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POLYMER ON GRAPHENE electrically coupled to the graphene . Applying an electro 
chemical deposition process can include placing the gra 

CROSS - REFERENCE TO RELATED phene and the substrate in a solution that includes phenol 
APPLICATIONS and sulfuric acid . The method can include forming a layer of 

5 second dielectric material on the dielectric polymer layer , 
This application is a divisional of and claims benefit to the second dielectric material having a dielectric constant 

U . S . patent application Ser . No . 14 / 554 , 000 , filed on Nov . that is higher than the dielectric constant of the polymer . 
25 , 2014 , which claims priority to U . S . provisional patent Depositing a layer of dielectric polymer can include depos 

application 61 / 908 , 231 , filed on Nov . 25 , 2013 . The above iting a layer of dielectric polymer having a thickness that is 
applications are incorporated herein by reference in their ir 10 less than 10 nm . 
entirety . In general , in another aspect , a method for forming a 

dielectric polymer layer on a layer of two - dimensional 
STATEMENT REGARDING FEDERALLY material is provided . The method includes forming a layer of 

SPONSORED RESEARCH OR DEVELOPMENT two - dimensional material on a substrate , the two - dimen 
15 sional material layer having a thickness less than 1 um ; and 

This invention was made with government support under applying an electro - deposition process to deposit a dielectric 
contract DMR0820521 awarded by NSF MRSEC . The gov polymer layer on the two - dimensional material , in which a 
ernment has certain rights in the invention . rate of deposition of the polymer at a given location of the 

two - dimensional material decreases as a thickness of the 
TECHNICAL FIELD 20 polymer layer increases . 

Implementations of the method may include one or more 
This subject matter is generally related to forming a of the following features . In some examples , the two 

polymer layer on graphene . dimensional material layer can have a thickness less than 
100 nm . In some examples , the two - dimensional material 

BACKGROUND 25 layer can have a thickness less than 10 nm . The two 
dimensional material can include graphene . The method can 

Graphene has high charge carrier mobilities and can be include patterning the graphene to form a channel of a field 
used to fabricate graphene based field effect transistors effect transistor , forming drain and source electrodes that are 
( FET ) . The transistor may have a locally gated ( top - gate ) electrically coupled to the graphene , and forming a top gate 
electrode on the graphene and may be useful for operating 30 above the polymer layer . Applying an electro - deposition 
at low power and terahertz frequencies applications , includ - process can include causing the two - dimensional material to 
ing low noise amplifiers and electromechanical resonators . be in contact with a solution that includes phenol and 
Ideal dielectric barriers separating the top - gate from the sulfuric acid , and applying a potential between the two 
graphene should be thin , free of pinholes , and have uniform dimensional material and a reference electrode to deposit a 
thickness . 35 layer of poly ( phenylene oxide ) on the two - dimensional 

Construction of a top - gated electrode can be difficult due material . Applying a potential can include cycling a poten 
to the incompatibilities of graphene with typical high dielec tial between the two - dimensional material and a reference 
tric constant ( high - K ) barrier preparations . Pristine graphene electrode between a lower potential and a higher potential , 
has few functional groups , which hinders the modification of the lower potential being less than 0 . 5V , and the higher 
the surface with precursors commonly used for atomic layer 40 potential being in a range from 0 . 5V to 1 . 5V . In some 
deposition ( ALD ) . The inability to modify the surface with examples , applying the potential can include cycling the 
precursors results in non - uniform films that nucleate primar potential between the graphene and the reference electrode 
ily at the edges and defects of the graphene . Using physical between about 0 . 1 V to about 0 . 9V . Forming a layer of 
vapor deposition to produce the dielectric film may damage two - dimensional material can include forming a graphene 
the graphene , and functionalization of the graphene with 45 layer having a thickness less than 3 nm , and depositing a 
ozone and / or nitrous oxide may result in non - uniform films polymer layer includes depositing a polymer layer having a 
or degraded carrier mobilities of the graphene field effect thickness less than 10 nm . The method can include forming 
transistor . a layer of dielectric material on the polymer layer , the 

dielectric material having a dielectric constant that is higher 
SUMMARY 50 than the dielectric constant of the polymer layer . Forming 

the layer of dielectric material can include using atomic 
In general , in one aspect , a method of fabricating a layer deposition to deposit the layer of dielectric material . 

graphene transistor is provided . The method includes form - The method can include forming pores in the graphene layer 
ing a layer of graphene on a substrate ; applying an electro when applying the electro - deposition . Applying an electro 
chemical deposition process to deposit a layer of dielectric 55 deposition process can include electro - polymerizing one or 
polymer on the graphene layer ; and forming a top gate above more monomers that include at least one of 4 - chlorophenol , 
the polymer . 2 , 6 - dimethylphenol , or 0 - phenylenediamine . Forming a 

Implementations of the method may include one or more layer of two - dimensional material can include forming a 
of the following features . A potential can be applied between layer of phosphorene . The method can include covering the 
the graphene layer and a reference electrode , and the poten - 60 phosphorene layer with the polymer layer to prevent oxida 
tial can be cycled between a lower potential and a higher tion of the phosphorene . 
potential . The lower potential can be in a range between 0 to In general , in another aspect , a method for forming a layer 
0 . 5V , and the higher potential can be in a range between of polymer of graphene is provided . The method includes 
0 . 5V to 1 . 5V . Depositing the layer of dielectric polymer can forming a layer of two - dimensional material on a substrate ; 
include depositing poly ( phenylene oxide ) on the graphene . 65 and performing electrochemical polymerization of phenol to 
The method can include patterning the graphene to form a form a layer of polymer on the graphene , the polymer 
channel , and forming drain and source electrodes that are comprising poly ( phenylene oxide ) . 
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Implementations of the method may include one or more Implementations of the apparatus may include the fol 
of the following features . Forming a layer of two - dimen - lowing feature . The dielectric polymer can include poly 
sional material can include forming a layer of graphene . The ( phenylene oxide ) . 
method can include patterning the graphene to form a In general , in another aspect , a method includes applying 
channel of a field effect transistor , forming drain and source 5 electrochemical polymerization to deposit a pinhole free , 
electrodes on the graphene , and forming a top gate on the insulating , thin organic film on a conducting or semicon 
polymer layer . Performing electrochemical polymerization ducting surface . 
of phenol can include applying an alternating voltage or Implementations of the method may include one or more 
current to a solution that includes phenol and sulfuric acid . of the following features . The film can be deposited on a 
The method can include forming a layer of dielectric mate - carbon substrate . The carbon substrate can include graphene . 
rial on the polymer layer , the dielectric material having a 
dielectric constant that is higher than the dielectric constant BRIEF DESCRIPTION OF DRAWINGS 
of the polymer layer . Forming a layer of two - dimensional 
material can include forming a layer of phosphorene . FIG . 1 ( a ) is a schematic diagram of fabrication of a 15 In general , in another aspect , a graphene transistor top - gated graphene field effect transistor by electropolymer 
includes a substrate ; a layer of graphene on the substrate ; a ization of phenol using graphene as a working electrode . 
layer of dielectric polymer that includes poly ( phenylene FIG . 1 ( b ) is a diagram showing a device covered with a 
oxide ) on the graphene layer ; and a top gate above the thin poly ( phenylene oxide ) layer . 
polymer . 20 FIG . 1 ( c ) is a diagram showing fabrication of a top gate 

Implementations of the transistor may include one or over the poly ( phenylene oxide ) layer . 
more of the following features . The graphene layer can be FIG . 1 ( d ) is a graph showing cyclic voltammetry of 
patterned to form a channel , and the transistor further poly ( phenylene oxide ) deposition on a graphene device . 
includes drain and source electrodes that are electrically FIG . 1 ( e ) show optical microscopy images of a graphene 
coupled to the graphene . The transistor can include a layer 25 FET before and after poly ( phenylene oxide ) deposition . 
of second dielectric material on the dielectric polymer layer , FIG . 1 ( ) is a graph showing Raman spectroscopy of the 
the second dielectric material having a dielectric constant same monolayer graphene before and after poly ( phenylene 
that is higher than the dielectric constant of the polymer . In oxide ) deposition . 
some examples , the dielectric polymer layer can have a FIG . 2 ( a ) is an atomic force microscopy image of a 
thickness in a range between 500 nm to 1 um . In some 30 graphene field effect transistor device after fabrication of 
examples , the dielectric polymer layer can have a thickness source and drain electrodes . 
in a range between 100 nm to 500 nm . In some examples , the FIG . 2 ( b ) is an atomic force microscopy image of the 
dielectric polymer layer can have a thickness in a range graphene field effect transistor device after poly ( phenylene 
between 10 nm to 100 nm . In some examples , the dielectric - oxide ) electrodeposition . 
polymer layer can have a thickness that is less than 10 nm . FIG . 2 ( c ) is an atomic force microscopy image of the 

In general , in another aspect , an apparatus includes a graphene field effect transistor device after top gate fabri 
substrate ; a layer of two - dimensional material on the sub - cation . 
strate ; and a layer of polymer on the graphene , the polymer FIG . 2 ( d ) is a magnified atomic force microscopy image 
that includes poly ( phenylene oxide ) . 40 of a graphene edge after poly ( phenylene oxide ) electrode 

Implementations of the apparatus may include one or position . 
more of the following features . The two - dimensional mate FIG . 2 ( e ) is a graph showing height profiles of graphene 
rial can include graphene . The apparatus can include a drain before and after poly ( phenylene oxide ) deposition . 
electrode , a source electrode , and a top gate , in which the FIG . 3 ( a ) is an atomic force microscopy image of a 
layer of graphene can be disposed between the drain and 45 graphene layer covered by a layer of poly ( phenylene oxide ) 
source electrodes and function as a channel , and the top gate that has holes . 
can be disposed above the layer of polymer . The apparatus FIG . 3 ( b ) is a graph showing a height profile of the 
can include a dielectric layer disposed between the polymer graphene / poly ( phenylene oxide ) layers of FIG . 3 ( a ) . 
layer and the top gate . The dielectric layer can include a FIG . 4 ( a ) is an optical photograph of a graphene flake on 
dielectric that has a dielectric constant that is higher than the 50 Si / SiO , substrate . 
dielectric constant of the polymer . The layer of graphene can FIG . 4 ( b ) is a graph showing a Raman spectrum of the top 
include a monolayer of graphene . The polymer layer can right region of the graphene flake shown in FIG . 4 ( a ) . 
have a thickness less than 10 nm . The two - dimensional FIG . 4 ( c ) is an optical image of a field effect transistor 
material can include phosphorene . The polymer layer can device fabricated from a larger graphene patch contoured in 
cover the phosphorene to prevent oxidation of the phospho - 55 FIG . 4 ( a ) . 

FIG . 4 ( d ) is a scanning electron microscopy image of the 
In general , in another aspect , an apparatus includes a same device shown in FIG . 4 ( c ) . 

substrate ; and a layer of two - dimensional material on the FIGS . 4 ( e ) and 4 are atomic force microscopy images 
substrate , in which the two - dimensional material is at least of the device channel and the isolated graphene patch before 
one of a conducting or a semiconducting material . The 60 and after , respectively , poly ( phenylene oxide ) electrodepo 
apparatus includes a dielectric polymer formed on the layer sition . 
of two - dimensional material by applying an electrochemical FIG . 4 ( g ) is a graph showing height profiles of materials 
deposition process to deposit the dielectric polymer on the shown in the atomic force microscopy images of FIGS . 4 ( e ) 
two - dimensional material , in which a rate of deposition of and 40 . 
the dielectric polymer at a given location of the two - 65 FIG . 5 ( a ) is a graph showing graphene resistivity as a 
dimensional material decreases as a thickness of the dielec function of VBG before and after poly ( phenylene oxide ) 
tric polymer layer increases . deposition and top - gate electrode fabrication . 

rene . 
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FIG . 5 ( b ) is a graph showing resistivity at V Dirac for six ( phenylene oxide ) ( PPO ) as the top gate dielectric or a 
graphene FETs before and after poly ( phenylene oxide ) portion of the top gate dielectric . Electropolymerization of 
deposition . poly ( phenylene oxide ) is achieved by applying an electro 

FIG . 5 ( e ) is a graph showing resistivity of graphene FET chemical deposition process using a solution that includes 
with applied top and bottom gates . 5 phenol and sulfuric acid , in which to electro - oxidization of FIG . 5 ( d ) is a graph showing a comparison of resistivity phenol produces the non - conducting poly ( phenylene oxide ) 
plots for a double - gated graphene FET measured as a on a graphene layer . In some implementations , the poly 
function of the Vtg with VBG = 0 , and measured as a function ( phenylene oxide ) layer can function as a seed layer or buffer of the VBG with VTG = 0 . layer for depositing a layer of high - k dielectric material , in FIG . 5 ( e ) is a graph showing dependences of graphene and 10 which the combination of the poly ( phenylene oxide ) layer FET resistivity on the VBG measured at different VTG 

FIG . 5 ( / ) is a graph showing dependences of graphene and the layer of high - k dielectric material together form the 
FET resistivity on the top - gate voltages measured at differ top gate dielectric . The poly ( phenylene oxide ) formed by the 
ent VBG : electrochemical deposition process can be thin , e . g . , having 

FIG . 5 ( g ) is a graph showing dependence of V Dirac on a thickness less than 10 nm , free of pinholes , and have a 
Vrg and VBG : 15 uniform thickness . 

FIG . 6 ( a ) is a schematic diagram of process for fabrica - In the past , it has been difficult to form a dielectric film on 
tion of an array of double - gated graphene FETs . graphene because a graphene layer is very thin , and the 

FIG . 6 ( b ) is an optical photograph of the graphene FET process of forming the dielectric film often damages the 
array . graphene layer and may even cause delamination of the 

FIG . 6 ( c ) is an optical photograph of one of the devices 20 graphene from the substrate . The electrochemical deposition 
in the FET array . process described here overcomes the past difficulties , in 

FIGS . 6 ( d ) and 6 ( e ) are atomic force microscopy images which poly ( phenylene oxide ) is formed on the graphene 
of the graphene device channel before ( d ) and after ( e ) layer without damaging the graphene or causing delamina 
poly ( phenylene oxide ) electrodeposition . tion . 

FIG . 6 ( ) is a graph showing representative height profiles 25 The electrochemical deposition process can be used to 
for the atomic force microscopy images shown in FIGS . 6 ( d ) deposit other dielectric polymers on graphene . The electro 
and 6 ( e ) . chemical deposition process can be used to deposit dielectric 

FIG . 6 ( g ) is a graph showing a comparison of transfer polymers on other two - dimensional materials , such as phos 
characteristics for one double - gated graphene FET in the phorene . The electrochemical deposition process can also be 
array measured when only one gate voltage ( top or bottom ) 30 used to deposit dielectric polymers on other structures , such 
is applied . as carbon nanotubes . 

FIG . 6 ( h ) is a graph showing IDS - VIG dependencies for Using electrochemical deposition to deposit a thin dielec 
eight graphene FETs shown in FIG . 6 ( b ) . tric polymer layer has several advantages . The process is 

FIG . 6 ( i ) is a graph showing dependences of the top - gate simple and can be performed at room temperature . The film 
leakage current on Vrc for five double - gated graphene FETs 35 thickness can be easily controlled by controlling the charges 
in the array . passed through the working electrode and / or the electric 

FIG . 7A is a graph showing a comparison of the poly potential at which the deposition is performed . An important 
( phenylene oxide ) films prepared from the aqueous solution feature of this process is that the thickness of electropoly 
containing 50 mM phenol and 0 . 5 M H2SO4 with 90 merized insulating films is self - limiting because the rate 
potential cycles to different maximum potentials in 40 constant for polymerization rapidly decreases as the film 
Ru ( NH3 ) 63 + solution . thickness increases . This has a " self - leveling " effect in 

FIG . 7B is a graph showing a comparison of the poly which when there is uneven thickness in the polymer layer , 
( phenylene oxide ) films prepared from the aqueous solution deposition of the polymer occurs faster at the thinner por 
containing 50 mM phenol and 0 . 5 M H2SO4 with 180 tions and slower at the thicker portions , eventually forming 
potential cycles to different maximum potentials in 45 a substantially smooth and even layer . 
Ru ( NH3 ) 63 + solution . Electropolymerization provides some degree of dimen 

FIG . 8 is a graph showing cyclic voltammetry character - sional specificity because film growth can be localized to the 
ization of the poly ( phenylene oxide ) film grown on a gold conductive substrates that are electronically attached to the 
wafer before and after annealing . potentiostat / galvanostat , leaving adjacent nonconductive 

FIGS . 9 ( a ) to 9 ( e ) show optical images and transfer 50 materials uncovered by the polymer film . Additionally , 
characteristics for 5 devices before and after poly ( phenylene electrodeposited polymer films can conform to three dimen 
oxide ) deposition . sional structures , including non - line - of - sight geometries . 

FIG . 9 ( / ) is a graph showing mobility values for graphene As described above , the electropolymerized insulating 
devices presented in FIGS . 6 ( a ) to 6 ( c ) as well as sample # 1 film can be used as a buffer layer or seed layer for forming 
in FIG . 5 before and after poly ( phenylene oxide ) deposition . 55 another film that may otherwise be difficult to form on 

FIG . 10 is a graph showing a Raman spectrum of a single graphene directly . For example , it may be difficult to form a 
layer graphene on Si / SiO2 wafer using chemical vapor dielectric layer made of a high - K material directly on gra 
deposition . phene . A thin polymer film made of a low - k material , e . g . , 

FIG . 11 is a flow diagram of a process for fabricating a poly ( phenylene oxide ) , can be formed on the graphene by 
top - gated graphene field effect transistor . 60 electrochemical deposition , then the layer of high - K dielec 

FIG . 12 is a flow diagram of a process for forming a layer tric material may be formed on the low - K polymer film . The 
of polymer on a two - dimensional material . high - k dielectric material may be formed using , e . g . , atomic 

layer deposition ( ALD ) . 
DETAILED DESCRIPTION The electro - oxidation of phenol to poly ( phenylene oxide ) 

65 can lead to effective passivation of conducting surfaces , 
This document describes a process for fabricating a including surfaces of the graphene layer and the drain and 

top - gate graphene transistor that has a thin layer of poly source electrodes . The conductivity and dielectric strength 
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of poly ( phenylene oxide ) films prepared by electropolymer FIG . 1 ( b ) shows the device 140 in which the conducting 
ization can be on the order of 7x10 - 12 S / cm and 1 . 7x106 portions , including the graphene 102 , the drain electrode 
V / cm , respectively . The thickness of the poly ( phenylene 106 , and the source electrode 108 are covered by poly 
oxide ) layer formed by electropolymerization can be thin , ( phenylene oxide ) . Referring to FIG . 1 ( c ) , a top gate 150 is 
e . g . , less than 10 nm , and free of pinholes . The dielectric 5 formed above the poly ( phenylene oxide ) layer . The poly 
constant of poly ( phenylene oxide ) can be as large as 2 . 98 . ( phenylene oxide ) on the drain and source electrodes 106 , 

The following describes a process for fabricating a top - 108 can be removed by etching . This results in a top - gate 
gate graphene field effect transistor . Referring to FIG . 1 ( a ) , graphene field effect transistor . In some implementations , a 
in some implementations , electrochemical deposition is per - bottom gate 152 is formed on the backside of the substrate 
formed using a three - electrode cell . Initially , a graphene 10 104 , resulting in a double - gate graphene field effect transis 
layer 102 is formed on a substrate 104 using , e . g . , exfoliation tor . 
or chemical vapor deposition . The graphene layer 102 is The following describes experiments that were conducted 
patterned using , e . g . , electron beam lithography . A drain to fabricate a top - gated graphene field effect transistor , and 
electrode 106 and a source electrode 108 are formed on the measurements of various characteristics of the transistor . In 
graphene using , e . g . , electron beam lithography ( EBL ) and 15 this example , phenol ( 99 . 5 + % , available from Sigma - Al 
electron beam evaporation ( EBE ) . The substrate 104 , the drich , St . Louis , Mo . ) and sulfuric acid ( H , SO2 , 95 . 0 - 98 . 0 % , 
graphene 102 , and the electrodes 106 , 108 are then available from EMD Chemicals , Philadelphia , Pa . ) were 
immersed in a solution 110 in an inert container 112 , in used in the bath for electrodeposition of poly ( phenylene 
which the solution includes , e . g . , phenol and sulfuric acid . oxide ) . Silicon wafers with 300 nm + / – 15 nm of SiO , 

During electrochemical deposition , the drain and source 20 ( available from Silicon Quest International , San Jose , Calif . ) 
electrodes 106 , 108 are connected together so that the and graphite flakes ( highly ordered pyrolytic graphite 
graphene 102 and the drain and source electrodes 106 , 108 ( HOPG ) , available from Sigma - Aldrich ) were used to pre 
have the same electric potential . The graphene 102 functions pare graphene flakes . PMMA950 A4 ( 4 % polymethyl meth 
as the working electrode . A voltage is applied to the drain acrylate in anisole , available from MicroChem Corp . , West 
electrode 106 through a bond wire attached to the drain 25 borough , Mass . ) , MMA EL6 ( 6 % of the PMMA and ~ 8 . 5 % 
electrode 106 . A potentiostat 114 controls the electric poten - methacrylic acid mixture in ethyl lactate , available from 
tial of the graphene 102 versus a silver reference electrode MicroChem Corp . ) , methyl isobutyl ketone : isopropanol 
116 . A platinum wire is used as the counter electrode 118 . ( 1 : 3 ) ( MIBK : IPA , available from MicroChem Corp . ) , iso 

Electrochemical deposition of poly ( phenylene oxide ) can propanol ( isopropyl alcohol ( IPA ) , 99 . 5 + % , available from 
be accomplished by repeatedly cycling the potential between 30 Sigma - Aldrich ) , and acetone ( 99 . 7 % , available from Fisher 
the graphene 102 and the reference electrode 116 . For Scientific , Pittsburgh , Pa . ) were used as received for electron 
example , referring to FIG . 1 ( d ) , a graph 120 shows an beam lithography patterning of electrodes onto graphene . 
example in which the potential cycles between about 0 . 1V Titanium ( available from International Advanced Materials , 
and 0 . 9V . In this example , a triangular voltage waveform can Spring Valley , N . Y . ) and 1 / 4 " X1 / 4 " gold ( 99 . 999 % , available 
be used , and the ramp rate can be 100 mV / s . Other wave - 35 from International Advanced Materials ) were evaporated by 
forms and ramp rates ( or signal frequencies ) can also be using an AJA E - beam apparatus . 
used . The graph 120 shows cyclic voltammetry ( CV ) of Graphene can be formed by two methods : graphene 
poly ( phenylene oxide ) deposition on a graphene device exfoliation and chemical vapor deposition ( CVD ) graphene 
comparing the first cycle 122 , second cycle 124 , tenth cycle synthesis . In the graphene exfoliation method , the tape 
126 , and 360th cycle 128 . In this example , in the first cycle 40 method can be used to mechanically exfoliate graphene onto 
122 , the current varies from about 0 . 1 to - 3 . 2 °A , in the the Si / SiO , substrate . Thin flakes were found using an 
second cycle 124 , the current varies from about 0 . 1 to - 1 . 4 optical microscope and their thicknesses were determined 
?A , in the tenth cycle 126 , the current varies from about 0 using Raman spectroscopy . 
to - 0 . 3 UA , and in the 360th cycle 122 , the current remains For the chemical vapor deposition graphene synthesis , 
about 0 uA . 45 graphene films were grown by the chemical vapor deposi 

In an inset , a graph 130 shows a curve 132 representing tion . 25 um thick copper foils ( available from Alfa Aesar ) 
the logarithm of the current at + 0 . 9 V plotted vs . the cycle were cleaned in acetic acid for 10 minutes , then washed with 
number . The curve 132 indicates that the current becomes water and IPA , dried and annealed in H2 at 1000° C . for 30 
very small after a few hundred cycles . Poly ( phenylene minutes . Methane was then introduced to the growth cham 
oxide ) is non - conducting , so as more poly ( phenylene oxide ) 50 ber , and graphene was grown at 1000° C . for 15 min in a 
is deposited on the graphene 102 , the resistance becomes CHA : H , ( 1 : 1 ) atmosphere at a total pressure of 550 m Torr . 
larger , and the current becomes smaller . As the current Upon removing the copper foil from the heating zone and 
decreases , the deposition rate of poly ( phenylene oxide ) also quickly cooling it to room temperature , the graphene was 
decreases . This results in a self - limiting effect of the elec - transferred to a clean Si / SiO , substrate using a wet transfer 
tropolymerization , in which the thickness of the poly ( phe - 55 method . 
nylene oxide ) stops increasing after a certain number of The electrodes were fabricated using the following 
cycles . The final thickness of poly ( phenylene oxide ) is method . MMA was spin coated on the wafers at 3000 RPM 
affected by several factors , such as the concentration of for 45 seconds . The wafers were placed on a hotplate at 180° 
phenol and sulfuric acid , the cycling potential , and the C . for 90 seconds and cooled for 1 minute prior to adding a 
cycling frequency . The self - limiting effect also results in a 60 layer of PMMA by spin coating . The PMMA was also spin 
self - leveling effect that results in the poly ( phenylene oxide ) coated at 3000 RPM for 45 seconds . A Zeiss Supra 40 
layer having a substantially uniform thickness . During the field - emission scanning electron microscope and a Raith 
electrochemical deposition , when there is uneven thickness pattern generator were used to form pattern electrodes on the 
in the polymer layer , the deposition of the polymer occurs graphene by electron beam lithography . After being 
faster at the thinner portions and slower at the thicker 65 exposed , the wafers were developed in the MIBK mixture 
portions , eventually forming a substantially smooth and for 40 seconds , rinsed with 2 - propanol , and dried with 
even polymer layer . nitrogen gas . The AJA E - beam system was used to evaporate 
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titanium at 0 . 1 angstroms / s until a thickness of 1 nm , as The electropolymerization of phenol to produce poly 
measured by a quartz crystal microbalance , was achieved . Ti ( phenylene oxide ) on graphene was accomplished by con 
evaporation was followed by evaporation of 15 nm of gold tinuously cycling the potential of the graphene working 
at 0 . 1 angstroms / s . The PMMA and excess metal were electrode between 0 . 1 and 0 . 9 Vat a ramp rate of 100 mV / s 
removed by liftoff for 30 minutes in acetone , rinsed with 5 ( see FIG . 1 ( d ) ) . Under these conditions a total of 360 cycles 
isopropanol and then water , and dried with nitrogen gas . were typically completed to achieve the desired polymer 
Devices were then annealed for 10 minutes at 15 mtorr and thickness and uniformity . The trace 122 in FIG . 1 ( d ) shows 
260° C . to remove PMMA residues from the surface of the the initial cycle in this set of 360 cycles . The peak at 
graphene . approximately 0 . 85 V is due to phenol oxidation , which 

The poly ( phenylene oxide ) deposition was performed 10 leads to polymerization and passivation of the electrode . 
using the following process . An ultrasonic welder , West Subsequent cycles show the progressive decrease in the rate 
Bond 7476E Manual Wedge Bonder , was used to make of polymerization due to the growth of a dense dielectric 
electrical contact between 0 . 0025 cm gold wires ( available layer . The logarithmic inset in FIG . 1 ( e ) gives a better 
from Sempck ) and the lithographically prepared Au / Ti con indicator of passivation process after the first cycles when 
tacts to the graphene . The source and drain electrodes were 15 the oxidative current falls to a small fraction of its original 
shorted during electrodepositions to maintain the contacts value . By the 360th cycle the current falls to less than 1 % of 
and the graphene at the same nominal potential . A CHI its initial value , leaving graphene with a uniform dielectric 
1200a potentiostat was used to control the potential of the layer of poly ( phenylene oxide ) , which was then annealed in 
graphene working electrode versus a silver pseudoreference vacuum at 150° C . for 15 hours to complete polymer 
electrode , which exhibited a potential of + 0 . 070 V versus the 20 crosslinking . 
saturated calomel electrode ( SCE ) . A platinum wire was Referring to FIG . 1 ( e ) , optical images of the same gra 
used as the counter electrode . A silicone gasket ( P - 18179 , 1 phene device before and after poly ( phenylene oxide ) depo 
mm thick , available from Molecular Probes ) was placed on sition suggest that electropolymerization is a mild process 
top for the wafer , exposing 1 mm in diameter of the by which the mechanical integrity of graphene and its 
graphene device . A reservoir was placed on top of the gasket 25 electrical contacts can be preserved at macroscales while 
and fastened with copper clips and screws . maintaining surface cleanliness . In FIG . 1 ( e ) , a first image 

Electrochemical deposition of poly ( phenylene oxide ) was 160 is an optical image of the graphene device before 
accomplished by repeatedly cycling the potential into the poly ( phenylene oxide ) deposition , and a second image 162 
oxidation wave for phenol in 50 mM aqueous solutions of is an optical image of the same graphene device after 
phenol dissolved in 0 . 5 M H2SO4 . After the deposition , the 30 poly ( phenylene oxide ) deposition . 
wafer was rinsed with water ( 18 Mohm cm ) and dried under Referring to FIG . 1 ( 1 ) , a graph 170 shows Raman spectra 
a stream of nitrogen . Graphene samples were annealed under of the same monolayer graphene flake before and after 
vacuum ( less than 20 m Torr ) inside a glass tube ( 1 cm in poly ( phenylene oxide ) deposition show no detectable dam 
diameter ) inserted through the top of a Yamato Constant a ge to the graphene at nanoscales . In FIG . 17 ) , a curve 172 
Temperature Oven DKN402 . The samples were annealed at 35 represents the spectrum of the original graphene flake , and 
150° C . for 15 hours after which time the tubes were a curve 174 represents the spectrum of graphene layer with 
removed from the oven and cooled to room temperature the poly ( phenylene oxide ) layer . Both spectra represented by 
before exposing the sample to air . curves 172 and 174 show sharp G and 2D bands at 1586 and 

The properties of graphene were characterized using 2679 cm - l respectively , with no detectable D band around 
atomic force microscopy ( AFM ) and Raman spectroscopy . 40 1340 cm - 7 . The shape and position of the 2D band as well 
Atomic force microscopy images were collected in air using as the about 1 : 2 G - to - 2D intensity ratio are all characteristic 
a Dimension 3100 SPM system . The atomic force micros - of a monolayer graphene . 
copy was set to Tapping Mode using a silicon tip to measure Atomic force microscopy was used to characterize the 
thicknesses and roughness of the devices after each fabri quality of the poly ( phenylene oxide ) films on the mesoscale . 
cation step . The atomic force microscopy data were ana - 45 FIGS . 2 ( a ) to 2 ( C ) show atomic force microscopy images of 
lyzed using Nanoscope® Analysis . Raman spectra were a graphene FET after each fabrication step . FIG . 2 ( a ) shows 
recorded at ambient conditions using a DXR Raman Micro - the graphene , source ( S ) and drain ( D ) electrodes before 
scope with an excitation source of 10 . 0 mW at 532 nm . being coated with the poly ( phenylene oxide ) dielectric . FIG . 

The current - voltage characteristics of the field effect 2 ( b ) shows the graphene , source ( S ) and drain ( D ) electrodes 
transistor were measured as follows . Field effect measure - 50 after being coated with the poly ( phenylene oxide ) dielectric . 
ments were made using a Model TTPX cryogenic probe FIG . 2 ( c ) shows the same device after deposition of the top 
station available from Lake Shore Cryotronics ) . The electrode . All three images have the same height scale . 
samples were measured under a vacuum ranging from Although the edge of graphene is barely visible on the scale 
2x10 - 6 to 8x10 - 6 torr . Bottom - gated measurements were selected for FIG . 2 ( a ) , this edge becomes readily apparent 
performed on the graphene FETs at various points during the 55 after the deposition of poly ( phenylene oxide ) , as shown in 
fabrication process . FIG . 2 ( b ) . The edge is prominent in FIG . 2 ( d ) , which is a 

Top - gated graphene FETs containing thin films of poly section of FIG . 2 ( b ) displayed at more sensitive length 
( phenylene oxide ) as the dielectric layer were constructed in scales . These images show that poly ( phenylene oxide ) was 
several steps . A two terminal device on exfoliated graphene selectively deposited on graphene / contacts and not over the 
was patterned by electron beam lithography , and Ti / Au 60 entire substrate . FIG . 2 ( d ) and the representative height 
electrodes were deposited via electron beam evaporation profiles shown in FIG . 2 ( e ) demonstrate that the poly 
The poly ( phenylene oxide ) dielectric was then electropoly - ( phenylene oxide ) layer is free of pinholes on the mesoscale 
merized onto cleaned graphene that served as the working and that it is relatively smooth . 
electrode in a 3 - electrode electrochemical cell ( see FIGS . Referring to FIG . 3 , for comparison , we provide an atomic 
1 ( a ) and 1 ( b ) ) . Electron beam lithography and electron beam 65 force microscopy image 280 and a height profile 282 of a 
evaporation techniques were used to pattern a top electrode graphene / poly ( phenylene oxide ) sample in which mesoscale 
over the poly ( phenylene oxide ) ( see FIG . 1 ( C ) ) . holes have been purposefully introduced . The atomic force 
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microscopy analysis shown in FIGS . 2 ( a ) to 2 ( e ) does not isolated graphene patch after poly ( phenylene oxide ) elec 
prove the absence of pinholes on the nanoscale in the trodeposition . Before poly ( phenylene oxide ) electrodeposi 
poly ( phenylene oxide ) layer prepared using the process tion , both graphene patches exhibit comparable heights , 
described above and shown in FIGS . 1 ( a ) to 1 ( C ) . To that end which was expected because they originated from the same 
we measured leakage currents in top - gated graphene FETs 5 monolayer graphene flake . The measured thickness for both 
and used an electrochemical technique that measures pos graphene patches is about 2 nm , which is significantly larger 
sible permeation of small molecules through thin films . In than the interlayer distance in a graphite crystal ( 0 . 34 nm ) . our case we used cyclic voltammetry to monitor the reduc However , prior to be characterized by atomic force micros tion / oxidation of a small redox probe , Ru ( NHz ) 3 + , dis copy , the graphene flakes were subjected to electron beam solved in solution . The detailed results of such measure - 10 lithography and dry etching . We attribute the increased ments , demonstrate that the poly ( phenylene oxide ) films thickness to residues of PMMA used as the etch mask , effectively block electron transfer between the probe and the solvent molecules trapped underneath the graphene , and underlying graphene electrode , allowing us to deduce that other adsorbates . the films are free of pinholes on a length scale of a few FIG . 4 ( g ) shows that after poly ( phenylene oxide ) elec Angstroms , the hydrated diameter of a Ru ( NH3 ) 63 + 2 + cat - 15 tropolymerization the thickness of the graphene device ion . channel serving as the working electrode increased by 3 nm . Additional insight can be gained from the height profiles In contrast , the thickness of the isolated graphene patch , in FIGS . 2 ( a ) to 2 ( e ) . In these profiles , the height of the which was not biased during the electropolymerization , did graphene was measured to be 1 . 4 + 0 . 4 nm relative to the not change . This result indicates that the deposition of wafer , and the height of the poly ( phenylene oxide ) coated 20 poly ( phenylene oxide ) is spatially selective and occurs only graphene was measured to be 5 . 0 + 0 . 6 nm relative to the on biased graphene . Considerable care was taken to assure wafer . Thus , we estimate the poly ( phenylene oxide ) thick 
ness to be 3 . 6 + 0 . 7 nm . In both cases the roughness measured that the control ( the unbiased graphene flake ) was as similar 

as possible to the flake onto which the poly ( phenylene for the wafer was approximately 0 . 2 nm . The uncertainties oxide ) was deposited . Both flakes originated from the same reported above are one standard deviation in the measured 25 single layer of graphene , both were subjected to the same height . Note that we were not able to measure these height nanofabrication procedures , and both were exposed to the profiles at exactly the same location on the device , before same electropolymerization bath for the same period of time . and after poly ( phenylene oxide ) polymerization . Although 
the poly ( phenylene oxide ) thicknesses were approximately One was biased ; one was not . These results demonstrate the 

present level at which we can spatially control the deposition 3 . 6 nm under these deposition conditions , the thickness of 30 of poly ( phenylene oxide ) . the poly ( phenylene oxide ) can be controlled by controlling To probe the electronic properties of double - gated gra the deposition time through the number of cycles . phene FETs with poly ( phenylene oxide ) top - gate dielectric , An advantage of the electropolymerization technique is we fabricated five devices on mechanically exfoliated gra the capability to selectively deposit a dielectric material only phene flakes . FIGS . 5 ( a ) to 5 ( g ) show the results of the on the conductive materials connected to the potentiostat , 35 electrical measurements for the FET shown in FIG . 2 ( c ) . i . e . , the graphene and electrical contacts . If multiple gra FIG . 5 ( a ) illustrates the influence of poly ( phenylene oxide ) phene devices are present on a substrate , electrodeposition electrodeposition and top - gate fabrication on the resistivity can be used to coat any specific surface or subset of surfaces ( p ) of graphene that was probed as a function of the that are electrically conductive . bottom - gate voltage ( VBG ) . As made graphene device To demonstrate the selectivity of the electropolymeriza - 40 showed peak resistivity of 2 . 7 k2 / 0 at the Dirac point tion approach , we prepared a mechanically exfoliated gra 
phene flake on Si / SiO2 substrate ( FIG . 4 ( a ) ) . Raman spec ( V Dirac ) , approximately - 12 V . Graphene field - effect mobil 

ity ( tre ) was estimated by selecting linear regime of the troscopy ( FIG . 4 ( b ) ) showed that the top right part of the transport curve and fitting it with Equation 1 : graphene flake was a single layer . The flake was patterned 
into two isolated graphene patches using electron beam 45 
lithography . The contours of these patches are outlined in 
FIG . 4 ( a ) . An FET device was then fabricated by electron 1 ( Equ . 1 ) d ( 1 / 2 ) 
beam lithography and electron beam evaporation using a 
bigger graphene patch as a conductive channel bridging the 
Ti / Au electrodes . The smaller graphene patch remained 50 The resulting value , ure = 1290 cm ? / Vs , is consistent with 
electrically isolated from the larger one . FIG . 4 ( c ) shows an values described in literature for graphene on Sion . 
optical image of the device , and FIG . 4 ( d ) shows a scanning After poly ( phenylene oxide ) electrodeposition and top 
electron microscopy ( SEM ) image of the device channel as gate fabrication the resistivity increased slightly to 3 . 1 
well as the isolated graphene patch . k22 / 0 , and the V Dirac shifted to approximately 4 V , indicat 

The poly ( phenylene oxide ) dielectric was electropolymer - 55 ing p - doping of graphene by poly ( phenylene oxide ) . To 
ized onto the graphene device using the process described estimate the graphene mobility , we used p vs . VBG depen 
above and shown in FIG . 1 ( a ) . The graphene channel and the dence when top - gate electrode was grounded ( dashed curve 
isolated graphene patch ( the region outlined in FIG . 4 ( d ) ) 190 in FIG . 5 ( a ) ) . In this case the effective capacitance is 
were imaged by atomic force microscopy before and after equal to back - gate capacitance . Again using Equation 1 , we 
poly ( phenylene oxide ) electropolymerization ( see FIGS . 60 estimate the mobility after top - gate electrode fabrication to 
3 ( e ) and 3 ( / ) , respectively ) . FIG . 3 ( g ) is a graph 180 showing be 335 cm² / Vs . Measurements for mobility before and after 
representative height profiles measured across the graphene poly ( phenylene oxide ) deposition for five additional devices 
channel and the isolated graphene patch . A curve 182 were made . Overall , the change in mobility is moderate and 
represents the height profile measured across the graphene consistent for all samples examined . 
channel and the isolated graphene patch before poly ( phe - 65 FIG . 5 ( b ) shows resistivities at V Dirac for six graphene 
nylene oxide ) electrodeposition . A curve 184 represents the devices — one of which ( sample 1 ) is depicted in FIGS . 2 ( a ) 
height profile measured across the graphene channel and the to 2 ( c ) before and after electrodeposition of the poly 

MFE = CRC DVBG 
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( phenylene oxide ) top dielectric . Measurements for five This simple model is consistent with our experimental 
additional devices were made . Resistivities for the uncoated results , which show a linear relationship between Vrg and 
graphene range from 2 to 7 k22 / O , and with one exception Vec at Viron . From the slope of a fit to these data , i . e . , from 
( sample 5 ) little change in resistivity is observed upon the CBdCIG ratio , we estimate that C16 ~ 137 . CBG . The the c 
deposition of the poly ( phenylene oxide ) . Overall , the change 5 back - gate capacitance of this configuration is estimated to be 
in resistivity is minor and it is consistent with the Raman about 11 . 5 nF / cm² , using a SiO2 thickness of 300 nm and spectroscopy , which indicates that the electropolymerization 
is a mild process . k ~ 3 . 9 . Thus , we estimate the top - gate capacitance to be 1580 

Device performance as an FET is provided in FIG . 5 ( c ) , nF / cm² . 
which is a resistivity map as a function of the top - gate 10 Due to its high quality , mechanically exfoliated samples 
voltage ( Vro ) and VBG : Resistivity vs . Vra dependence in are typically used to characterize the intrinsic properties of 
0 . 01 V increments was measured individually for each graphene , while CVD - grown graphene are often the material 
bottom gate voltage from – 50 to 50 V in 1V increments . The of choice for large - scale applications . We have used CVD 
measurements were performed at room temperature . The grown graphene to provide additional evidence for the figure shows that the resistivity of a graphene FET can be 5 reliability and reproducibility of poly ( phenylene oxide ) independently tuned by either gate and the peak resistivity 15 electropolymerization on graphene . Furthermore , we show appears at approximately VBG = 12 V and VTG = - 0 . 15 V . 

Several cross - sections of the resistivity map shown in the feasibility of implementing the procedure to deposit the 
FIG . 5 ( c ) are plotted in FIGS . 5 ( d ) to 57 ) . FIG . 5 ( d ) shows poly ( phenylene oxide ) dielectric on a large number of gra 
the dependence of resistivity on gate voltage when voltage phene FETs in a single step . 
was applied to one gate ( top or bottom ) but the other was 20 FIG . 6 ( a ) shows the scheme of the device fabrication . 
grounded ( i . e . , a cross - section at V1G = 0 and VBG = 0 respec - First , large - scale monolayer graphene was grown by chemi 
tively ) . This figure shows that the ambipolar field - effect cal vapor deposition on copper and transferred to a Si / SiO2 
behavior typical for graphene can be observed when either substrate 200 . The graphene thickness was confirmed by 
gate is applied . The leakage current through the top gate Raman spectroscopy . Using electron beam lithography and 
dielectric was 1 . 9 nA at VTG = - 0 . 3 V ( FIG . 5 ( d ) , insert ) , 25 dry etching with PMMA serving as an etch mask material , 
indicating that the top gate does not penetrate through the we then patterned an array of eight graphene strips 202 as 
poly ( phenylene oxide ) to the graphene . shown in FIG . 6 ( a ) ( i ) . A second set of electron beam Cross - sections of the resistivity map shown in FIGS . 5 ( e ) lithography and electron beam evaporation steps were and 5 help to illustrate the shift of V Divae when voltage is executed to fabricate Ti / Au electrodes 204 , resulting in an applied to each gate electrode . FIG . 5 ( e ) shows the depen 30 array of eight graphene FETs , as depicted in FIG . 6 ( a ) ( ii ) . dence of resistivity on Veg when Vrg is varied from - 0 . 15 All graphene devices in this array shared common contact to 0 . 2 V in 0 . 05 V increments . A shift of the VDirac is ( S ) , which is also served as the contact to the working negligible ( also shown on FIG . 5 ( c ) as dashed line 194 ) and electrode 206 of a 3 - electrode potentiostat . The potentiostat is due to performance of graphene device over the area not was used to electrodeposit poly ( phenylene oxide ) on all covered by the top - gate electrode . FIG . 5 ( ) shows the C 35 eight graphene FETs in a single step ( FIG . 6 ( a ) ( iii ) ) . Top dependence of graphene resistivity on VTG when VBG is gate electrodes for all eight graphene FETs were then varied from – 50 to 10 V in 5 V increments . In this case fabricated in a final set of electron beam lithography and V Dirac shifts toward more negative values when VIG electron beam evaporation steps , as shown in FIG . 6 ( a ) ( iv ) . increases , as illustrated by the arrow 192 in FIG . 57 ) and 
marked by a solid line 196 in FIG . 5 ( C ) . This change is FIG . 6 ( b ) shows a photograph 210 of the resulting array 

40 of double - gated graphene FETs with a common source ( S ) associated with the graphene area covered by the top - gate 212 and bottom gate ( BG ) , but separate top - gate ( TG ) electrode . Since the top - gate electrode covers only a small electrodes 214 . FIG . 6 ( c ) shows a photograph 220 of one area of graphene device ( see FIG . 2 ( C ) ) , the shift in V Dirac device in the array at higher magnification . Atomic force is observed only when the dependence of graphene resis microscopy analysis shows that thin poly ( phenylene oxide ) tivity on Vrg is examined at various VBG : 45 layers were successfully deposited on all eight graphene FIG . 5 ( ) shows that for different values of VBG the Dirac channels . point is observed at different top - gate voltages . This depen Representative atomic force microscopy images of the dence of V Dirac on both top - and bottom - gate voltages is same graphene FET channel before and after poly ( phe further illustrated in FIG . 5 ( g ) . For each experimentally nylene oxide ) electropolymerization are shown in FIGS . selected VBG , this figure shows the corresponding Vrg at 4 50 6 ( d ) and 6 ( e ) , respectively . The atomic force microscopy which the maximum resistivity is observed . V Dirac corre image of poly ( phenylene oxide ) - coated CVD graphene sponds to the charge neutrality point that is reached when a shows evidence of surface contamination , but this contami certain charge , q , is induced in graphene by applying either nation is not due to the poly ( phenylene oxide ) electrodepo 
or both top - and bottom - gate voltages as described in sition . Features in similar locations with similar height Equation 2 : 55 profiles are observed in atomic force microscopy images 

q = CTG : VIG + CBGVBG ( Equ . 2 ) acquired before poly ( phenylene oxide ) deposition . It 
where Crg and Cro correspond to the top - and bottom - gate appears that this contamination occurred sometime during 
capacitances , respectively . The relationship between the two transfer of the CVD graphene from the copper foil to 
independent parameters , Vtg and VBG ( at V Diver ) can be Si / SiO2 , or that it is due to PMMA residues remaining from 
expressed by the algebraic rearrangement of Equation 2 , as 60 one or more of the lithographic steps . We observed these 
shown in Equation 3 : particulates in all atomic force microscopy images of CVD 

graphene samples but not for mechanically exfoliated 
samples , suggesting more strongly that the presence of the 

( Equ . 3 ) particles occurs during CVD graphene transfer . Vrc = Cac vao 65 FIG . 6 ( ) shows representative height profiles measured 
across the graphene channel in FIGS . 4 ( e ) and 47 ) , demon 
strating that the thickness of the layer of electrodeposited 

??? ??? 
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poly ( phenylene oxide ) is about 5 nm . No discernable dif - is generally linked between the oxygen ( the 1 - position ) on 
ferences in average thickness were observed between dif - one ring and the 2 - , 4 - , and 6 - positions ( relative to the 
ferent channels . phenol group ) on the other ring . Consequently , complex 

FIG . 6 ( g ) shows the comparison of drain - source current structures can result if these positions are not blocked . For 
( IDs ) gate voltage dependences for one of the devices in 5 2 , 6 - dimethyphenol , coupling can occur between the 1 - and 
the array ( FIG . 6 ( b ) ) ; the curves measured when only one 4 - positions to give polymers that are nominally linear . The 
gate voltage ( top or bottom ) was applied . Similar to the bath used for the electrochemical deposition can include a 
devices based on mechanically exfoliated graphene ( FIG . solvent that can dissolve ( or partially dissolved ) the elec 
5 ( d ) ) , this figure shows that the ambipolar field - effect behav - trolyte and dissolve ( or partially dissolve ) the monomer . The 
ior could observed for the double - gated FETs based on 10 solvent can be water or a solvent that can ionize ( dissociate ) 
CVD - grown graphene when either gate is applied . the electrolyte at sufficient levels to allow current to flow . 

To demonstrate the reliability and reproducibility of the The pH can be acidic , neutral , or basic . The solvents include , 
top gate fabrication using electrodeposited poly ( phenylene e . g . , methanol and acetonitrile . Solvent mixtures can also be 
oxide ) as the gate dielectric material , we compare the used . 
dependence of Isp on Vtg for all eight graphene FETs in the 15 Further improvement of the device fabrication may 
array ( FIG . 6 ( h ) ) . Each device was gated using an individual include using electrodeposited low - k dielectrics as the seed 
top gate electrode . The position of the Dirac point varies layer on graphene for depositing high - K dielectrics by ALD . 
from device to device , which we attribute to subtle differ - By replacing the metal top - gate , the source , and the drain 
ences in the properties of the CVD - grown graphene . Similar with conducting polymers such as poly ( 3 , 4 - ethylenedioxy 
variabilities have been attributed to differences in defect 20 thiophene ) ( PEDOT ) that can be spin - coated , it may be 
concentrations , which manifest themselves in changed rela - possible to construct organic flexible electronic devices . 
tive intensities of the G , D and 2D Raman bands . To verify whether there are pinholes in the poly ( phe 

The quality of the electrodeposited poly ( phenylene oxide ) nylene oxide ) fabricated using the electrochemical deposi 
films was assessed by measuring the dependence of the tion process , one can perform cyclic voltammetry on a redox 
leakage current on Vtg for all graphene FETs in the array . 25 couple . If the pinholes in a thin film passivating an electrode 
All devices showed a qualitatively similar dependence of the are close together , the shape of the cyclic voltammetry for a 
leakage current on VTG , ( see FIG . 6 ( i ) ) where five curves are dissolved redox couple resembles the shape of the cyclic 
shown ) , but the absolute values of the leakage current varied voltammetry for the same redox couple at a bare electrode , 
over several orders of magnitude . One of the graphene but with a smaller peak current . If the pinholes are spaced far 
devices in the array exhibited exceptional dielectric proper - 30 enough apart such that their diffusion layers do not overlap 
ties showing a leakage current of only about 10 - 12 amps during the potential sweep , then the cyclic voltammetry 
across the poly ( phenylene oxide ) at Vg = 300 mV ( see the waveshape for a dissolved redox couple resembles the 
curve 250 in FIG . 5 ( i ) ) . Four devices shown exhibited a waveshape for a steady - state mass transfer limited voltam 
higher leakage current of about 10 - 8 A at Vg = 300 mV , and mogram . The pinholes act as a collection of ultramicroelec 
three other devices ( not shown ) passed about 10 - 7 A at 35 trodes , where the diffusion layer thickness is large compared 
Vg = 300 mV . Our results show that low leakage currents can to the size of the ultramicroelectrode ( pinhole ) . If there are 
be obtained for double - gated FETs constructed on mechani no pinholes within the film , then there is no Faradaic current 
cally exfoliated graphene and on CVD - grown graphene , during the potential sweep . 
demonstrating the utility of the poly ( phenylene oxide ) elec - FIGS . 7A and 7B show cyclic voltammetry of an aqueous 
tropolymerization technique for introducing the top dielec - 40 solution containing 5 mM hexaammineruthenium ( III ) chlo 
tric . Recent advances in cleaner transfer of CVD graphene ride ( Ru ( NH3 ) 4C1z ) and 1 M potassium chloride ( KCl ) at a 
from copper substrates may help decrease the leakage cur - glassy carbon electrode with and without poly ( phenylene 
rents in arrays of double - gated graphene FETs containing oxide ) . Ru ( NH3 ) 63 + has a hydrated radius of 0 . 64 nm at 22° 
electrodeposited poly ( phenylene oxide ) as the top - gate C . The poly ( phenylene oxide ) was deposited using a variety 
dielectric . 45 deposition conditions . The maximum switching potential of 

The positive potentials used to oxidatively polymerize the working electrode and number of potential cycles used 
phenol may have a negative impact on the integrity of the during the deposition of poly ( phenylene oxide ) were 
graphene , if the potentials are too high . We have observed adjusted to determine the optimum conditions for the pro 
degradation of graphene at potentials positive of the onset of duction of pinhole free films . FIG . 7A shows a graph 268 
phenol oxidation in sulfuric acid . If the potential is cycled to 50 that compares poly ( phenylene oxide ) films prepared by 
+ 1 . 1 V instead of the usual + 0 . 9 V required to polymerize cycling the potential 90 times between the following poten 
phenol , pores may develop in the graphene . When phenol is tials : 0 V to 1 V ( curve 262 ) , O V to 1 . 1 V ( curve 264 ) , and 
also present in the bath , the polymerization competes with O V to 1 . 2 V ( curve 266 ) . Curve 260 is the cyclic voltam 
pore formation , but the passivation does not dominate until metry curve of bare graphene without poly ( phenylene 
pores grow to sizes that can be as large as 100 nm in 55 oxide ) . As indicated by curve 264 , the deposition with a 
diameter . It may be possible to use this process to control maximum switching potential of 1 . 1 V vs . SCE resulted in 
pore size and pore density in graphene thus forming gra - the lowest reduction peak current for the Ru ( NH3 ) 63 + , and 
phene nanomeshes with a tunable electronic band gap . the voltammogram approaches the shape expected for steady 

The process for electro - polymerization of phenol to pro - state mass transfer . This indicates that the pinholes in the 
duce effective dielectric barriers on graphene may be further 60 film are separated by large distances and that the diffusion 
optimized . Several factors may influence the properties of layers of the pinholes do not overlap . 
the polymer dielectric , including the rate at which the FIG . 7B shows a graph 269 illustrating the same cyclic 
polymer is electrodeposited , the monomer concentration in voltammetry comparison but with poly ( phenylene oxide ) 
solution , the solution pH , and the identity of the solvent . films deposited onto the electrode with 180 potential cycles 

Additional organic thin films may be prepared by elec - 65 between the following potentials : 0 V to 1 V ( curve 272 ) , 0 
tropolymerizing other monomers such as 4 - chlorophenol , V to 1 . 1 V ( curve 274 ) , and 0 V to 1 . 2 V ( curve 276 ) . Curve 
2 , 6 - dimethylphenol , and o - phenylenediamine . The polymer 270 is the cyclic voltammetry curve of bare graphene 
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without poly ( phenylene oxide ) . Again , as indicated by curve higher potential can be in a range from 0 . 5V to 1 . 2V . In some 
274 , films prepared using a maximum switching potential of examples , the potential can be cycled between about 0 . 1V to 
1 . 1 V resulted in the lowest reduction peak current . The film 0 . 9V . The process may include cycling the potential for a 
prepared with 90 potential cycles does not passivate the few hundred cycles . The dielectric polymer can have a 
electrode as well as the 180 potential cycles and indicates 5 thickness of , e . g . , less than 10 nm . 
that more potential cycles are needed to improve the film The device is annealed to complete polymer crosslinking 
passivation . 320 . For example , the device can be annealed in vacuum at 

Without wishing to be bound by the theory presented 150° C . for 15 hours . A top gate is formed above the polymer 
herein , the following is a possible explanation of the differ - 322 . The top gate can be made of metal . 
ences in the degree of passivation that arises when different 10 FIG . 12 shows a flow diagram of a process 330 for 
poly ( phenylene oxide ) deposition voltages are used . Poly forming a layer of polymer on a two - dimensional material . 
( phenylene oxide ) films deposited at mild potentials may act A clean substrate is prepared 332 . A layer of two - dimen 
as transport barriers but not as well as the films prepared at sional material is formed on the substrate 334 . For example , 
highly anodic potentials . At highly positive potentials , addi - the two - dimensional material layer can have a thickness less 
tional polymerization mechanisms may further oxidize the 15 than 10 nm . The two - dimensional material can be , e . g . , 
films to produce cross - linked structures . The decrease in the graphene or phosphorene . The graphene can be monolayer 
barrier effectiveness when 1 . 2 V is applied may be due to graphene . 
film decomposition . Further passivation of electrodes may self - limiting electro - deposition process is applied to 
be observed after annealing the films at 150° C . in vacuum . deposit a polymer layer on the two - dimensional material 
The increase in passivation may be due to crosslinking 20 336 . In this example , the polymer is an insulator , and a rate 
within the film or chain reorganization and packing effects . of deposition of the polymer at a given location of the 

FIG . 8 shows a graph 280 that compares voltammetric two - dimensional material decreases as a thickness of the 
responses to 5 mM Ru ( NH ) 3 + at a bare Au coated wafer polymer layer increases . For example , the electro - deposition 
( curve 282 ) , after poly ( phenylene oxide ) deposition ( 90 process can be an electrochemical deposition performed 
potential cycles from 0 V to 1 . 1 V ) on a gold coated wafer 25 using a three - electrode cell . For example , the two - dimen 
( curve 284 ) , and after annealing the wafer at 150° C . for 15 sional material may be placed in a solution that includes 
hours in vacuum ( curve 286 ) . The electrode area available to phenol and sulfuric acid . The electro - oxidation of phenol 
the solution is much smaller at the poly ( phenylene oxide ) results in poly ( phenylene oxide ) being deposited on the 
coated electrode than at the bare Au wafer , but it is clear that two - dimensional material . A potentiostat can be used to 
the passivating layer does not completely block the redox 30 control the potential of the two - dimensional material versus 
species from reaching the electrode surface . The electrode a reference electrode , and the potential is cycled between a 
appears fully blocking to 5 mM Ru ( NH3 ) . * * after annealing lower potential and a higher potential . For example , the 
the wafer . lower potential can be less than 0 . 5V , and the higher 
FIGS . 9 ( a ) to 9 ( e ) show optical images ( scale bar is 10 potential can be in a range from 0 . 5V to 1 . 2V . In some 

um ) and transfer characteristics for 5 devices before and 35 examples , the potential can be cycled between about 0 . 1V to 
after poly ( phenylene oxide ) deposition . FIG . 97 ) is a graph 0 . 9V . The process may include cycling the potential for a 
290 showing mobility values for graphene devices presented few hundred cycles . The polymer can have a thickness of , 
in FIGS . 9 ( a ) to 9 ( c ) as well as sample # 1 in FIG . 5 before e . g . , less than 10 nm . 
and after poly ( phenylene oxide ) deposition . The device is annealed to complete polymer crosslinking 

FIG . 10 is a graph 300 showing a Raman spectrum 302 of 40 338 . 
a single layer graphene on a Si / SiO , wafer that is used A field effect transistor can be fabricated using the two 
fabricate graphene device array in FIG . 5 ( b ) . The graphene dimensional material and polymer layer . For example , the 
was grown using chemical vapor deposition . two - dimensional material may be patterned to form a chan 

FIG . 11 shows a flow diagram of a process 310 for nel of the field effect transistor . Drain and source electrodes 
fabricating a top - gated graphene field effect transistor . A 45 may be formed on the two - dimensional material . A top gate 
clean substrate is prepared 312 . The substrate can be , e . g . , a can be formed above the polymer layer , in which the 
silicon substrate having a thin layer of silicon dioxide . A polymer layer functions as the top gate dielectric layer . 
layer of graphene is formed on the substrate 314 . The In some implementations , a system for fabricating an 
graphene can be formed by , e . g . , the exfoliation method of integrated circuit that includes graphene transistors includes 
by chemical vapor deposition . The graphene layer can be 50 an electrochemical deposition module to form a dielectric 
patterned using , e . g . , electron beam lithography . polymer on a graphene layer using the process described 

Drain and source electrodes are formed on the graphene above . The system includes a controller that controls a 
layer 316 . For example , the drain and source electrodes can potentiostat to control the cycling of electric potential 
be formed on the graphene using electron beam lithography applied to the working and reference electrodes . The system 
and electron beam evaporation . The drain and source elec - 55 includes an input device ( which may include , e . g . , a display , 
trodes can be made of gold and titanium . a keyboard , and a pointing device such as a computer 

An electrochemical deposition process is applied to mouse ) for allowing a user to specify a desired thickness of 
deposit a layer of dielectric polymer on the exposed gra - the dielectric polymer . The system includes a storage device 
phene layer 318 . The electrochemical deposition can be ( e . g . , hard drive , solid state memory , or dynamic random 
performed using a three - electrode cell . For example , the 60 access memory that stores a table that has information 
graphene may be placed in a solution that includes phenol about a mapping between the number of cycles and a 
and sulfuric acid . The electro - oxidation of phenol results in thickness of the deposited polymer film , under each of 
poly ( phenylene oxide ) being deposited on the graphene . A various conditions , such as different upper and lower poten 
potentiostat can be used to control the potential of the tials , temperatures , pH values . The mapping information is 
graphene versus a reference electrode , and the potential is 65 established based on past experiments or trials . Thus , for 
cycled between a lower potential and a higher potential . For g iven upper and lower potentials , temperature , and pH 
example , the lower potential can be less than 0 . 5V , and the value , an operator can use the input device to select a desired 
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thickness for the polymer film , and the controller will access What is claimed is : 
the table to determine the number of cycles needed to 1 . A graphene transistor comprising : 
achieve the desired thickness , and control the potentiostat a substrate ; 
accordingly . a layer of graphene on the substrate ; 

The controller may include a programmable system hav - 5 a layer of dielectric polymer comprising poly ( phenylene 
ing at least one programmable processor coupled to receive oxide ) on the graphene layer ; and 
data and instructions from , and to transmit data and instruc a top gate above the polymer . tions to , a data storage system for storing data and instruc 2 . The transistor of claim 1 in which the graphene layer is tions . The at least one programmable processor can include , patterned to form a channel , and the transistor further e . g . , general purpose microprocessors , special purpose 10 comprises drain and source electrodes that are electrically microprocessors , or digital signal processors . coupled to the graphene . Although some examples have been discussed above , 3 . The transistor of claim 1 , comprising a layer of second other implementations and applications are also within the 
scope of the following claims . For example , electrochemical dielectric material on the dielectric polymer layer , the sec 
polymerization of various phenolic compounds on graphene 15 0 15 ond dielectric material having a dielectric constant that is 
or other two - dimensional materials is possible . Hydroxy higher than the dielectric constant of the polymer . 
substituted aryl compounds ( or multiply hydroxy substituted 4 . The transistor of claim 1 in which the dielectric 
aryl compounds ) may be polymerized . Monomers that can polymer layer has a thickness that is less than 10 nm . 
be used in the electrochemical polymerization process 5 . An apparatus comprising : 
include , e . g . , 4 - methylphenol ( p - cresol ) , 1 - napthol , 4 - phe - 20 a substrate ; 
nylphenol , 8 - hydroxyquinonline , bis ( 2 - hydroxy - phenyl ) a layer of two - dimensional material on the substrate ; and 
methane , and 1 , 3 , 5 - trihydroxybenzene . For example , elec a layer of polymer on the layer of two - dimensional 
trochemical polymerization of 2 , 6 - diphenylphenol to material , the polymer comprising poly ( phenylene 
produce thin films of poly ( 2 , 6 - diphenylphenylene oxide ) is oxide ) . 
possible . Electropolymerizations can be performed using 25 6 . The apparatus of claim 5 in which the two - dimensional 
solutions prepared by dissolving anthrone under basic con - material comprises graphene . 
ditions . Keto - enol tautomerism of anthrone to the phenolate 7 . The apparatus of claim 6 comprising a drain electrode , 
resonance structure occurs at pH > 7 . 9 , in which the pheno - a source electrode , and a top gate , in which the layer of 
late resonance structure can be electropolymerized to pro - graphene is disposed between the drain and source elec 
duce a polymer that may adsorb strongly on graphene and 30 trodes and is configured to function as a channel , and the top 
other highly aromatic carbon substrates . gate is disposed above the layer of polymer . 

The conditions for electrochemical deposition can be 8 . The apparatus of claim 7 , comprising a dielectric layer 
different from those described above . In the electrochemical disposed between the polymer layer and the top gate . 
deposition process , the potential between the working elec 9 . The apparatus of claim 8 in which the dielectric layer 
trode ( e . g . , the graphene layer ) and the reference electrode 35 comprises a dielectric that has a dielectric constant that is 
does not necessarily have to cycle between a low potential higher than the dielectric constant of the polymer . 
and a high potential . In some implementations , the potential 10 . The apparatus of claim 6 in which the layer of 
can be maintained at a fixed value throughout the electro - graphene comprises a monolayer of graphene . 
chemical deposition process . In some implementations , the 11 . The apparatus of claim 5 in which the polymer layer 
potential can be varied slowly from a low value to a high 40 has a thickness in a range between 500 nm to 1 um . 
value , without cycling back to the low value . 12 . The apparatus of claim 5 in which the polymer layer 

Two - dimensional materials other than those described has a thickness in a range from 100 nm to 500 nm . 
above can be used , such as MoS2 , WSez , NbSez , and TaSz . 13 . The apparatus of claim 5 in which the polymer layer 

In the example of FIGS . 2 ( a ) to 2 ( e ) , the thickness of the has a thickness in a range from 10 nm to 100 nm . 
poly ( phenylene oxide ) layer is about 3 . 5 nm , less than 4 nm . 45 14 . The apparatus of claim 5 in which the polymer layer 
Such a thin layer of gate dielectric is useful in a transistor has a thickness less than 10 nm . 
device . In some implementations , a thicker dielectric poly - 15 . The apparatus of claim 5 in which the two - dimen 
mer may be deposited on graphene or other two - dimensional sional material comprises phosphorene . 
materials . For example , the dielectric polymer may be used 16 . The apparatus of claim 15 in which the polymer layer 
to protect the graphene or other two - dimensional materials , 50 covers the phosphorene to prevent oxidation of the phos 
e . g . , from oxidation . In such examples , the thickness of the phorene . 
dielectric polymer may be 500 nm , 1 um , or thicker . The 17 . An apparatus comprising : 
larger thickness may be achieved by using a different a substrate ; 
solution for the electrochemical deposition bath , or by a layer of two - dimensional material on the substrate , in 
changing the pH value of the solution . 55 which the two - dimensional material is at least one of a 

Phosphorene may be used in two - dimensional semicon conducting or a semiconducting material ; and 
ductor devices , which can be used in displays or other a dielectric polymer formed on the layer of two - dimen 
electronic devices . Because phosphorene is thin , the result sional material in which the dielectric polymer com 
ing devices or displays can be flexible . prises poly ( phenylene oxide ) . 
Using electropolymerization to deposit a thin polymer on 60 18 . The apparatus of claim 17 in which the two - dimen 

graphene is useful for various graphene devices , such as sional material comprises graphene . 
graphene sensors , graphene p - n junctions , displays that use 19 . The apparatus of claim 17 in which the two - dimen 
graphene , or memory devices that use graphene . In general , sional material comprises phosphorene . 
the technique can be used in any application where it is 20 . The apparatus of claim 17 , comprising a layer of 
useful to have a dielectric layer or a passivating layer on 65 dielectric material on the polymer layer , the dielectric mate 
graphene . In some implementations , the polymers can be rial having a dielectric constant that is higher than the 
deposited on nanoscale ( or mesoscale ) crystals or spheres . dielectric constant of the polymer layer . 
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21 . The graphene transistor of claim 1 in which the top 27 . An apparatus comprising : 

gate comprises a conducting polymer . a substrate ; 
22 . The graphene transistor of claim 1 in which the top a layer of two - dimensional material on the substrate , in gate comprises poly ( 3 , 4 - ethylenedioxythiophene ) ( PE which the two - dimensional material is at least one of a DOT ) . conducting or a semiconducting material , and in which 23 . The apparatus of claim 5 , comprising a layer of the two - dimensional material comprises phosphorene ; dielectric material on the polymer layer , the dielectric mate 

rial having a dielectric constant that is higher than the and 
dielectric constant of the polymer layer . a dielectric polymer formed on the layer of two - dimen 

24 . An organic flexible electronic device comprising : sional material by applying an electrochemical depo g . 10 a substrate ; sition process to deposit the dielectric polymer on the 
a layer of graphene on the substrate ; two - dimensional material , in which a rate of deposition 
a layer of dielectric polymer comprising poly ( phenylene of the dielectric polymer at a given location of the 

oxide ) on the graphene layer ; two - dimensional material decreases as a thickness of 
a layer of second dielectric material on the layer of the dielectric polymer layer increases . dielectric polymer , the second dielectric materials hav - 15 28 . The apparatus of claim 27 in which the dielectric ing a dielectric constant that is higher than the dielectric © polymer comprises poly ( phenylene oxide ) . 

constant of the polymer ; and 29 . The apparatus of claim 27 in which the two - dimen a top gate above the layer of second dielectric material , in sional material comprises graphene . which the top gate comprises a conducting polymer . 
25 . The organic flexible electronic device of claim 24 in 20 20 30 . The apparatus of claim 27 , comprising a layer of 

which the top gate comprises poly ( 3 , 4 - ethylenedioxythio dielectric material on the polymer layer , the dielectric mate 
phene ) ( PEDOT ) . rial having a dielectric constant that is higher than the 

26 . The apparatus of claim 24 in which the layer of dielectric constant of the polymer layer . 
graphene comprises a monolayer of graphene . 
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