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ARTICLE OPEN

Characterization of domain distributions by second harmonic
generation in ferroelectrics
Yuan Zhang1, Yi Zhang 1, Quan Guo2, Xiangli Zhong1, Yinghao Chu 3, Haidong Lu4, Gaokuo Zhong 1, Jie Jiang1, Congbing Tan1,
Min Liao1, Zhihui Lu2, Dongwen Zhang2, Jinbin Wang1, Jianmin Yuan2 and Yichun Zhou1

Domain orientations and their volume ratios in ferroelectrics are recognized as a compelling topic recently for domain switching
dynamics and domain stability in devices application. Here, an optimized second harmonic generation method has been explored
for ferroelectric domain characterization. Combing a unique theoretical model with azimuth-polarization-dependent second
harmonic generation response, the complex domain components and their distributions can be rigidly determined in ferroelectric
thin films. Using the proposed model, the domain structures of rhombohedral BiFeO3 films with 71° and 109° domain wall, and,
tetragonal BiFeO3, Pb(Zr0.2Ti0.8)O3, and BaTiO3 ferroelectric thin films are analyzed and the corresponding polarization variants are
determined. This work could provide a powerful and all-optical method to track and evaluate the evolution of ferroelectric domains
in the ferroelectric-based devices.

npj Computational Materials  (2018) 4:39 ; doi:10.1038/s41524-018-0095-6

INTRODUCTION
Ferroelectric materials, possessing excellent ferroelectric and
electro-optical (EO) properties, have fostered the development
of electronic and optoelectronic devices, e.g., sensors, actuesators,
nonvolatile memories, and optical communication systems.1–10 In
those applications, it is critical to understand ferroelectric domain
orientations and domain switching through external stimulation,
where the domain orientations have an intense influence on
ferroelectric properties and the fluctuation of domain volume
fractions due to domain switching or backswitching dominates
the efficiency and stability of ferroelectric devices.11–23 Therefore,
the precise determination of ferroelectric domain orientations and
their volume fractions is required not only in view of ferroelectric
device engineering but also in the corresponding physics
mechanism, such as fatigue and retention.
A lot of efforts have been invested to evaluate domain

structures of ferroelectrics. The typical methods including piezo-
response force microscopy (PFM) and transmission electron
microscopy (TEM) provide high spatial resolution to visualize the
local domain structures.24–29 However, they still have some
drawbacks in accurately measuring domain volume fractions,
especially for the in-plane domains in the disordered multi-
domain system, where the PFM is only able to sense the domain
structures near the material surface rather than the domains
underneath, and the TEM is a ‘destructive’ characterization
technique with a complicate process of specimen preparation,
which usually presents the domain structures at a local region far
from the whole picture of the domains in the sample.30–34 The
precise determination of the domain distributions in ferroelectrics
with complex domain structures in a non-destructive manner has
not been achieved. Recent advances have pointed out that the

second harmonic generation (SHG) is a promising all-optical
approach for probing domain structures in ferroelectrics, as the
symmetrical-dependent SHG signals present a unique response to
the domain structures, and the adjustable probe size could adapt
to the scale of the semiconductor devices.35–49 Moreover, this
optical approach can readily access the domain structures in the
heterostructures that the ferroelectric layer is covered by non-
ferroelectric materials.
Since the SHG response is highly sensitive to the polarization

angle of the incident light with respect to ferroelectric domain
orientations, the polarization-dependent SHG signals are usually
used to study domain structures.50–53 However, in a ferroelectric
with many possible domain variants, the quantitative analysis
becomes very complex, which makes it difficult to achieve a
completed picture for domain structures through the polarization-
dependent SHG response only along the fixed domain directions
of a ferroelectric sample.37,42,54,55 To solve this problem, an
azimuth-dependent SHG is introduced to distinguish the pre-
dominant domain orientation from many random variants,
because a rotation of a sample around z-axis can change the
ferroelectric polarization directions of individual domains relative
to the incident beam without external electric field, where
different oriented domains lead to different SHG responses.
Therefore, in this work, we have developed an improved
ferroelectric domain characterization technique by collecting
azimuth-polarization-dependent SHG signals with varying both
the polarization angle of the incident beam and the azimuth angle
of sample relative to the beam. By fitting the SHG signals to an
established theoretical model, it is possible to correlate the SHG
signals to the domain distributions in the measured area. Using
this method, we give examples on the rhombohedral BiFeO3 (BFO)
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thin films with 71° and 109° domain walls, where the domain
orientations and their volume factions are determined based on
the collected SHG signals. Moreover, we also apply this SHG
method to many other ferroelectric systems for domain structure
characterization, such as, tetragonal BFO, Pb(Zr0.2Ti0.8)O3 (PZT),
and BaTiO3 (BTO) thin films.

RESULTS
The experimental setup of SHG is schematically shown in Fig. 1a. A
laser beam is incident on a ferroelectric sample with an incident
angle γ (γ= 45°) and the generated SHG signals are collected in
the reflection configuration. The linearly polarized fundamental
electric-field EωðφÞ of the incident light can be rotated through
adjusting the angle φ in the range of 0° to 360°, where φ= 0° and
φ= 180° correspond to p-polarized light field of pþin and p�in, and, φ
= 90° and φ= 270° correspond to s-polarized light field of sþin and
s�in (p

þ
in and sþin are abbreviated as pin and sin). The lab frame (s, k, z)

is defined with s axis parallel to the direction of sin light field, and
the sample coordinate (X, Y, Z) is defined to describe the direction
of sample edges with respect to the optics. The sample can be
rotated by a variable angle θ in the s–k plane, where θ= 0° is
defined as the initial position when the X axis coincides with the
direction of sin light field. The generated p or s polarized (pout and
sout) SHG signals are selected to detect by an analyzer, and the
localized SHG polarimetry system is performed. The nonlinear
polarization of SHG can be expressed as P2ωi ¼ dijkEjEk, where dijk is
the nonlinear optical tensor, and the crystallography coordinate
(X1, X2, X3) is established to denote the orientation of nonlinear
optical tensor (dijk) coordinates of each individual domain variants
(the direction of each individual domain variants is along the X3
axis). An assumed arbitrarily oriented domain variant u is defined
by three Euler angles (η, β, δ) in the sample coordinate (X, Y, Z) as
shown in Fig. 1b, and the sample coordinate (X, Y, Z) is defined in
the lab coordinate (s, k, z) by angle θ as shown in Fig. 1c. The
nonlinear polarizations for a domain u are calculated by
transforming the nonlinear tensor to the lab frame (s, k, z) with
the rule Tnew

ijk ¼ ailajmaknTold
lmn, where T is the third rank property

tensor, and ail¼ ênewi � êoldi (i, l= 1, 2, 3) is the corresponding
coordinate transformation matrix. The calculated nonlinear
polarization components P2ω;ui (along i direction) are determined
by the angle η, δ, φ, β, γ, and θ, where the details of the above
calculations are shown in the Supplementary Materials. Moreover,
the signals generated by domain wall are mostly negligible in the
analysis due to its much smaller relative area fraction compared
with domains. Therefore, the pout and sout SHG electric fields E2ω;uðp;sÞ
generated by a domain variant u can be defined as following:56

E2ω;up ¼ Sp FsP
2ω;u
z � FcP

2ω;u
k

� ��� ��; (1)

E2ω;us ¼ SsP
2ω;u
s

�� ��: (2)

The meanings of Sp, Ss, Fs, and Fc are shown in the
Supplementary Materials. The total SHG intensity I2ωðp;sÞ contributed
from all the individual domains can be expressed as:

I2ωðp;sÞ ¼ E2ωðp;sÞ
���

��� ¼
X

FuE
2ω;u
ðp;sÞ

���
���
2
þbðp;sÞ: (3)

Fu is the fraction ratio of the domain variant u and the bðp;sÞ is
artificially added to simulate the background. Based on the Eq. (3),
we can know that the SHG intensity increases with the increasing
of volume fraction Fu, and the total SHG electric field E2ωðp;sÞ
originates from the superposition of fields from all individual
domains, where the “+” and “−” fields are compensated. Here, the
positive oriented of in-plane (IP) and out-of-plane (OP) domain
components are defined: along s and -k, and, -z axes, respectively.
According to the above model, some criterions can be established.
Firstly, the IP domain components can be distinguished by
analyzing the azimuth-polarization-dependent SHG patterns,
because the changes of SHG patterns caused by sample rotation
are attributed to the IP domain components. Secondly, the OP
domain components can be verified by comparing with the SHG
patterns at θ= 0° and 180°, because the IP domain components
give an opposite sign of SHG fields with same magnitude after a
sample rotation by 180°, if the sample has no OP domain
components, the SHG patterns should be same when the θ equals
0° and 180°. Thirdly, the vertical relationship between IP domain
components and sin light filed can be distinguished by observing
the sin–sout SHG signals, since the domain components do not
contribute to sin–sout SHG signals when they are perpendicular to
the direction of sin light filed (the OP domain components always
do not generate sin–sout signals, and the details are shown in
Supplementary Materials). In our experiments, only the sout SHG
signals are selected as an output, and the domain distributions
can be figured out by fitting the measured sout SHG intensity.

DISCUSSION
The BFO thin films are chosen as a model system in our work. This
films have four structural variants lied along <111>directions with
eight distinct polarization variants on the (001)C perovskite surface
(Fig. 2a). The r1, r2, r3, and r4 correspond to Pþ=�

1 , Pþ=�
2 , Pþ=�

3 , and
Pþ=�
4 , respectively, where the “+” and “−” stand for “up” and
“down” polarization directions.57–60 The allowed polarization
configurations can form domain boundaries along either {101}C
or {100}C, so called 71° or 109° domain walls, respectively. Firstly,
the BFO film with 71° domain wall is studied by SHG. The IP-PFM
image of this thin film is shown in Fig. 2b, which exhibits the
ordered 71° domain arrays.59 The possible variant patterns of BFO
film with 71° domain wall are (011)-r1/r2, 101

� �
-r2/r3, 011

� �
-r3/r4

and (101)-r4/r1.
58 The projected polarizations of P�1 , P

�
2 , P

�
3 , and P�4

are shown by the sense of arrows in Fig. 2c (the sample coordinate
axes are defined as X= [100]p, Y= [010]p, and Z= [001]p
directions of the BFO film, respectively). The polarization-

Fig. 1 a Schematic diagram of SHG experimental system, where lab frame (s, k, z) is defined with s axis parallel to the sin incident beam. b
Schematic sketch of arbitrarily oriented domain variant u in sample coordinate (X, Y, Z). The β is the angle between X1 axis and the intersection
line (~XL) of X–Y and X1–X2 plane. The η is the angle between X axis and line ~XL. The δ is the angle between X3 axis and Z axis. c Schematic
sketch of the defined sample coordinate (X, Y, Z) in the lab coordinate (s, k, z), where the θ is the angle between s and X axes, or, k and Y axes
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dependent SHG patterns with θ= 0°, 90°, and 180° of BFO film
with 71° domain wall are shown in Fig. 2d-f, respectively. All the
SHG patterns present a shape of two double lobes, and the
pattern shape changes with the rotation of angle θ. Therefore, the
BFO film with 71° domain wall has IP domain components. After a
sample rotation by 180°, one can see that the SHG pattern in Fig.
2f is different from that in Fig. 2d, which indicates the existence of
OP domain components in BFO film with 71° domain wall.
Moreover, strong sin–sout SHG signals can be found in Fig. 2d when
the θ equals to 0°, while the sin–sout signals disappear in Fig. 2e
when the θ equals to 90°. In fact, the sin–sout SHG signals at the θ
= 0° are only generated by the IP domain components of 100½ �þ=�

p
( 100½ �p or 100

� �
p), since the domain components of 010½ �þ=�

p are
perpendicular to the sin light field in this case. Therefore, the IP
domain components could be only reasonably existed along
100½ �þ=�

p . Accordingly, the possible domain variants in the BFO
film with 71° domain wall are r2/r3 and r4/r1.
To further investigate the domain variants of BFO film with 71°

domain wall, the azimuth-polarization-dependent SHG signals are
collected at intervals of 10° in the range of 0° to 360°. The SHG
intensity vs. the angle φ and θ are presented in the contour
pattern in Fig. 2g. The maximum of SHG intensity at different
polarization angles φ under a certain azimuth angle θ are defined
as “SHGM-P”, where the intensity of “SHGM-P” changes with the
azimuth angle θ. It can be found that the maxima intensity of

“SHGM-P” is present at θ= 180°, and the minima value is located at
θ= 90° (the comparison of the polarization-dependent SHG
patterns with θ= 90° and θ= 270° is shown in the Supplementary
Materials, Fig. S1). The intensity of “SHGM-P” is broadly larger at θ
= θ0+ 180° (θ0= 0°~180°) than that at θ= θ0, where the
comparison of the intensity of “SHGM-P” at θ= θ0 and θ= θ0+
180° are presented in the Supplementary Materials (Fig. S2). As a
matter of the fact, the intensity of “SHGM-P” would be enlarged
after a rotation of sample by 180°, when the signs of the SHG
fields from net IP and OP domain components are opposite at
initial states, otherwise, the SHG intensity would be decreased.
Hence, we can infer that the signs of the SHG fields from net IP
and OP domain components of BFO film with 71° domain wall is
opposite at θ= θ0, which exhibits as: “+” and “−”, or, “−” and “+”.
Therefore, the orientations of net IP and OP polarizations are along
100½ �p and 001½ �p, or, 100

� �
p and 001

� �
p. Summing up, the

possible domain variants in the BFO film with 71° domain wall are
r4/r1. Then, we extract the SHG signals as a function of angle θ
under the fixed pin and sin incident light fields, and the results of
pin–sout and sin–sout are shown in Fig. 2i. The line profiles have the
same varying tendency and the intensity peaks are located at θ=
n*180° (n= 0, 1, 2), while the valley positions are located at θ=
90°+ n*180° (n= 0, 1). We know that the SHG intensity from the
OP domain components is fixed under the pin–sout geometry, and
it is not existed under the sin–sout geometry, thus the peak signals

Fig. 2 a Schematic of four different structural variants and eight domain variants in (001) rhombohedral BFO film. b IP-PFM image of the BFO
thin film with 71° domain wall. c Possible domain patterns for BFO film with 71° domain wall. The projected polarizations of the P�1 , P

�
2 , P

�
3 , and

P�4 are shown by the sense of arrows. d–f Polar plots of measured s-polarized SHG intensity as a function of polarization angle φ with θ= 0°,
90°, and 180°, respectively. g Contour pattern of monitored s-polarized SHG intensity vs. sample rotation angle θ and polarization angle φ. h
The s-polarized SHG intensity as a function of angle θ under the fixed pin and sin incident light fields. i Fractions of domain variants in the BFO
thin film with 71° domain wall. The symbols present the experimental data, and the lines indicate the theoretical fits. Comparison of the
polarization-dependent SHG patterns with θ= 0° and 90° are as insets in d, where the green is the SHG pattern at θ= 90°. The schematic
illustrations of the domain variants at angle θ= 0°, 90°, and 180° relative to incident beam are as insets
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are mostly attributed to IP domain components of 100½ �þ=�
p at θ=

n*180° (n= 0, 1, 2). Therefore, those azimuth-dependent SHG
intensity features further illustrate that the net IP domain
components are only along 100½ �þ=�

p directions. Moreover, the
volume fractions of the net polarization vectors are analyzed by
fitting the measured azimuth-polarization-dependent SHG signals
by using Eqs. (2) and (3) (the results are shown in Fig. 2i), where
the volume fractions of net polarization vector (Pi) is defined as:
the differences of the fractions of the positive (Pþi ) and negative (
P�i ) domains. The BFO film with 71° domain wall possesses the net
polarization vectors of P4 and P1 with both volume fractions of
50%. In addition, an estimation of domain fraction was made by
contrast statistics based on vector PFM (Supplementary Fig. S6
and Fig. S7), which is agreement with our SHG results.
The BFO film with 109° domain wall is also studied by SHG. The

IP-PFM image exhibits the ordered 109° domain arrays (Fig. 3a).60

The possible variants for BFO film with 109° domain wall are (100)-
r1/r2, (010)-r2/r3, (100)-r3/r4, and (010)-r4/r1,

58 and the projected
polarizations of the Pþ1 , P

�
2 , P

þ
3 and P�4 are shown by the sense of

arrows in Fig. 3b. Figure 3c-e shows the polarization-dependent
SHG patterns with θ= 0°, 90°, and 180°, respectively. The SHG
pattern shape and signal intensity are in greatly differences, which
implies the existence of both IP and OP domain components.
Meanwhile, we can see that strong sin–sout SHG signals both
present in Fig. 3c, d, which suggests the existence of net IP
domain components along 100½ �þ=�

p and 010½ �þ=�
p . Moreover, the

intensity of sin-sout signals in Fig. 3d is significantly higher than
that in Fig. 3c, which means that the net IP domain population of

010½ �þ=�
p should be more than that of 100½ �þ=�

p . Therefore, the
possible variant patterns of BFO film with 109° domain wall are r2/
r3 and r4/r1. The SHG intensity vs. the angle φ and θ is shown in Fig.
3f. One can see that the maximal intensity of “SHGM-P” is located at
θ= 270°, and the intensity of “SHGM-P” at θ= θ0+ 180° is
obviously stronger than that at θ= θ0 (the change process of
the intensity of “SHGM-P” at θ= θ0 and θ= θ0+ 180° are shown in
the Supplementary Materials, Fig. S2), which suggest that the
signs of SHG fields from the largest population of net IP and OP
domain components are opposite at initial states. To further
determine the signs of fields from the two IP domain components,
the azimuth-dependent SHG response of pin–sout are analyzed. In
Fig. 3g, the line profile presents two peaks at θ= 90° and 270°,
and the maxima is located at 270°. We can know that the maximal
SHG intensity of pin–sout occurs only when the sign of the fields
from all IP and OP domain components are at same under pin light
field. Thus, the sign of the fields from two IP domain components
are in the same at θ= 270°, while they are opposite at θ= 0°.
Therefore, the orientations of two net IP and one OP polarizations
are along 100

� �
p, 010
� �

p , and [001]p, or, [100]p, [010]p, and 001
� �

p,
where the signs of the fields exhibit as: “−”, “+”, and “−”, or, “+”,
“−”, and “+”. In this case, the possible domain variants of P�4 =P

þ
1

and Pþ4 =P
�
1 can be excluded in the BFO film with 109° domain. This

conclusion is further supported by the sin–sout SHG signals as
shown in Fig. 3g, where the line profile presents four peaks at θ=
45°+ n*180° (n= 0, 1) and θ= 135°+ n*180°. In fact, when the θ
= 45°+ n*180°, the sin–sout SHG signals are only generated by IP
projections of domain Pþ=�

iþ2 (i= 0, 2), because the IP projections of

Fig. 3 a IP-PFM image of the BFO thin film with 109° domain wall. b Possible domain patterns for BFO film with 109° domain wall. The
projected polarizations of the Pþ1 , P

�
2 , P

þ
3 , and P�4 are shown by the sense of arrows. c–e Polarization-dependent s-polarized SHG patterns with

θ= 0°, 90°, and 180°, respectively. f Contour pattern of monitored s-polarized SHG intensity vs. angles θ and φ. g Azimuth-dependent SHG
intensity under the pin–sout and sin–sout geometry. h Fractions of domain variants in BFO thin film with 109° domain wall. The schematic
illustrations of the domain variants at θ= 45° and θ= 135° with respect to incident light are as insets
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domain Pþ=�
iþ1 are perpendicular to the sin light field in this case. In

contrast, when the θ= 135°+ n*180°, the sin-sout signals are only
generated by IP projections of domain Pþ=�

iþ1 , since the IP
projections of domain Pþ=�

iþ2 are perpendicular to the sin light field
in that case (the schematic illustrations of the domain variants at
θ= 45° and θ= 135° with respect to incident light are shown as
insets in Fig. 3g). Thus, the larger SHG intensity at θ= 135°+
n*180° suggests that the population of the net IP polarizations
from Pi+1 are more than that from Pi+2 in the BFO film with 109°
domain wall. Accordingly, the possible domain variants of the BFO
film with 109° domain wall are r2/r3, where the population of the
net ferroelectric polarization from P3 are larger than that from P2.
By fitting the measured SHG signals, the volume fractions of net P2
and P3 in the BFO film with 109° domain wall can be determined,
i.e., 25.5% and −29.8%, respectively (Fig. 3h), and a further analysis
of the domain variants in this BFO film are presented in the
Supplementary Materials. Moreover, by correlating the BFO
domain structures and contour patterns shown in Figs. 2g and
3f, we can draw the conclusions that the inclined stripes are
attributed to the rhombohedral phase structures in the BFO films.
The BFO film with 71° domain wall exhibits larger SHG intensity
than that in the BFO with 109° domain wall, due to the larger
population of net IP and OP polarizations in the BFO film with 71°
domain wall. The stripes of the contour pattern in the BFO film
with 71° domain wall are “discontinuous”, while they are
“continuous” in the BFO film with 109° domain wall, this results
are largely determined by the net IP domain components in the
BFO films where the BFO film with 71° domain wall only has one
direction of net IP domain components along 100½ �þ=�

p , but there
are two directions of net IP domain components along 100½ �þ=�

p
and 010½ �þ=�

p for BFO film with 109° domain wall in our
experiments. The calculated contour pattern of s-polarized SHG
intensity vs. angles θ and φ was calculated based on the
established azimuth-polarization-dependent model (Supplemen-
tary Fig. S8), which further support the above conclusions.
To further illustrate the relationship between azimuth-

polarization-dependent SHG signals and domain variants, the
typical tetragonal (001)-oriented BTO, PZT, and BFO are also
investigated. The possible domain variants of (001)-oriented BTO,
PZT, and T-BFO are shown in Fig. 4a, where those films have six
polarization orientations of Pþ=�

1 , Pþ=�
2 , and Pþ=�

3 . Their SHG

intensity as a function of angle φ and θ are presented in Fig. 4b–d,
respectively. The domain orientations and their corresponding
volume fractions are measured, and the results are shown in Fig.
4e. It can be seen that the BTO film only has OP domains, and the
PZT and BFO films have majority OP domains and minority IP
domains, while the BFO film shows more population of IP domains
than that in the PZT film. By observing the SHG contour patterns
in Fig. 4a–c, we can find that all the stripes in SHG pattern are
horizontal, and the stripes are continuous and invariant from BTO
film, while they are continuous but not uniform from PZT film and
they are partial discontinuous from BFO film. Based on that, we
can deduce that the tetragonal (001)-oriented ferroelectric system
exhibits horizontal stripes, and the stripes change from continuity
to discontinuity when the population of net IP domains are
increasing gradually. We note that the SHG method has resolution
limitation comparing with PFM techniques, and its resolution is in
the order of hundreds of nanometers. However, the SHG also
exhibits the advantages of the adjustable spot size, which can be
used for the characterization of ferroelectric devices.
In summary, we report an optimized SHG technique for

ferroelectric domain characterizing, in which the correlation
between SHG response and domain distributions are established.
Based on this all-optical SHG method, all the domain variants and
its population in BFO ferroelectric films are determined. We also
apply our method to many other perovskite ferroelectrics, i.e., T-
PZT, T-BTO, and T-BFO. This work provides an effective and all-
optical method to determine the domain distribution for ferro-
electric thin films and devices including the field of multi-
functional heterostructures which combine with functional metals
and complex oxide thin films.

METHODS
The (001)-oriented rhombohedral (R-phase) BiFeO3 (BFO) films of
approximately 60 nm thick with 71° and 109° domain wall were grown
on SrRuO3-buffered and no-buffered DyScO3 (110) substrates by pulsed
laser deposition (PLD), respectively. The (001)-oriented tetragonal (T-phase)
BaTiO3 (BTO, 20 nm, grown on SrRuO3-buffered SrTiO3 substrate), BFO
(40 nm, grown on LaNiO3-buffered LaAlO3 substrate) and Pb(Zr0.2Ti0.8)O3

(PZT, 150 nm, grown on SrRuO3-buffered SrTiO3 substrate) were also
prepared by PLD. The domain structures were characterized by
commercially available AFM platform (Dimension Icon AFM, Bruker) and

Fig. 4 a Schematic of domain variants of (001)-oriented tetragonal BTO, PZT, and BFO thin films. Contour pattern of s-polarized monitored
SHG intensity vs. the angles θ and φ, b BTO, c PZT, and d BFO films. e Fractions of domain variants in the BTO, PZT, and BFO thin films
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the crystalline structure were characterized via X-ray Diffraction (Rigaku-D/
Max 2500) with the Cu Kα radiation.
The SHG measurements were performed by using 800 nm laser (150 fs,

10 nJ, 76 MHz) generated by a coherent Ti:sapphire pulsed laser as the
fundamental laser beam. This fundamental laser beam was focused by a
long-focus lens onto the sample with a focal spot diameter of ~100 μm
and the incident peak intensity is ~10MW/cm2 at the sample position. The
generated SHG signals from the sample were detected by a photo-
multiplier tube (PMT) with a fixed incident angle of 45° (γ= 45°) in the
reflection geometry. The long-pass filter was located in front of the sample
to pass through the fundamental laser beam, and the bandpass
interference filter was installed behind the sample to filter out the
fundamental laser beam. The Glan polarizer was rotated to adjust and
analyze the generated SHG signals from the sample at 0° and 90°
configurations, which corresponds to p-polarized (p-out) and s-polarized (s-
out) SHG signals, respectively.

Data availability
All data needed to evaluate the conclusions in the paper are present in the
paper and/or the Supplementary Materials. Additional data related to this
paper may be requested from the authors.
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