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Abstract

Dyslexia is a heritable reading disorder with an estimated prevalence of 5–17%. A multiple deficit 

model has been proposed that illustrates dyslexia as an outcome of multiple risks and protective 

factors interacting at the genetic, neural, cognitive, and environmental levels. Here we review the 

evidence on each of these levels and discuss possible underlying mechanisms and their reciprocal 

interactions along a developmental timeline. Current and potential implications of neuroscientific 

findings for contemporary challenges in the field of dyslexia, as well as for reading development 

and education in general, are then discussed.

Introduction

‘Children are wired for sound, but print is an optional accessory that must be painstakingly 

bolted on’ [Pinker in [1], p. ix–x].

Developmental dyslexia is a heritable neurobiological condition that is characterized by an 

unexpected failure to develop accurate or fluent reading and affects approximately 5–17% of 

children [2]. Individuals with dyslexia have shown structural and functional brain 

atypicalities in the complex reading network which consists of (1) left inferior frontal 

regions, (2) dorsal temporo-parietal regions, and (3) ventral occipital-temporal regions [3,4]. 

The etiological basis of dyslexia is not well understood due to the complex interactions 

among multiple genetic risk variants and environmental factors, which collectively affect 

typical and atypical reading development.

This paper aims to disambiguate the genetic, environmental, cognitive, and neurobiological 

components that are involved in predisposing a child to developing dyslexia. In particular, it 
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integrates current experimental evidence on the development of the reading brain with 

Pennington’s [5] multiple deficit model (MDM) of developmental disorders and van 

Bergen’s extended ‘intergenerational multiple deficit model’ of dyslexia [iMDM, 6••]. It 

further adds a developmental perspective to the current models and reviews specific factors 

and underlying mechanisms that contribute to atypical reading as well as their 

developmental trajectories prenatally and postnatally. Additionally it reviews and suggests 

relationships and interplays between the various levels and proposes a descriptive multi-

componential model for the etiology of development of dyslexia which should be seen as an 

extension rather than a modification of the current models. Furthermore, current as well as 

potential implications of this framework for educational practice and policy are discussed.

Genetics and the neurobiology of dyslexia

Heritability of dyslexia has been estimated at approximately 60% [7,8]. Interestingly, these 

estimates are much lower (20–33%) if only siblings but no parents are affected, and higher 

(76–78%) if both parents are affected [9].

Several candidate susceptibility genes for dyslexia (e.g. ROBO1, DCDC2, DYX1C1, 

KIAA0319) have been reported, the majority of which are involved in brain development 

[10,11•]. A tentative pathway from genetic effects to developmental brain changes and to 

perceptual/cognitive deficits in dyslexia has been proposed [10]. According to this 

hypothesis, variant function in any number of genes involved in cortical development may 

lead to subtle cortical malformations involving neural migration and axonal growth, which 

in turn results in atypical cortico-cortical and cortico-thalamic circuits. Alterations in these 

circuits may be associated with the range of sensorimotor, perceptual, and cognitive deficits 

reported in dyslexia [5].

Studies in rodents and humans have demonstrated support for this hypothesis [12–16] and 

several studies have linked genetic with neuroimaging studies. It has been shown that 

experimental interference of the dyslexia susceptibility genes in rodents causes atypical 

neuronal migration, which in turn results in localized matter malformations that affect 

cortical circuitry [16,17]. For example, in utero disruption of KIAA0319 expression in rats 

has been shown to result in poor neural representation of speech sounds in the auditory 

cortex and in impaired performance on phoneme discrimination tasks [18•,19,20]. The 

reported behavioral impairments in these animal studies are similar to those observed in 

individuals diagnosed with dyslexia [e.g., 21], especially those who showed KIAA0319 and 

DCDC2 variants [22]. Additionally, studies in adults and children have shown that 

polymorphisms in dyslexia susceptibility genes are associated with structural temporo-

parietal gray and white matter alterations during development [13,23–25]. For example, a 

common variation near the dyslexia susceptibility gene ROBO2 has been associated with 

expressive vocabulary skills and the development of the posterior region of an inter-

hemispheric white matter pathway (i.e., splenium) [26••]. The reported brain alterations 

observed in neuroimaging studies are consistent with the postmortem studies of individuals 

with dyslexia which revealed neural ectopias in various regions important for auditory and 

language processing as well as reading [24]. This cumulative evidence provides a robust 
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support for an association between the dyslexia susceptibility genes and brain function and 

structural crucial for learning to read.

While more work needs to be done to identify the genes that are specifically linked to 

dyslexia, advances in our ‘tool sets’ for genetic analyses have vastly expanded our overall 

understanding of the genetics of developmental disorders such as dyslexia. For instance, 

research has highlighted the importance of generalist genes that are expressed throughout the 

brain and the nervous system, and are associated with broad cognitive functions important 

for learning. One such example is the COMT gene, which is involved in major metabolic 

functions in the brain and has been linked to general cognitive processes, such as executive 

function [27,28] and reading [29]. Another example is the FOXP2 gene that has been linked 

with disorders of speech and language, as well as dyslexia. It functions during the 

transcription of other genes and is thus expressed in multiple regions of the brain [30]. 

Discovery of the generalist genes explains the strong association in performance between 

reading and other domains such as language and mathematics, as well as the frequency of 

comorbidities between dyslexia and other disorders. This suggests that reading disability and 

other learning disabilities are in part governed by learning mechanisms with a general 

genetic basis [31,32]. Most importantly, a variety of genes have been identified that function 

at different time points of neurodevelopment and affect various developmental stages such as 

neuronal proliferation or interneuron migration, thus implicating a number of cell biological 

pathways critical for typical early brain development [33].

Genetically pre-determined brain structure is not fixed across development; rather, genetic 

makeup provides a mere blueprint for the brain architecture that serves as the basis for 

processing information in the environment [34]. Thus, it remains debated which brain 

characteristics of dyslexia predate the onset of reading instruction and which are a result of 

reduced reading practice (e.g. due to the daily struggle to read).

Structural and functional brain alterations in dyslexia and their emergence

Learning to read requires the coordination of an ensemble of sensory and cognitive systems, 

which are utilized to form the left-hemispheric neural reading circuit. A tentative model of 

reading development suggests that when children start to learn single word reading, superior 

temporal regions that are specialized for phonological processing become increasingly 

connected with temporo-parietal regions important for the integration of orthography with 

phonology [35]. Following the development of the temporo-parietal circuit for linguistic 

structures, the ventral occipito-temporal circuit, including lateral extra-striate, fusiform, and 

inferior temporal regions, becomes specialized for print and rapid word processing (i.e., 

sight word recognition), and a putative visual word form area (VWFA) emerges [36,37]. 

Then, through extensive reading practice, the ventral circuit for reading becomes 

increasingly automatic. The anterior inferior frontal circuit also plays an important role in 

reading development, although its specific contribution is not yet well defined. It is 

associated with various reading-related functions, including phonological processing, speech 

planning, lexical access, semantics [38], and comprehension [39,40], as well as with general 

cognitive functions, such as attention and inhibition [41]. This circuit shows increased 

involvement with age and reading experience [42–45].
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Magnetic resonance imaging (MRI) studies in children and adults with dyslexia commonly 

demonstrate reduced gray matter volume indices and cortical thickness, as well as 

hypoactivation in left-hemispheric temporo-parietal, occipito-temporal, and inferior frontal 

networks (Figure 1a,b) [46,47]. Children with dyslexia display this pattern of hypoactivation 

even when compared to younger children with equivalent reading skills [48,49], suggesting 

that the observed alterations are not due to delayed maturation but are instead unique brain 

characteristics of dyslexia. Several papers have reported, however, that at least some brain 

alterations in individuals with dyslexia are likely due to impoverished reading experience 

[50,51]. Dyslexia has further been associated with structural differences in left-hemispheric 

white matter organization (Figure 1c) [52–55,56••] and reduced resting-state and task-based 

functional connectivity among regions important for reading has also been demonstrated 

[57,58].

Dyslexia is thought to originate in genetically-driven cortical, sub-cortical, and white matter 

abnormalities. Accordingly, pre-reading children with a family history of dyslexia (FHD+) 

have exhibited atypical sulcal patterns (i.e. the arrangement, number, and size of primary 

cortical folds), possibly reflecting a less optimal organization of cortical function and white 

matter connectivity during prenatal development (Figure 1d) [59••]. Moreover, atypical 

neural connectivity, such as decreased white matter integrity in the arcuate fasciculus, a 

white matter tract connecting dorsal posterior and anterior regions, has been observed for 

FHD+ children as early as infancy [60••]. The notion of early atypical brain development has 

been further supported by several studies that showed aberrant neural responses in FHD+ 

infants when compared to controls. For instance, alterations in neural responses to basic 

speech sounds have been observed using Electroencephalography (EEG) in FHD+ newborns 

[61–65] and most importantly, in newborns who subsequently received a diagnosis of 

dyslexia [e.g., 61] or who showed atypical language and reading development in 

toddlerhood or elementary school [62,63,66–68]. Furthermore, at-risk preschoolers have 

demonstrated reduced gray matter volume and reduced cortical thickness in temporo-parietal 

and occipito-temporal regions [51,69] as well as hypoactivation in these regions during 

phonological [70] and orthographic [71,72] processing. These neural alterations in regions 

critical for reading-related functions can further disrupt the development and specialization 

of the phonological and orthographic systems as well as the connectivity of these systems 

with each other and other higher order components of the reading network.

Neuro-metabolic alterations in dyslexia

Magnetic Resonance Spectroscopy (MRS) is a noninvasive in vivo technique that estimates 

the amounts of various brain metabolites by utilizing the fact that their individual resonance 

frequencies are all distinct from the dominant water peak. The previously reported evidence 

for atypical brain development in posterior left-hemispheric regions motivates the 

investigation of the biochemistry and metabolic aspects underlying structural and functional 

alterations observed in individuals with dyslexia. To date, several studies have examined the 

relationship between neurometabolites and reading in individuals with and without dyslexia. 

Most of these studies have examined either Choline (Cho) or Glutamate (Glu) and their 

relationship to reading abilities/disabilities [73•,74–76]. Cho is a nutrient important for the 

synthesis of cell membranes and an indicator for de novo myelin and cell membrane 
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synthesis [77]. Developmental studies have shown an increase in the first 3 months of life 

with a subsequent decrease most likely due to accelerated myelination, which incorporates 

Cho into macromolecules associated with myelin [78]. Several studies have shown increased 

levels of Cho in temporo-parietal regions in adults and children with dyslexia [73•,74–76]. A 

relationship between poor phonological processing and increased Cho levels in adults was 

observed, and the Cho/Creatine (Cr) ratio accounted for a unique proportion of variance in 

phonological decoding, after controlling for age, cognitive ability, and timed/untimed sight-

word reading [75]. A similar relationship was demonstrated in childhood, with findings of 

significant correlations of Cho/Cr ratios with word reading and passage comprehension 

[73•]. It has been suggested that elevated Cho reflects an inability to properly incorporate 

Cho-containing molecules into myelin [79] or the loss/disruption of normal myelin, which 

would increase the availability of such Cho-containing compounds, as observed in 

dysmyelinating disorders [80].

The neurometabolite Glu is one of the primary excitatory neurotransmitters that is utilized 

throughout the brain. Thus, Glu is essential for various neural functions critical for 

perception, cognition, and memory [81,82] peaking in concentration at approx. 4–6 months 

before subsequently declining until a plateau around age 2 [83]. To date, only one study has 

examined the relationship between reading and Glu in humans and further compared 

children with dyslexia to controls [73•]. The results showed that Glu/Creatine (Cr) ratio 

significantly correlated with phonological awareness and vocabulary at age 7 and that 

children with dyslexia exhibited higher Glu/Cr ratios compared to controls, which has been 

suggested to reflect hyperexcitability. This hyperexcitability may play an important role in 

the etiology and symptomology of dyslexia [73•], which has been supported by studies 

showing inconsistent trial-to-trial performance [84] and greater variability in neuroimaging 

studies [85], including brainstem responses [21], in individuals with dyslexia. Furthermore, 

this hypothesis is in line with animal studies observing that mutations of the dyslexia 

susceptibility gene DCDC2 can lead to hyperexcitability, such as spontaneous firing, 

reflecting atypical glutamatergic activity [86].

Perceptual and cognitive deficits and risk factors of dyslexia

The cognitive phenotype of dyslexia is heterogeneous [87]. Prior attempts to identify and 

describe dyslexia from a single deficit perspective were unsuccessful and instead a multi-

deficit approach has been adopted by most researchers [5,88]. This approach views dyslexia 

as representing the interaction of multiple risks and protective factors resulting in distinct 

cognitive profiles along a continuum of severity of reading outcomes.

Studies examining infants and pre-reading children with a hereditary risk for dyslexia have 

identified atypical language development in these children, as they tend to show poor 

categorical speech perception, delayed onset of talking, shorter mean length of utterances, 

lower complexity of syllables produced, and poor receptive or expressive vocabulary [89–

91]. Longitudinal studies have further demonstrated the importance of these early language 

skills for the development of reading. However, these symptoms have also been observed in 

children with a subsequent diagnosis of specific language impairment or speech sound 

disorders, and could be a consequence of the high occurrence of comorbidities between 
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dyslexia and language disorders [91–94]. Therefore, delayed language development in some 

children with dyslexia risk is likely indicative of a cumulative contribution of etiological 

factors for each disorder, rather than being a specific marker of dyslexia risk.

Differences between preschoolers with and without familial risk for dyslexia have been 

identified on tasks measuring phonological awareness, verbal working memory, rapid 

automatized naming (RAN), and letter knowledge [95–97]. Phonological awareness is the 

meta-understanding of the sound units of oral language [98]. Verbal working memory is the 

memory system that is involved in the storage and active processing of current information 

[99]. Both have shown a significant association with a genetic (familial) risk for dyslexia as 

well as with the actual reading outcomes [100••,101]. A stepwise pattern of performance on 

these measures is commonly observed, with at-risk children with typical literacy outcomes 

performing worse than no-risk readers, but better than at-risk children with a subsequent 

dyslexia diagnosis [90,102–104]. RAN represents the ability to rapidly retrieve the name of 

visually presented familiar items in a serial array [105,106] and has been shown to be a 

robust predictor of actual reading outcomes (particularly reading fluency), especially in poor 

readers [102,107]. Letter knowledge measured in kindergarten is the most robust, but 

ephemeral (i.e. it loses its predictive accuracy beyond kindergarten), predictor of reading 

ability [108,109]. However, since it is strongly influenced by environmental factors, such as 

home literacy and preschool enrollment, letter knowledge may predominately reflect lack of 

experience rather than a cognitive deficit in dyslexia [110].

Atypicalities in lower-level auditory or visual magnocellular processing in individuals with 

dyslexia have also been reported [111–116]. Several studies have demonstrated atypical 

auditory processing of slowly varying acoustic signal and rapid auditory processing in pre-

reading children at risk for dyslexia [62,116–119]. Individuals with dyslexia demonstrated 

poor ability to process short sounds and stimuli with brief transitions [120,121]. Because 

brief frequency transitions are important for discriminating linguistic units, it has been 

suggested that the phonological deficit in dyslexia stems from this lower-level sensory 

impairment [113]. More recently, studies reported impaired discrimination of rise time cues 

(a rate of amplitude change) in speech in individuals with dyslexia. These cues are important 

for detection of speech rhythm and prosody [122,123]. Additionally, individuals with 

dyslexia have been shown to perform poorly on musical rhythm discrimination and 

reproduction tasks [124]. Difficulty with perceiving stress cues and rhythm in speech could 

undermine the ability to develop adequate representations of phonemes, thereby impairing 

the development of phonological awareness skills [114,125]. Studies examining visual and 

magnocellular processing in pre-reading children have failed to reach consensus, and 

increasing evidence points to this deficit being a result of limited reading practice rather than 

an underlying deficit in the magnocellular visual pathway [126–128].

Finally, some studies provided modality-general explanations of dyslexia such as poor 

perceptual learning [129] and poor temporal synchronization [130]. Deficits in attention and 

executive function have also been demonstrated [131–133]. Since reading development and 

performance requires cross-modal integration, these cross-modal mechanisms play a 

significant role in the development of phonological and orthographic abilities and in fluent 

reading [130].

Ozernov-Palchik et al. Page 6

Curr Opin Behav Sci. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Environmental influences and risk factors of dyslexia

Environment has a strong influence on brain and cognitive [134–136,137••,138–140]. 

Prenatal factors such as maternal stress, smoking, and alcohol consumption, can affect 

cortical development and neural migration [141]. Children’s postnatal early environment is 

largely shaped by cultural and parental characteristics and the environment has a significant 

influence on the trajectory of brain development in childhood and through adolescence 

[134–136,137••,138–140]. The development of brain regions that support language, reading, 

and executive functions are particularly affected by socioeconomic factors [135,137••]. Poor 

environmental conditions can exert unfavorable influence on children who are genetically 

predisposed for dyslexia increasing the likelihood of later reading failure [101,142]. Parents 

with lower educational background and socioeconomic status (SES) tend to have fewer 

books at home, and spend less shared reading time with their children [143] This home 

literacy environment affects the development of early reading skills [110,144,145], 

particularly in families with low SES [146,147].

Besides individual households, negative neighborhood features such as high concentration of 

poverty and high family density, have imposed adverse effects on children’s vocabulary and 

letter knowledge, both directly [148,149•] and indirectly via parental interaction [150,151]. 

At the onset of schooling, ineffective instructional practices, negative social perception, 

limited instructional resources, and other adverse academic factors may further exacerbate 

poor reading development in children [152,153]. Moreover, lack of parental awareness may 

result in negative parent–child interactions and poor psychological outcomes for the child 

[154]. Lack of awareness can also prevent parents and teachers from seeking effective 

resources for intervention and result in delayed identification of dyslexia risk [155].

Overall, environmental factors were shown to explain up to 30% of individual differences in 

reading [156–158]. Environmental components interact with each other in conjunction with 

genetic factors to form a reciprocal process creating long-lasting effects extending over 

generations [142]. Individuals with dyslexia are less likely to complete high school [159••], 

pursue higher education [160], and are at an increased risk of entering the justice system 

[161]. Children of these individuals would subsequently be both at a higher genetic and 

environmental risk.

Protective factors and compensatory mechanisms

Dyslexia is a persistent condition that affects individuals throughout their lifetime. Many 

adults with a childhood diagnosis of dyslexia never develop fluent or proficient reading 

skills. Others become functional readers, but still suffer from residual difficulties in spelling, 

phonemic awareness, and fluency [162–164]. The latter group is often referred to as 

compensated dyslexic readers or resilient readers. The mechanisms through which these 

individuals achieve reading competency are not well investigated or understood [165]. 

Nevertheless, several cognitive and environmental protective factors have emerged in the 

literature including high intelligence, rich vocabulary, strong reliance on semantic context, 

large visual memory, strong reasoning skills, and the ability to maintain attention 

[166,167,168••,169].
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Brain studies of compensated individuals have demonstrated that these individuals recruit 

additional regions not evident in typical controls or individuals with persistent dyslexia. For 

example, increased activation in the right inferior frontal gyrus (Figure 1b) has been reported 

across several studies during phonological processing in compensated individuals with 

dyslexia [164,170–172] and in response to intervention [173•].

A proposed integrative model

As discussed, dyslexia is an outcome of multiple risks and protective factors interacting at 

the genetic, neural, cognitive, and environmental levels. Therefore, a multidimensional 

etiological model is necessary for understanding dyslexia. Pennington [5] has proposed the 

multiple deficit model (MDM) of learning disabilities in which multiple etiological factors 

interact probabilistically to increase the liability for a disorder in a continuous and 

quantitative manner. Specifically, genetic and environmental factors interactively affect 

neural systems that in turn affect multiple cognitive processes, which together result in a risk 

profile for a single developmental disorder or multiple disorders. The MDM model provides 

a general framework for explaining comorbidity among developmental disorders, but it does 

not specify the components of each of the multifactorial levels of influence or their 

developmental trajectories. Van Bergen and colleagues [6] have extended the MDM into an 

intergenerational MDM (iMDM) by adding the intergenerational transmission of risk and of 

protective factors for learning disabilities. The extended model iMDM specifies the 

cognitive and familial environmental risk factors for dyslexia. It predicts a continuum of 

liability distribution for dyslexia and emphasizes the importance of parental cognitive 

abilities for evaluating risk in children.

The current paper further expands on MDM and iMDM by adopting a developmental 

approach and by specifying factors and mechanisms that contribute to the development of 

dyslexia. Figure 2 summarizes the components for each of the levels outlined by Pennington 

and van Bergen and further integrates them in a developmental framework that specifies the 

importance and sequel of these specific factors and mechanisms at each time point on the 

developmental axis as well as their developmental trajectories. Experimental evidence from 

neuroimaging, genetic, and behavioral studies has been incorporated to illustrate the 

independent significance of each of the components for dyslexia but also their reciprocal 

relationship. We hypothesize that this interplay between the various levels on the 

developmental axis determines the location(s) of the brain alterations, the severity of the 

alterations and the connectivity strength between brain structures that support reading. These 

factors can further adversely influence neural responses and the development of cognitive 

functions. These interplays most likely vary tremendously depending on the developmental 

time point and are strongly influences by a child’s environment. This is supported by studies 

that suggest that with the concomitant exposure to poor home literacy or instructional 

quality, the likelihood of FHD+ children to develop dyslexia further increases [142]. 

Although in the current paper psychological factors (e.g., motivation, self-efficacy) in 

dyslexia were not reviewed, they are nevertheless important and can serve as additional 

exacerbating or protective influences on reading development [174].
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Implications for educational practice and policy

It is important to exercise caution when attempting to translate findings from neuroscience to 

practices in education and policy. Misinterpretation and over-simplification of data can cause 

persistent neuromyths [175] that can in turn be used to justify inadequate practices [176]. 

Nevertheless, since the potential gains are invaluable, the task of attempting to translate 

emerging findings in the prolific field of dyslexia research to real-world practices is worth 

undertaking. Here, we highlight several contemporary challenges in education and discuss 

the potential role of neuroscience in addressing these.

Can neuroscience inform a definition of dyslexia?

The high behavioral heterogeneity of dyslexia prompted some to suggest to eliminate the 

term dyslexia all together [2]. Neuroimaging studies are beginning to inform several of the 

most contentious questions historically faced by the field: for instance, the field has debated 

whether a multi-deficit view of dyslexia should be accepted. Several studies so far have 

demonstrated that literacy skills such as PA and RAN are associated with distinct 

neuroanatomical regions [177–179] and that children with different profiles of deficit on 

these skills have unique patterns of activation during a reading-related task [180]. This 

supports the multi-deficit approach to dyslexia by suggesting that distinct brain mechanisms 

are associated with the various dyslexia profiles.

How do environmental factors influence a brain’s ability to read?

Environment has a powerful impact on brain development both prenatally and postnatally. In 

the case of dyslexia, language and literacy environments can both predispose children for 

reading failure and potentially protect them despite a genetic risk. Policies and interventions 

that encourage parents to optimize their home literacy environment, by increasing shared 

reading time and using rich child-directed speech, have been shown to have important 

positive impacts on language and reading outcomes [110,181]. Neuroscience can play 

several important roles in this domain. It can, for example, shed light on the underlying 

mechanism through which environmental factors influence reading circuitry. For instance, a 

relationship between home reading exposure and activation in left-hemispheric posterior 

regions of the reading network as well as brain areas supporting mental imagery and 

narrative comprehension has been recently demonstrated [182]. This in turn can inform (a) 

the development of specific interventions that focus on certain aspects of home language and 

literacy and (b) teaching practices in the classroom, especially for children with reduced 

language and home literacy exposure. Furthermore, imaging can potentially assist in 

quantifying the influence of environmental variables on the development of language and 

pre-reading networks in infants, at an age where standardized behavioral language measures 

often fail.

Is it feasible to utilize neuroscience for the early identification of dyslexia risk?

Emerging evidence suggests that neuroimaging can enhance the prediction of reading 

outcomes over behavioral measures [61,63,66–68,170,183,184••,185]. Furthermore, early 

neural alterations in dyslexia seem to predate reading onset and reflect the differential 

developmental trajectory of reading brain networks as the result of genetic predisposition for 
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dyslexia. However, to date, these alterations cannot serve as early biomarkers, and it is 

unclear whether we will ever have reliable biomarkers with appropriate levels of specificity 

and sensitivity. Nevertheless, if proven cost-efficient and if specificity and sensitivity are 

maximized, there may be the possibility to utilize neuroimaging to enhance the accuracy of 

early identification of risk most likely in a clinical setting. While several behavioral 

measures show promise in predicting which children will develop dyslexia even before 

reading onset [95,186], early identification requires a trade-off between specificity (i.e., 

reducing the rate of false positives) and sensitivity (i.e., reducing the rate of false negatives) 

of identification, which can often result in high rates of over/under-identification. An 

assessment battery for early identification that consists of behavioral measures as well as 

neuroimaging measures may be able to maximize the specificity and sensitivity with 

subsequent important implications for educational practice and policy.

When is the best time to intervene for atypical reading development?

It has been shown that targeted literacy interventions are most effective when administered 

in kindergarten and first grade [187,188]. Across six studies, after receiving intensive 

instruction (number of instruction hours ranged from 30 to over 300 across studies), 56–92% 

of the at-risk beginning readers reached the range of average reading ability [187]. A meta-

analysis comparing early intervention studies offering at least 100 sessions, reported larger 

effect sizes for intervention studies conducted with kindergarten and first graders than with 

children in 2nd and 3rd grades [188]. While these results strongly favor a customized 

intervention as early as possible, it may be possible to utilize neuroimaging to determine the 

optimal window of intervention in each child based on (individualized) neuroimaging 

measures of brain development.

Can brain measures assist us in determining school readiness?

Ensuring that all children enter school ready to learn is in important goal of education and 

policy [189]. School readiness is a multi-dimensional construct with many levels of intrinsic 

and environmental influences, and it has been suggested that one-dimensional behavioral 

measures attempting to capture whether a child possesses the emotional, behavioral, and 

cognitive skills needed to thrive in school are imprecise [190]. Additionally, performance on 

specific tasks, such as reading, is an outcome of multiple systems. For example, cognitive 

control, a strong predictor of school readiness, is closely linked with the affective system, 

but can also influence performance on behavioral measures of pre-literacy [189]. While poor 

cognitive control or ‘affective immaturity’ may indicate the need to delay school start and 

retain the child in a more intimate and individualized preschool setting, poor pre-literacy 

skills can instead signal the urgency for the formal literacy instruction available in 

kindergarten. Additionally, as discussed, neuroimaging methods can potentially reveal which 

specific neural systems are protracted in development or follow an alternative developmental 

trajectory in a particular child and therefore may inform decision-making.

What factors are important for shaping a ‘resilient’ reading brain?

As described above, several studies reported potential compensatory mechanisms that 

influence typical reading development in at-risk children. It remains unclear what the role of 

these compensatory regions is during the development of typical reading, under which 
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circumstances they form, if they are present prior to the onset of reading, and most 

importantly, which environmental or instructional factors may stimulate or hinder these 

alternative pathways. The answer to these questions can potentially inform a variety of 

educational decisions and help to build customized interventions. Children who grow up 

under adverse circumstances often display numerous brain alterations that affects a variety 

of neural circuits including the language and reading circuit [137••,191]. Neuroimaging can 

shed light on the relationship between protective environmental factors and the development 

of the reading network, for example, and most importantly its timeline in order to highlight 

and inform preventive strategies and interventions (e.g., does enhanced home literacy in 

infancy ‘remediate’ early atypical reading circuitry in children from low socioeconomic 

backgrounds?).

Which atypical reading brain learns best under which circumstances?

The multi-deficit view of dyslexia necessitates that intervention studies are individualized in 

order to optimize outcomes. Indeed, intervention studies have shown that treatment 

efficiency varies based on individual profiles of dyslexia [192,193]. Neuroimaging methods 

have revealed the potential to identify the unique differences across individuals with 

disorders, such as dyslexia, and relate those differences to future behavioral outcomes 

[194••]. For example, it has been shown that spatio-temporal brain activation profile in 

temporo-parietal regions, as measured with magnetoencephalography (MEG), prior to 

reading intervention in children with dyslexia predicted which children will actually benefit 

from the given intervention [195]. This suggests that children with neurobiological profiles 

that are more typical are more likely to respond well to intervention [173] and further 

highlights the role of compensatory neural mechanisms. In the future, neuroimaging may be 

utilized to determine which brain will benefit best from which intervention.

Conclusion

The current state of understanding the etiological basis of dyslexia requires cautious 

optimism. There is emerging understanding of each of the genetic, cognitive, neural, and 

environmental levels as well as the interaction among these levels. The appreciation of the 

complexity of dyslexia can offer multiple insights for further investigation and translation. 

Embracing a multifactorial model of dyslexia encourages greater interdisciplinary and a 

multiple-componential approach to studying and treating dyslexia.

Most importantly, using so called ‘brain-based’ tools in education for prediction and 

intervention is still out of reach (and may even be proven to be unfeasible). The limited 

number of studies, small sample sizes, and differences in criteria for defining dyslexia across 

neuroimaging studies hinder the generalizability of findings and their application to clinical 

population. Additionally, while neural measures enhance the overall prediction accuracy of 

behavioral measures, their additional contribution to date has been moderate and a cost-

efficiency model weighing important factors such as benefits and high costs of neuroimaging 

has not been computed yet.

Due to the complexity described above, the application of neuroscience in education has 

been described ‘a bridge too far’ [196]. Indeed, historically, attempts to translate research 
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findings to ‘real-world’ practices have been ridden with dubious brain-based recipes for 

practice and premature misinterpretations of data [176,197•]. Furthermore, there has been 

some resistance from practitioners to the one-sidedness with which scientific knowledge has 

been handed down from research labs into schools. Yet, cross-disciplinary research, 

described above for dyslexia, has become increasingly popular and prolific. As a result, 

much advancement important for education and policy has been made. With this paper we 

hope to contribute to an increasing body of knowledge on how neuroscience research can be 

integrated with applied work in early identification, prevention and intervention of dyslexia, 

thereby maximizing intellectual and psychological outcomes for those at-risk for dyslexia.
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Figure 1. 
Structural and functional brain alterations in children with a family history of dyslexia as 

compared to children without familial risk. Note alterations in the inferior frontal gyrus are 

only observed when children develop dyslexia.
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Figure 2. 
Left: a summary of risk factors for dyslexia at the genetic, neural, cognitive, and 

environmental levels along with a developmental timeline. Top right: a diagram illustration 

of the reciprocal relationships among the different domains. Bottom right: a diagram 

illustration of the possible protective factors and compensatory mechanisms for dyslexia.
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