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AbstrAct
When the degree of variation between healthcare 
organisations or geographical regions is quantified, 
there is often a failure to account for the role of chance, 
which can lead to an overestimation of the true variation. 
Mixed-effects models account for the role of chance 
and estimate the true/underlying variation between 
organisations or regions. In this paper, we explore how 
a random intercept model can be applied to rate or 
proportion indicators and how to interpret the estimated 
variance parameter.

IntroductIon
Identifying and quantifying varia-
tion in health and healthcare provi-
sion is commonplace in research, public 
health and healthcare delivery manage-
ment.1 2 However, all too often method-
ological approaches that overstate how 
much variability is present misdirect 
policy and practice. In the extreme case 
where no real differences exist between 
organisations or geographies, insufficient 
methods may suggest that variation does 
exist when in fact the data simply reflect 
chance. If it is the case that no real vari-
ation exists, common practices such as 
ranking organisations, identifying outliers 
or quality improvement efforts focused 
on organisations with poor performance, 
have no basis in reality. Therefore, it is 
important to establish how much varia-
tion would exist in the absence of chance 
before implementing such consequen-
tial and costly practices. There has been 
a wealth of methodological research 
focused on how to identify unusually 
poor or good organisations, and how to 
best estimate the performance of indi-
vidual organisations on metrics where 
both chance and real variation exist.3–9 
However, what has garnered less atten-
tion is understanding how much varia-
bility exists between organisations which 

is not due to chance. Identification of 
unwarranted variation across healthcare 
providers is often the driver of media 
attention and improvement efforts,10 11 
and as such variation needs to be quan-
tified accurately. In this paper, we focus 
on the issue of overall variation rather 
than quantifying performance for indi-
vidual organisations or geographies. In 
particular, we discuss why crude esti-
mates of variation can be misleading and 
show how familiar statistical tools used in 
medical research can avoid these common 
problems by identifying true variation. 
While the modelling techniques discussed 
are not new, this paper addresses a need to 
make the motivation for such models and 
interpretation of them more accessible to 
researchers and others who are not stat-
isticians well versed in these techniques.

the Influence of chAnce
Assessment of variation between healthcare 
organisations and geographical regions has 
long been the subject of enquiry in public 
health monitoring and more recently in 
the service improvement agenda. It is a 
key tool in health services research where 
we are interested in both the existence and 
size of variation, but often also in under-
standing what is driving it.1 However, while 
it is often recognised that the use of small 
samples affects the precision of individual 
organisation or geographical region meas-
ures, the impact on the ability to quantify 
variation is less well appreciated.

Where measures for a reporting unit 
such as a practice, hospital or geograph-
ical region are based on aggregated indi-
vidual measurements (eg, the percentage of 
patients with a certain outcome, or a mean 
value across a given population), chance 
will inflate the apparent variation between 
units of observation.12 To illustrate this, 
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Figure 1 Simulated data displayed in a funnel plot for 200 reporting 
units each of which have an underlying tendency to score 80%.

consider the example of flipping coins. We would not 
expect people flipping 10 coins to all record precisely 
five heads: some will record more and some less by 
chance. Similarly, if we are classifying organisations on 
a metric which over a long period has a performance 
level of 50% in every organisation, we would not expect 
every organisation to record exactly 50% over a limited 
period of time as the role of chance comes into play.

The effect of chance is larger when the numbers 
involved are small and it is this phenomenon which 
is often displayed in funnel plots where the ‘funnel’ is 
wider at the left of the graph where sample sizes are 
smaller.13 Figure 1 shows an example of a funnel plot 
displaying this phenomenon. In this case, the data have 
been simulated assuming each geography or organisa-
tion (which, in general, we refer to as reporting units) 
had an underlying percentage of 80%. If the sample size 
for each reporting unit was very large (eg, if measured 
over a very long time period), we would expect to see 
indicator values very close to 80% for all reporting 
units. However, because we have used finite sample 
sizes, there is variability in the observed distribution 
of indicator values even though there is no variability 
in the underlying performance. This variability simply 
reflects the influence of chance and it can be seen that 
this influence is larger for smaller sample sizes, but it is 
still present even when the sample size becomes appre-
ciable (ie, >200). It would be wrong to conclude that 
these reporting units are different on the basis of this 
level of variation.

The influence of chance is ever present for indicators 
based on aggregate measures constructed from data on 
individual patients or events. The presence of chance 
variation is often attributed to the process of sampling. 
However, even when all patients in a hospital or all 
events in a geographical area are counted over a given 
period, such that there is no sampling error, there 
may still be variation in performance due to chance, 
particularly if the time period is short or the event 
frequency rare. Future performance, which is often 

of most interest, therefore might not be similar.14 
For this reason, we use the term chance in this paper 
rather than error. The influence of chance will vary for 
different indicators in different setting but will always 
tend to inflate the apparent variation. Public health 
indicators for geographical regions often involve large 
numbers of individuals and so the influence of chance 
can be small. However, when outcomes are rare (eg, 
suicide), the influence of chance can be large. Indica-
tors related to healthcare providers tend to involve 
smaller populations than public health indicators, but 
sample sizes and rarity of outcomes still vary substan-
tially. With improvements in data gathering and time-
liness, there is a push to smaller units of analysis and 
shorter reporting periods. This push will result in a 
greater influence of chance and a larger apparent vari-
ation between organisations or geographical regions. 
Often, we are interested in the underlying variation 
rather than that which is observed over a finite time 
period. The underlying variation is that which would 
be seen with a very large sample size or over very long 
observation periods. Similarly, we would expect to get 
very close to 50% heads if we flipped a million coins. 
While the magnitude of observed variation decreases 
as sample sizes increase, the magnitude of the under-
lying variation remains constant.

Mixed-effects regression models are a well-es-
tablished tool which can be employed to partition 
observed variance into that which is due to chance and 
that which can be attributed to underlying differences 
between organisations. Here, we describe how they 
can be used to identify and quantify organisational 
or geographical variation in three principal types of 
metrics; proportions, rates and scores.

terminology
Throughout this paper, we use the term reporting unit 
to apply to the organisation or geographical regions 
that are being profiled.

rAndom Intercept models
Mixed-effects regression models (also known as multi-
level models) have become a standard tool in medical 
research over recent decades and are used to model 
situations where observations are not independent, 
for example when clustered by hospital or medical 
practice. Often, their use is motivated by estimating 
differences between patient groups (eg, the effect of 
a treatment within a cluster randomised trial). There, 
the multi-level model serves two purposes which are 
to account for the non-independence (which could 
lead to erroneous p values and CIs) and to adjust esti-
mates for differences within-cluster rather than differ-
ences between clusters. Mixed-effects models also can 
be used to facilitate the investigation of cluster-level 
effects while still making use of the patient-level data 
(eg, examining whether certain subtypes of organisa-
tion perform better or worse, on average, than others). 
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Box 1 Extreme example

We consider a hypothetical example comprising 1000 
reporting units, each reporting on a binary (yes/no) 
indicator with a national performance of 50%. In this 
extreme example, each reporting unit has only two 
observations on which the indicator is based. If no real 
variation existed between units (such as if they were 
tossing coins), we expect the distribution to be described 
by the binomial distribution that is, 250 with 0%, 500 
with 50% and 250 with 100%. If instead we observe 300 
with 0%, 400 with 50% and 300 with 100%, the overall 
average is still 50%, but there is more variation than 
expected from chance alone according to the binomial 
distribution. A random intercept logistic regression can 
be applied to these hypothetical data which estimates 
the SD on the log-odds scale between units as 1.11. 
To put this in context, if we had a very large number of 
observations per reporting unit, such that the influence 
of chance was minimal, and the underlying performance 
of each unit was unaltered, we would see substantial 
variation between units. In fact, we would expect 95% 
of reporting units’ performance to be spread over the 
interval 10%–90%.

As we argue below, taking a simpler approach can lead 
to an overestimate of between organisation variance, 
especially when the within-organisation sample size 
is small. However, caution is also needed when the 
number of clusters is small (<30), as this can lead to 
both an underestimate of between organisation vari-
ance and an underestimate of the standard errors on 
organisational-level effects.15

The simplest mixed-effects model is the random 
intercept model. In this regression, a term is added 
to a standard regression which captures the variation 
between reporting units (often termed the between-
cluster variance). Rather than estimate effect for 
each unit, the between-unit variation is described by 
a distribution. The between-unit variation is assumed 
to be normally distributed and described by a SD (or 
variance). Employing a random intercept model, the 
observed variance between units is partitioned into 
that attributable to the underlying variation between 
units and that attributable to chance.

The framework of a random intercept model can 
be applied to linear regression or more generally to 
generalised linear models such as logistic or Poisson 
regression. Normally, we would use logistic regressions 
for percentage or proportion-type indicators, Poisson 
regression for rate indicators and linear regression for 
other types of indicators such as those based on some 
type of quality score. In all cases to quantify between-
unit variation, we can fit a random intercept model 
with no fixed effects (ie, regular regression coefficients) 
other than an intercept or constant term. For linear 
models, person-level data are required to estimate the 
within-unit variance. However, for percentage or rate 
indicators, models can be fitted so long as the observed 
numerators and denominators for each reporting unit 
are used (rather than the percentage or rate value). 
We can do this because we assume the data follow the 
binomial or Poisson distributions (for percentage and 
rate indicators, respectively), the variance of which 
depends only on the mean and sample size.

When fitting such a model, the estimate of the 
overall average will be given by the constant term 
and the estimated variability between units around 
that average will be given by the SD or variance of 
the random effect (random intercept). With a linear 
model, these estimates will be directly comparable 
with the indicator being modelled. In contrast, with 
a percentage or rate indicator, these estimates will be 
on the log-odds or log-rate scale, respectively. Further-
more, the between-unit variation is assumed to be 
normally distributed on the log-odds or log-rate scale. 
This can make interpretation of the SD or variance 
of the random effect difficult and we suggest various 
ways to approach this below.

A distinct advantage of mixed-effect models is 
that they can be used even when data are sparse. For 
example, it is possible to include reporting units with 
only two individual-level observations in mixed-effects 

logistic models. Because mixed-effects models account 
for the expected influence of chance and estimate the 
underlying, rather than observed, variation, the esti-
mate of between-unit variance is not associated with 
the number of observations for each unit. (However, 
the precision of an estimated between-unit variance or 
SD will depend on both the number of observations 
per unit and the number of units, and there can be 
biases in mixed-effects models when very small sample 
sizes are used, though in general the number of units 
is more important for both precision and the impact 
of small sample issues.)16 An extreme example of 
applying a random intercept model to sparse data is 
given in box 1.

testing for between-unit variation
As noted, we would expect to see variation between 
units when indicators are based on finite samples 
whether or not any true underlying variation existed. 
With mixed models, we can formally test whether the 
observed variation is larger than that which might be 
expected if there was no underlying variation between 
units. To do so we can perform a likelihood ratio test 
comparing our random intercept model with an empty 
model containing only a constant term.

Quantifying variation and the interpretation of 
random intercepts
As discussed above, the SD of the random effect is one 
immediate way of quantifying variation. However, the 
interpretation of this can be hard for rate and propor-
tion indicators because it is defined on the log-rate or 
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log-odds scale and as such is not directly relatable to 
differences in proportions or rates, so are of little use 
to a non-technical audience. Often the intraclass corre-
lation coefficient or variance partition coefficient are 
used to describe variation.17 In simple situations, they 
are equivalent and describe the proportion of total 
variance between individuals which is attributable to 
the differences between organisations. These two are 
difficult concepts to explain to non-technical audi-
ences. Furthermore, they complicate matters further 
by casting the between-organisation variance as a rela-
tive measure given in terms of the variability between 
individuals, rather than as an absolute measure. As 
such, it can be very hard to convey when variation is 
unreasonably large. Moreover, what constitutes unrea-
sonably large variation is likely to vary according to 
context.

Rather than the technical measures discussed, 
there are options which present the variability, after 
accounting for chance, on the natural scale of the 
indicator (eg, proportion or rate) which are far more 
accessible. Furthermore, placing measures on the 
natural scale means that reasonable judgements can 
be made on the consequence of the magnitude of 
the variation. One option is to estimate percentiles 
of the fitted underlying distribution in terms of rates 
of proportions. For example, the 75th centile of the 
indicator could be calculated by first determining the 
75th centile of the fitted distribution on a log-odds 
or log-rate scale before converting back to the native 
scales (ie, proportion or rate) for direct comparison 
with the observed scores. A particularly useful pair of 
percentiles are the 2.5th and 97.5th centiles. Together, 
these can be used to describe the 95% midrange of 
observations, that is, the range that we would expect 
most observations, ignoring extremes, to lie within. 
Further mathematical details on obtaining these 
centiles are provided in appendix 1.

A second option is to estimate the relative differ-
ence between two centiles, such as the 75th/25th or 
97.5th/2.5th. For proportion and rate indicators, 
these differences would be expressed as an OR or rate 
ratio comparing the top and bottom centile. A related 
method is the median OR which is the median of ORs 
that would be obtained by comparing random pairs of 
reporting units.18 Further mathematical details on are 
provided in appendix 1.

A final option is to produce a graphical illustration 
of the fitted distribution. For data used in linear regres-
sion models, a normal distribution can be shown with 
the given mean and SD. For rate models, a log-normal 
distribution is equivalent to that fitted and is defined by 
the mean and SD on the log-odds scale. For proportion 
indicators, the situation is more complex as no analytic 
solution exists to transform the fitted normal distribu-
tion from the log-odds scale to the proportion scale. 
Instead, we outline a numerical method for doing this in 
Appendix 2. The fitted distributions can easily be plotted 

over the observed distributions to gain some insight into 
how much observed variability is due to chance.

exAmples
example 1: suicide rate for english local authorities
As part of the Public Health Outcomes Framework, 
Public Health England produce a large number of 
public health indicators at different geographical 
levels.19 These levels range between large regions of 
England (nine covering the country) to district and 
unitary authorities which relate to populations from 
around 2000 to a little over one million. While many 
of these indicators are based on large sample sizes and 
thus are only slightly affected by chance variation, 
many measure rare events so that chance can play a 
substantial role. One such indicator is 4.10. Suicide 
rate applied at the district and unitary authority levels. 
These data are usually presented as an age standardised 
rate, but for simplicity we use the crude rate calculated 
as the number of suicides divided by the population at 
risk. Data are restricted to people 10 years old and over 
and for the time period 2013–2015. For illustration 
purposes, we present the figures for women. As a rate 
indicator, the natural model to use is a Poisson regres-
sion. Fitting a random intercept, Poisson regression to 
the data produces an estimated mean log rate of −9.98 
and an estimated between-unit SD of 0.199. From 
this, we estimate the true underlying 95% midrange 
of suicide rates across districts/unitary authorities to 
be 3.12–6.82 suicides per 100 000 person years, and 
a rate ratio covering this midrange to be 2.18. This 
can be interpreted as a little over a twofold variation 
in suicide rate between different districts in England. 
If we compare these to the observed values, which 
included contributions from both true organisational 
and chance variation, we find that the 95% observed 
midrange covers the range 1.61–8.87 suicides per 
100 000 person years, which equate to just over a 
fivefold variation. This discrepancy between observed 
variation and the underlying true variation is shown in 
figure 2. Only 20.2% of the observed variance (on the 
log-rate scale) can be attributed to the real variation 
between geographical units with almost 80% of the 
observed variance being due to chance.

example 2: liver disease mortality rate for english local 
authorities
A second example from the same data source is indi-
cator 4.06i—under 75 mortality rate from liver 
disease. Again this data relate to the period 2013–
2015 and are presented here for women. As with the 
suicide rate, the data are calculated as the number of 
deaths divided by the population at risk and again 
a Poisson regression framework is the most appro-
priate as we are modelling count/rate data. In this case 
fitting, a random intercept Poisson regression to the 
data produces an estimated mean log rate −9.10 and 
an estimated between-unit SD 0.310. From this, we 
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Figure 2 Suicide rates of women for English districts and unitary 
authorities. The histogram shows the distribution of observed rates in the 
period 2013–2015 and the solid line shows the fitted distribution from a 
random intercept Poisson model for the underlying variation.

Figure 3 Under 75 mortality rate from liver disease for English districts 
and unitary authorities. The histogram shows the distribution of observed 
rates in the period 2013–2015 and the solid line shows the fitted 
distribution from a random intercept Poisson model for the underlying 
variation.

estimate the true underlying 95% midrange of rates 
to be 6.07 to 20.5 deaths per 100 000 person years, 
and a rate ratio covering this midrange to be 3.38, that 
is, over a threefold variation in early mortality form 
liver disease between different districts in England. If 
we compare these to the observed values (influenced 
by true and chance variation), we find that the 95% 
observed midrange covers the range 4.86 to 21.5 
deaths per 100 000 person years, that is, over four-
fold variation. This discrepancy between observed 
variation and the underlying true variation is shown in 
figure 3. Only 67.0% of the observed variance (on the 
log-rate scale) can be attributed to the real variation 
between geographical units with around a third of the 
observed variance being due to chance.

The different degree of chance variation between the 
suicide example and the liver disease mortality example 
can be seen if we consider the correlation of one indicator 

with the same indicator from a previous time period. 
This is shown in figure 4 for the two public health indi-
cators considered which shown the data for 2013–2015 
plotted against the preceding period 2010–2012. There 
are two principal drivers of less than perfect year-on-year 
correlations. The first driver is true annual change in the 
performance of organisations/geographies. The second 
driver is that the influence of chance on individual organ-
isation/geography metrics is different from year to year. 
We see a much stronger association between liver disease 
mortality over the two time periods (correlation coeffi-
cient: 0.76) than for the suicide rate (correlation coef-
ficient: 0.33). One might crudely conclude that suicide 
rates are inherently more variable over time. However, 
where the influence of chance is large the year-to-year 
variations in observed values will be large even if the 
underlying performance does not change and that this 
is likely the principal reason for the differences seen in 
the two panels of figure 4. More complex mixed-effects 
models than those discussed here can be used to further 
partition changes over time into real ones and those due 
to chance and estimate what the correlation between 
the two time periods would have been in the absence 
of chance.

example 3: blood pressure control in us health plans
Both examples 1 and 2 illustrate mixed-effects Poisson 
regression applied to a rate indicator. The third example 
illustrates mixed-effects logistic regression applied to 
a percentage indicator. Collected by the Centres for 
Medicare & Medicaid Services, the Healthcare Effec-
tiveness Data and Information Set (HEDIS) is a tool 
used by more than 90% of America's health plans to 
measure performance on important dimensions of 
care and service.20 HEDIS data consist of healthcare 
process measures and intermediate outcome measures 
based on administrative data supplemented in some 
cases by information obtained from individual medical 
records. One measure is controlling high blood pres-
sure, which assesses whether blood pressure was 
adequately controlled among adults 18–85 years of 
age who had a diagnosis of hypertension. For this anal-
ysis, data from 2015 and 2016 were pooled together 
for more precise estimation.

Across the 457 health plans with at least 100 
members eligible for this measure and weighing 
plans equally, the mean pass rate was 68.1%. In this 
case, the indicator is presented as a percentage and 
so a mixed-effect logistic regression was used with a 
random intercept for plan. This model produces an 
estimated between-plan SD of 0.695 on the log-odds 
scale. From this, we estimate the true underlying 95% 
midrange of health plan pass rates to be 36.7% to 
89.9%, and an OR covering this midrange to be 15.2. 
If we compare these to the observed health plan pass 
percentages (influenced by true and chance variation), 
we find that the 95% observed midrange covers the 
range 31.2%–89.9%, somewhat larger OR over this 
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Figure 4 The correlation between rates of (a) suicide and (B) under 75 mortality rate from liver disease between 2010–2012 and 2013–2015 for English 
districts and unitary authorities.

Figure 5 The proportion of adult patients (18–85 years of age) with a 
diagnosis of hypertension who had adequately controlled blood pressure 
health plans in the. The histogram shows the distribution of observed 
proportions in the period 2015–2016 and the solid line shows the fitted 
distribution from a random intercept logistic model for the underlying 
variation.

Box 2 When might chance be a problem?

When the highest and lowest performers are 
dominated by smaller organisations/geographies

When units of analysis have variable sample sizes, the 
influence of chance is greater in the smaller units. The 
greater influence of chance in the small units leads to 
larger fluctuations and a higher likelihood that they will 
be among the top and bottom performers.

When the observed variation is similar to that you 
might expect by chance

We can estimate how much variation might be 
expected by chance in a rate indicator by considering 
the denominator count of events. The expected variation 
due to chance alone which would cover 95% of units is 
shown in table 1 calculated from the Poisson distribution. 
If the observed range of indicator values is not 
substantially larger than that shown in table 1, it is likely 
that chance is having a sizeable impact on the observed 
variability. Alternatively, the range shown in table 1 can 
be approximated by  

(
n+ 1.96

√
n
)
/
(
n− 1.96

√
n
)
  where 

n is the typical count.
The situation with percentage indicators is a little more 

complex but a reasonable approximation can be gained 
using either the numerator or the denominator minus 
the numerator, whichever is smaller, in the above table/
formula.

Table 1 Expected variation due to chance predicted from the 
Poisson distribution for different counts of events.

Counts
Size of variation covering 95% of 
units

8 or less >fourfold
9–14 threefold to fourfold
15–33 twofold to threefold
34–90 1.5-fold to 2-fold
91–214 1.3-fold to 1.5-fold
215–462 1.2-fold to 1.3-fold

range of 19.8. This measure has high reliability and the 
estimated and observed variation are not too dissim-
ilar; the similarity between observed variation and the 
underlying true variation is shown in figure 5.

dIscussIon
Chance variation is ever present. As we show here there 
can be times when it dominates variability in indicators 
between geographies or organisations. Unfortunately, for 
any one observation, it is impossible to establish just what 
the impact of chance on that single value is. However, 
using mixed-effects models, it is possible to determine 
the magnitude of chance variation and the true under-
lying variation between the observational units. What 
constitutes unduly large variation depends very much 
on context. However, using the methods presented 
here, such as presenting centiles of the distribution on 
native scales, or 95% midranges, can allow a reasonable 
judgement to be made as they are far easier to interpret 
in any given context than, say a variance of a random 
effect on the log-odds scale. Which particular measure 
of variation is used is really an issue of preference, and 
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again different measures may be useful in different situ-
ations, or more accessible to different audiences. There 
are guiding principles which indicate when chance vari-
ation is likely to have a large impact (box 2), but mixed 
models can be applied even when this is not the case. 
Beyond research, where the applications of these models 
are vast, there are practical reasons why understanding 
the underlying magnitude of variability is important.

In the quality improvement field and public health 
monitoring, there is interest in identifying variability 
between organisations or geographical units. Where 
wide variation is identified, there may be considerable 
effort put into identifying best practice and substantial 
investment in trying to improve low-performing organi-
sations or regions. Sometimes, there are reputational or 
financial implications to organisations being classified as 
poor performers. In these situations, overstating varia-
tion can lead to a misdirection of resources. Attaching 
financial incentives to improvement where variation 
between organisations is overstated may have adverse 
effects, if for no other reasons in so far as they intro-
duce an opportunity cost, in turn negatively impacting 
the quality of patient care. Moreover, in the absence of 
careful analysis, such quality improvement efforts may 
be reinforced by apparent success that is actually attrib-
utable to regression to the mean.

The existence of true variability can often be taken as 
a sign that there is room for improvement and appro-
priately much research is aimed at understanding vari-
ation that may yield insights regarding how to improve 
health or healthcare. However, research which seeks 
to explain variation that can simply be attributed to 
chance is likely to be futile. There are statistical tools 
such as the mixed-effects models discussed here which 
quantify variation appropriately after excluding the 
influence of chance. We recommend that these should 
be in wide use by data producers, publishers and 
researchers to check the true size of variation rather 
than simply presenting statistics based on observed 
figures from a limited sample.
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