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Abstract 

 

New communities form regularly in nature, as many species rush to colonise a 

freshly formed island, pool, or microbiome, but it is unclear what rules govern 

the arrangement of these founders into a smaller, stable community, or whether 

the process is predictable. 

I simultaneously inoculated a master mix of bacterial colonisers into 45 identical 

environments, and allowed them to compete and evolve for around three 

months. By the end of the experiment, the species compositions of these 

communities had split into two broad groups, defined mostly by the mutual 

exclusivity of two Pseudomonas species, which may represent the ecological 

equivalence of the two species. Due to this functional similarity, I propose that 

community formation may be predictable at an ecological level, if not a 

taxonomic level. 

I also explored one of the communities formed in this experiment in further 

detail, investigating the maintenance of its diversity and stability. The 

community was fairly stable, as every species was able to persist even when it 

began at a much lower population size than its competitors, and no diversity 

was lost after 4 weeks of culture. I grew the species from this community in 

monoculture, as well as in every possible pair, triplet, and quartet, to fully 

assess the network of interactions, and found evidence for many significant 

higher-order interactions, which have been shown to have a stabilising effect in 

theoretical models. 
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Introduction 

Community ecology, the study of how multiple species interact within a single 

environment, is at the core of many problems currently facing humanity. For 

example, the microbial communities that colonize the human body are regarded 

as increasingly important for host health (Lynch and Pedersen, 2016), 

conservation efforts are often targeted on keystone species such as predators 

which safeguard biodiversity within their communities (Sergio et al., 2006), and 

even agricultural yields are dependent on a healthy microbial community within 

the soil (Wood and Bradford, 2018). However, natural communities can be 

incredibly complex. For example, despite decades of intensive research, many 

of the hundreds of bacteria species that colonise the human gut remain 

uncharacterised (Rajilić-Stojanović and de Vos, 2014), and the diversity of the 

bacteriophages, viruses which play a predatory role in the gut ecosystem, is 

even less well understood (Manrique et al. 2017). The Amazon rainforest 

contains at least 6727 species of tree (Cardoso et al. 2017), all competing for 

the same basic resources of light, water, and pollination. Even much simpler 

communities can function in surprisingly complex ways, such as a collection of 

riverbed grazers in a North American stream where the removal of one grazer 

has cascading effects through two competing algae species to inhibit a second 

grazer (Creed, 1994). For this reason, community ecology has historically been 

a difficult field to study (McGill et al., 2006). 

Perhaps due to the difficulty of direct experimental work, there exists a rich 

history of theoretical investigation of community ecology. The classic view of 

community assembly is based on the concept of niches, where resources are 

divided up by different species that are all highly adapted to compete most 

effectively within their own spatial, temporal, and ecological window (MacArthur, 

1970). Diversity under this system is therefore maintained by the fact that no 

species can be the dominant competitor for all available resources, and must 

specialise on a specific subset. A core principle of this theory is the idea that 

two species cannot be completely equivalent competitors in the same 

environment; one must always drive the other to find a different niche, or else to 

extinction (Levin, 1970). However, there is increasing support for an opposing 

view, known as the neutral theory, where many species are ecologically 

equivalent, and able to maintain competing populations for at least long enough 
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for processes of speciation and migration to maintain diversity in an 

environment (Hubbell, 2001), and theoretical work has shown that neutral 

processes can result in patterns of abundance similar to those observed in 

nature (Bell, 2001).  

Compelling evidence exists for both perspectives. There are clear examples of 

competitive exclusion, such as the diverging perch heights of Carribean anoles 

(Losos, 1998) or the differentiation in host species for North American fruit flies 

(Feder, et al., 1988). Other environments, however, contain far more diversity 

than seems to reasonably reflect distinct niches, such as the near identical 

freshwater shrimp species inhabiting a North American glacier (Witt and Hebert, 

2000). Coral reef fish species have been found to overlap far more than 

expected in food preferences and habitat use, and this observation prompted 

the neutral-based ‘lottery hypothesis’, where diversity is maintained in highly 

unpredictable environments because no species is competitively superior 

enough to win the ‘lottery’ 100% of the time (Sale, 1977). Still, it remains 

possible that the diversity of available niches is being underestimated in these 

cases; Falster et al. (2017) showed that by including several important, but 

perhaps less obvious, axis of niche differentiation in their models, predictions 

that resemble real, natural communities could be obtained. Both theories likely 

have a role to play in building a comprehensive understanding of community 

ecology, and recent theoretical approaches have synthesised aspects of each 

(e.g. Vellend, 2017), but the exact balance is still a matter of debate. 

Taking the first steps into experimental exploration, many fields of study first 

establish broad principles with very simple model systems, such as Mendel’s 

peas (Mendel, 1965) or Darwin’s finches (Grant, 1986), which can then be 

tested and refined with more complex experiments. A similar approach has 

been taken with community ecology, where microbiological study allows far 

higher replication and ease of manipulation than other systems. In the very 

simplest cases, multiple strains or morphs of the same species have been used 

to approximate a community (Kassen et al., 2000), and these approaches have 

their uses, but it is unclear whether results from these systems can be 

extrapolated and applied to true communities. Great success has been found by 

assembling simple collections of bacteria or protists, and these models have 

been used to explore areas like the sequential assembly of communities 
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(Warren, Law, and Weatherby, 2003), or the effect of global warming on food 

webs (Petchey et al. 1999). In recent years, with molecular techniques such as 

16S sequencing and shotgun sequencing becoming easier and cheaper, the 

focus of microbial community ecology has shifted towards whole-community 

surveys of gut or soil biomes (e.g. Reichardt et al., 2017; Goldford et al., 2018), 

but even when these studies produce valuable experimental results, it can be 

very difficult to investigate the mechanisms that underlie them, as in many 

cases, integral species have not been isolated or well-described, and the 

communities are once again incredibly complex. There is room in the field to 

supplement modern, molecular techniques with a return to simple, well-

understood community models, especially where the interactions between all 

species are well characterised, and the community is shown to have inherent 

stability. Such a model could be used to test the response of a communities to 

factors such as predation, invasion, or environmental disturbance, with a large 

number of replicates and very quickly, and allow a far deeper insight into 

underlying mechanisms than other methods.  

One of the core advantages of a simple model community would be the 

possibility of exhaustively characterising the relationships between species. The 

number of potential relationships in a community rises exponentially with the 

total number of species, and most natural systems are far too complex to study 

more than a tiny subset of relationships, even though they are essential to the 

ecology of the community. Some species may not interact at all, or their 

interactions may be as distant and indirect as sharing a common resource or 

predator, but other relationships based on cross-feeding, parasitism, or 

predation may be essential to the fitness of one or both species. Increasing the 

complexity even further, on top of these direct interactions between pairs of 

species, higher-order interactions between triplets or larger groups can exist 

(Levine et al., 2017). These may take the form of interaction chains, where the 

mechanisms remain the same as the direct interactions, but where changing a 

population size changes the size of the effect, leading to a complicated cascade 

of influence. An example is the effect of the black rush Juncus geradi on the 

aphid species Uroleucon ambrosiae, where the rush has a positive effect on the 

aphid not because of any direct interaction, but because the aphid feeds on an 

elder species which benefits from the way the rush structures the soil (Levine et 
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al., 1998). Other higher-order interactions, sometimes described as true higher-

order interactions, even operate distinctly from the corresponding direct 

interactions. For example, the red-breasted nuthatch Sitta canadensis 

eavesdrops on the alarm calls of the black-capped chickadee Poecile 

atricapillus, which warn the birds of predation from raptors, and so the 

interaction between raptors and the nuthatch is distinctly different in the 

presence or absence of the chickadee (Templeton and Greene, 2007). Despite 

these charismatic examples, there still exists debate as to how common and 

important interspecific interactions are in natural communities. A recent study by 

Messier, McGill and Lechowicz (2010) found that in multiple surveyed natural 

communities of plants, within-species variation in key functional traits was just 

as high as between-species diversity. If this is true for most natural 

communities, can interspecific interactions be considered any more important 

than simple competition between any two individuals, regardless of species? By 

using a community simple enough to map every interaction, it would be possible 

to understand not only whether the species were interacting (directly and via 

higher-order effects), but also how important these interspecific interactions 

were for the species’ fitness. 

In this study, I have attempted to establish a simple model bacterial community, 

and used the opportunity to investigate the mechanisms underpinning its 

structure. In the first chapter I will detail the long-term co-culture of many 

bacteria species, and the variability of the resulting communities. Then, in the 

second chapter, I will focus on a single one of these communities and examine 

the mechanisms behind its stability by characterising the species interactions. 

Finally, I will provide a short summation of the study. 
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Chapter 1: The variability of community formation. 

Almost all biological species exist in the context of a community, and while the 

complexity of community ecology has historically slowed the establishment of 

broad principles (McGill et al., 2006), technical advances such as metagenomic 

analysis, and recent key publications such as Vellend’s (2016) synthesised 

theory have allowed some real progress in the field (e.g. Mouillot et al., 2013; 

Goldford et al., 2018). Historically, theoretical models (e.g. MacArthur, 1970; 

Hubbell, 2001) and simple, microbial systems (e.g. Kassen et al., 2000; Petchey 

et al. 1999) have been used reduce the complexity to such a degree that basic 

questions can be answered, and conclusions can then be explored in more 

complex, natural communities (Mayfield and Stouffer, 2017; González-Barrios 

and Álvarez-Filip, 2018). In many cases, these simple models still present the 

best opportunity to directly study the complex mechanics of interacting species. 

One of the most fundamental questions of community ecology is this: what rules 

govern the formation of biological communities?  

It may seem irrelevant in modern biology to investigate the formation of 

communities; at first glance, every environment on the planet has long since 

been colonised, and therefore it would seem far more relevant to study the 

development and succession of existing communities. However, on closer 

examination, the formation of novel communities is a perpetually relevant 

question, with immense importance to matters of health and conservation. 

Humans, and many other animals, are born with no microbiome, and are then 

colonised by microbial life from their parents and the environment (Bäckhed et 

al., 2015), the composition of which has a large impact on future health 

outcomes (Tamburini et al., 2016). Could we identify poorly forming 

communities early and intervene? Furthermore, not only do new volcanic 

islands rise from the sea, but other isolated environments such as lakes and 

coral reefs, which can follow the same ecological principles as islands 

(MacArthur and Wilson, 1967), form regularly and await colonisation. González-

Barrios and Álvarez-Filip (2018) found that certain species of coral are more 

effective at supporting a healthy reef than others. Would it be possible to 

manipulate the formation of a reef to favour these beneficial species? To 

answer questions such as these, we must first understand whether community 

formation is a fundamentally variable or invariant process. 
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Goldford et al. (2018) recently investigated the formation of microbial 

communities in very simple environments, by inoculating mixtures of bacteria 

species into single-nutrient media. These microcosms developed into 

surprisingly diverse communities, the composition of which they found to be 

variable at the species level, but invariant when species were grouped by 

family. 3 types of nutrient media were tested, and each promoted a different yet 

invariant composition at the family level. However, although the study confirmed 

that multiple taxa were indeed present in each community by plating on agar, 

they only used 16S sequencing to measure the actual composition of these 

communities, which can incorrectly estimate the proportions of species based 

on copy number (Louca et al., 2018). If this conclusion, that community 

formation is variable at the species level, but invariant at higher taxonomic 

ranks, could be replicated in multiple systems with multiple sampling methods, it 

could become an important facet in our understanding of community formation.  

Taken to its furthest extremes, however, this conclusion would not be 

particularly helpful or surprising, as a community will almost always be variable 

at the strain level, but invariant at the level of the Domain. The taxonomic 

similarity of species is not inherently meaningful in this context, but only as an 

approximation of phenotypic similarity; it is a reasonable assumption that 

species of the same genus will share phenotypic traits that are not shared with 

species of different genera (Martiny et al., 2012). Traditional niche theory 

suggests that environments contain certain niches that can be filled by 

organisms of a specific phenotype (Vandermeer, 1972). It may be that the 

specific species colonising a new environment will always be variable, but that it 

would be possible to predict and manipulate the ecological roles that colonising 

species will fill based on the environmental conditions. Goldford et al. (2018) did 

not directly investigate the mechanisms behind the variability in their 

communities, but it would be useful to determine whether species that appeared 

mutually exclusive between communities were in fact functionally equivalent. 

In this study, I carried out a similar experiment to Goldford et al. (2018), 

measuring the variability of community formation at multiple taxonomic ranks, 

with multiple sampling methods, then investigating the underpinnings of the 

variability in these communities. 
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Methods 

Experiment 1.1: Is community formation variable? 

To investigate the variability of community formation, I set up multiple 

communities under identical conditions, with identical founders, and compared 

their species composition over time.  

I inherited 27 bacteria species from another researcher in the same lab, 

originating from soil samples. Each species was from a unique genus, and was 

not identified below genus level. The genera covered were: Achromobacter, 

Acidovorax, Agromyces, Arthrobacter, Bacillus, Bordatella, Brevundimonas, 

Candidamonas, Cupriavidus, Devosia, Flavobacterium, Lysinibacillus, 

Microbacterium, Ochrobactrum, Oersboria, Paenibacillus, Paracoccus, 

Pedobacter, Pigmentiphaga, Pseudomonas, Pussillimonas, Rhizobium, 

Rhodococcus, Shinella, Staphylococcus, Stenotrophomonas, Variovorax. I only 

used these samples in the experiments covered here. However, later molecular 

work showed that multiple operational taxonomic units (OTUs) belonging to a 

single genus were present in the resulting communities, e.g. at least 3 separate 

OTUs of Pseudomonas were detected. It’s possible that the original isolates 

were not pure strains, or else the stocks were contaminated by additional 

species at some point. Nonetheless, due to the presence of these extra strains 

in almost every replicate of the experiment, it is clear that any potential 

contamination occurred before the experiment began, and should have affected 

all communities equally. 

These 27 species were used to create a master mix, then this mixture was 

inoculated into 48 separate 6 mL microcosms of TSB (Tryptone Soya Broth) 

media at 1/64th dilution, which were incubated statically at 28 oC. It was vital to 

ensure that multiple species would persist, or else the resulting cultures would 

not be communities, so I took several steps at this stage to encourage the 

coexistence of species. I expected that a complex medium such as TSB would 

provide many resource-based niches, while a static environment would provide 

multiple spatial niches, increasing the likelihood of multiple species coexisting. I 

also left these microcosms to grow for 5 weeks without the addition of any 

nutrients, before any data collection took place, which, along with the highly 
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diluted media, I hoped would encourage cross-feeding relationships to develop 

between species. 

After this 5-week ‘settling’ period, I began to passage 1% (60 μL) of each 

community into a fresh 6mL microcosm of 1/64th TSB every week, for 7 weeks. 

To measure species composition, I grew diluted samples of each community on 

KB (King’s medium B) agar plates, and counted the number of colonies of every 

morph (see Morph Definitions below) in every community, before the passage 

each week.  

To produce a second measure of community composition, I extracted DNA from 

all communities at weeks 3 and 6 of the experiment and performed a 

metagenomic analysis. All samples were subjected to 3 freeze-thaw cycles prior 

to help lyse the cells, then DNA was extracted using the Qiagen DNeasy Blood 

& Tissue Kit with pre-treatment for gram-negative bacteria. The extracted DNA 

was then tested for quality and quantity using 1% agarose gel electrophoresis, 

and the dsDNA HS kit with a Qubit Fluorometer. The 16S gene was amplified 

using PCR with 515F and 806R primers, then the sequencing was carried out 

using the standard protocols of an Illumina MiSeq machine. Paired-end reads 

were used with the Miseq Reagent Kit v2 (500 cycles) and run metrics of 250 

cycles using Miseq Control Software 2.2.0 and RTA 1.17.28. This sequence 

data was then analysed using the full stack workflow for microbiome analysis 

(Callahan et al., 2016) using the dada2 and phyloseq packages in R. Samples 

were pooled for species inference to improve the detection or rare variants, and 

taxonomy was assigned to Amplicon Sequence Variants (ASVs) using the 

Ribosomal Database Project (Cole et al., 2013). Sequencing and analysis was 

successful for all 96 samples, and 41 ASVs were assigned, with a mean of 

75565 reads per sample (minimum of 57801 reads, maximum of 92482 reads). 

Morph Definitions 

To measure the species composition of my communities as accurately as 

possible from plate counts, I first defined specific, visually distinct morphs to 

categorize colonies. Then, I counted the prevalence of each morph in each 

community, and took steps to see how closely my morph definitions aligned with 

actual species. I plated a single community at 3 weeks into the 5-week settling 

period, and defined as many morphs as I could, taking 2 isolates of each morph 

and growing them in monoculture. I then plated the monocultures and merged 
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morph definitions when two morphs appeared identical to each other in 

monoculture, or appeared on each other’s plates in monoculture, indicating that 

the difference between the morphs was either non-heritable or extremely 

plastic. At this point I had 13 morphs, of which 2 never appeared in plate counts 

after the settling period, leaving 11 morphs to comprise the plate count data. 

After the main body of the experiment, I needed to test how well the true 

species of a colony was estimated by morph identification, which I approached 

by sequencing isolated colonies. I picked 6 communities from the 48 available, 

and took isolates of every morph present in those communities. I then took 

isolates from additional communities to ensure that I had at least 3 samples 

from each time point (weeks 3 and 6) for each morph. One community was 

never observed from the second week of data collection onwards, so could not 

be confirmed by 16S sequencing, but was included in the analysis for the weeks 

where it was present. I used PCR on these samples to amplify the region of the 

16S gene between the 515F and 806R primers, and sequenced the results. 

Sequences were successfully extracted from 82 out of 95 samples, leaving at 

least 2 samples from each time point for each morph. 

Morph identification was mostly able to distinguish unique species, with 3 major 

exceptions (Figure 1). First, Morph B and Morph J represented the same 

Pseudomonas species, so the counts of those morphs were merged for the 

remainder of the analysis. A Cupriavidus species was only ever identified as 

Morph G, but the Pseudomonas species normally identified as Morph I was 

often also identified as Morph G. Similarly, an Achromobacter species was only 

ever identified as Morph D, but the Stenotrophomonas species normally 

identified as Morph C was also often identified as Morph D. Morph D and Morph 

G, therefore, were poor tools to measure true species abundance, as I was 

unable to accurately distinguish them by eye from other morphs during this 

experiment. After consideration, I decided to continue with the analysis, bearing 

this bias in mind, and interpreting counts of Morph D and Morph G as the 

species uniquely associated with them. The plate count data and 16S rDNA 

sequence data were both imperfect lenses through which to view these 

communities, but their biases (morph misidentification and copy number 

respectively) were independent of each other, so interpreting these datasets in 

tandem should lend clarity to the analysis. 
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Figure 1: True species identity for each morph in Experiment 1.1, derived from 

16S rDNA sequencing of clonal colony samples. Number of samples of each 

morph = 9(A); 10(B); 6(C); 9(D); 9(E); 11(F); 6(G); 8(H); 6(I); 8(J). 

 

Data Analysis 

If all 48 communities were very similar at the end of this experiment, the 

formation of these communities could be described as invariant, and if they 

were very different, or could be sorted into multiple distinct groups, their 

formation could be described as variable. In other words, if they formed a single 

cluster, they could be described as invariant, and if they formed multiple 

clusters, they could be described as variable, following Liu et al. (2008)’s 

definition of a cluster as data falling within a single, multivariate, normal 

distribution.  

I used Ward’s (1963) algorithm, along with the Bray-Curtis distance metric, to 

build a hierarchical tree of clusters and the sigclust2 algorithm (Kimes et al., 

2017) to move down the tree and determine significance at each node, in order 

to sort communities from any given time point or sampling method into 

significant clusters. I also wanted to test whether communities remained in the 
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same clusters across multiple weeks, or if they were randomly sorted into 

clusters each week. If clusters were present but not consistent across time 

points, these clusters could represent different states in a fluctuating system 

that was nonetheless very similar between replicates, just out of step.  To test 

this, I developed a ‘consistent clustering’ algorithm, which builds hierarchical 

cluster trees for data over multiple time points, then builds a single, combined 

tree, based on how often pairs of communities are in the same cluster across all 

time points (Box 1). 
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Box 1: The Consistent Clustering Algorithm 

Many methods exist to build hierarchical trees of nested clusters based on the 

similarities within a single dataset (Ward, 1963; Kaufman and Rousseeuw, 

1990). The consistent clustering algorithm is an attempt to build a hierarchical 

tree of nested clusters, incorporating how consistently similar labelled 

communities are across multiple observations (such as multiple time points). 

The algorithm builds hierarchical trees using any desired method for each 

observation individually (this study uses Ward’s (1963) method, then 

calculates the number of times each pair of communities shares a cluster 

across all time points). The inverse of this cluster-sharing count can then be 

used as the new distance matrix to build a new hierarchical cluster tree (again 

using any desired algorithm). The combined tree, in theory, should identify 

clusters more accurately than standard methods, by incorporating the 

consistency of clusters across time, and can then be used with significance 

tests such as sigclust2 (Kimes et al., 2017). 

I carried out many tests of both standard Ward clustering and consistent 

clustering, both along with sigclust2, on simulated datasets where the number 

of true clusters was already known (Figure B1). Consistent clustering was 

slightly less successful than standard clustering when only 2 time points were 

considered, although this difference was not significant (t-test; t3893.7 = 0.836, 

p = 0.403). However, consistent clustering was significantly more successful 

than standard clustering when there were 4 or 8 time points (t-test; t3693.8 = -

8.837, p < 0.001; t3694.1 = -17.536, p < 0.001). For these latter treatments, 

consistent clustering was particularly more effective when the clusters were 

roughly 1 standard deviation apart. Furthermore, consistent clustering was 

much less prone to overestimating the number of clusters (0.5% type 1 error) 

than standard methods (6.3% type 1 error), regardless of how many time 

points were used (t-test; t8483.8 = 28.114, p < 0.001).  

Consistent clustering was less successful than the standard Ward method 

when the clusters were distinct by less than a standard deviation (t-test; t4331.9 

= 3.807, p < 0.001), although neither method was at all successful in these 

cases (2.0% success and 3.4% success respectively). However, consistent 
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clustering was more successful than the standard ward method when the 

clusters were distinct by at least a standard deviation (t-test; t6879.8 = -21.587, 

p < 0.001), with much more respectable success (73.9% and 53.6% 

respectively). 

In conclusion, the simulation data suggests that the consistent clustering 

method is more effective than standard clustering at accurately identifying the 

number of clusters in a dataset, so long as data was sampled on at least 4 

time points, and the clusters are distinct by at least a standard deviation.  
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Figure B1: The cluster detection success of both Ward’s method (outer 

square) and the newly developed consistent clustering method (inner square), 

both using the sigclust2 algorithm to determine significance, in correctly 

identifying clusters in a simulated dataset. Simulated datasets comprised 8 

variables, all sampled from normal distributions, with between 10 and 100 

values (replicates). All datasets comprised of 2 true clusters, meaning that 

each replicate was randomly drawn from 1 of 2 different normal distributions, 

which were between 0.2 and 2 standard deviations apart. Simulated datasets 

were recalculated either 2, 4, or 8 times to simulate sampling communities at 

multiple time points. Each combination of replicate number, cluster distance, 

and time points was calculated 20 times for each algorithm, to determine the 

proportion of times each method would overestimate, underestimate, or 

correctly identify the number of clusters. 
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Goldford et al. (2018) found that community formation in their experiments was 

variable at higher taxonomic levels, but invariant at lower taxonomic levels. As a 

further test of this conclusion, I performed all analyses at both the genus and 

species level, and compared the results. 

3 out of 48 communities produced plates with no colonies at least once, 

probably due to a dilution error during plating, and since these communities 

were missing data for at least one time point, they were excluded from analysis. 
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Results 

Experiment 1.1: 

Community composition appeared to be broadly similar between communities, 

although quite different between sampling methods (Figure 2). The count data 

showed a much larger proportion of Achromobacter, while the 16S rDNA 

sequence data showed a much larger proportion of the species Pseudomonas 1 

and Pseudomonas 2. It was also apparent that these two Pseudomonas 

species were mutually exclusive.  

 

Figure 2: Species composition of each community at week 6 of Experiment 1.1, 

measured by both plate counts and 16S rDNA sequencing. Species shown are 

the 10 most abundant species from the sequence data, with all rarer species 

grouped into ‘Other’. 

Standard Ward (1963) clustering and sigclust2 (Kimes et al., 2017) analysis 

showed distinctly different results depending on the sampling method (Figure 3; 

Table 1; Table 2). Analysis of the count data found only a single cluster most 

weeks, but 2 or 3 significant clusters in some instances. In week 2 of the count 

data, there were more clusters at the genus level, and in week 3, there were 

more clusters at the species level, showing no clear support or denial of 

Goldford et al. (2018)’s conclusion that community formation was less variable 
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at higher taxonomic ranks. Conversely, analysis of the 16S rDNA sequence 

data showed 2 significant clusters at the species level, but a single cluster at the 

genus level, across both sampled weeks, showing strong support for Goldford 

et al. (2018)’s conclusion. 

 

Figure 3: NMDS projections of the dissimilarity between communities at each 

week of A: plate count data and B: 16S rDNA sequence data, analysed at both 

the genus and species level. Each significant cluster found by the sigclust2 

algorithm is indicated by a distinct grey polygon, so points falling within the 

same polygon represent communities that belong to the same cluster, and 

points within different polygons belong to different clusters. 
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Table 1: Statistical results from sigclust2 analysis of plate count data at each 

week of Experiment 1.1, showing the number of significant clusters, the p 

values at each significant split of the hierarchical clustering, and the cluster 

indices at each significant split of the hierarchical clustering. Results are shown 

grouping data both by species and genus. Cluster Index (CI) values are the test 

statistic of sigclust2, which show the degree of difference between two 

compared clusters, and are used to calculate the p-value. Significant p values 

(< 0.05) are shown in bold and with an asterisk. 

 Species Level Genus Level 

Week n 

clusters 

p values CI 

values 

n 

clusters 

p values CI 

values 

0 1 0.380 0.720 1 0.078 0.695 

1 2 0.003 * 0.426 2 0.016 * 0.521 

2 1 0.284 0.658 3 0.002; 

0.005 * 

0.657; 

0.441 

 

3 2 0.028 * 0.479 1 0.124 0.563 

4 1 0.114 0.524 1 0.194 0.555 

5 1 0.921 0.727 1 0.915 0.727 

6 1 0.316 0.658 1 0.716 0.679 
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Table 2: Statistical results from sigclust2 analysis of 16S rDNA sequence data 

at each week of Experiment 1.1, showing the number of significant clusters, the 

p values at each significant split of the hierarchical clustering, and the cluster 

indices at each significant split of the hierarchical clustering. Results are shown 

grouping data both by species and genus. Cluster Index (CI) values are the test 

statistic of sigclust2, which show the degree of difference between two 

compared clusters, and are used to calculate the p-value. Significant p values 

(< 0.05) are shown in bold and with an asterisk. 

 Species Level Genus Level 

Week n 

clusters 

p values CI 

values 

n 

clusters 

p values CI 

values 

3 2 < 0.0005 0.161 1 0.168 0.384 

6 2 < 0.0005 0.220 1 0.239 0.419 

 

Use of the consistent clustering algorithm along with sigclust2 analysis showed 

much more consistent results between sampling methods (Figure 4; Table 3). 

Both sampling methods showed 2 consistent, significant clusters at the species 

level, and a single consistent cluster at the genus level, showing support for 

Goldford et al. (2018)’s conclusion. 
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Figure 4: NMDS projections of the mean dissimilarity across all time points 

between communities from A: plate count data and B: 16S rDNA sequence 

data, analysed at both the genus and species level. Points within the same grey 

polygon represent communities that belong to the same significant cluster 

according to the sigclust2 algorithm and the consistent clustering algorithm, and 

points within different polygons belong to different clusters. In each panel, the 

point highlighted in pink represents the community sampled and used as P1 in 

Experiment 2.1, and the point highlighted in orange represents the community 

sampled and used as P2 in Experiment 2.1. 
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Table 3: Statistical results from sigclust2 and consistent clustering analysis of 

plate count data and 16S rDNA sequence data from Experiment 1.1, showing 

the number of significant clusters, the p values at each significant split of the 

hierarchical clustering, and the cluster indices at each significant split of the 

hierarchical clustering. Cluster Index (CI) values are the test statistic of 

sigclust2, which show the degree of difference between two compared clusters, 

and are used to calculate the p-value. Results are shown grouping data both by 

species and genus. Significant p values (< 0.05) are shown in bold and with an 

asterisk. 

 Species Level Genus Level 

Method n 

clusters 

p values CI 

values 

n 

clusters 

p values CI 

values 

Count 2 0.013 * 0.444 1 0.989 0.818 

16S 2 < 0.0005 0.127 1 1.000 0.852 

 

The independent clustering of communities was very similar between plate 

count and 16S rDNA sequencing data, with only 3 out of 45 communities 

assigned to different clusters depending on the sampling method (Figure 5). 

Species composition was similar between the two clusters, according to both 

sampling methods, except for a pair of Pseudomonas species, each of which 

hugely outnumbered the other in one of the clusters (Figure 6). 
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Figure 5: Cluster identity of all replicates of Experiment 1.1 for both plate count 

data and 16S rDNA sequencing data, showing whether each individual replicate 

community was assigned to the first or the second of two significant clusters. 

Dark grey squares indicate that the cluster identity of that replicate was the 

same according to both plate count data and 16S rDNA sequencing data, while 

lighter grey squares show that the cluster identity differed between sampling 

methods.  
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Figure 6: Mean species composition of each significant cluster found with the 

consistent clustering algorithm and the sigclust2 algorithm, for each sampling 

method used in Experiment 1.1. 
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Discussion 

Different sampling methods and analyses led to significantly different results in 

this experiment (Figures 2, 3, 4, & 6). For example, standard Ward clustering of 

the count data unusually showed that genus level had more clusters than the 

species level at some time points (Figure 3). These genus level clusters may 

have represented legitimate differences between communities that were 

obscured by noise at the species level, or else may have been caused by the 

clustering algorithm. Comparison of the count and 16S rDNA sequencing data 

seems to confirm that copy number bias (Louca et al., 2018) exaggerated the 

proportions of some species, most notably the Pseudomonas species (Figures 

2 and 6). This led to unwarranted statistical confidence in clusters based just on 

the 16S data (Figure 3), suggesting that caution should be taken when 

interpreting studies that rely entirely on 16S rDNA sequencing, such as 

Goldford et al.’s (2018). Nonetheless, when looking at patterns across all 

sampling methods and analyses, our results seem to support the same 

conclusion as Goldford et al.’s. It would have been impossible to predict, at the 

start of the experiment, which community would fall into which cluster, as all 45 

communities grew under identical conditions, but developed into distinctly 

different species compositions (Figure 4). However, the composition of these 

communities was invariant at the genus level, which suggests that it may be 

possible to predict and manipulate the formation of communities at broad 

taxonomic levels. 

As previously discussed, functional predictability may be the underlying cause 

of this taxonomic predictability, assuming that closely related species share 

similar phenotypes.  This assumption may not always be true, particularly in 

bacterial communities due to their capacity for horizontal gene transfer, but at 

least in general, closely related bacteria species share traits more often than 

would be expected through chance alone (Martiny et al., 2015). However, the 

link between taxonomy and phenotype varies in strength depending on the trait 

in question. For example, the ability to metabolise particular carbon sources has 

been found to vary even between closely related species (Martiny et al., 2012), 

so if the formation of a community was primarily governed by the available 

metabolites, the metabolite-imposed structure may not be apparent from the 

taxonomy of the community.  
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The two clusters in Experiment 1.1 differed primarily in their proportions of two 

Pseudomonas species (Figure 6), which appeared to grow almost exclusively in 

communities where the other did not (Figure 2). This prediction could be 

confirmed by exploring the ability of the two species to invade communities both 

where the other is present, and where the other is not. If each species was able 

to prevent the other from invading into its community, that would be strong 

evidence for true mutual exclusivity. In fact, this experiment was attempted, but 

suspected contamination issues undermined confidence in the results, so the 

experiment is being repeated and will be reported elsewhere.  

If this apparent mutual exclusivity were to be confirmed, it would be evocative of 

the competitive exclusion principle (Levin, 1970), which suggests that close 

competitors are unable to coexist, and one will always drive the other to 

extinction, or promote divergent evolution (eg. Stuart et al., 2014), making it 

highly likely that these two Pseudomonas species would share a similar niche 

and a similar phenotype. This would seem to confirm that the invariant, genus 

level structure of communities formed in Experiment 1.1 (Figure 4) was based 

on an invariant set of niches, or ecological roles, provided by the environment, 

which species were able to slot into as colonisation occured. This would line up 

with several existing natural observations. Sale’s (1977) observation of coral 

reef fishes gave rise to the lottery hypothesis, where individuals of competitively 

equivalent species live or die based on luck-of-the-draw resource assignment. 

The two Pseudomonas species in this model may be such species, only 

dominating in any given community by random chance, and as in the lottery 

hypothesis a stable equilibrium between the two may be found in a more 

complex model that involved dispersal and multiple environments to colonise. 

Messier, McGill and Lechowicz (2010) also found that plant communities had 

very variable species composition between sites in the same environment, but 

very low trait variation, suggesting again the kind of functional community 

assembly that may be at work in this model.  

If this principle holds true, predicting community formation would still be a 

daunting task with great complexity, particularly as many species open up new 

niches by creating spatial structure (eg. Foster et al., 2013) or producing waste 

that other species can utilise (eg. Belenguer et al., 2006), so the task would not 

be as simple as merely understanding the abiotic environment. Nonetheless, 



32 
 

the results of this study suggest that it would be at least possible to predict the 

ecological composition of a forming community, so long as the raw environment 

and the pool of possible founders were well understood. 

In this experiment, every species was introduced to the sterile environment 

simultaneously, but in nature this is unlikely to be the case. Species which 

arrive first are able to adapt to the local environment before they are forced to 

compete with other community members, which can significantly impact the 

composition of a resulting community (Gómez et al., 2016), and could in theory 

increase or decrease the variability of community formation. Some species 

depend on being the first to reach a new environment, and invest energy into 

strategies to achieve this, such as pioneer tree species which grow seeds with 

wind-catching sails or bribe animals into carrying their seeds (Dalling et al., 

2002). Similarly, the first species to colonise the human microbiome, at least for 

traditionally delivered babies, are those found in the mother’s vaginal tract 

(Dominguez-Bello et al., 2010). Given the importance of a community’s 

founders to its eventual composition, a consistent set of pioneer species might 

greatly decrease the variability of community formation. Conversely, if there is 

no structure to which species arrive first, founder effects could simply serve to 

magnify the randomness of the process. Investigating the effects of colonisation 

order on the variability of community formation might be an interesting area for 

future study. 

In conclusion, by replicating a community formation event in bacteria, I was able 

to determine that the structure of the resulting community was variable at the 

species level, but invariant at the genus level. This variability was mostly 

underpinned by the near mutual exclusivity of two Pseudomonas species, which 

may be functionally equivalent competitors. These results suggest that the 

ecological structure of a community could be predicted from its founders and 

the environment. 
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Chapter 2: Higher-order interactions within a stable community. 

The diversity of communities in the natural world is significantly higher than we 

would expect based on classical ecological theory. The principle of competitive 

exclusion predicts that closely competing species cannot coexist (Hardin, 1960), 

yet we can observe far larger numbers of species in stable communities than 

we can reasonably assume to not compete with each other (Hutchinson, 1961). 

How is this diversity maintained? 

Several theories have been put forward to explain the high degree of diversity in 

nature. The first, unstable coexistence, proposes that species of very similar 

fitness are not truly coexisting, but simply driving each other to extinction so 

slowly that speciation and migration are able to maintain diversity (Hubbell, 

1997). Conversely, theories of stable coexistence suggest that multiple species, 

even close competitors, can coexist indefinitely without outside influence 

(Chesson, 2000). One such theory is the idea of intransitive networks (Allesina 

and Levine, 2011), where organisms are competing for multiple resources, but 

different organisms are the dominant competitors for different resources. A 

theoretical model has shown that intransitive networks can support a large 

number of competitors, although the model also led to some unusual results, 

such as only supporting an odd number of species (Allesina and Levine, 2011). 

However, intransitive networks have indeed been shown to maintain diversity in 

competing plant species (Lankau et al., 2010). 

The interactions between multiple trophic levels can also have a stabilising 

influence on communities. One example is cross-feeding (Ribeck and Lenski, 

2015), where organisms feed off the waste metabolites of other community 

members, which can increase the diversity of available resources, creating 

more niches and higher species diversity. Cross feeding is well established in 

laboratory studies (Pfeiffer and Bonhoeffer, 2004; Ribeck and Lenski, 2015), but 

it has unclear relevance outside of the microbial world. Both predator-prey 

interactions and parasitism may also help to reduce the pressure of direct 

competition, as dominant competitors will find themselves targeted more by 

their enemies as their population sizes grow, and rarer species targeted less 

(Hastings and Godfray, 1999; Murdoch, 1969). This kind of dynamic is known 

as negative frequency-dependent selection, where the fitness of any individual 
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species increases as it gets rarer (Levin, 1988), and is a hallmark of any stable 

community. 

Another promising, but relatively untested, explanation for diversity 

maintenance is the concept of higher-order interactions (Levine et al., 2017). 

Even if the direct interactions between species are competitive and reduce the 

fitness of both competitors, it is plausible that the nature of these interactions 

change in the presence of other species, reducing the pressure of competition 

or even having a positive effect on fitness. This could be through multiple 

competitive interactions reducing the population size of a species to the point 

where its competitive effects on any other species would be weakened (known 

as interaction chains), or a more complex mechanism where one or more 

species alters the relationship between two others (true higher-order 

interactions). Theoretical models have shown that even random higher-order 

interactions can have a stabilising influence on high-diversity communities 

(Bairey, Kelsic and Kishony, 2016), but the prevalence of these effects in nature 

is difficult to test, due to the complexity of measuring higher-order interactions 

within large communities. 

The simple microbial communities formed in Chapter 1 present a valuable 

opportunity to investigate the role of higher-order interactions in maintaining 

diversity. Previous studies have only been able to study either a fraction of the 

possible interactions within a natural community, or all interactions within a 

subset of an existing community. Mayfield and Stouffer (2017) found compelling 

evidence for the presence of higher-order interactions within a natural 

community of annual plants, but were only able to study interactions between 

species they observed in close proximity, and interactions between groups of 

species of four or more were not considered. Sanchez-Gorostiaga et al. (2018) 

found multiple higher-order interactions within a consortia of soil bacteria, but 

these species (6 out of 7 of which shared a genus) were removed from their 

natural context, and it seemed that all significant higher-order interactions were 

caused by a single redundancy effect, based on one species lacking a vitamin 

required for growth. Within a 5-species community, there are enough 

combinations of more than one species (26) to thoroughly explore the concept, 

but few enough that an exhaustive investigation would be possible. 
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I performed a series of experiments to test for negative frequency-dependent 

selection, to determine if species were stably coexisting, in the resulting 

communities from Chapter 1, and then investigated whether higher-order 

interactions could explain the maintenance of diversity in these communities.  
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Methods 

Experiment 2.1: Are the focal communities stable? 

To test if the focal communities were truly stable, I tested to see if individual 

species would be able to recover from a much lower starting frequency than the 

rest of the community, which would indicate the stabilising presence of negative 

frequency-dependent selection. 

I picked a community from Experiment 1.1 which showed the presence of P1 

(Pseudomonas_1 in Figure 2) but not P2 (Pseudomonas_2 in Figure 2), and 

isolated a clone of each visually identifiable species. In addition to P1, 4 other 

species were isolated: a Stenotrophomonas species; an Achromobacter 

species; a Variovorax species; and an Ochrobactrum species. I grew these 

species for 2 days in 6 mL static microcosms of 1/64th TSB at 28oC. I had 

previously calculated the relationship between optical density and cell density in 

these species, so I used these formulas to estimate the density of cells in each 

monoculture. I then set up communities with 3 replicates in each of 5 

treatments: -P, where an equal density of Stenotrophomonas, Achromobacter, 

Variovorax, and Ochrobactrum were inoculated into a fresh microcosm, along 

with Pseudomonas at 0.01 times the density; -S, where Stenotrophomonas was 

0.01 times the density of the other 4 species; and so on for -A, -V, and -O 

treatments. I then repeated the entire process, but for a community showing the 

presence of P2 but not P1. The same 4 additional species were present in the 

P2 communities, but they were likely to be slightly different than the P1 

community species after many weeks of separate coevolution. 

All 5 treatments from each community were grown at 28oC and plated out every 

day for 3 days, with the first plating taking place 24 hours after the communities 

were set up. 

Data Analysis 

To determine if invasions were successful in any given treatment, I first 

calculated the proportion of the invader at the end of the experiment relative to 

its proportion at the beginning, using the formula:  

𝑣 =
𝑝1(1 − 𝑝0)

𝑝0(1 − 𝑝1)
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where p0 was the starting proportion of the invader, and p1 was the final 

proportion of the invader. I then used a one sample t-test to compare the values 

of v for each treatment to a mean of 1.  If, for example, the Pseudomonas 

species grew to be significantly more abundant than its initial 100-fold lower 

density in the -P treatment, that would be strong evidence for the presence of 

negative frequency-dependent selection, where the fitness of an individual 

Pseudomonas cell is higher as the species becomes rarer (Levin, 1988). If 

negative frequency-dependent selection acted upon every species within a 

community, that would be strong evidence for the stability of that community. 

 

Experiment 2.2: Are higher-order interactions present? 

To test whether the stability of the focal community was mediated entirely by 

pairwise competition, or whether there was a significant influence of higher-

order interactions, I grew and observed the species in every possible 

combination, then tested to see which model best fit the abundances of each 

species in each treatment.  

I selected the P2 community from Experiment 2.1 as a focus, due to its greater 

species persistence in Experiment 2.1 (Figure 7). I grew in monoculture all 5 

species from this community, for 2 days in 6 mL static microcosms of 1/64th 

TSB at 28oC. I then used these monocultures to set up 3 replicates for each of 

30 treatments: P, where 20 μL of Pseudomonas was inoculated into a fresh 

microcosm; PS, where 20 μL of both Pseudomonas and Stenotrophomonas 

were inoculated; PSA, where 20 μL of Pseudomonas, Stenotrophomonas, and 

Achromobacter were inoculated; and so on for the treatments S, A, V, O, PA, 

PV, PO, SA, SV, SO, AV, AO, VO, PSV, PSO, PAV, PAO, PVO, SAV, SAO, 

SVO, AVO, PSAV, PSAO, PSVO, PAVO, and SAVO. 6 replicates of the full 

community (PSAVO) treatment were also set up, to collect more data on the 

stability of the full community. All of these microcosms were left to grow for a 

week at 28oC before they were plated and 1% (60 μL) of each was passaged 

into a fresh microcosm. This process was repeated for 4 weeks. 

Data Analysis 
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I constructed a data table where the counts of all species in every treatment 

were recorded, even when the treatment did not include every species. For 

example, for the P treatment, where only Pseudomonas was inoculated, I listed 

the counts of Stenotrophomonas, Achromobacter, Variovorax, and 

Ochrobactrum as 0. In this manner, I synthesised the results of all treatments 

into a single set of data, which could be used to construct predictive models. 

I approached this analysis by treating each of the 5 species in turn as the focal 

species, and testing whether higher-order interactions were necessary to 

explain the abundance of the focal species across different treatments. In other 

words, I produced 5 sets of models, where for each set, the counts of the focal 

species were considered the dependent variable, and the counts of the other 4 

species were considered the dependent variables. 

I followed the framework of Mayfield and Stouffer (2017) by constructing 

negative binomial models, with a additional adjustments. Firstly, Mayfield and 

Stouffer used a single focal individual, while I am using a focal population, and 

they observed individual plants as competitors, while I observed competitor 

populations. As a result, I used estimated population size as a measure of 

fitness, rather than fecundity, and I removed terms in the model relating to 

intraspecific competition, which I was unable to measure. Secondly, Mayfield 

and Stouffer only included first and second-order interactions in their model (i.e. 

direct effects, and interactions between pairs of competitors), but I have 

sufficient data to also estimate third and fourth-order effects (interactions 

between triplets and quartets of competitors), so I added appropriate terms to 

the model. The new model took the general form: 

𝑃𝑖|{𝑁} =  𝜆𝑖𝑒𝐴𝑖|{𝑁}𝑒𝐵𝑖|{𝑁}𝑒𝐶𝑖|{𝑁}𝑒𝐷𝑖|{𝑁}𝑒𝐸𝑖|{𝑁} 

where 𝑃𝑖 was the population size of the focal species 𝑖 when grown alongside 

the multiple listed species included in the term {𝑁}, 𝜆𝑖 was the population size of 

the focal species 𝑖 when grown in monoculture, and the exponentials captured 

the direct (𝐴𝑖|{𝑁}) and higher-order (𝐵𝑖|{𝑁}, 𝐶𝑖|{𝑁}, …) effects of the other 

species {𝑁} on the population size of focal species 𝑖.  

The direct effects were described by: 
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𝐴𝑖|{𝑁} =  − ∑ 𝛼𝑖𝑗𝑃𝑗

𝑆

𝑗=1
 

where 𝑃𝑗 was the population size of the individual competitor species 𝑗, 𝛼𝑖𝑗 was 

the effect of the individual competitor species 𝑗 on the population size of the 

focal species 𝑖, and the sum was across all competing species 𝑆. The second-

order effects were described by: 

𝐵𝑖|{𝑁} =  −(∑ ∑ 𝛽𝑖𝑗𝑘𝑃𝑗𝑃𝑘

𝑆

𝑘=𝑗+1
)

𝑆

𝑗=1
 

where any repeated terms were the same as the direct effect equation, 𝑃𝑘 was 

the population size of the second individual competitor species 𝑘, and 𝛽𝑖𝑗𝑘  was 

the effect of the interaction between species 𝑗 and 𝑘 on the population size of 

species 𝑖. The third and fourth-order effects followed the same pattern, adding 

terms 𝑙 and 𝑚 for the third and fourth interacting species. 

Again taking the lead from Mayfield and Stouffer (2017), I tested the fit of a 

selection of models against my data, for each focal species. The models tested 

were: a null model, where competing species had no effect on the population 

size of the focal species; a direct interaction model, where only the direct effects 

were included; and second, third, and fourth order interaction models. I then 

used the Akaike Information Criterion (AIC), which tests the fit of models and 

penalises them more as they increase in complexity (Bozdogan, 1987), to 

evaluate each model, and selected the model for each focal species with the 

lowest AIC value as the most parsimonious. For example, I produced a set of 

models with Pseudomonas as the focal species: a null model, a direct 

interaction model, a second-order interaction model, and so forth. Whichever of 

these models had the lowest AIC value was considered the most effective 

model in explaining the population size of Pseudomonas, when given the 

population sizes of the other species. 
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Results 

Experiment 2.1: 

After correction for multiple t-tests using the Sequential Bonferroni correction 

(Rice, 1989), in the P1 community, Stenotrophomonas, Achromobacter, and 

Ochrobactrum were significantly successful in invading a community of the 

other species (Figure 6; Table 4). The proportion of Variovorax also fell 

drastically in every other treatment for this community, and was not observed in 

9 out of 15 total communities. 

In the P2 community, only Pseudomonas was significantly successful in 

invading a community of the other species (Figure 6; Table 4). However, every 

species, including invading species, was observed in every replicate of every 

treatment by day 3.  

When combining the results of the two communities, Stenotrophomonas, 

Achromobacter, and Ochrobactrum were significantly successful invaders, while 

the other two species were not (Table 5). 



41 
 

 

Figure 7: The mean proportion of each species in each treatment in each 

community of Experiment 2.1, across 4 days, with ±1 standard error bars. In 

each panel, the thicker line with the dark grey border shows the invading 

species. n = 3 for each combination of invading species and community. 
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Table 4: Statistical results from one-tailed t-tests comparing the values of the 

invasion success parameter v to a mean of 1, for each species invading into 

each community in Experiment 2.1, where v greater than 1 indicates a 

successful invasion. Significant p-values after Sequential Bonferroni correction 

(Rice, 1989) are shown in bold and with an asterisk. 

 P1 P2 

Genus t-value df p-value t-value df p-value 

Pseudomonas 3.579 2 0.035 7.879 2 0.008 * 

Stenotrophomonas 5.963 2 0.014 * 4.744 2 0.021 

Achromobacter 7.340 2 0.009 * 2.360 2 0.071 

Variovorax -0.938 2 0.776 1.712 2 0.115 

Ochrobactrum 6.779 2 0.011 * 5.747 2 0.014 

 

Table 5: Statistical results from one-tailed t-tests comparing the values of the 

invasion success parameter v to a mean of 1, for each species invading 

combined treatments in Experiment 2.1, where v greater than 1 indicates a 

successful invasion. Significant p-values after Sequential Bonferroni correction 

(Rice, 1989) are shown in bold and with an asterisk. 

 P1 + P2 

Genus t-value df p-value 

Pseudomonas 2.296 5 0.035 

Stenotrophomonas 3.572 5 0.008 * 

Achromobacter 4.400 5 0.003 * 

Variovorax 1.340 5 0.119 

Ochrobactrum 9.796 5 < 0.0005 

 

Experiment 2.2: 

Simpson’s diversity of the full community treatment remained stable over the 

course of this experiment, and in fact increased slightly (Figure 8; linear 

regression; R2 = 0.230, p = 0.018). This slight increase was probably just an 

artefact of the community settling in week 1, as, if the data from week 1 is 

excluded, the effect disappears (linear regression; R2 = 0.052, p = 0.362). 
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Figure 8: The Simpson’s diversity index of the full community treatment 

(PSAVO) in Experiment 2.2 across 4 weeks, with a dotted grey regression line. 

Dots for each week show the diversity of individual replicates. 

According to the Akaike Information Criterion, the third-order interaction models 

were selected as the most parsimonious in explaining the populations of every 

focal species (Table 6).  Multiple higher-order terms were significant in the most 

parsimonious models for every focal species (Figure 10; Supplementary Tables 

1-5). No significant direct interactions were positive, while 16.7% of significant 

second-order interactions were positive and 60.0% of third-order interactions 

were positive. 
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Table 6: Akaike Information Criterion values for each model for each focal 

species in Experiment 2.2, which indicates model parsimony and penalises 

models as they become more complex. The lowest AIC value for each focal 

species, indicating the most parsimonious model, is in bold and with an asterisk. 

 Akaike Information Criterion (AIC) 

Model Null Direct 
2nd 

Order 

3rd 

Order 

4th 

Order 

Pseudomonas 420.8 383.3 374.3 372.3 * 372.5 

Stenotrophomonas 599.5 572.0 519.5 500.7 * 501.3 

Achromobacter 539.3 519.3 493.5 480.2 * 481.7 

Variovorax 421.8 413.3 402.4 401.2 * 403.2 

Ochrobactrum 502.1 467.7 454.7 443.5 * 444.5 
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Figure 9: The model parameters of the most parsimonious model for each 

species, showing the influence of each direct and higher order interaction on the 

population size of the focal species, in logits. All data is displayed as absolute 

values, where dark grey bars indicate a negative effect on the focal species and 

light grey bars indicate a positive effect. Data was also transformed by addition, 

so that the minimum value on each plot was raised above zero to 10-4, allowing 

data to be displayed on a log10 scale for easier comparison. Significant 

parameters are indicated by asterisks. The dotted horizontal line on each plot 

shows the level of zero influence. 
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The direct relationships between species comprised of 3 -/- relationships (P:S, 

P:A, & P:O), 4 -/0 relationships (V:P, V:S, V:A & O:S), and 3 0/0 relationships 

(S:A, A:O, V:O)). Pseudomonas is the only species to interact directly with 

every other species, and is further affected by two positive second-order 

interactions, and 2 negative third-order interactions. Stenotrophomonas does 

not interact directly with Achromobacter, but is affected by four negative 

second-order interactions, and three third-order interactions. Achromobacter is 

mostly negatively affected by both direct effects and higher-order interactions, 

with the exception of a positive influence from the triplet SVO. Variovorax is 

significantly affected by the least interactions, only by a single negative second-

order interaction, and 2 positive third-order interactions. Ochrobactrum is only 

directly affected by Pseudomonas, but is affected by 4 negative second-order 

interactions, and a single positive effect from the triplet PSV (Figure 10). 
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Figure 10: Full interaction chart of significant interactions in the 5-species 

community, including significant higher-order effects. Arrows from a labelled, 

solid-colour circle to another labelled, solid-colour circle indicate the direct 

influence of the first species on the second. Arrows from smaller, multicoloured 

circles to labelled, solid-colour circles indicate the higher-order influence of the 

pair or triplet of species on the individual species. Arrows lighter than the 

background indicate a positive influence, and arrows darker than the 

background indicate a negative influence. 
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Discussion 

The 5-species community shows a certain degree of stability, but the results of 

this experiment are not entirely conclusive. Experiment 2.1 shows that all 

species were able to persist when invading-from-rare (Figure 7), and in 

Experiment 2.2 the diversity of the full community remained constant for the full 

4 weeks (Figure 8). However, only Pseudomonas was able to significantly 

increase in proportion when invading-from-rare in community P2, and this only 

increased to three out of five species when the results were combined with 

community P1. Therefore, the possibility that this community is unstable and 

would lose diversity incredibly slowly cannot be dismissed, although Experiment 

2.2 shows that it is stable enough to maintain diversity long enough for use as a 

model system. Even if this community would very slowly drive itself towards a 

monoculture, some theories suggest that the same would be true of many 

natural communities without the diversifying influences of speciation and 

migration (Hubbell, 2001). 

The significant direct interactions between species were entirely competitive 

(Figure 10), although the positive effect of Pseudomonas on Variovorax came 

close to significance (p < 0.1). It is possible that Variovorax cross-feeds from 

Pseudomonas, or that it can increase its fitness by exploiting a biofilm or other 

common-good that another Pseudomonas creates. Despite the competitive 

interactions in this system, even when the species were grown in pairs, no 

species was completely driven to extinction by any other (Figure 9), which may 

suggest that none of the species’ resource-requirements completely overlap 

with any other (unlike the two competing Pseudomonas species in Experiment 

1.2). This could be explained by evolutionary trade-offs in resource use (Kneitel 

and Chase, 2003), where species have specialised to most effectively use a 

specific subset of resources, creating a stabilising intransitive network as 

described by Allesina and Levine (2011). Additional invasion-from-rare 

experiments using pairs of species could confirm the separate niches of these 

species. However, neutral theory (Hubbell, 2001) casts doubt on the prevalence 

of competitive exclusion in natural systems, and could also explain the 

observed coexistence between these species if they were simply ecologically 

equivalent competitors. 
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The higher-order interactions within the 5-species community had more 

complex mix of positive and negative effects. The significant second-order 

effects remained mostly negative, while the significant third-order effects had a 

mostly positive influence on other species, which supports Bairey, Kelsic and 

Kishony (2016)’s finding from theoretical models that third-order effects 

specifically have a stabilising influence and allow for greater diversity. This 

shows that higher-order interactions are likely responsible for some degree of 

the stability of this 5-species community, although other mechanisms are almost 

certainly at work. Achromobacter and Ochrobactrum, for example, are each 

only significantly influenced by a single, relatively weak, positive effect, 

compared to a large number of strong negative effects (Figure 9), which does 

not seem to explain their stability in the community (Figure 7). An intransitive 

network, as described above, or some other mechanism, likely supports these 

species. 

Experiment 2.2 showed compelling evidence for the presence of many 

significant high-order interactions within the 5-species community. However, 

recent results from Messier, McGill and Lechowicz (2010) found that in some 

communities, the variation within-species can be just as large as the variation 

between-species, casting doubt on the importance of interspecies interactions 

in general. It is possible that the strong interspecific interactions observed here 

are merely the result of a very young community, where all the species had 

recently gone through a severe bottleneck (inoculation) and were not as diverse 

as species within a natural community would be. In that case, theoretically, as 

the intraspecific diversity in this community increased, the interspecific 

interactions would gradually fade away. Nonetheless, it is worth remembering 

that even relatively simple organisms like bacteria have a large variety of traits, 

such as cell-wall type, motility, replication time, resource use, oxygen tolerance, 

and so on. Even if intraspecific variation is so high that species are barely 

distinct in any one of these categories, the combination of all of them leaves a 

lot of space for species to hold a unique identity. Along with the findings of 

Mayfield and Stouffer (2017) and Sanchez-Gorostiaga et al. (2018), these 

results begin to suggest that higher-order interactions could be important 

ecological features in many communities.  
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In conclusion, I found evidence for the stability of a 5-species community from 

Chapter 1, in the form of negative frequency-dependent selection affecting 

some species, and persistent diversity over multiple weeks. Furthermore, I have 

begun to uncover the mechanisms maintaining this stability, with evidence 

shown for higher-order interactions and a possible intransitive network. 
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Conclusion 

Over the course of this study, I used a simple microbial model to investigate 

several facets of community ecology. In this process, I have begun to provide 

answers to some open questions in community ecology, such as the balance 

between niche and neutral assembly, and the prevalence of higher-order 

interactions, as well as establishing a valuable model system for future work. 

I found that the focal microbial communities assembled into a broadly 

predictable structure at the genus level, but that the structure was variable at 

the species level. This variation was underpinned by two almost mutually 

exclusive Pseudomonas species, which may have been ecologically equivalent. 

This lends support to the niche-determined theory of community assembly, as 

community formation was more predictable than the random processes 

predicted by the neutral model, and at least partially based on ecological roles. I 

studied one of the communities in further detail, and found it to be fairly stable, 

as it was able to maintain its diversity for at least 4 weeks, and every species 

was able to persist in an invasion-from-rare experiment. The interactions 

between species in this community were exhaustively characterised, and 

interestingly multiple higher-order interactions were found to have a significant 

influence on the abundances of species. These higher-order interactions were 

partially able to explain the maintenance of the community’s diversity, although 

it is likely that an intransitive network or other mechanisms were also at work. 

The model system established in these experiments, where a 5-species 

community is cultured in 1/64th TSB medium and subject to a 1% bottleneck 

every 24 hours, has great potential as a model system for community ecology 

studies. The model is simple, with a small number of species, yet still a true 

community, with a demonstrated degree of stability, and it can be easily 

cultured and measured with simple laboratory techniques. In the first chapter, I 

have shown that the structure of this community is likely based on ecological 

niches, and in the second chapter I have characterised the complex 

relationships between species. All this information will be invaluable in 

interpreting the results of future studies. This model could be used to quickly 

and effectively investigate phenomena such as the effect of phage predation on 
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stability, the factors that mediate a community’s resilience to invasion, or its 

response to regular disturbance.  

In conclusion, this study has shed some light on the structure of biological 

communities, and shown one of the strongest examples to date of higher-order 

interactions at work within a community. In addition, it has provided a valuable 

model system for use in future research, which should lead to many more 

discoveries. 
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Supplementary Tables 

Table S1: The estimates and p-values of all model terms in the most 

parsimonious model to explain the abundance of Pseudomonas in the presence 

of other species. Significant p values (< 0.05) are shown in bold and with an 

asterisk. 

 Influence on Pseudomonas 

Treatment Estimate (per CFU) p-value 

Monoculture 4.512 < 0.0005 

S -1.612e-03 < 0.0005 

A -4.915e-03 0.001 * 

V -7.928e-03 < 0.0005 

O -5.854e-03 < 0.0005 

S:A -5.833e-06 0.379 

S:V 6.233e-06 0.541 

S:O 1.254e-05 0.114 

A:V 1.684e-04 < 0.0005 

A:O 4.635e-05 0.046 * 

V:O -2.451e-05 0.533 

S:A:V -4.733e-07 0.045 * 

S:A:O -3.459e-07 0.019 * 

S:V:O 3.216e-08 0.920 

A:V:O -1.978e-06 0.071 * 
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Table S2: The estimates and p-values of all model terms in the most 

parsimonious model to explain the abundance of Stenotrophomonas in the 

presence of other species. Significant p values (< 0.05) are shown in bold and 

with an asterisk. 

 Influence on Stenotrophomonas 

Treatment Estimate (per CFU) p-value 

Monoculture 6.224 < 0.0005 * 

P -5.365e-03 0.022 * 

A 3.762e-04 0.553 

V -9.443e-03 < 0.0005 

O -1.346e-03 0.042 * 

P:A -1.450e-04 < 0.0005 * 

P:V 1.573e-04 0.059 

P:O -4.829e-05 < 0.0005 * 

A:V -1.272e-04 < 0.0005 * 

A:O -4.272e-05 < 0.0005 * 

V:O -2.482e-04 < 0.0005 * 

P:A:V 5.026e-06 < 0.0005 * 

P:A:O 4.404e-08 0.939 

P:V:O 3.465e-06 0.008 * 

A:V:O -1.840e-06 0.001 * 
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Table S3: The estimates and p-values of all model terms in the most 

parsimonious model to explain the abundance of Achromobacter in the 

presence of other species. Significant p values (< 0.05) are shown in bold and 

with an asterisk. 

 Influence on Achromobacter 

Treatment Estimate (per CFU) p-value 

Monoculture 5.249 < 0.0005 

P -1.351e-02 < 0.0005 

S -2.135e-04 0.508 

V -8.143e-03 0.020 * 

O -4.182e-04 0.677 

P:S 9.962e-06 0.657 

P:V 1.241e-04 0.108 

P:O -5.104e-05 0.248 

S:V 8.193e-06 0.716 

S:O 8.670e-06 0.235 

V:O -3.877e-04 < 0.0005 

P:S:V 6.748e-09 0.994 

P:S:O 4.502e-07 0.507 

P:V:O -7.380e-06 0.002 * 

S:V:O 3.165e-06 < 0.0005 
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Table S4: The estimates and p-values of all model terms in the most 

parsimonious model to explain the abundance of Variovorax in the presence of 

other species. Significant p values (< 0.05) are shown in bold and with an 

asterisk. 

 Influence on Variovorax 

Treatment Estimate (per CFU) p-value 

Monoculture 3.864 < 0.0005 

P 6.232e-03 0.084 

S -5.195e-04 0.416 

A 5.229e-04 0.722 

O 1.975e-03 0.089 

P:S 1.072e-05 0.604 

P:A -9.216e-05 0.073 

P:O -5.790e-05 0.372 

S:A -1.249e-05 0.131 

S:O -2.571e-05 0.161 

A:O -1.384e-04 < 0.0005 * 

P:S:A 2.436e-07 0.474 

P:S:O 2.187e-06 0.008 * 

P:A:O -3.797e-06 0.066 

S:A:O 9.071e-07 0.024 * 
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Table S5: The estimates and p-values of all model terms in the most 

parsimonious model to explain the abundance of Ochrobactrum in the presence 

of other species. Significant p values (< 0.05) are shown in bold and with an 

asterisk. 

 Influence on Ochrobactrum 

Treatment Estimate (per CFU) p-value 

Monoculture 5.154 < 0.0005 

P -1.432e-02 < 0.0005 

S -1.205e-04 0.698 

A 5.468e-05 0.941 

V -6.422e-04 0.756 

P:S 1.282e-06 0.906 

P:A 2.889e-05 0.452 

P:V -2.290e-04 0.002 * 

S:A -1.457e-05 < 0.0005 

S:V -1.220e-04 < 0.0005 

A:V -2.246e-04 0.002 * 

P:S:A -5.889e-07 0.080 

P:S:V 3.805e-06 < 0.0005 

P:A:V 4.269e-06 0.088 

S:A:V 4.018e-07 0.664 

 


