 
indicates that the initial density of the hydrate is ~0.830 g/cm3 at 280 K and decreases to 0.647g/cm3 
during the simulation At 250 K, 200 K and 150 K, the density is about 0.862, 0.875, and 0.884 g/cm3, 
respectively, fluctuating little during the dynamics. Accordingly, the hydrogen hydrate should exist 
at mild pressure and low temperatures. 

4. Conclusions 

In this work, we carried out density functional theory calculations and molecular dynamics 
simulations to investigate the thermodynamic and dynamic stability of sII hydrogen hydrate. Our 
calculations show that the optimum cage occupancy is two and five H2 molecules for the small and 
large cages, respectively, leading to the hydrogen storage capacity of ~5.6 wt%. Through molecular 
dynamics simulations, we found that the hydrogen hydrate can occur under the conditions of the 
mild pressure (>20 MPa) and the low temperature (<250 K). Despite of the unclear formation 
conditions, our results highlight that clathrate hydrates should be a satisfied method for the hydrogen 
storage. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table 
S1: title, Video S1: title. 

Author Contributions: Investigation, Rui Ma and Hong Zhong; supervision, Jinxiang Liu and Jun Zhang; 
writing – original draft, Jinxiang Liu; writing – review & editing, Jie Zhong, Youguo Yan and Jiafang Xu. 

Funding: This work was supported by National Natural Science Foundation of China [Grant numbers 11974144 
and 11504133]. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. 
2. Getman, R.B.; Bae, Y.-S.; Wilmer, C.E.; Snurr, R.Q. Review and analysis of molecular simulations of 

methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 2012, 112, 703–723. 
3. Schlapbach, L.; Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. 
4. Jena, P. Materials for hydrogen storage: Past, present, and future. J. Phys. Chem. Lett. 2011, 2, 206–211. 
5. Schüth, F. Encapsulation strategies in energy conversion materials. Chem. Mater. 2014, 26, 423–434. 
6. Mao, W.L.; Mao, H.-K. Hydrogen storage in molecular compounds. Proc. Nalt. Acad. Sci. USA 2004, 101, 

708–710. 
7. Lee, H.; Lee, J.-W.; Kim, D.Y.; Park, J.; Seo, Y.-T.; Zeng, H.; Moudrakovski, I.L.; Ratcliffe, C.I.; Ripmeester, 

J.A. Tuning clathrate hydrates for hydrogen storage. Nature 2005, 434, 743–746. 
8. Román-Pérez, G.; Moaied, M.; Soler, J.M.; Yndurain, F. Stability, adsorption, and diffusion of CH4, CO2, 

and H2 in clathrate hydrates. Phys. Rev. Lett. 2010, 105, 145901. 
9. Lu, H.; Wang, J.; Liu, C.; Ratcliffe, C.I.; Becker, U.; Kumar, R.; Ripmeester, J. Multiple H2 occupancy of cages 

of clathrate hydrate under mild conditions. J. Am. Chem. Soc. 2012, 134, 9160–9162. 
10. Willow, S.Y.; Xantheas, S.S. Enhancement of hydrogen storage capacity in hydrate lattices. Chem. Phys. Lett. 

2012, 525, 13–18. 
11. Sloan, E.D. Fundamental principles and applications of natural gas hydrates. Nature 2003, 426, 353–363. 
12. Zhu, J.; Du, S.; Yu, X.; Zhang, J.; Xu, H.; Vogel, S.C.; Germann, T.C.; Francisco, J.S.; Izumi, F.; Momma, K.; 

et al. Encapsulation kinetics and dynamics of carbon monoxide in clathrate hydrate. Nat. Commun. 2014, 5, 
4128. 



Processes 2019, 7, 699 11 of 12 

 

13. Mao, W.L.; Mao, H.-k.; Goncharov, A.F.; Struzhkin, V.V.; Guo, Q.; Hu, J.; Shu, J.; Hemley, R.J.; Somayazulu, 
M.; Zhao, Y. Hydrogen clusters in clathrate hydrate. Science 2002, 297, 2247–2249. 

14. Patchkovskii, S.; Tse, J.S. Thermodynamic stability of hydrogen clathrates. Proc. Natl. Acad. Sci. USA 2003, 
100, 14645–14650. 

15. Sebastianelli, F.; Xu, M.; Bačić, Z. Quantum dynamics of small H2 and D2 clusters in the large cage of 
structure ii clathrate hydrate: Energetics, occupancy, and vibrationally averaged cluster structures. J. Chem. 
Phys. 2008, 129, 244706. 

16. Ranieri, U.; Koza, M.M.; Kuhs, W.F.; Gaal, R.; Klotz, S.; Falenty, A.; Wallacher, D.; Ollivier, J.; Gillet, P.; 
Bove, L.E. Quantum dynamics of H2 and D2 confined in hydrate structures as a function of pressure and 
temperature. J. Phys. Chem. C 2019, 123, 1888–1903. 

17. Witt, A.; Sebastianelli, F.; Tuckerman, M.E.; Bačić, Z. Path integral molecular dynamics study of small H2 
clusters in the large cage of structure II clathrate hydrate: Temperature dependence of quantum spatial 
distributions. J. Phys. Chem. C 2010, 114, 20775–20782. 

18. Burnham, C.J.; Futera, Z.; English, N.J. Study of hydrogen-molecule guests in type II clathrate hydrates 
using a force-matched potential model parameterised from ab initio molecular dynamics. J. Chem. Phys. 
2018, 148, 102323. 

19. Wang, J.; Lu, H.; Ripmeester, J.A. Raman spectroscopy and cage occupancy of hydrogen clathrate hydrate 
from first-principle calculations. J. Am. Chem. Soc. 2009, 131, 14132–14133. 

20. Gorman, P.D.; English, N.J.; MacElroy, J.M.D. Dynamical cage behaviour and hydrogen migration in 
hydrogen and hydrogen-tetrahydrofuran clathrate hydrates. J. Chem. Phys. 2012, 136, 044506. 

21. Papadimitriou, N.I.; Tsimpanogiannis, I.N.; Economou, I.G.; Stubos, A.K. The effect of lattice constant on 
the storage capacity of hydrogen hydrates: A Monte Carlo Study. Mol. Phys. 2016, 114, 2664–2671. 

22. Brumby, P.E.; Yuhara, D.; Hasegawa, T.; Wu, D.T.; Sum, A.K.; Yasuoka, K. Cage occupancies, lattice 
constants, and guest chemical potentials for structure II hydrogen clathrate hydrate from Gibbs ensemble 
Monte Carlo simulations. J. Chem. Phys. 2019, 150, 134503. 

23. Lokshin, K.A.; Zhao, Y.; He, D.; Mao, W.L.; Mao, H.-K.; Hemley, R.J.; Lobanov, M.V.; Greenblatt, M. 
Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron 
diffraction. Phys. Rev. Lett. 2004, 93, 125503. 

24. Inerbaev, T.M.; Belosludov, V.R.; Belosludov, R.V.; Sluiter, M.; Kawazoe, Y. Dynamics and equation of state 
of hydrogen clathrate hydrate as a function of cage occupation. Comput. Mater. Sci. 2006, 36, 229–233. 

25. Del Rosso, L.; Celli, M.; Ulivi, L. Raman measurements of pure hydrogen clathrate formation from a 
supercooled hydrogen–water solution. J. Phys. Chem. Lett. 2015, 6, 4309–4313. 

26. English, N.J.; MacElroy, J.M.D. Perspectives on molecular simulation of clathrate hydrates: Progress, 
prospects and challenges. Chem. Eng. Sci. 2015, 121, 133–156. 

27. Rasoolzadeh, A.; Shariati, A. Hydrogen hydrate cage occupancy: A key parameter for hydrogen storage 
and transport. Fluid Phase Equilib. 2019, 494, 8–20. 

28. Sugahara, T.; Haag, J.C.; Prasad, P.S.R.; Warntjes, A.A.; Sloan, E.D.; Sum, A.K.; Koh, C.A. Increasing 
hydrogen storage capacity using tetrahydrofuran. J. Am. Chem. Soc. 2009, 131, 14616–14617. 

29. Chapoy, A.; Anderson, R.; Tohidi, B. Low-pressure molecular hydrogen storage in semi-clathrate hydrates 
of quaternary ammonium compounds. J. Am. Chem. Soc. 2007, 129, 746–747. 

30. Cai, J.; Tao, Y.-Q.; von Solms, N.; Xu, C.-G.; Chen, Z.-Y.; Li, X.-S. Experimental studies on hydrogen hydrate 
with tetrahydrofuran by differential scanning calorimeter and in-situ Raman. Appl. Energ. 2019, 243, 1–9. 

31. Liu, J.; Yan, Y.; Chen, G.; Hou, J.; Yan, Y.; Liu, H.; Li, S.; Zhang, J. Prediction of efficient promoter molecules 
of sh hydrogen hydrate: An ab initio study. Chem. Phys. 2019, 516, 15–21. 

32. Kaur, S.P.; Ramachandran, C.N. Hydrogen-tetrahydrofuran mixed hydrates: A computational study. Int. 
J. Hydrogen Energy 2018, 43, 19559–19566. 

33. Liu, J.; Hou, J.; Xu, J.; Liu, H.; Chen, G.; Zhang, J. Ab initio study of the molecular hydrogen occupancy in 
pure H2 and binary H2-THF clathrate hydrates. Int. J. Hydrogen Energy 2017, 42, 17136–17143. 

34. Florusse, L.J.; Peters, C.J.; Schoonman, J.; Hester, K.C.; Koh, C.A.; Dec, S.F.; Marsh, K.N.; Sloan, E.D. Stable 
low-pressure hydrogen clusters stored in a binary clathrate hydrate. Science 2004, 306, 469–471. 
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