1	Stepwise pH control to promote synergy of chemical and biological processes for
2	augmenting short-chain fatty acid production from anaerobic sludge
3	fermentation
4	
5	Xu Wang ^{a,b,c*†} , Yanbo Li ^{a,d†} , Ya Zhang ^e , Yi-Rong Pan ^{a,d} , Lin Li ^{a,c} , Junxin Liu ^a , and
6	David Butler ^b
7	
8	^a Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
9	Beijing 100085, China
10	^b Centre for Water Systems, Department of Engineering, College of Engineering,
11	Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, United
12	Kingdom
13	^c State Key Joint Laboratory of Environmental Simulation and Pollution Control,
14	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
15	Beijing 100085, China
16	^d University of Chinese Academy of Sciences, Beijing 100049, China
17	^e Institute for Environmental Genomics, Department of Microbiology and Plant
18	Biology, and School of Civil Engineering and Environmental Sciences, University of
19	Oklahoma, Norman, OK 73019, United States
20	
21	*Corresponding author. Email: xuwang@rcees.ac.cn; x.wang@exeter.ac.uk.
22	[†] Xu Wang and Yanbo Li contributed equally to this work.
23	1

24 Abstract

25	Although sludge-converted short-chain fatty acids (SCFAs) are promising feedstocks
26	for biorefineries, it remains challenging to maximise SCFA production by enhancing
27	synergies between chemical/biological hydrolysis and acidogenesis processes while
28	employing a balanced composition of microbial communities to counteract
29	methanogenesis. Herein, stepwise control of fermentation pH and
30	chemical/microbiological composition analysis of fermented sludge were used to
31	probe the underlying mechanisms of SCFA production. Fermentation at pH 11 during
32	the first three days promoted both chemical and microbial hydrolysis of sludge
33	proteins and provided a niche for Anaerobrancaceae sp. to transform soluble protein
34	into SCFAs. When pH was decreased from 11 to 9, Acinetobacter, Proteiniborus,
35	Proteiniclasticum, and other acetogens became predominant and stayed significantly
36	more active than during first-stage fermentation at pH 11, which benefited the
37	acidification of hydrolysed substrates. Further assays indicated that early-stage sludge
38	fermentation at pH 11 decreased the total amount of methanogenic archaea and hence
39	reduced the amount of SCFAs consumed for methane production. Thus, the use of
40	stepwise pH control for sludge fermentation allowed one to establish process
41	synergies, facilitate chemical and biological hydrolysis, inhibit methanogens, and
42	promote the growth of acidifying bacterial communities, which resulted in efficient
43	SCFA production from sludge.
44	Keywords: waste activated sludge, fermentation, short-chain fatty acids, stepwise pH
45	control, microbial community structure, conceptual model

1. Introduction

47	Waste-derived short-chain fatty acids (SCFAs) are attractive feedstocks for renewable
48	energy and biopolymer production (Pagliano et al. 2017). The genesis of SCFAs from
49	sludge is an anaerobic fermentation process involving the steps of hydrolysis,
50	acidogenesis, and methanogenesis, among others. Among these steps, the rate-limiting
51	one corresponds to sludge hydrolysis, while competition between methanogenic
52	archaea (responsible for SCFA consumption) and acidogenic bacteria determines
53	whether methane or SCFAs are formed as main fermentative products (Zhang et al.
54	2009). Consequently, the maximisation of SCFA yield and realisation of optimum
55	SCFA composition for downstream applications are tasks of high practical
56	significance.
57	Previous studied revealed that the yield of SCFAs produced by anaerobic sludge
58	fermentation is influenced by fermentation pH, temperature, and retention time, with
59	most of these parameters also affecting SCFA composition (Arslan et al. 2016,
60	Jankowska et al. 2018). Moreover, it was found that SCFA yield can be augmented
61	through the application of different sludge pre-treatments (Yu et al. 2018) and the
62	usage of additives such as free ammonia during fermentation (Wang et al. 2019, Wang
63	et al. 2018, Zhao et al. 2018a). Based on these findings, a number of approaches to
64	enhance the fermentative conversion of sludge into SCFAs have been proposed,
65	implemented, and verified (Lee et al. 2014). However, most of these approaches are
66	commonly designed to address one factor at a time, as exemplified by studies on the
67	enhancement of sludge particulate hydrolysis (Chen and Chang 2017), improvement

68	of acidogenesis (Wang et al. 2017), or the inhibition of methanogenesis (Wilson et al.
69	2012). Currently, it remains unclear whether and how an individual approach can have
70	counteracting effects on the chemical and biological processes involved in anaerobic
71	sludge fermentation and thereby reduce the yield of the thus produced SCFAs.
72	Fermentation pH is an important parameter that can influence anaerobic sludge
73	fermentation in a number of ways. Alkaline pH is believed to enhance the anaerobic
74	conversion of sludge into SCFAs, e.g., Yuan et al. (2006) documented that SCFA
75	production at alkaline pH (10-11) significantly surpassed that observed at acidic or
76	neutral pH. Additionally, Wang et al. (2016) revealed that alkaline sludge pre-
77	treatment (pH 12) causes the fragmentation and denaturation of proteins, improving
78	their susceptibility to subsequent proteolytic cleavage and hydrolysis and hence
79	augmenting SCFA production via anaerobic fermentation at pH 9. Moreover, Zheng et
80	al. (2013) reported that alkaline fermentation hampers methanogenesis and benefits
81	SCFA accumulation. However, some researchers claimed that even though alkaline
82	conditions can enhance SCFA production, they concomitantly inhibit the ability of
83	acidogenic bacteria to transform hydrolysed organic substrates into SCFAs, thereby
84	decreasing the potential of SCFA yield maximisation (Li et al. 2017, Lin and Li 2018,
85	Yuan et al. 2015). Others also claimed that the use of neutral pH generates a niche for
86	microbial populations involved in acidification but fails to enhance the hydrolysis of
87	organic particulates, resulting in low substrate availability for the biological
88	generation of SCFAs (Ma et al. 2016). Notably, the above and similar studies revealed
89	that fermentation pH usually remains relatively constant over the entire process of

90	anaerobic sludge fermentation, implying that the obtained results may not reflect the
91	optimum composition of microbial communities and process synergy maximisation.
92	To address this challenge, recent research efforts have focused on dividing the process
93	of anaerobic sludge fermentation into two or more stages so that different pH values
94	can be applied at each stage to maximise chemical hydrolysis at early stages while
95	substantially enhancing biological hydrolysis and acidogenesis at later stages for
96	accumulative SCFA yield (Chen et al. 2017, Zhao et al. 2018b). However, these works
97	lack a systematic approach and do not provide a clear mechanistic understanding
98	required to increase process synergies and gain a balanced composition of microbial
99	communities for a further enhancement of SCFA production.
100	Herein, six anaerobic fermentation reactors were supplied with the same feed
101	sludge and operated using one-step pH (pH 11), stepwise pH control (pH 11, plus pH
102	10, 9, 8, or 7), and uncontrolled pH approaches. Temporal dynamics of substrate
103	availability, carbon matter balance, and microbial community assembly were
104	monitored over 25 days and linked to SCFA production. Further, the underlying
105	mechanisms of augmented SCFA production under the optimal conditions of stepwise
106	pH fermentation (pH 11, plus pH 9) were investigated by analysing the key
107	microorganisms involved in biological hydrolysis, acidification, and methanogenesis.
108	Moreover, real-time quantitative polymerase chain reaction (q-PCR) assays were
109	applied to determine the total number of bacteria and archaea and thus reveal the
110	competition between acidifying bacteria and methanogens in fermentation reactors. A
111	conceptual paradigm with two possible scenarios was also proposed to (i) advance our

112	understanding of how augmented SCFA yield and related microbial community
113	assembly respond to pH adjustment throughout the complete process and (ii) provide
114	insights into the potential role of environmental driving forces (e.g., pH) on the
115	enhanced yield of SCFAs produced by anaerobic sludge fermentation.
116	
117	2. Materials and Methods
118	2.1 Sludge Source and Characteristics
119	Sludge was obtained from the primary clarifier of a municipal wastewater treatment
120	plant in northern China operated using the conventional process of biological nutrient
121	removal. Sludge was concentrated by allowing it to settle at 4 °C for 24 h, with its
122	main characteristics presented in Table S1. The seed inoculum was obtained from an
123	anaerobic sludge digester at the same plant. Details of sludge sample and seed
124	inoculum preparation procedures are provided in Supplementary Information S1.
125	
126	2.2 Operation of Sludge Fermentation Reactors
127	Sludge samples containing the seed inoculum were mixed to afford feed sludge that
128	was then transferred into six identical 2.5-L fermentation reactors at 8.6 g/L
129	(transferred volume = 2 L) to test different methods of fermentative pH control. The
130	test period was at least 20-day long, a typical duration for SCFA production by
131	anaerobic sludge fermentation (Wu et al. 2010, Yuan et al. 2006), and it was assumed
132	that the degree of hydrolysis can be maximised within the first 72 h under high-pH
133	conditions (Wang et al. 2016). Consequently, during the first three days (Phase I) of

134	the experimental process, five fermentation reactors (R1–R5) were maintained at a
135	constant pH of 11 by addition of 2 M NaOH. During the next fermentation phase
136	(Phase II), the pH values of these five reactors were adjusted to and maintained at 11,
137	10, 9, 8, and 7, respectively, via the addition of 2 M HCl or 2 M NaOH. The
138	remaining reactor (R0) was used as the control (uncontrolled pH) throughout the
139	entire process. After feed sludge addition, all reactors were purged with nitrogen gas
140	to remove oxygen, sealed, and kept at 34 ± 1 °C in an air-bath shaker (150 rpm).
141	

142 **2.3 Reactor Performance Monitoring**

143 Sludge and biogas samples were collected from reactors every 24 h using previously

144 described procedures (Cai et al. 2004, Wang et al. 2016) and subjected to chemical

145 analysis (for details, see Section 2.6). In addition, sludge samples collected on days 3

146 (Phase I end) and 25 (Phase II end) were also used to analyse microbial populations in

147 relation to hydrolysis, acidification, and methanogenesis. The acquired sludge

samples were preserved in 10-mL centrifuge tubes at -20 °C.

149

150 2.4 DNA Extraction and Quantification of Total Bacteria and Archaea

151 Genomic DNA was extracted from sludge samples using the FastDNA SPIN Kit (MP

152 Biomedicals, USA), and DNA concentration/purity was determined by

153 microspectrophotometry (NanoDrop ND-1000, USA). Bacterial and archaeal genes

154 were quantified by q-PCR conducted on a Rotor-Gene 6000 Series instrument

employing Software 1.7 (QIAGEN, the Netherlands). The experimental procedures

are described in detail in Supplementary Information S2.

158	2.5 MiSeq Sequencing and Data Processing
159	The 16S rRNA gene was amplified for the MiSeq platform, with detailed molecular
160	and bioinformatics procedures provided in Supplementary Information S3. Raw
161	sequence data were deposited in the NCBI Short Red Archive (SRA) database under
162	the accession number SRR151628 for both bacterial and archaeal sequences.
163	
164	2.6 Analytical Methods
165	To measure the concentration of produced SCFAs, fermentation mixture samples
166	withdrawn from each reactor were immediately filtered through a 0.45- μ m membrane,
167	and the resulting filtrates were analysed using a gas chromatograph (GC, Agilent
168	6890N, USA) equipped with a flame ionisation detector (FID) and a DB-FFAP
169	column (30 m \times 0.32 mm \times 0.25 μm). Injection port, detector, and column
170	temperatures were set at 240, 260, and 210 °C, respectively, and carrier gas (nitrogen)
171	was supplied at a flow rate of 30 mL/min. The total SCFA concentration was
172	calculated as the sum of acetic, propionic, <i>n</i> -butyric, isobutyric, <i>n</i> -valeric, and
173	isovaleric acid concentrations. Methane and carbon dioxide were determined by the
174	same GC equipped with a thermal conductivity detector (TCD) and a 2-m stainless
175	column filled with Porapak T (80–100 mesh). In this case, injection port, column, and
176	detector temperatures were set at 110, 60, and 200 °C, respectively, and carrier gas
177	(helium) was supplied at a flow rate of 40 mL/min. Hydrogen gas was quantified

178	using the abovementioned GC-TCD equipped with a 2-m stainless steel column filled
179	with activated carbon (60-80 mesh) and employing nitrogen (30 mL/min) as a carrier
180	gas. Biogas in the headspace of serum bottles was sampled with a 0.1-mL gastight
181	syringe and analysed by comparison with standard CH_4/CO_2 or standard H_2 samples.
182	Thereafter, the yields of CH ₄ , CO ₂ , and H ₂ were calculated and expressed in the units
183	of mL per g volatile suspended solids (VSS) based on the steady state at 25 $^{\circ}$ C.
184	Protein and carbohydrate contents were determined in filtrates obtained by passing
185	samples through a 0.45 - μ m membrane. Protein concentration was determined by the
186	Lowry method using bovine albumin as the standard (Lowry et al. 1951), while
187	carbohydrate concentration was measured by the phenol-sulphuric acid method using
188	glucose as the standard (Herbert et al. 1971). Chemical oxygen demand (COD),
189	soluble chemical oxygen demand (SCOD), total suspended solids (TSS), and VSS
190	were quantified in line with standard methods (APHA 1998). Carbonaceous-substrate-
191	to-COD conversion coefficients (g COD/g substrate) were determined as 1.07, 1.51,
192	1.82, 2.04, 1.50, and 1.07 for acetic acid, propionic acid, butyric (or isobutyric) acid,
193	valeric (or isovaleric) acid, protein, and carbohydrate, respectively (Cokgor et al.
194	2009, Sophonsiri and Morgenroth 2004).

196 **2.7 Statistical Analysis**

197 All tests were performed in triplicate. Analysis of variance was used to test the

198 significance of results, and p values of less than 0.05 were considered to represent

199 statistically significant differences. Pearson's linear correlation analysis was

200	conducted to explore relationships between SCFA production yield and substrate
201	parameters (protein/carbohydrate contents and their combination) using IBM SPSS
202	Statistics v. 21. Principle component analysis (PCA), based on the microbial
203	community composition obtained by MiSeq, was performed employing weighted
204	Unifrac distances (considering both species phylogeny and relative abundance) to
205	determine changes in microbial diversity under different conditions, and the obtained
206	results were visualised in three dimensions using R v 3.6.0. Significant differences
207	were defined as those with $p < 0.05$.
208	
209	3. Results and Discussion
210	3.1 Effects of Fermentation pH Approach on Substrate Availability and SCFA
211	Production
212	
212	In all fermentation reactors with controlled operational pH, the solubilised substrates
212	(mainly protein and carbohydrate) quickly became available, and SCFA production
212213214	(mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after
212213214215	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble
 212 213 214 215 216 	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble protein, soluble carbohydrate, and SCFA concentrations in fermentation reactors for
 212 213 214 215 216 217 	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble protein, soluble carbohydrate, and SCFA concentrations in fermentation reactors for uncontrolled pH (R0), one-step pH (R1), and stepwise pH alternatives (R2, R3, R4,
 212 213 214 215 216 217 218 	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble protein, soluble carbohydrate, and SCFA concentrations in fermentation reactors for uncontrolled pH (R0), one-step pH (R1), and stepwise pH alternatives (R2, R3, R4, and R5) during the fermentation time of 25 days.
 212 213 214 215 216 217 218 219 	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble protein, soluble carbohydrate, and SCFA concentrations in fermentation reactors for uncontrolled pH (R0), one-step pH (R1), and stepwise pH alternatives (R2, R3, R4, and R5) during the fermentation time of 25 days. As shown in Figs. 1A and B, the use of controlled fermentation pH (pH 11)
 212 213 214 215 216 217 218 219 220 	In all fermentation reactors with controlled operational pH, the solubilised substrates (mainly protein and carbohydrate) quickly became available, and SCFA production substantially increased after the first three days; however, concentration changes after 25 days were insignificant ($p > 0.05$). Thus, Fig. 1 only shows variations of soluble protein, soluble carbohydrate, and SCFA concentrations in fermentation reactors for uncontrolled pH (R0), one-step pH (R1), and stepwise pH alternatives (R2, R3, R4, and R5) during the fermentation time of 25 days. As shown in Figs. 1A and B, the use of controlled fermentation pH (pH 11) during the early period resulted in increased availability of soluble protein and

222	COD/g VSS; soluble carbohydrate: 13 ± 1 vs. 2 ± 1 mg COD/g VSS; on day three).
223	However, significant differences were observed for trends of soluble protein and
224	carbohydrate concentrations under different pH conditions over the second
225	fermentation period. Soluble protein concentration decreased in all pH-controlled
226	reactors after three days, with the maximum concentration observed in R1, which
227	indicated that alkaline pH-induced solubilisation of particulate protein was most
228	pronounced during the early phase of fermentation, while one-step fermentation at pH
229	11 favoured the accumulation of soluble protein during the next phase (Fig. 1A, dark
230	green curve). Furthermore, soluble carbohydrate accumulation behaviour was also
231	observed in R1 and R2 after three days (Fig. 1B, green curves).
232	It should be noted (Fig. 1C) that the average end concentration of SCFAs in
233	fermentation reactors with stepwise pH control (R1–R5) equalled 238 mg COD/g
234	VSS, whereas those in one-step alkaline pH (R1) and uncontrolled pH (R0) reactors
235	equalled 267 \pm 11 and 86 \pm 3 mg COD/g VSS, respectively. Apparently, both one-step
236	alkaline pH and stepwise pH fermentation approaches significantly augmented the
237	accumulation of SCFAs compared to the case of uncontrolled pH, whereas the end
238	production of SCFAs was highest in R3 (324 \pm 12 mg COD/g VSS). This finding
239	indicated that the use of stepwise pH fermentation, particularly when pH was held
240	constant at pH 11 in Phase I and then altered to pH 9 during Phase II, can enhance the
241	production of SCFAs from soluble sludge substrates.
242	Pearson's linear correlation analysis indicated that in fermentation reactors where
243	pH was maintained at pH 11 during Phase I, SCFA production was positively

244	correlated to protein/carbohydrate concentration and their combination (Fig. 1D, grids
245	in red and orange). On the contrary, these correlations became weak as fermentation
246	reactors moved into Phase II (Fig. 1D, grids in yellow and pale green), which
247	indicated that driving factors other than substrate availability may be responsible for
248	augmented SCFA production in the late fermentation period.
249	
250	3.2 Compound effects of fermentation pH adjustment on sludge hydrolysis,
251	acidogenesis, and methanogenesis
252	In general, the extent of hydrolysis represents the percentage of large organic
253	compounds solubilised to smaller organics, whereas the extent of acidogenesis is
254	defined as the biodegradability of soluble substrates, which can be further converted
255	into SCFAs or biogas by acidogens or methanogens, respectively. Figure 2 represents
256	performance variations for pH-differentiated reactors, including the parameters of
257	SCOD, SCFA amount, biogas amount, and the SCFA content/SCOD ratio.
258	On Day 3 (Fig. 2, blue dotted ellipse), reactors with pH 11 (R1-R5) featured
259	SCOD values higher than those of R0 with uncontrolled pH (365 vs. 80 mg COD/g
260	VSS, respectively), i.e., pH 11 favoured the hydrolysis of large organic particulates
261	within a short time period. This finding agreed with the observation that the SCFA-to-
262	SCOD ratio achieved in R1–R5 was lower than that in R0 (0.21 vs. 0.74), while SCFA
263	yield varied only slightly between these two systems (70 vs. 59 mg COD/g VSS,
264	respectively).

265 The effects of fermentation pH control in Phase II were more complex (Fig. 2,

266	purple dotted ellipse) because of the counteracting biological processes involved in
267	SCFA production. When fermentation pH was changed from alkaline (pH 11) to
268	neutral (pH 7), R5 exhibited much lower SCOD (134 vs. 484 mg COD/g VSS,
269	respectively) and SCFA (66 vs. 267 mg COD/g VSS, respectively) levels than R1 $$
270	(where pH 11 was maintained) while featuring a much more pronounced biogas
271	production (83 vs. 0.12 mL/g VSS, respectively; detailed ratio of CH_4 to CO_2 given in
272	Table S2). These findings agreed with previous observations that at neutral pH, strong
273	methanogenesis is coexistent with decreased hydrolysis and acidogenesis efficiency
274	(Ma et al. 2016, Zhou et al. 2016). Given that fermentation pH in R0 (uncontrolled
275	pH) varied within the narrow range of pH 6.8–7.1, it is not surprising that
276	performance variation between R0 and R5 was not significant ($p > 0.05$). At
277	fermentation pH \ge 9, methane production was substantially inhibited, while
278	hydrolysis was greatly enhanced compared to the case of neutral pH, which indicated
279	that alkaline conditions might favour acidogenesis during the second fermentation
280	stage. Moreover, acidogenesis was greatly augmented at fermentation pH 9.
281	Specifically, when fermentation pH was decreased to pH 9 and maintained at this
282	value during Phase II, R3 featured the maximum SCFA yield (324 mg COD/g VSS)
283	along with the greatest SCFA-to-SCOD ratio of 0.79 on day 25, although the
284	capability of this reactor to promote the hydrolysis of organics and inhibit
285	methanogenesis was not competitively higher than that of the one-step pH reactor (pH
286	11, R1).

Carbon mass balance in reactors was studied to better understand the composition

288	of carbonaceous substances produced during sludge fermentation (Fig. 3). Notably,
289	sludge hydrolysis was quickly initiated within the first three days, and in controlled-
290	pH reactors (R1-R5) on day 3, sludge hydrolysis efficiency reached 25.6%, which
291	was nearly three-fold higher than that obtained in the case of uncontrolled pH (R0).
292	However, only a small proportion of hydrolysis-produced soluble organics was
293	converted to SCFAs (5.3%). Although in R1, the extent of hydrolysis was further
294	augmented on day 25 and exceeded the value observed for R3 (34.1% vs. 28.6%; Fig.
295	3), the efficiency of solubilised organic substance transformation into SCFAs was
296	higher in the latter reactor (22.1% vs. 18.8%), i.e., the stepwise decrease in pH (pH 11
297	\rightarrow pH 9) favoured the augmented conversion of hydrolysed substrates to fermentative
298	SCFAs, in agreement with previous results (Zhao et al. 2018b). This phenomenon
299	may be attributable to the inhibitory effect of strongly alkaline conditions on
300	acidogens (Huang et al. 2016, Ma et al. 2016). To better understand this process, the
301	origin of SCFA production variation under different fermentation conditions (i.e., in
302	one-step pH (R1), optimum stepwise pH (R3), and uncontrolled pH (R0) reactors)
303	was probed by analysis of functional bacterial and archaeal populations.
304	

305 **3.3 Overall Effects of Stepwise pH Decreases on Microbial Community Structure**

306 In emphasised fermentation reactors (R0, R1, and R3) on days 3 and 25, microbial

- 307 community structures were comparatively explored using 16S rRNA gene sequencing,
- and microorganism diversity was characterised using microbial α -diversity metrics
- 309 (Table S3). Samples associated with the optimum stepwise pH approach (R3) were

found to exhibit less rich, even, and diverse bacterial and archaeal communities thanthose associated with other approaches (R0 or R1).

312	Figure 4 presents the results of PCA-based characterisation of microbial
313	community structure linked to R0, R1, and R3 that was performed relying on
314	phylotype abundance, demonstrating that the clearest clustering was observed for R1
315	(where pH 11 was maintained throughout the whole process). However, the sample
316	collected from R3 on day 25 was distinct from that collected from R1 on the same
317	day, particularly in terms of PC1 and PC2 values (Figs. 4A and B, respectively),
318	which indicated that the stepwise decrease in fermentation pH during Phase II
319	substantially influenced the microbial community, particularly the bacterial
320	community.

321

322 3.4 Microbial Populations Involved in Biological Hydrolysis, Acidification, and 323 Methanogenesis

To characterise the differences in functional microorganism compositions between R1 324 and R3, the microbial populations of these fermentation reactors on days 3 and 25 325 were analysed at the genus level. Figure 5A shows the relative abundance of key 326 microbial populations in the acquired biomass samples. Specifically, the 25 most 327 abundant operational taxonomic units (OTUs) affiliated with bacterial populations 328 across all samples could be grouped into hydrolysers (solubilising organic particulates 329 into low-molecular-weight molecules including soluble organic matter), acetogens 330 (degrading soluble organic matter to SCFAs and H₂), syntrophs (converting SCFAs to 331

acetic acid and H₂), and other unclassified bacteria, while the 10 most abundant OTUs
among archaea were identified in relation to methanogens.

334 Hydrolysis of complex organic matter is the rate-limiting step of anaerobic sludge fermentation. Previous works reported that Pseudomonas sp. can easily produce and 335 secrete alkaline protease and elastase (Guzzo et al. 1991), which were identified as the 336 most significant enzymes to undertake the hydrolysis of sludge protein, in agreement 337 with more recent findings indicating that high abundances of protein-hydrolysing 338 bacteria (particularly *Pseudomonas sp.*) in alkaline fermentation reactors benefit the 339 340 biological hydrolysis of particulate protein in sludge (Zheng et al. 2013). However, we observed that rare bacterial microorganisms were capable of hydrolysing 341 particulate organics in R1 over time (Fig. 5A), except for a Firmicutes phylum-342 343 affiliated bacterial strain (OTU296) that might have the potential to solubilise particulate protein and simultaneously get involved in the acidification process (Xia et 344 al. 2008). In fact, sludge hydrolysis could be enhanced by both chemical and 345 346 biological processes at high pH, and our previous work demonstrated that heatalkaline environments can stimulate protein fragmentation and improve the chemical 347 hydrolysis efficiency of sludge protein by inducing conformational changes indicative 348 of protein unfolding (Wang et al. 2016). Thus, the enhanced solubilisation of 349 particulate protein in the fermentation reactor with pH 11 could be partly attributed to 350 the synergies of chemical and biological hydrolysis processes. However, as the 351 fermentation pH was altered to pH 9 during Phase II in R3, the total abundance of 352 hydrolysers therein decreased from nearly 30% to less than 8%, which implied that 353

354 pH adjustment can greatly affect the process of biological hydrolysis.

355	Large numbers of bacterial populations are involved in the acidification process
356	of anaerobic sludge fermentation. In this study, Anaerobranca (OTU296) was
357	identified as the most abundant genus (~40%) in R1 on both days 3 and 25 (Fig. 5A).
358	As documented in previous studies (Gorlenko et al. 2004, Prowe and Antranikian
359	2001), Anaerobranca comprises only several species of anaerobic microorganisms
360	that have the capability to degrade protein into SCFAs as primary end products under
361	alkaline conditions and at meso-thermophilic temperatures. Notably, species of the
362	above genus require sodium ions for their metabolism (Engle et al. 1995). Since 2 M
363	NaOH was used herein to maintain fermentation pH at a value of 11, Na ⁺ ions were
364	present in both reactors, which could partly explain why Anaerobranca (OTU296)
365	was traced throughout the one-step fermentation at pH 11.
366	As fermentation pH was decreased to pH 9 from pH 11 in R3 during Phase II, the
367	populations of acidogenic microbes became much diverse, and their total abundance
368	greatly increased from 34.5 to 56.1%. This result agreed with the augmented
369	production of SCFAs in R3 on day 25 (Fig. 1). Thus, the higher abundances of
370	Acinetobacter and Proteiniborus in the stepwise pH fermentation reactor could benefit
371	the conversion of soluble organics into SCFAs, which agreed with the fact that many
372	species affiliated with the phyla Proteobacteria and Firmicutes were linked with the
373	fermentative production of volatile organic acids (Dai et al. 2016, Ma et al. 2015). In
374	addition, VadinBC27 sp. was reported to undertake the anaerobic degradation of
375	aromatic hydrocarbons (Corteselli et al. 2017, Liu et al. 2016, Pereira et al. 2015),

whereas the relative abundance of a similar bacterium (*VadinBC27 sp.* (OTU967)) on
day 25 in R3 was more than 100 times that of R1 (Fig. 4), which further favoured the
fermentative production of SCFAs from sludge.

379	It is well known that fermentation-produced SCFAs can be consumed in the
380	subsequent methanogenesis stage. As seen in Figs. 2 and 3, methane production was
381	inhibited when sludge fermentation was conducted under either alkaline pH (pH 11)
382	or stepwise pH increase (pH $11 \rightarrow$ pH 9) conditions. Therefore, Fig. 5A also presents
383	the genus-level distributions of archaeal populations in R1 and R3, revealing that the
384	relative abundances of Methanobacterium, Methanobrevibacter, and Methanosarcina
385	in R1 on day 25 equalled 40.9, 27.1, and 14.9%, respectively, while the most abundant
386	archaeal microbes in R3 at the same fermentation time belonged to the genera of
387	Methanomassiliicoccus (49.4%) and Methanobacterium (35.5%). In general, the
388	genera Methanobacterium and Methanobrevibacter are known to be obligate
389	hydrogenotrophic methanogens preferring to utilise H ₂ and CO ₂ rather than acetic acid
390	(Leclerc et al. 2004), which may the key reason behind the relative abundance
391	decrease observed for Methanobacterium sp. and Methanobrevibacter sp. in R3 on
392	day 25. The total numbers of archaea in R1 and R3 on day 25 were determined as 550
393	and 606 copies/mg TSS, respectively (Fig. 5B), i.e., the change of fermentation pH
394	from pH 11 to pH 9 could increase the number of total methanogenic archaea, which
395	helps to explain why greater methane production was observed during sludge
396	fermentation under stepwise pH decrease conditions (Fig. 3).

398 **3.5 Conceptual Paradigm for Understanding Improved SCFA Production in**

399 Stepwise pH Fermentation

400 The above findings inspired us to propose a conceptual model describing how dynamics in SCFA production and microbial community assembly responded to 401 402 fermentation pH adjustment during sludge fermentation (Fig. 6A) and providing insights into the potential roles of environmental filtering and selection on improved 403 SCFA production by sludge fermentation (Fig. 6B). 404 Specifically, we hypothesised two possible scenarios for changes occurring 405 406 during anaerobic sludge fermentation. In the first (business-as-usual) scenario, strongly alkaline pH at early fermentation stages was suggested to facilitate the 407 chemical hydrolysis of organic particulates and benefit the growth of bacteria over 408 409 archaea, offering a niche for acetogens to degrade hydrolysed matter. In subsequent stages, the maintenance of fermentation pH at a constant value resulted in an 410 increased production of soluble protein (i.e., in enhanced biological hydrolysis) and 411 412 the selection of more clustered bacterial populations (of the Anaerobrancaceae genus) capable of converting protein into SCFAs under alkaline conditions. As an alternative, 413 414 we hypothesised that the second (pH-adjustment) scenario, where fermentation pH is controlled at a lower level at late fermentation stages, provides a niche for diverse 415 416 acidogenic bacteria (mainly Acinetobacter sp., Proteiniborus sp., VadinBC27 sp., and Proteiniclasticum sp.) and allows one to ferment a wider range of organic substances, 417 facilitating the accumulation of SCFAs. This model provides a novel scheme that can 418 be experimentally examined further in other stepwise pH fermentation systems. 419

421 **3.6 Implications of the Present Work**

422 SCFAs produced by anaerobic sludge fermentation are viewed as promising platform molecules for the production of renewable energy (Hwang et al. 2018), biopolymers 423 424 (Frison et al. 2015), and medium-length fatty acids with high added value (Xu et al. 2018), while alkaline fermentation of sludge was reported to allow for highly efficient 425 SCFA production (Lee et al. 2014). However, the present work raises a critical 426 427 question of whether concerted efforts should be devoted to controlling fermentation 428 pH at constantly high levels throughout the entire fermentation process, as such actions can result in counteracting effects on the interactions of hydrolysis, 429 acidification, and methanogenesis and consequently hinder SCFA production. Thus, 430 431 greater focus should be placed on solutions aimed at maximising process synergies for augmented SCFA production. Herein, stepwise pH fermentation was found to be a 432 promising solution, since it ensured high efficiency of sludge particulate hydrolysis at 433 434 early stages, inhibited methanogenesis, enriched the microbial community in diverse acetogens, and enhanced late-stage acidogenesis, which, taken together, resulted in an 435 optimised yield of SCFAs produced by anaerobic sludge fermentation. Despite these 436 positive findings, further validations and long-term monitoring are needed for larger-437 438 scale sludge fermentation systems.

Table 1 indicates that the economic benefit provided by the stepwise pH control strategy arises from the reduced cost of chemicals (mainly NaOH utilisation) and the increased revenue from SCFA production. The cost of alkali dosage can be further

442	decreased if Ca(OH) ₂ is applied instead of NaOH for pH adjustment, since the former
443	is much cheaper, less corrosive, more stable, and easier to store and transport than the
444	latter (Li et al. 2011). Since this preliminary economic analysis was conducted mainly
445	based on the laboratory-scale parameters of the present study, some uncertainties
446	might exist in the expected results, because full-scale systems can behave differently
447	in terms of SCFA production, chemical use, and downstream applications.
448	Consequently, further studies and more real-life data are necessary to interpret the
449	new-build strategy and identify the key aspects requiring cost-benefit optimisation.
450	Our results also highlight that environmental selective pressures (e.g., pH
451	adjustment) play a dominant role in guiding microbial community structure and
452	dynamics during the anaerobic conversion of sludge into SCFAs. Thus, our findings
453	agree with the niche-based theory that microbial community assembly is mainly
454	shaped by deterministic processes mostly including substrate availability, operating
455	conditions, niche differentiation, and interactions (Vanwonterghem et al. 2014), as has
456	been witnessed in both natural and engineered systems such as soil (Tripathi et al.
457	2018), lakes (Eiler et al. 2012), activated sludge (Ju et al. 2014), and anaerobic
458	digesters (Ju et al. 2017). However, the establishment of a neutral theory (as a null
459	hypothesis) neglecting the differences among species in their response to ecological
460	conditions and only considering stochastic processes such as birth, death, dispersal,
461	colonisation, and immigration (Ofiteru et al. 2010) along with state-of-the-art analytic
462	tools such as metagenomics- and metabolomics-based approaches (Aguiar-Pulido et
463	al. 2016, Beale et al. 2016) and mathematical models (Astals et al. 2013, McLeod et

al. 2015) should benefit the further interpretation of microbiome assemblies involved
in the production of fermentative SCFAs. Overall, this study tests the potential of
stepwise pH fermentation to enhance SCFA production from sewage sludge and
investigates the resultant microbial community assembly and dynamics in response to
pH adjustments.

469

470 **4. Conclusions**

Herein, we investigated a pH-mediated strategy to enhance SCFA production through 471 472 anaerobic sludge fermentation by promoting the synergy between chemical and biological processes. Early-stage sludge fermentation (at pH 11) enhanced both 473 474 chemical and microbial sludge hydrolysis, decreased the total amount of 475 methanogenic archaea, and provided a niche for protein-utilising microbes to transform soluble protein into SCFAs, whereas subsequent pH reduction (to pH 9) 476 facilitated the proliferation of diverse acetogens and benefited the acidification of 477 478 hydrolysed substrates, promoting the efficient generation of SCFAs from sewage sludge. A conceptual model was developed to advance our understanding of how 479 improved SCFA yield and related microbial community assembly respond to pH 480 adjustment throughout the complete process. 481 482

483 Acknowledgement

484 We acknowledge support from the Beijing Talents Foundation

485 (2017000021223ZK07), the Beijing Nova Program (Z171100001117078), the

486	National Science Foundation of China (No. 51408589), the Youth Innovation		
487	Promotion Association of the Chinese Academy of Sciences (2016041), and the Royal		
488	Society Newton International Fellowship (NF160404).		
489			
490	References		
491	Aguiar-Pulido, V., Huang, W.R., Suarez-Ulloa, V., Cickovski, T., Mathee, K.,		
492	Narasimhan, G., 2016. Metagenomics, metatranscriptomics, and metabolomics		
493	approaches for microbiome analysis. Evol. Bioinform. 12, 5-16.		
494	APHA (1998) Standard Methods for the Examination of Water and Wastewater,		
495	American Public Health Association, 20th ed., American Public Health		
496	Assocaition: Washington, DC.		
497	Arslan, D., Steinbusch, K.J.J., Diels, L., Hamelers, H.V.M., Strik, D., Buisman,		
498	C.J.N., De Wever, H., 2016. Selective short-chain carboxylates production: A		
499	review of control mechanisms to direct mixed culture fermentations. Crit. Rev.		
500	Env. Sci. Tec. 46(6), 592-634.		
501	Astals, S., Esteban-Gutierrez, M., Fernandez-Arevalo, T., Aymerich, E., Garcia-Heras,		
502	J.L., Mata-Ahiarez, J., 2013. Anaerobic digestion of seven different sewage		
503	sludges: A biodegradability and modelling study. Water Re. 47(16), 6033-6043.		
504	Beale, D.J., Karpe, A.V., McLeod, J.D., Gondalia, S.V., Muster, T.H., Othman, M.Z.,		
505	Palombo, E.A., Joshi, D., 2016. An 'omics' approach towards the characterisation		
506	of laboratory scale anaerobic digesters treating municipal sewage sludge. Water		
507	Res. 88, 346-357.		

508	Cai, M.L., Liu, J.X., Wei, Y.S., 2004. Enhanced biohydrogen production from sewage
509	sludge with alkaline pretreatment. Environ. Sci. Technol. 38(11), 3195-3202.
510	Chen, H.B., Chang, S., 2017. Impact of temperatures on microbial community
511	structures of sewage sludge biological hydrolysis. Bioresource Technol. 245,
512	502-510.
513	Chen, Y., Jiang, X., Xiao, K., Shen, N., Zeng, R.J Zhou, Y., 2017. Enhanced volatile
514	fatty acids (VFAs) production in a thermophilic fermenter with stepwise pH
515	increase - Investigation on dissolved organic matter transformation and microbial
516	community shift. Water Res. 112, 261-268.
517	Cokgor, E.U., Oktay, S., Tas, D.O., Zengin, G.E., Orhon, D., 2009. Influence of pH
518	and temperature on soluble substrate generation with primary sludge
519	fermentation. Bioresource Technol. 100(1), 380-386.
520	Corteselli, E.M., Aitken, M.D., Singleton, D.R., 2017. Rugosibacter aromaticivorans
521	gen. nov., sp nov., a bacterium within the family Rhodocyclaceae, isolated from
522	contaminated soil, capable of degrading aromatic compounds. Int. J. Syst. Evol.
523	Micr. 67(2), 311-318.
524	Dai, X.H., Yan, H., Li, N., He, J., Ding, Y.L., Dai, L.L., Dong, B., 2016. Metabolic
525	adaptation of microbial communities to ammonium stress in a high solid
526	anaerobic digester with dewatered sludge. Sci. Rep. 6, 28193.
527	Eiler, A., Heinrich, F., Bertilsson, S., 2012. Coherent dynamics and association
528	networks among lake bacterioplankton taxa. ISME J. 6(2), 330-342.
529	Engle, M., Li, Y.H., Woese, C., Wiegel, J., 1995. Isolation and characterization of a

531

Syst. Bacteriol. 45(3), 454-461.

532 Frison, N., Katsou, E., Malamis, S., Oehmen, A., Fatone, F., 2015. Development of a

novel alkalitolerant thermophile, anaerobranca-horikoshii gen-nov. sp-nov. Int. J.

- novel process integrating the treatment of sludge reject water and the production
- of polyhydroxyalkanoates (PHAs). Environ. Sci. Technol. 49(18), 10877-10885.
- 535 Gorlenko, V., Tsapin, A., Namsaraev, Z., Teal, T., Tourova, T., Engler, D., Mielke, R.,
- 536 Nealson, K., 2004. Anaerobranca californiensis sp nov., an anaerobic,
- alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono
- 538 Lake. Int. J. Syst. Evol. Micr. 54, 739-743.
- 539 Guzzo, J., Pages, J.M., Duong, F., Lazdunski, A., Murgier, M., 1991. Pseudomonas-
- aeruginosa alkaline protease evidence for secretion genes and study of secretion
 mechanism. J. Bacteriol. 173(17), 5290-5297.
- Herbert, D., Philipps, P.J., Strange, R.E., 1971. Carbohydrate analysis. Method
- 543 Enzymol. 5B(2), 265-277.
- Huang, X.F., Mu, T.S., Shen, C.M., Lu, L.J., Liu, J., 2016. Effects of bio-surfactants
- 545 combined with alkaline conditions on volatile fatty acid production and
- 546 microbial community in the anaerobic fermentation of waste activated sludge.
- 547 Int. Biodeter. Biodeg. 114, 24-30.
- 548 Hwang, J.H., Church, J., Lim, J., Lee, W.H., 2018. Photosynthetic biohydrogen
- 549 production in a wastewater environment and its potential as renewable energy.
- 550 Energy 149, 222-229.
- Jankowska, E., Duber, A., Chwialkowska, J., Stodolny, M., Oleskowicz-Popiel, P.,

552	2018. Conversion of organic waste into volatile fatty acids - The influence of
553	process operating parameters. Chem. Eng. J. 345, 395-403.
554	Ju, F., Lau, F., Zhang, T., 2017. Linking microbial community, environmental
555	variables, and methanogenesis in anaerobic biogas digesters of chemically
556	enhanced primary treatment sludge. Environ. Sci. Technol. 51(7), 3982-3992.
557	Ju, F., Xia, Y., Guo, F., Wang, Z.P., Zhang, T., 2014. Taxonomic relatedness shapes
558	bacterial assembly in activated sludge of globally distributed wastewater
559	treatment plants. Environ. Microbiol. 16(8), 2421-2432.
560	Leclerc, M., Delgenes, J.P., Godon, J.J., 2004. Diversity of the archaeal community in
561	44 anaerobic digesters as determined by single strand conformation
562	polymorphism analysis and 16S rDNA sequencing. Environ. Microbiol. 6(8),
563	809-819.
564	Lee, W.S., Chua, A.S.M., Yeoh, H.K., Ngoh, G.C., 2014. A review of the production
565	and applications of waste-derived volatile fatty acids. Chem. Eng. J. 235, 83-99.
566	Li, X.A., Chen, H., Hu, L.F., Yu, L., Chen, Y.G., Gu, G.W., 2011. Pilot-scale waste
567	activated sludge alkaline fermentation, fermentation liquid separation, and
568	application of fermentation liquid to improve biological nutrient removal.
569	Environ. Sci. Technol. 45(5), 1834-1839.
570	Li, X.L., Peng, Y.Z., Zhao, Y.Q., Zhang, L., Han, B.T., 2017. Volatile fatty acid
571	accumulation by alkaline control strategy in anaerobic fermentation of primary
572	sludge. Environ. Eng. Sci. 34(10), 703-710.
573	Lin, L., Li, X.Y., 2018. Acidogenic fermentation of iron-enhanced primary

574	sedimentation sludge under different pH conditions for production of volatile
575	fatty acids. Chemosphere 194, 692-700.
576	Liu, C., Li, H., Zhang, Y.Y., Si, D.D., Chen, Q.W., 2016. Evolution of microbial
577	community along with increasing solid concentration during high-solids
578	anaerobic digestion of sewage sludge. Bioresource Technol. 216, 87-94.
579	Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement
580	with the folin phenol reagent. J. Biol. Chem. 193(1), 265-275.
581	Ma, H.J., Chen, X.C., Liu, H., Liu, H.B., Fu, B., 2016. Improved volatile fatty acids
582	anaerobic production from waste activated sludge by pH regulation: Alkaline or
583	neutral pH? Waste Manage. 48, 397-403.
584	Ma, J.W., Zhao, Q.B., Laurens, L.L.M., Jarvis, E.E., Nagle, N.J., Chen, S.L., Frear,
585	C.S., 2015. Mechanism, kinetics and microbiology of inhibition caused by long-
586	chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels 8,
587	141.
588	McLeod, J.D., Othman, M.Z., Beale, D.J., Joshi, D., 2015. The use of laboratory scale
589	reactors to predict sensitivity to changes in operating conditions for full-scale
590	anaerobic digestion treating municipal sewage sludge. Bioresource Technol. 189,
591	384-390.
592	Ofiteru, I.D., Lunn, M., Curtis, T.P., Wells, G.F., Criddle, C.S., Francis, C.A., Sloan,
593	W.T., 2010. Combined niche and neutral effects in a microbial wastewater
594	treatment community. P. Nat. Acad. Sci. USA 107(35), 15345-15350.
595	Pagliano, G., Ventorino, V., Panico, A., Pepe, O., 2017. Integrated systems for

596	biopolymers and bioenergy production from organic waste and by-products: a
597	review of microbial processes. Biotechnol. Biofuels 10, 113.
598	Pereira, L.B., Vicentini, R., Ottoboni, L.M.M., 2015. Characterization of the core
599	microbiota of the drainage and surrounding soil of a Brazilian copper mine.
600	Genet. Mol. Biol. 38(4), 484-489.
601	Prowe, S.G., Antranikian, G., 2001. Anaerobranca gottschalkii sp nov., a novel
602	thermoalkaliphilic bacterium that grows anaerobically at high pH and
603	temperature. Int. J. Syst. Evol. Micr. 51, 457-465.
604	Sophonsiri, C., Morgenroth, E., 2004. Chemical composition associated with different
605	particle size fractions in municipal, industrial, and agricultural wastewaters.
606	Chemosphere 55(5), 691-703.
607	Tripathi, B.M., Stegen, J.C., Kim, M., Dong, K., Adams, J.M., Lee, Y.K., 2018. Soil
608	pH mediates the balance between stochastic and deterministic assembly of
609	bacteria. ISME J. 12(4), 1072-1083.
610	Vanwonterghem, I., Jensen, P.D., Dennis, P.G., Hugenholtz, P., Rabaey, K., Tyson,
611	G.W., 2014. Deterministic processes guide long-term synchronised population
612	dynamics in replicate anaerobic digesters. ISME J. 8(10), 2015-2028.
613	Wang, D., Huang, Y., Xu, Q., Liu, X., Yang, Q., Li, X., 2019. Free ammonia aids
614	ultrasound pretreatment to enhance short-chain fatty acids production from waste
615	activated sludge. Bioresource Technol. 275, 163-171.
616	Wang, D.B., Duan, Y.Y., Yang, Q., Liu, Y.W., Ni, B.J., Wang, Q.L., Zeng, G.M., Li,

617 X.M., Yuan, Z.G., 2018. Free ammonia enhances dark fermentative hydrogen

618	production from	waste activated sludge.	Water Res. 133, 272-281.
-----	-----------------	-------------------------	--------------------------

- Wang, X., Li, Y.B., Liu, J.X., Ren, N.Q., Qu, J.H., 2016. Augmentation of protein-
- 620 derived acetic acid production by heat-alkaline-induced changes in protein
- 621 structure and conformation. Water Res. 88, 595-603.
- Wang, Y.L., Wang, D.B., Liu, Y.W., Wang, Q.L., Chen, F., Yang, Q., Li, X.M., Zeng,
- 623 G.M., Li, H.L., 2017. Triclocarban enhances short-chain fatty acids production
- from anaerobic fermentation of waste activated sludge. Water Res. 127, 150-161.
- 625 Wilson, C.A., Novak, J., Takacs, I., Wett, B., Murthy, S., 2012. The kinetics of process
- dependent ammonia inhibition of methanogenesis from acetic acid. Water Res.
- 627 46(19), 6247-6256.
- Wu, H.Y., Gao, J.Y., Yang, D.H., Zhou, Q., Liu, W., 2010. Alkaline fermentation of

629 primary sludge for short-chain fatty acids accumulation and mechanism. Chem.

- 630 Eng. J. 160(1), 1-7.
- Kia, Y., Kong, Y.H., Thomsen, T.R., Nielsen, P.H., 2008. Identification and
- 632 ecophysiological characterization of epiphytic protein-hydrolyzing
- 633 Saprospiraceae ("Candidatus epiflobacter" spp.) in activated sludge. Appl.
- 634 Environ. Microb. 74(7), 2229-2238.
- Ku, J.J., Hao, J.X., Guzman, J.J.L., Spirito, C.M., Harroff, L.A., Angenent, L.T., 2018.
- Temperature-phased conversion of acid whey waste into medium-chain
- 637 carboxylic acids via lactic acid: No external e-donor. Joule 2(2), 280-295.
- 638 Yu, L., Zhang, W.D., Liu, H., Wang, G.H., Liu, H.B., 2018. Evaluation of volatile fatty
- 639 acids production and dewaterability of waste activated sludge with different

640	thermo-chemical pretreatments. Int. Biodeter. Biodegr. 129, 170-178.
641	Yuan, H.Y., Chen, Y.G., Zhang, H.X., Jiang, S., Zhou, Q., Gu, G.W., 2006. Improved
642	bioproduction of short-chain fatty acids (SCFAs) from excess sludge under
643	alkaline conditions. Environ. Sci. Technol. 40(6), 2025-2029.
644	Yuan, Y., Wang, S.Y., Liu, Y., Li, B.K., Wang, B., Peng, Y.Z., 2015. Long-term effect
645	of pH on short-chain fatty acids accumulation and microbial community in
646	sludge fermentation systems. Bioresource Technol. 197, 56-63.
647	Zhang, P., Chen, Y.G., Zhou, Q., 2009. Waste activated sludge hydrolysis and short-
648	chain fatty acids accumulation under mesophilic and thermophilic conditions:
649	Effect of pH. Water Res. 43(15), 3735-3742.
650	Zhao, J.W., Liu, Y.W., Wang, Y.L., Lian, Y., Wang, Q.L., Yang, Q., Wang, D.B., Xie,
651	G.J., Zeng, G.M., Sun, Y.J., Li, X.M., Ni, B.J., 2018a. Clarifying the role of free
652	ammonia in the production of short-chain fatty acids from waste activated sludge
653	anaerobic fermentation. ACS Sustain. Chem. Eng. 6(11), 14104-14113.
654	Zhao, J.W., Wang, D.B., Liu, Y.W., Ngo, H.H., Guo, W.S., Yang, Q., Li, X.M., 2018b.
655	Novel stepwise pH control strategy to improve short chain fatty acid production
656	from sludge anaerobic fermentation. Bioresource Technol. 249, 431-438.
657	Zheng, X., Su, Y.L., Li, X., Xiao, N.D., Wang, D.B., Chen, Y.G., 2013.
658	Pyrosequencing reveals the key microorganisms involved in sludge alkaline
659	fermentation for efficient short-chain fatty acids production. Environ. Sci.
660	Technol. 47(9), 4262-4268.

661 Zhou, J., Zhang, R., Liu, F.W., Yong, X.Y., Wu, X.Y., Zheng, T., Jiang, M., Jia, H.H.,

- 662 2016. Biogas production and microbial community shift through neutral pH
- 663 control during the anaerobic digestion of pig manure. Bioresource Technol. 217,

664 44-49.

665	Figure Captions
-----	------------------------

667	Fig. 1. Comparisons of (A) protein and(B) carbohydrate solubilisation, (C) SCFA
668	accumulation, and (D) Pearson's correlation indices for SCFA production and soluble
669	protein/soluble carbohydrate content and their combination for different pH control
670	strategies. All results are expressed as mean values of triplicate tests.
671	
672	Fig. 2. Performance differences of six fermentation reactors at days 3 (Phase 1 end)
673	and 25 (Phase II end).
674	
675	Fig. 3. Accumulative VSS compositions in different fermentation reactors at days 3
676	(Phase I end) and 25 (Phase II end).
677	
678	Fig. 4. Microbial community dynamics in fermentation reactors with uncontrolled pH,
679	alkaline pH, and stepwise pH decrease conditions at different time points. 3D-PCA
680	results showing microbial dynamics (0.97-OTU level) on the basis of the relative
681	abundance of (A) bacterial and (B) archaeal 16S rRNA gene sequences and separating
682	different sludge samples according to pH control methods. Circles indicate Phase I or
683	Phase II ends for reactors. Translucent colour shades indicate separated samples:
684	green = uncontrolled pH group, blue = alkaline pH group (pH 11); pink = stepwise pH
685	decrease group (pH 11, plus pH 9). Red circles denote raw feed samples prior to
686	fermentation.

688	Fig. 5. (A) Community compositions of main OTUs affiliated with the key functional
689	microorganisms and (B) copy numbers of total bacteria and archaea in fermentation
690	reactors with alkaline pH and stepwise pH decrease conditions at different time
691	points. (A): Circle sizes correspond to abundances, as shown at the bottom left of the
692	figure, while circle lines indicate statistical differences of OTU abundance between
693	days 0 and 3 or between pH 11 and 9 at day 25, based on Welch's test ($p < 0.05$). (B):
694	Stack heights correspond to copy numbers of total bacteria (green) or archaea
695	(purple), as shown at the upper left of the figure. Asterisks represent microorganisms
696	that are both hydrolysers and acetogens.
697	
698	Fig. 6. (A) Responses of microbial community assembly and performance to changes
699	in fermentation pH. (B) Conceptual model showing alternative interplays between
700	fermentation pH, microbial community structure, and SCFA yield alongside potential
701	shifts in the predominant roles of enhanced SCFA production.