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Abstract

We present an automated new approach for facial expression recognition of seven

emotions. The main objective of this thesis is building a model that can classify

the spontaneous facial expressions, rather than the acted ones, and apply this model

images and videos. Moreover, we will investigate if a combination of more than one

image feature descriptor will improve the classification rate, and the efficacy of the

texture descriptors on videos sequences.

Three types of texture features from static images were combined: Local Bi-

nary Patterns (LBP), Histogram of Oriented Gradients (HOG) and Dense Speeded

Up Robust Features (D-SURF). The resulting features are classified using random

forests. The use of random forests allows for the identification of the most impor-

tant feature types and facial locations for emotion classification. Regions around the

eyes, forehead, sides of the nose and mouth are found to be most significant. We

classified the important features with random forest and Support Vector Machines.

We also found that the classification performance became better than using all of the

extracted facial features. We achieved better than state-of-the-art accuracies using

multiple texture feature descriptors.

Current emotion recognition datasets comprise posed portraits of actors display-

ing emotions. To evaluate the recognition algorithms on spontaneous facial expres-

sions, we introduced an unposed dataset called the “Emotional Faces in the Wild”

(eLFW), a citizen-labelling of 1310 faces from the Labelled Faces in the Wild data.

To collect this data, we built a website and asked citizens to label photos accord-

ing to the emotion displayed. The citizens were also asked to label a selection of



KDEF faces. We evaluated the common misclassification of the faces, similar to

what people do; machine algorithms perform worst regarding distinguishing between

sad, angry and fearful expressions. We describe a new weighted voting algorithm

for multi-calcification, in which the predictions of the classifiers trained on pairs

of classes are combined with weights learned using an evolutionary algorithm. This

method yields superior results, particularly for the hard-to-distinguish emotions. The

method was applied to the DynEmo video database. We investigated some methods

to smooth the classifier predictions in order to exploit temporal continuity emotions

and therefore classification error. Several smoothing techniques were investigated

and optimised, and we found that the simple moving average and linear fit Lowess

smoothing performed best.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Objectives and aims . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Structure of the thesis . . . . . . . . . . . . . . . . . . . . 7

1.1 Motivation

Computers have become an important part of our lives. They have moved from

being just equipment for managing business and office tasks to being a real partner

in social communication and interaction with humans. The prevalence in the past

1
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two decades of small computers such as laptops, mobile phones and tablet devices

has played a significant role in making computers a permanent companion of our

lives and within our relationships with others.

Our emotions critically affect all aspects of our lives, from how we live, work,

learn and play, to our decisions, big and small. Facial expressions have a significant

role in our communication with others. Today, mobile phones and computers are

a significant way to communicate with others, so machines have to perform lots of

human tasks, and they need to have more human-like capabilities. Human emo-

tional intelligence depends on our ability to recognise not only our own emotions but

also those of other people. To this end, smart devices and advanced AI (artificial

intelligence) systems should have the capacity to understand our emotions and to

interact with humans emotionally. Human-computer intelligent interaction (HCII)

is a growing field that aims to achieve that. Human faces are the most important

part of the human body used to express feelings. People around the world use simi-

lar facial expressions to express emotions such as happiness, sadness, anger, disgust,

surprise and fear. Facial expressions enable people to understand each other; some-

times without even a single word being spoken. In other words, facial expressions

are a global language.

Most proposed automatic facial-expression recognition methods have been based

on posed facial expressions, using databases that have been built from acted facial

expressions. The creators of those databases have asked models or actors to express

facial expressions and the problem here that the spontaneous emotions are different

from those posed. This limits the ability of emotion classification systems trained on
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these databases to generalise to naturally expressed emotions.

In recent times, facial emotional recognition systems have been used in several

applications such as:

1. Detection and treatment of depression and anxiety (Ekman and Rosenberg,

1997).

2. The FaceReader (Den Uyl and Van Kuilenburg, 2005).

3. EmotiChat (Anderson and McOwan, 2006) .

4. Smart homes (Pantic et al., 2007).

5. Affective/social robots (Scherer et al., 2010).

6. Emotientv (Whitehill et al., 2013).

7. EmoVu (Arnold and Emerick, 2016).

For more extensive review see (Khan, 2013) and the “20+ Emotion Recognition

APIs” website which keeps an updated compendium (Bill Doerrfeld, 2016).

From the consideration of the above, we need more to study facial expression

recognition with spontaneous expressions to be more useful in all real-life applications

because of the variation of facial expressions between people.

1.2 Challenges

Although many methods have been proposed for facial expression recognition, many

challenges and difficulties are still faced in this field, especially with natural expres-
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sions. This thesis particularly addresses the following challenges:

1. The similarity of facial expressions means that many people find it difficult to

differentiate between certain expressions. For example, fear and surprise. We

performed a study by asking people to identify a range of facial expressions

and found a significant variation in people’s ability to determine facial expres-

sions particularly those representing emotions such as anger, fear, and surprise.

Machines also face similar difficulty when recognising such expressions.

2. It is well known that there is a variation amongst human faces and thus their

way of expressing their emotions. Some people exaggerate their expressions,

while others try to hide them. Moreover, there are many basic facial expressions

(fear, anger, disgust, happy, neutral, sad and surprise) and some secondary

expressions. For example, pain, and this may change according to cultures and

nation. This variation may divide the same expression into levels that would

make it harder for machines to classify them. For example, a happy expression

could include a small smile or a deep laugh.

3. This study was keen to use spontaneous facial expressions rather than posed

ones. Most of the facial expression datasets contain posed facial expressions

and have been built depending on acted facial expressions by models or actors.

Consequently, these databases are not indicative of the way that people express

their emotion in reality. Therefore, machines trained on these databases may

not be able to classify spontaneous expressions accurately.
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1.3 Objectives and aims

• The main objective of this thesis is building a model that can classify spon-

taneous facial expressions, rather than acted ones, and to apply this model to

images and videos.

• We aim to investigate how texture descriptors effect facial emotion classifica-

tion.

• We will investigate if a combination of more than one image features, the

descriptor will improve the classification rate.

• We aim to investigate the efficacy of the texture descriptors on video sequences.

1.4 Contributions

The contributions in this field, as described in this thesis are as follows:

• We used the Labelled Faces in the Wild dataset to construct a new facial

expression dataset emotional Labelled Faces in the Wild (eLFW) by using

citizens to derive consensus labels for the emotions. The new dataset contains

natural facial expressions in contrast to most of the current datasets, which

depend on actors mimicking facial expressions. In total, 135 persons have

voted the LFW, so the new eLFW dataset contains 1310 labelled images.

• We showed that a combination of three image feature extraction methods,

Local Binary Patterns (LBP) (Ojala et al., 1996), the Histogram of Oriented
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Gradients (HOG) (Dalal and Triggs, 2005), and Dense Speeded-up Robust

Features (D-SURF) (Bay et al., 2006, 2008) provide a better image description

than using only one of them. This improves the classification rate using SVM

and random forests. Random forests give only 56.90% with HOG, 61.00%

with LBP and 51.20% D-SURF separately when tested on the eLFW. For the

combination of the three descriptors together, the accuracy jumps to 67.30%

• We propose a new method to identify the most relevant image regions for

emotion classification. Applying the mask to the eLFW increases the random

forest classification accuracy from 67.30% without masking to 71.60% with

masking.

• We describe a new weighted voting algorithm, in which the weighted predictions

of classifiers trained on pairs of classes are combined with the weights learned

using an evolutionary algorithm. This method yields superior results, partic-

ularly for the hard-to-distinguish emotions. This algorithm results in 73.3%

accuracy for the equal pair-wise classification and 76.60% for the weighted

pair-wise classification when tested on eLFW.

• We used smoothing techniques to reduce video classification errors (noise), by

relying on a set of sequential video frames.

1.5 Publications

The material presented in chapters 3 and 4 has been published in:
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Abuhammad, H., & Everson, R. (2018, June). Emotional Faces in the Wild: Fea-

ture Descriptors for Emotion Classification. In International Conference on Image

Analysis and Recognition, Pages 164-174. Springer.

1.6 Structure of the thesis

The rest of the thesis is structured as follows.

Chapter 2

We present a brief overview of some of the related feature extraction methods,

together with the random forest and support vector machine classifiers. We present a

brief overview of three optimisation methods: the Nelder-Mead simplex direct search,

Bayesian optimisation and the Covariance Matrix Adaptation Evolution Strategy.

In particular, we discuss some related methods of facial expression which depend on

image-appearance techniques.

Chapter 3

In this chapter, we introduce the new “Emotional Labelled Faces in the Wild”

dataset (eLFW), a citizen-labelling of 1310 faces from the Labelled Faces in the Wild

data LFW (Huang et al., 2007a; Learned-Miller, 2014). To achieve that, we built a

website to allow people to vote the facial expressions. The new data set enabled us

to evaluate the proposed texture-based emotions classification on realistic data.
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Chapter 4

In this chapter, we present an automated new approach for facial expression

recognition of seven emotions. Three types of texture features (LBP, HOG and D-

SURF) from static images are combined, and the resulting features are classified

using random forests.

We achieve comparable accuracies with recent works using multiple texture fea-

ture descriptors. The use of random forests allows for the identification of the most

important feature types and locations used for emotion classification. Regions around

the eyes, forehead, sides of the nose and mouth were found to be the most significant.

We found a similarity between the machine and people’s classification of the

eLFW and the Karolinska Directed Emotional Faces (KDEF) Lundqvist et al. (1998)

data obtained from actors, and poorest results are obtained in distinguishing the sad,

angry and fearful emotions.

We describe a new weighted voting algorithm, in which the weighted predictions

of classifiers trained on pairs of classes are combined with the weights learned us-

ing an evolutionary algorithm. This method yields superior classification accuracy,

particularly for the hard-to-distinguish emotions.

Chapter 5

In this chapter, we apply the proposed method in this chapter to DynEmo video

databases. We describe how smoothing positively affects the classifier scores by

reducing errors.
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Chapter 6

This chapter reviews a summary of the proposed algorithms and the associated

results presented in this thesis, in addition directions for future work.
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2.1 Introduction

In this chapter, we present the background necessary to appreciate our proposed

method based on image texture and random forests. We present a generic overview

of various main concepts, with the more specific details of different techniques in the

relevant chapters.

The facial expression recognition field first started being discussed at the end of

the last century (Suwa, 1978; Essa and Pentland, 1995). Since then, many researchers

have proposed methods to improve the ability of machines to recognise human facial

expressions.

Traditional pipeline facial expression recognition systems follow the same general

steps, as illustrated in figure 2.1. The first is to find the Region Of Interest (ROI),

which is the face. Unwanted areas may badly affect classification accuracy. Many

facial detection methods have been proposed, such as the Viola-Jones algorithm

(Viola and Jones, 2004, 2001). The next step is extracting the features from the

detected face. The purpose of image feature extraction is to describe an image

efficiently by extracting the essential values and reducing the data without losing

any significant details. There are many ways to do that, with some depending on

image texture itself, while other methods describe the image geometrically. The

last step is to classify the extracted features. In this step, machine learning plays

the primary role in finding the differences between the feature groups and making a

decision as to what a group of values refers to.

Deep learning algorithms have been used in a wide range of fields, including
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Figure 2.1: Basic facial expression recognition system pipeline

automatic speech recognition, image recognition, natural language processing, drug

discovery, and facial expressions. One of the essential advantages of deep learning is

that we do not need to extract the features from the image manually. Deep learning

can learn to extract the features while training using its convolution kernels. The

main disadvantages of deep learning are that it needs a large amount of data and

a large amount of computational power. With the big revolution in the speed of

computers and the emergence of Big Data, deep learning has attracted considerable

attention by researchers in recent years.

Some facial expression recognition methods may contain further steps to improve

accuracy. For example, applying pre-processing techniques to enhance the image

before feature extraction, or by reducing the length of the extracted feature vector.
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2.2 Review of the “state of the art” for facial expressions

recognition methods

2.2.1 Active shape and active appearance models

An active appearance model (AAM) (Edwards et al., 1998; Cootes et al., 1998, 2001)

is a computer vision algorithm which depends on statistically finding the values

which fit with a grey image’s texture values, and making a statistical link with an

active shape model (Cootes and Taylor, 1992; Cootes et al., 1992, 1995). ASM was

first proposed by Cootes and Taylor (1992) based on models created from sets of

training examples called Point Distribution Models (PDM). These represent objects

as sets of labelled points called landmark points. Figure 2.2 illustrates a PDM as

an example of face points landmarking. AAM was first proposed by Edwards et al.

(1998) for face analysis. Since then the method has been commonly used in computer

vision applications such as face matching, tracking faces, medical image analysis and

emotion recognition (Ratliff and Patterson, 2008; Ko and Sim, 2010; Setyati et al.,

2012; Lozano-Monasor et al., 2014; Chen et al., 2013; Yu et al., 2013).

The training set is normally labelled manually. Each shape is represented as

shown in equation 2.1.

x = (x0, y0, x1, y1, ..., xk, yk, ..., xn−1, yn−1)
T (2.1)

where (xk, yk) is the position point k

The first step is computing the mean points for all the training set to find the mean

shape x̄. AAM’s idea is to combine a model of face shape variation with a model of
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Figure 2.2: Point Distribution Model (T.F. Cootes and Taylor, 1999)

the appearance variations of a shape-normalised face. To create new shapes from the

mean shape x̄, ASM generates new shapes and textures using Principal Component

Analysis (PCA). PCA is applied to all training data to calculate the eigenvectors of

the covariance matrix. The following equation is used to generate a new shape:

x ≈ x̄ + P sbs (2.2)

where x̄ the mean shape, P = (P 1 | P 2 | ... | P t) contains t eigenvectors of the

covariance matrix and b is a t dimensional vector given by

b = P T (x − x̄) (2.3)

All image shapes are normalised to the mean shape. Each image is then warped to

its control points. The same pose (translation, scale and rotation) values are used

in shape normalisation so then we can sample the grey level information g from a

shape-normalised face patch. By applying PCA to this data we obtain this model:

g ≈ ḡ + P gbg (2.4)
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A further PCA is applied to the correlated shape and grey-level variations, to obtain:

x ≈ x̄ + Qsc (2.5)

g ≈ ḡ + Qgc (2.6)

where x̄ is the ean shape, ḡ the mean texture, Qs,Qg are the matrices describing the

modes of variation derived from the training set and c is a vector of the appearance

parameters controlling both the shape and grey-levels of the model.

By varying the elements of c in equation 2.5 and 2.4, new shapes and images will

be generated. So ci is the variance of the ith parameter given by standard deviations

λi. To generate similar shapes to the original training data, limits of ±3
√
λi have

been applied to the parameter bi.

Now if we were given a new image gs, and we want to find the shape points which

fit the image we need to vary c to generate new images by a set of model parameters c.

We can generate a hypothesis for the shape, x, and texture, gm, of a model instance,

and then finding the most similar generated image for the appearance model to gs

by computing the difference, δg = gs − gm. This is an optimisation problem to find

the best c efficiently, which will generate shape landmarks which describe the face

parts.

Since Edwards et al. (1998), many researches have used AAM in many applica-

tions to recognise facial expression in videos (Sung et al., 2006; Martin et al., 2008)

and photos (Kanade et al., 2000; Wu et al., 2013) . Facial expressions recognition

is one of the most discussed topics during the last three decades. Researchers have

applied AAM to extract facial features face points to be classified using various clas-

sifiers. One of the ways that the AAM has been used in facial recognition system is
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in the Action Units (AUs). The AUs system is described in the Facial Action Coding

System (FACS) (Ekman, 1978), which was based on minimal muscular movements

and which individually or in combinations represent all facial expressions (Cohn

et al., 1998; Lucey et al., 2010). By finding the action units in a face, and by using

one or a group of them together, facial expressions can be recognised. For instance,

AU1 is Inner Brow Raiser, AU2 is Outer Brow Raiser, AU15 Lip Corner Depressor

and AU28 Lip Suck. To determine anger expression, for example, AU23 and AU24

must be present in the AU combination, where AU1+4+15 or 11 must be present

for sadness Lucey et al. (2010). To classify the extracted features to find the AUs

trained classifiers have been used like neural networks trained with backpropagation

(Van Kuilenburg et al., 2005) on Cohn-Kanade AU-Coded (CK+) Facial Expression

Database (Kanade et al., 2000), or Support Vector Machine (SVM) in (Lucey et al.,

2010) with the CK+ database as well.

On the other hand, AAM was used to detect facial expressions directly rather

than AU detection. The AAM features have been classified using several classifiers

such as the simple Euclidean-distance classification scheme (Ratliff and Patterson,

2008), K-nearest neighbours classification (Cheon and Kim, 2008) or SVM (Kotsia

and Pitas, 2007).

The main advantage of ASM and AAM is that they have low dimension and

simplicity. However, they are sensitive to error in image registration and motion

discontinuities. In ASM and AAM, we depend on the facial landmarks to recognise

the facial expression, so any error in representing the face by landmarks leads to a

wrong recognition.
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(a) A woman’s face (b) Visualization of extracted HOG

Figure 2.3: HOG descriptor Visualization

2.2.2 Image texture-based methods

Image texture-based or appearance-based methods have been widely used in com-

puter vision applications for face recognition and facial expression recognition. The

idea of image texture methods is using the image pixel values such as RGB and

greyscale changes. Many methods have been proposed to describe the image and

extract the image features such as Locally Binary Patterns (LBP), the Histogram of

Oriented Gradients (HOG) Scale-Invariant Feature Transform (SIFT) and Speeded

Up Robust Features (SURF).

2.2.2.1 Local histogram of oriented gradients (HOG)

The Local Histogram of Oriented Gradients (HOG) is a method proposed by Dalal

and Triggs (2005). This method aims to describe an image with a set of local

histograms. These histograms count the occurrences of gradient orientation in a local
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part of the image. The HOG algorithm is similar to edge orientation histograms,

scale-invariant feature transform descriptors and shape contexts, but the difference

is that it is computed on a dense grid of uniformly spaced cells and that it uses

overlapping local contrast normalisation for improved accuracy (Dalal and Triggs,

2005). Figure 2.3 shows a HOG feature visualisation for the face. By focusing on

the image, we can see the essential features of the image.

There are several primary steps for extracting HOG features: the first is the

Gamma/Colour Normalisation, where Dalal and Triggs (2005) found that gamma

normalisation improves the facial expression classification rate. In fact, gamma cor-

rection is necessary as the block normalisation has the same effect. The second step

is computing the image gradients by applying the 1-D central deferences. Dalal and

Triggs found that this gives the best results in one or both of the horizontal and

vertical directions, [−1, 0, 1] for vertical and [−1, 0, 1]T for horizontal. At every pixel

we calculate a value for the x-derivative and another value for the y-derivative for x

and y gradient magnitudes respectively, let us call them Sx and Sy. The equations

defining the gradients are, respectively being:

Sx(i, j) =
∂I

∂x
(i, j) (2.7)

Sy(i, j) =
∂I

∂y
(i, j) (2.8)

where I is an image, and (i, j) are the pixel coordinates. The gradient magnitude

itself M is computed as the square root of the quadratic sum of each gradient com-
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ponent, this is:

M(i, j) =
√
S2
x(i, j) + S2

y(i, j) (2.9)

The gradient orientation angle is calculated by:

θ(i, j) = arctan

(
Sx(i, j)

Sy(i, j)

)
(2.10)

The third step is called Orientation Binning, which aims to build a histogram

of orientation for each cell (where the image was subdivided into little cells). Each

pixel within the cell has a weighted vote for an orientation-based histogram channel

based on the values found in the gradient results. These histograms represent the

angles evenly spaced between 0◦ and 180◦ (“unsigned” gradient) or within 0◦ and

360◦ (“signed” gradient).

The final step is block-normalising histograms within each block of cells. Be-

cause of gradient strength variation as a result of local illumination variations and

the foreground-background contrast, Dalal and Triggs (2005) found that some illumi-

nation normalisation must compensate for better accuracy. They explored different

normalisation schemes to achieve that. Let us define first v as the vector containing

all the histograms for a given block, ‖v‖k the k-norm of v with k ∈ 1, 2 and let ε be

a small constant. The normalisation schemes are:

L1− norm : v → v

‖v‖2 + ε
(2.11)

L1− sqrt : v →
√

v

‖v‖2 + ε
(2.12)
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Figure 2.4: An overview of the face recognition system with HOG (Chen et al., 2014)

L2− norm : v → v√
‖v‖22 + ε2

(2.13)

Dalal and Triggs’ experiments found that L1-sqrt and L2-norm perform similarly,

but L1-norm decreases performance by 5%. Not normalising reduces the performance

enormously by around 27% (Dalal and Triggs, 2005).

The HOG method has been wildly used in computer vision to recognise objects

(Dahmane and Meunier, 2011; Chen et al., 2014; Carcagǹı et al., 2015). HOG features

have used in facial expression recognition with multi-class RBF-SVM by extracting

dense grid-based HOG features from images (Dahmane and Meunier, 2011), where

they used a cropped region from the aligned face and divided it into (48) squares 8

rows and 6 columns. In (Dahmane and Meunier, 2011), the GEMEP-FERA dataset

was used for training and testing 5 facial expressions: anger, fear, joy, relief and

sadness. The face has been divided into its main parts and then the method extracts

each part’s HOG features, as shown in figure 2.4.

The HOG descriptor could be effectively exploited for facial expression recogni-
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tion purposes. The configuration of HOG parameters can provide a robust image

descriptor, which allows for a high classification performance for facial expressions

(Carcagǹı et al., 2015).

2.2.2.2 Scale-invariant feature transform (SIFT) and speeded up robust

features (SURF)

SIFT has been proposed by Lowe (2004). SIFT contains keypoint localisation and

construction of key-point descriptor. SIFT, particularly the SIFT descriptor, is a

popular method used in computer vision and object recognition and it has been

proven to be very effective (Berretti et al., 2010; Karami et al., 2017). The SIFT

algorithm has 4 main steps. The first is to estimate a scale-space extremum using

the Difference of Gaussian (DoG). Secondly, key point localisation must be calcu-

lated where the key point candidates are localised and refined by eliminating the

low contrast points. Thirdly, the key point orientation assignment is based on the

local image gradient, and lastly, a descriptor generator to compute the local image

descriptor for each key point based on image gradient magnitude and orientation

(Karami et al., 2017).

The main SIFT advantage is its stability for images in different resolutions, so

it provides good performance in machine vision applications. In facial expression

methods, SIFT features represent the same object with different expressions and

illumination. Researchers have used SIFT descriptors with 2D and 3D images (Zhang

et al., 2008; Berretti et al., 2010; Soyel and Demirel, 2012). Zhang et al. (2008)

proposed a SIFT and SVM based method to investigate the robustness of SIFT
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features for various training images on face recognition and used the ORL and the

Yale database for experiments and the found the method managed to handle the

expression problems better than other algorithms at that time. Figure 2.5 shows an

example of images with extracted SIFT features.

Figure 2.5: An example of images with extracted SIFT features. The images rep-

resent the same object with different expressions and illumination (Zhang et al.,

2008)

Speeded Up Robust Features (SURF) was first presented by Herbert Bay as a

novel scale- and rotation-invariant interest point detectors and descriptors (Bay et al.,

2006, 2008). SURF is similar to the SIFT descriptor (Lowe, 1999) properties. SURF

is faster than SIFT and gives as good a performance as SIFT (Panchal et al., 2013).

(D-SURF) is a local feature detector and descriptor. The D-SURF algorithm is based

on the same principles and steps as SIFT, but the details in each step are different.

The algorithm has two main parts: Firstly “interest point detection” was selected at

important locations in the image, for instance, at T-junctions, corners and blobs. To

achieve that, the algorithm uses a very basic Hessian matrix approximation because

of its good performance in accuracy (Bay et al., 2008). The next step is to find the

orientation of the point of interest to achieve rotational invariance. Haar-wavelet
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responses within the interest-point circular neighbourhood of radius 6-scale around

the interest-point.

2.2.2.3 Local Binary Patterns (LBP)

The Local Binary Patterns (LBP) method was first proposed by Ojala et al. (1996)

as a texture descriptor depending on statistical analysis. Since then, it has been

widely used for face analysis due to its classification performance (Zhou et al., 2013).

The LPB operator compares each pixel in a 3x3 neighbourhood of the pixel to the

central value and constructs a binary digit number from the result, thus computing

the local texture characteristics. One of the most important advantages of LBP

features is their tolerance against illumination variation (Shan et al., 2009). Let us,

therefore, define texture T in a local neighbourhood of a greyscale image as the joint

distribution of the grey levels of P + 1 (P > 0) image pixels:

T = (Ic, I0, ..., IP−1) (2.14)

where Ic corresponds to the grey value of the centre pixel of a local neighbourhood.

Ip(p = 0, ..., P − 1) is the grey values of P equally spaced pixels on a circle of radius

R (R > 0) that form a circularly symmetric set of neighbours.

To achieve invariance with respect to any monotonic transformation of the grayscale,

only the signs of the differences are considered:

T = (s(I0 − Ic), ..., s(IP−1 − Ic)) (2.15)

where Ic corresponds to the grey value of the centre pixel (xc, yc), into the grey values
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of the 8 surrounding pixels, and function s(x) is defined as:

s(x) =

 1 if x ≥ 0

0 if x < 0
(2.16)

Finally the LBP describes the local image texture around (xc, yc):

LBPP,R(xc, yc) =
P−1∑
p=0

s(gp − gc)2p (2.17)

The number of neighbours used to compute the basic LBP for each pixel in the

input image is 8.

LBP has been used with many classifiers to recognise facial expression because of

its advantages, for example, its tolerance of monotonic illumination changes and its

computational simplicity (Huang et al., 2011). Shan et al. (2005) used simple Local

Binary Patterns (LBP) with the Support Vector Machine (SVM). They have tested

the extracted LBP features with linear, polynomial and RBF kernels SVM to classify

7 facial expressions. They used the Cohn Kanade Facial Expression Database, which

was produced by Kanade et al. (2000). It contains faces of 100 university students

from age 18 to 30 years. Shan et al. (2005) compared their results with Gabor

wavelets, and they have found that LBP with SVM gave better classification accuracy

than Gabor wavelets, and saved computational resources. They also proved that

LBP gives good results with different resolutions, even with low-resolution images

(Shan et al., 2005). In the same area, Shan et al. (2009) conducted a comprehensive

study for facial expression recognition methods based on Local Binary Patterns.

They found that the LBP features are effective and efficient for facial expression

recognition and give good results with low-resolution images.
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LBP has been used for both frontal faces, and angle pose faces. Moore and

Bowden (2011) proposed a multi-view facial expression recognition method using

some extensions including multi-scale local binary patterns (LBPms) and local Gabor

binary patterns (LGBP ). They have tested it on photos from multiple datasets

(Gross et al., 2010) to see how head pose affects facial expression using SVM classifier.

During the last decade, researchers have proposed many methods based on LBP

and its extensions. Some of them have tried to divide the face into equal blocks into

grids (Moore and Bowden, 2011). Others have tried to divide the face into its main

parts: eyes, nose and mouth as in Khan et al. (2013) who proposed a pyramidal

local binary pattern (PLBP) operator to recognise six facial expressions. They have

tested the extracted features using 4 classifiers: nearest neighbours (2NN), Random

Forest (RF), SVM and decision tree. They used in experiments two datasets: CK+

and FG-NET. They found that the features extracted using PLBP have a strong

discriminative ability as the recognition result for 6 expressions is not affected by

choice of classifier.

2.2.3 Classification

In machine learning, classification is the problem of distinguishing to which set of

classes a new observation belongs, based on a training set of data containing obser-

vations whose class membership is known.

Let us consider a given dataset D = {xn, yn}Nn=1, where each data point x ∈ Rd is

paired with a known discrete class label yn where y ∈ {1, 2, ..., K}. The main goal of

classification is to train a classifier to be able to classify any arbitrary d-dimensional



2.2. Review of the “state of the art” for facial expressions recognition methods 26

data point as one of the K discrete classes.

Classification has strong roots in probabilistic modelling. The idea is that we

form a joint probability distribution p(X, Y ) over the input X and label Y, and

that we classify an arbitrary data point x with the class label that maximizes the

joint probability:

ŷ = argmax
k

p(x, Y = K) (2.18)

.

If we aim to minimise the chance of predicting x́ to the wrong class, then we

should choose the class with the highest posterior probability. In this thesis, two

classifiers have been considered, namely support vector machines and random forests.

These will be discussed in detail in the following sections.

In this thesis we will use two popular data classification methods, random forests

(RF) (Breiman, 1999, 2001) and support vector machines (SVM) (Cortes and Vapnik,

1995). SVMs aim to find a hyperplane (linear decision surface) which divides the

data into two classes and it has the largest margin between the closest elements of

the two classes to each other. This hyperplane is called the Optimal Separating

Hyperplane (OSH) which minimises the misclassification. These elements are called

vector machines. It is not always easy to find a linear decision surface, so the radial

basis function (RBF) is used as a kernel after the data has been mapped into a

higher dimensional space (Davison et al., 2014). An RF model uses the bootstrap

method to build the ntree decision randomly. Each tree is provided with randomly

selected samples form the training input. The trees will vote together to give the
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final decision by combining them in a forest.

2.2.4 Support Vector Machine (SVMs)

SVMs (Cortes and Vapnik, 1995) is a binary classification method, and it was pro-

posed by Vladimir Vapnik in 1979 and first published in 1995. So if we have labelled

training data D = {xn, yn}Nn=1 where x ∈ Rd and y ∈ {1,−1}. The idea of SVMs is

to find the Optimal Separating Hyperplane (OSH) which separates the two classes

of d-dimensional data.

If the data is linearly separable, the two parallel hyperplanes are selected to

separate the two classes of data so that the distance between them is as large as

possible. The vectors that define the hyperplanes are called the support vectors.

The area bounded by these hyperplanes is called the margin. The maximum

margin hyperplane is the maximum distance between the two hyperplanes and an-

other hyperplane that lies in the middle between them. The distance between the

two hyperplanes is 2
‖w‖ . In order to maximise the distance between the planes we

need to minimise ‖w‖2. The hyperplanes can be described by the following:

wTxi + b ≥ 1 for yi = +1 (2.19)

for anything on or above this boundary is of one class, with label 1.

wTxi + b ≤ −1 for yi = −1 (2.20)

anything on or below this boundary is of the other class, with label -1, where w is

the weight vector and b is the bias.
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The optimisation problem can be solved using the Lagrange multiplier method.

The objective function to be minimized in the Lagrangian form can be written as:

L(w, b, α) =
1

2
‖ w ‖2

N∑
i=1

αi

[
yi(w

Txi + b)− 1
]

(2.21)

The Lagrange multipliers should be non-negative (αi > 0). In order to minimise

the Lagrangian form, its partial derivatives are obtained with respect to w and b

and are equated to zero.

w =
N∑
i=1

αiyixi (2.22)

N∑
i=1

αiyi = 0 (2.23)

substituting these values back in 2.21, we obtain:

L(w, b, α) =
N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjxi · xj (2.24)

Training is therefore accomplished by maximising L. Training instances having

α > 0 are the ’support vectors’.

These training instances are used to obtain the decision boundary parameters w

and b. SVM outputs the following class output ýi:

ýi = f(xi) = sign

[
(

N∑
i=1

αiyi(xi · x) + b)

]
(2.25)

In some cases, it is better to misclassify some of the training errors in order to

get a decision boundary plane with maximum margin. If we got a decision boundary

with no training errors, but a smaller margin may lead not to classify unknown
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samples correctly. A decision boundary with a larger margin and few training errors

can classify the unknown samples more accurately. For this, we need a decision

boundary between the margin and the number of training errors. This decision

boundary is called a soft margin. Slack variables ξ is introduced to account for the

soft margin. Also, a penalty for the training error C is be introduced order to balance

the margin value and the number of training errors.

The objective function for the optimization problem will be minimization of

1

2
‖ w ‖2 +C

N∑
i=1

ξi (2.26)

So the hyperplanes can be described by the following:

wTxi + b ≥ +1− ξi for yi = +1 (2.27)

and

wTxi + b ≤ −1 + ξi for yi = −1 (2.28)

Data is not always linear separatable, so researchers suggested to use essential

kernel functions such as Radial Basis Function (RBF). The most often used kernel

functions are the radial basis function (RBF):

K(xi,x) = exp(−γ ‖ xi − x ‖2), γ > 0 (2.29)

where γ is a parameter that can be seen as the inverse of the radius of influence of

samples selected by the model as support vectors. With low γ, the curvature of the

decision boundary is small, and thus, the decision region is wide. When γ is huge,

the curvature of the decision boundary is high, which creates islands of decision-

boundaries around data points. When using a kernel function, the decision function
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becomes:

ýi = f(xi) = sign

[
(

N∑
i=1

αiyiK(x,xi) + b)

]
(2.30)

In this thesis, we applied cross-validation and Bayesian optimisation method

(Mockus, 2012) to find the optimal parameters of SVM with RBF kernel.

2.2.5 Random forest

Random forest is a popular method in machine learning because of its capacity to

operate within large multi-class datasets and give high accuracy results (Fanelli et al.,

2011). They have an excellent generalisation ability; they are very fast to train and

parallelise (Breiman, 2001; Belle, 2008). RF classifier contains a combination of tree

classifiers; each tree gives a unit vote for the most popular class to classify an input

vector (Breiman, 1999).

To understand the random forest algorithm, we need to understand the basic

idea of decision trees. Each tree is a collection of nodes and edges organised in a

hierarchical structure as shown in figure 2.6. In a decision tree, the top node is called

root connected with two children nodes. The nodes at the bottom are called leaves.

Decision work according to an algorithm called Classification and Regression Tree

(CART) algorithm has been proposed by Breiman et al. (1983).

In a decision tree, T the root node receives the entire training set, and each node

asks a true/false question about one of the feature, and in response to this question,

the data is split into two subsets. Theses subsets then become the input for two child

nodes added to the tree. The goal for the question is to produce the purest possible

distribution of the classes at each node. The trick to building an effective tree is
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Figure 2.6: Simple decision tree

to understand which question to ask and when. To do that we need to quantify

which question helps to unmix the classes, and to achieve that, the Gini impurity is

used which finds the threshold value. To quantify how much the question reduces

the uncertainty, it uses the information gain (Breiman et al., 1983). The data will

continue dividing until there are no further question to ask, at which point a leaf

node will be added.

The main idea of random forests (Breiman, 2001) F is to make a group (ensemble)

of F decision trees vote together F = {F 1, ...,F t, ...F T}, where each tree node in

the random forests classifier is a weak classifier, each tree gets a “vote” in classifying

(Breiman, 1996, 1999, 2001). This combination of ensemble trees provides very good

generalisation. A dataset, many random subset St can be generated to be processed

by constructing decorrelated a tree F t for each St. According to Breiman (2001)

randomization method “Bagging”, for a given dataset D = {xn, yn}Nn=1 is divided

into random smaller subsets St. Each data subset St is called a bootstrap. By
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Figure 2.7: New subsets Randomisation by bagging method

growing a tree F t for each bootstrap St, an ensemble of decision trees work together

to vote on a new unseen observation x́.

A new unseen observation x́ should be predicted according to which class it refers

to, by sending the unseen feature through all trees in the forest and combining the

tree posteriors. The class prediction for a new observation is the class that yields

the largest weighted average of the class posterior probabilities computed using the

selected trees only.

For each class y ∈ Y , the prediction for new observation x́ computes p(yi|x́) which

is the estimated posterior probability of class y for the given observation x́. Random

forests apply the weight concept for to consider the impact of the results from any

decision tree. Tree F t with high error rate are given low weight value and vise versa.

This would increases the decision impact of the trees with a low error rate. The

prediction computes the weighted average of the class posterior probabilities over

the selected trees as
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p(yi|x́) =
1∑T

t=1 ΩtZ(t ∈ S)

T∑
t=1

ΩtŷtI(t ∈ S) (2.31)

where ŷt is the prediction from tree t in the ensemble, S is the set of indices of

selected trees that comprise the prediction and Ωt is the weight of the tree, Z(t ∈ S)

is 1 if t is in the set S, and 0 otherwise..

The RFs classifier has proficient power to gauge the importance of each features

variable (predictor) (Breiman, 2001) by calculating how much a prediction error

increases or decreases when the out-of-bag (OOB) error for that variable is permuted

while all others are passed on unaltered. The computations are carried out tree by

tree as the random forest is built (Breiman, 2001, 2002; Liaw and Wiener, 2002).

Breiman has proposed a method to evaluate the variable importance by measuring

the Mean Decrease Accuracy (MDA) of the forest when the values of xi are randomly

permuted in the out-of-bag samples. For each tree, the prediction, error rate for the

classification on the out-of-bag portion of the data is recorded. After that, the same

is done after permuting each predictor variable. The differences between the two

are then averaged over all of the trees. In other words, after each tree is built, the

values of the ith variable in the out-of-bag examples are randomly permuted, and

the out-of-bag data is run down the corresponding tree. The classification is given

for each xi that is out of the bag is saved. At the end of the run, the plurality of

out-of-bag class votes for xi with the ith variable noised up is compared with the

true class label of xi to give a misclassification rate. The output is the per cent

increase in the misclassification rate as compared to the out-of-bag rate with all of

the variables intact (Breiman, 2001; Louppe et al., 2013).
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Figure 2.8: The general pipeline of deep facial expression recognition systems (Li

and Deng, 2018).

2.2.6 Deep learning and Convolutional Neural Networks

Deep learning is a machine learning technique that learns the features and tasks

directly from data. Deep learning tries to capture high-level abstractions and order

them into hierarchical architectures of many non-linear transformations and repre-

sentations (Li and Deng, 2018). Figure 2.8 illustrates the traditional architectures

consisting of deep neural networks.

Deep learning architectures such as convolutional neural networks (CNN) (LeCun

et al., 1998), deep belief networks (DBN) (Liu et al., 2014b), deep auto-encoders

(DAE) Hinton and Salakhutdinov (2006), recurrent neural networks (RNN) (Cari-

dakis et al., 2006) and generative adversarial network (GAN) (Goodfellow et al.,

2014) have been applied to computer vision, speech recognition, natural language
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processing, audio recognition, social network filtering, machine translation, bioinfor-

matics and medical image analysis, and they have given good results. Deep learning

includes multiple layers of non-linear processing units for feature extraction and

transformation. Each successive layer uses the output from the previous layer as

input. In image recognition applications like facial expression, the raw input is a

matrix of pixels. The deep learning process can learn which features to place in

which level on its own optimally.

Liu et al. (2014a) have used a combination of HOG, SIFT and CNN are ex-

tracted at each frame of the Acted Facial Expression in Wild (AFEW) (Dhall et al.,

2012) videos In the classification stage, three types of classifiers are investigated for

comparisons, kernel SVM, logistic regression, and partial least squares. Meng et al.

(2017) proposed an identity-aware CNN (IACNN) with two identical sub-CNNs.

They used the expression-sensitive contrastive loss to learn expression discriminative

features, and the other stream used an identity-sensitive contrastive loss to learn

identity-related features for identity-invariant.

Despite the widespread use of deep learning techniques, some limitations still face

this field, like the need a large amount of computational power. It is costly to train

due to complex data models involved. For this reason, we focused on traditional

methods like random forest and SVMs.

2.3 Facial expression datasets

Within the past two decades, significant effort has been made to build databases

for use in facial expression recognition systems. These databases have been used for
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machine training and testing purposes. For example, MMI dataset (Pantic et al.,

2005) was a major improvement. It contains nearly 1500 samples of static images

and videos from 19 male and female subjects in both frontal and profile view, display-

ing several facial emotions, single AU and multiple AU activation, the MMI Facial

Expression Database provides a large test-bed for research on automated facial ex-

pression analysis. As another example, considerable progress has been achieved with

Affectiva-MIT Facial Expression Dataset (AM-FED) (McDuff et al., 2013) which

presents a new dataset of labelled data recorded over the internet of people natu-

rally viewing online media. The AM-FED contains 242 webcam videos recorded in

real-world conditions, and 168,359 frames labelled for the presence of 10 symmet-

rical FACS action units. AM-FED is labelled frame by frame, and it has action

units in addition to the location of 22 automatically detected landmark points. The

4D Database for Facial Expression Analysis and Biometric (4DFAB) (Cheng et al.,

2017) includes videos of 180 subjects taken in 4 different sessions spanning over five

years. It contains 4D videos of subjects representing both spontaneous and posed

facial behaviours. 4DFAB contains large scale database of dynamic high-resolution

3D faces (over 1,800,000 3D meshes).

Some of the current databases that have mostly been used in the past two decades

are the Karolinska Directed Emotional Faces (KDEF) Lundqvist et al. (1998), the

AR database (Martinez, 1988), the Japanese Female Facial Expression Database

(JAFFE) (Lyons et al., 1998), Cohn-Kanade facial expression database Cohn-Kanade

(CK) (Kanade et al., 2000) and the extended Cohn-Kanade dataset (ck+) (Lucey

et al., 2010), the MMI facial expression database (Pantic et al., 2005). Table 2.1 is
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Table 2.1: Databases summary

Database Samples Facial expressions

AR (Martinez, 1988) 508 images 4 basic expressions plus contempt and neutral

JAFFE (Lyons et al., 1998) 213 images 6 basic expressions plus neutral

KDEF (Lundqvist et al., 1998) 4,900 images 6 basic expressions plus neutral

MMI (Pantic et al., 2005) 740 images and 2,900 videos 6 basic expressions plus neutral

BU-3DFE (Yin et al., 2006) 2,500 images 6 basic expressions plus neutral

CK+ (Lucey et al., 2010) 10780 image sequences 6 basic expressions plus contempt and neutral

RaFD (Langner et al., 2010) 1,608 images 6 basic expressions plus contempt and neutral

TFD (Susskind et al., 2010) 112,234 images 6 basic expressions plus neutral

Multi-PIE (Gross et al., 2010) 755,370 images Smile, surprised, squint, disgust, scream and neutral

Oulu-CASIA (Zhao et al., 2011) 2,880 image sequences 6 basic expressions

AM-FED (McDuff et al., 2013) 168,359 image sequences and 242 videos 6 basic expressions

FER-2013 (Goodfellow et al., 2013) 35,887 images 6 basic expressions plus neutral

SFEW 2.0 (Dhall et al., 2015) 1,766 images 6 basic expressions plus neutral

EmotioNet (Fabian Benitez-Quiroz et al., 2016) 1,000,000 images 23 expressions or compound expressions

4DFAB (Cheng et al., 2017) 1,800,000 3D meshes 6 basic expressions

AFEW 7.0 (Dhall et al., 2017) 1,809 videos 6 basic expressions plus neutral

RAF-DB (Li et al., 2017) 29672 images 6 basic expressions plus neutral and 12 compound expressions

AffectNet (Mollahosseini et al., 2017) 450,000 images 6 basic expressions plus neutral

ExpW (Zhang et al., 2018) 91,793 6 basic expressions plus neutral

an overall summary for most of the facial expression databases.

Scientists over the last two decades have developed many databases in the field of

facial expressions; the scientific community is moving towards databases containing

more spontaneous emotions rather than acted ones.
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2.4 Conclusion

In this chapter, we have reviewed some of the basic concepts regarding facial ex-

pression recognition and related topics such as features extraction and classification

which is necessary to appreciate our proposed facial expression recognition method.

We talked about the background of facial analysis, and we briefly introduced the

current techniques that might be useful for our thesis.

In this thesis, we experiment with a combination of texture features, rather than

using only one. Due to the high-dimensionality of this combination, it is important

to remove any unnecessary features which may not offer any benefits in classification.

Random forests provide a straightforward method for features importance estimation

that will save a lot of time and effort when dealing only with the data that affects

the classification.

Deep learning algorithm has changed the entire landscape over the past few years,

but some limitations still face this field, like the need a large amount of computational

power. It is costly to train due to complex data models. Moreover, deep learning

requires expensive GPUs, which increases the cost to the users. A considerable

drawback and difficulty in the use of deep learning is the need for large datasets,

which are used as the input during the training procedure. Moreover, deep learning

algorithms require a large amount of training data may take longer to train than

simpler models. This requires a large number of hyperparameters such as the number

of layers or the type of activation functions. This imitation pushes us to try to

improve the traditional classifiers such as random forests.
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Active shape models and Active appearance models only use shape constraints

and do not take advantage of all the available information texture across the target

object. For this reason, we take advantage of the image texture, which contains more

information.

In the following chapters, we show how the combination of texture features may

be used to classify the facial emotions with the random forests and SVMs, and how

using of the important features improves the classification performance.

This work focuses on using machine learning methods and algorithms in order

to evaluate the classification of spontaneous facial expressions. An experimental

methodology will be adopted in this thesis; we will experiment with random forest

and SVMs with image texture features.
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3.1 Introduction

Training and testing the facial expression methods need databases containing human

facial expressions. Researchers in the psychological field and machine learning have

built various databases (Lundqvist et al., 1998; Kanade et al., 2000; Pantic et al.,

40
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2005; Langner et al., 2010; Anitha et al., 2010; Lucey et al., 2010; El Ayadi et al.,

2011). The main disadvantage of many of the available datasets is that they contain

unnatural expressions because the people in the databases are actors expressing their

emotions as they have been asked. In this thesis, we are keen to work with more

natural facial expressions in order to investigate how the trained model can work

with various people who expressed their emotions spontaneously.

The most commonly used method of constructing the databases is to ask some

actors or models to show the required facial expressions. Most researchers have

used relatively unnatural datasets because, in real life, natural facial expressions are

different from those made by actors. The expressions of the human face are varied

and show some differences between cultures and even from one person to another

(Ekman, 1973). Just as human sometimes find it difficult to recognise some facial

expressions, machines also face the same challenges. In this chapter, we introduce

the “Emotional Labelled Faces in the Wild” dataset (eLFW), a citizen-labelling of

1310 faces from the Labelled Faces in the Wild dataset (Huang et al., 2007b). To

collect this data, we built a website and asked citizens to label images from the LFW

dataset according to the emotional expression displayed. This chapter presents the

process of the new dataset collection and labelling and shows some of the summary

statistics of the dataset.

3.2 Data collection

Our work began with building a new natural facial expression database using a

current database called Labelled Faces in the Wild (LFW) (Huang et al., 2007a;
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Figure 3.1: Examples of citizen labelling for LFW.

Learned-Miller, 2014).

The LFW is a database of facial photographs designed for analysing the problem

of unconstrained face recognition. The dataset contains 13,233 images of individual

faces collected from the web and aligned using deep funnelling (Huang et al., 2012),

which is a combination of unsupervised joint alignment with unsupervised feature

learning. Each face photo has been manually labelled with the name of the person

pictured. A total 1680 people in the dataset appear in two or more different photos in

the database. The only constraint regarding these faces is that they were discovered

by the Viola-Jones face detector (Viola and Jones, 2001). Figure 3.1 shows some

examples of LFW photos.

Since LFW photos were not labelled by emotion, our first goal was to build a

website to collect some data and information from people around the world in order

to label the facial expression. This website aimed to build an extensive database of
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Large screen version
Mobile version

Figure 3.2: Screenshots two versions of the emotional faces website

real faces together with the emotion that they are expressing. Many facial photos

were shown to the website visitors, and they were asked to choose the emotion that

best matched the emotion being expressed by the face. For each face, people were

asked to determine the emotion displayed from amongst the following: happiness,

sadness, anger, fear, disgust, surprise, neutral, and don’t know. They could label

as many or as few as they wished. Since the labels assigned differed between the

annotators and the images presented in a randomised order, images were retained

in a pool of images to be labelled until they had been assigned labels by at least

four different voters. The consensus emotion that is the modal classification was

sufficiently unequivocal.

We used ASP.Net to build the website, and SQL Server to build the database.

ASP.NET is for building web pages and websites with HTML, CSS, JavaScript and

server scripting, while SQL Server is an efficient relational database management

system (RDBMS) from Microsoft.
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Two versions of the website were designed to be more usable for all users, those

using PCs as shown in figure 3.2 (left), smartphones and tablet as shown in figure 3.2

(right). The website automatically redirects users to the appropriate version. This

website has been tested many times to make sure that it is easy to use by users.

To evaluate the citizen labelling, we also used faces from a commonly use posed-

dataset, the Karolinska Directed Emotional Faces (KDEF) (Lundqvist et al., 1998).

Figure 3.3 shows some samples. KDEF contains a set of 4900 pictures of human

facial expressions of emotion. The dataset contains 70 individuals, each displaying

7 different emotional expressions, with each expression being photographed (twice)

from 5 different angles. In our experiments with KDEF, we used only frontal faces,

which means 70 images for each facial expression, 490 images in total.

Website visitors were shown different photos chosen randomly from the two

databases. The probability that displayed faces came from LFW was 0.9, so on

average 1 in 10 of the faces for labelling came from KDEF data set.

Ambiguous classifications were avoided by calculating the entropy of the empirical

distribution of classifications. Let pn be the proportion of citizens’ votes for the nth

emotion class (n = 1, . . . , 8), then the entropy, H = −
∑

n pn log2 pn, measures the

agreement between the annotators. The entropy is maximised when all classes are

assigned in equal proportion and is minimised when images are assigned to only a

single class. We, therefore, kept an image in the pool of images to be labelled until

the entropy of the citizens’ assignments was less than 1 bit, which means there is a

consensus. Images that did not receive an unambiguous classification after 15 votes,

and images for which the consensus was “don’t know” were rejected. As mentioned
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Figure 3.3: Faces samples from KDEF database which posed expressions

before, each face was classified by several citizens in order to obtain a consensus

emotion. Each face image was classified at least 4 times and no more 15 anyway.

Table 3.1 illustrates the voting procedure for example images. It is clear that the

best entropy value for the first photo, which was zero, that means the four voters

have voted the same, which is the minimum entropy value and the best consensus.

The second one, the entropy value was two, that means each voter differ from others;

this case called the maximum entropy value. The third photo in table 3.1 shows that

the entropy value was 1.5, which means that two votes have voted one selection, and

the other two have voted in another two selections. Finally, the last photo shows

shows 2 selections have been voted by fifty per cent for each, and that the entropy

value is one. The new dataset involves useful data from each of the website visitors,
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Table 3.1: Voting data sample

Photo Name Happiness Sadness Anger Fear Disgust Surprise Contempt Frustration Neutral Undefined Entopy

Aaron Peirsol 0001.jpg 1 0 0 0 0 0 0 0 0 0 0

Colin Powell 0233.jpg 0 0 0.25 0 0.25 0.25 0 0 0.25 0 2

David Anderson 0001.jpg 0.25 0 0.25 0 0 0 0 0 0.50 0 1.5

Chloe Sevigny 0001.jpg 0.5 0 0 0 0 0 0.5 0 0 0 1

and all visitor votes will be classified as the table which shows four visitors have

voted on four photos, and the entropy for each photo votes.

In addition to the LFW images, approximately 1 in 10 images presented to the

citizens were a KDEF posed image. This allowed us to check the integrity of the

individual annotators and, as discussed below, investigate the human performance

on the KDEF data. Table 3.2 shows that the KDEF images were, unsurprisingly,

easier than the LFW data for the citizens to classify, requiring fewer votes to reduce

the entropy below the acceptance threshold.

3.3 Summary of citizens’ classification

Table 3.2 shows summary statistics of the new data set collection; 135 visitors cor-

rectly voted (1588) photos from both datasets, KDEF and LFW. To achieve low

entropy values, the citizens made approximately 7 votes on average for each LFW

image and only five votes for KDEF. The average entropy of the votes for the ac-

cepted LFW photos was 0.905 bits, and for KDEF is 0.668 bits. It is clear that,

unsurprisingly, the KDEF images were easier to classify than the LFW images.

Table 3.3 shows that the citizens classified the 278 KDEF photos as shown in

table 3.3, which were distributed as: 49 fear, 35 anger, 42 disgust, 47 happy, 35
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Table 3.2: Summary of statistics of eLFW database.

Number of users 135

Accepted LFW photos 1310

Accepted KDEF photos 278

Mean number of votes for accepted KDEF photos 4.989

Average votes entropy for accepted KDEF photos 0.668

Mean number of votes for accepted LFW photos 7.203

Average votes entropy for accepted LFW photos 0.905

neutral, 34 sad and 36 surprised. The overall agreement of voters with the KDEF

labelling was 80.6%, because of the similarity between some expressions like fear and

disgust. As the confusion matrix in table 3.3 shows, there was complete agreement

with the KDEF labelling for happy and neutral facial expressions, but only 42.9%

for fear (confused principally with disgust and surprise), 77.8% for surprise (confused

principally with fear and anger), and 78.6% for disgust (confused principally with

sadness and surprise). The mean number of votes and the average votes entropy for

the accepted KDEF photos values were both less than those for eLFW, which mean

that it was easier for the citizens to classify the KDEF images than the eLFW. Figure

3.4 shows examples of faces for which the citizen consensus differed from the KDEF

labelling. We conclude that some facial expressions are similar, and even humans

may be confused while determining what the expression is, so machines may face the

same problems while recognising the expression.
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Table 3.3: Confusion matrices for the citizens’ performance on KDEF images. True

classes are shown by rows, with assigned classes in columns. FE: fear; AN: anger;

DI: disgust; HA: happiness; NE: neutral; SA: sadness; SU: surprise.

FE AN DI HA NE SA SU

FE 0.429 0.020 0.347 0.000 0.000 0.061 0.143

AN 0.057 0.800 0.086 0.000 0.000 0.029 0.029

DI 0.000 0.024 0.786 0.000 0.000 0.048 0.143

HA 0.000 0.000 0.000 1.000 0.000 0.000 0.000

NE 0.000 0.000 0.000 0.000 1.000 0.000 0.000

SA 0.059 0.000 0.059 0.000 0.000 0.853 0.029

SU 0.139 0.056 0.000 0.000 0.000 0.028 0.778

Fear Anger Sad

Surprised Disgusted Fear

Figure 3.4: Examples of faces for which citizens’ votes differ from the KDEF labelling.

KDEF labels are shown above each image with the citizens’ consensus below.
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3.4 Conclusion

The lack of spontaneous labelled data has hampered work on the machine recognition

of emotional expressions. In this chapter, we have described the new emotional

Labelled Faces in the Wild (eLFW) database, a citizen labelling of LFW faces. After

labelling by citizens, the eLFW database comprises 190 fear images, 120 anger, 160

disgust, 330 happy, 240 neutral, 200 sad and 70 surprise images. The new data set

enables us to go on to evaluate the proposed texture based emotion classification on

realistic data.
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4.1 Introduction

Facial expression recognition is a rapidly growing research topic due to an increased

interest in applications of human-computer interaction. As discussed in chapter 2, it

has been studied extensively over the past decade, with much of the research concen-

trating on geometric features. Appearance-based methods have become more promi-

nent recently (Mishra and Dhole, 2015; Kumari et al., 2016; Yuqian and Bertram,

2016) and here we investigate the use of the combination of three feature descrip-

tors, Histograms of Gradients (HOG) (Dalal and Triggs, 2005), Dense Speeded Up

Robust Features (D-SURF) (Lowe, 2004; Uijlings et al., 2010) and Local Binary Pat-

terns (LBP) (Ojala et al., 1996) to give more accurate classification. We show that



4.1. Introduction 52

the combination gives a strong image descriptor. Classification with a random forest,

which embodies natural feature selection, further allows us to find the face location

of the most important image descriptors.

In our proposed system, there are four main steps involved in extracting and

classify facial features: face detection, face alignment, facial texture feature extrac-

tion (LBP, HOG and D-SURF) and classification. We hypothesise that a combina-

tion of texture features is more effective than a single feature alone, thus yielding

better classifications. In our experiments, we tested two state-of-the-art classifiers,

random forest (Breiman, 2001) and support vector machines (SVM) (Cortes and

Vapnik, 1995). Our proposed system has two training phases: the first one uses ran-

dom forests to locate the important facial regions by estimating feature importance.

The second training phase produces the final model by training with the important

features only. The model automatically locates the important facial regions, which

makes the classification faster and more accurate by excluding unnecessary and noisy

face regions.

For evolution, three four types of measurement methods are used in this chapter,

namely classification accuracy, precision, Recall and F1-score. These are widely

used to evaluate the performance of classification. The accuracy is beneficial for

being independent of class distribution and cost. Recall is a quality measure of

completeness/quantity, which intuitively reflects the proportion of positive samples

that are correctly identified. Precision refers to the percentage of your results which

are relevant. F-score is a harmonic mean of precision and recall, which means the

F1-score is the weighted average of precision and recall. They can distinguish the
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results between classifiers when processing imbalanced data. (Zhu et al., 2018).

Image preparation and preprocessing steps are described in section 4.2. We de-

scribe the feature extraction and combination in section 4.3. Section 4.4 shows

the baseline classification results for each one of the three feature extraction meth-

ods (HOG, LBP and D-SURF) separately with the two datasets (KDEF, CK+ and

eLFW), and then examines the effects of combining the texture features. Section

4.5 discusses the feature size reduction by determining only the important features

and image masking. After that, we show random forest classification results that

apply the important feature regions. Evidence of the similarity between machine

and human classification is provided in section 4.7. Facial expression classification

using SVMs is discussed in section 4.8.

The difficulties encountered by people and machines when distinguishing between

expressions displaying fear, anger and sadness leads us to consider alternative clas-

sifiers. In section 4.9, we describe a pairwise random forest classifier in which the

pairwise classifiers have a weighted vote to determine the overall class. We show

how to optimise the weights using an evolutionary algorithm and present the results

showing the efficacy of the method. Finally, conclusions are drawn in section 4.10.

4.2 Image preprocessing

Image preprocessing is an important step to prepare images for feature extraction.

Where the region-of-interest (ROI) is the face, we detect faces within the image to

remove unwanted regions from images. Face alignment is then used to reduce the

wide variety of face pose angles. Finally, all images are converted from RGB to
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Figure 4.1: Four points detection(the two eyes centres and two point on the mouth).

greyscale because the image descriptors we used work with grey scale images.

4.2.1 Face detection and alignment

The first step is detecting the face. The face is detected using the Viola-Jones

algorithm (Viola and Jones, 2004, 2001), which can find faces, mouths and eyes

Figure 4.2 and shows an example of a detected face image after converting the RGB

values to greyscale and then face detection. Having located the face, to achieve a

more accurate localisation, we need to align all faces, so we need to estimate the

main facial points from the centres of the eyes and at the two points on the mouth

as shown in figure 4.1. Bounding boxes around the eyes and mouth were created

by the Viola-Jones algorithm. We then calculate the centre points of the eyes and

mouth similar to (Davison et al., 2014) these equations:

(Clx, Cly) = (
W

4
+ x,

H

2
+ y) (4.1)
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Figure 4.2: Face detection with the Viola Jones algorithm.

(Crx, Cry) = (
3W

4
+ x,

H

2
+ y) (4.2)

where Cl is the centre of the left eye, Cr is the centre of the right eye, W is the

width of the bounding box, H is the height, and x and y are the pixel locations of the

top-left corner of the bounding box for the eyes. We applied the same equations 4.2

and 4.2 for the mouth (see figure 4.1). The estimated mean face points are calculated

by applying Procrustes analysis (Kendall, 1989). All detected points for all image

face were aligned to the mean shape by affine transformation (Hazewinkel, 2001),

and each face was warped to its new aligned points, to achieve a more accurate

localisation. It is important to note that all faces in the LFW dataset we used were

aligned using the Huang et al. (2012) method, as shown in figure 4.3.

4.2.2 Convert RGB image to greyscale.

Our proposed method works with greyscale images because the LBP, HOG and

D-SURF features were extracted from each grey scale images. All input images
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Figure 4.3: An example of facial alignment for a LFW image using the Huang et al.

(2012) method

in the datasets we used are colour images. We convert RGB values to greyscale

values by forming a weighted sum of the red R, green G and blue B components:

0.2989×R + 0.5870×G+ 0.1140×B (Kanan and Cottrell, 2012).

4.3 Texture-feature extraction and combination

In machine learning and pattern recognition, feature extraction methods describe an

image as a set of measured values called features. This data may be useful for further

processing, such as in machine learning. In this thesis, we applied three commonly

used image descriptors, Local Binary Pattern (LBP) (Ojala et al., 1996), Histogram

of Oriented Gradients (HOG) (Dalal and Triggs, 2005) and Dense Speeded Up Robust

Features (D-SURF) (Lowe, 2004; Uijlings et al., 2010), where we hypothesise that a

combination of the three descriptors would give better image description than any

single one. The HOG, LBP and D-SURF texture descriptors have been described in

chapter 2.

As illustrated in figure 4.4, which shows an image I with size 400 by 400, we
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Figure 4.4: Block features (HOG, LBP and SURF) extraction and combination

divide each image into 25 by 25 non-overlapping blocks, each block size is 16 by 16

pixels, giving 625 blocks. Preliminary experiments showed that this block size of

dividend gave the best accuracy and satisfying the three descriptors’ constraints to

be combined together. For each block the three feature descriptors: HOG Ih, LBP

Il and D-SURF Is are extracted and combined by concatenating each block’s HOG,

LBP and D-SURF descriptors in one vector Ic, for n = 625 as:

Ic = (Ih1 , Il1 , Is1Ih2 , Il2 , Is2 , ..., Ihn , Iln , Isn) (4.3)

The three features descriptors have been extracted for all the image blocks. The

length of HOG for each block is 81, for LBP is 9 and for D-SURF is 64. So the length

of the concatenated features is 81+64+9 = 154 and for the image 154×625 = 96250

features in total.
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4.4 Baseline random forest classification

Having a set of features describing the two datasets of images, we want to train a

random forest to compare the effected of the combination of the LBP, HOG and D-

SURF with using only one of them. In all our experimental evaluations, four types

of performance measurements were used, the weighted F1-Score, precision, recall

and accuracy. Accuracy is the number of correct predictions from all predictions

made. Precision is the number of positive predictions divided by the total number of

positive class values predicted. Recall is the number of positive predictions divided

by the number of positive class values in the test data.F1-Score conveys the balance

between the precision and the recall.

4.4.1 KDEF experiments

Initially, we tested the performance of each one of the three features (HOG, LBP

and D-SURF) separately with a 5000-trees random forest classifier. 10-fold cross-

validation was used to classify the 490 images in the KDEF dataset. The results are

shown in tables 4.1, 4.2 and 4.3.

Table 4.1 shows the confusion matrix with only the HOG feature; the overall

accuracy was 73.10%, precision is: 77.90%, recall is: 73.10% and the F1-score is:

71.40%.(true classes are shown by rows, with assigned classes in columns). Table 4.2

shows the confusion matrix result with the LBP features, where the overall accuracy

was 80.10% precision is: 85.00%, recall is: 80.10% and the F1-score is: 79.10%.

Finally, table 4.3 shows the D-SURF result with an overall accuracy of 70.50%;
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Table 4.1: Confusion matrix for KDEF images with HOG features and a random

forest classifier. The overall accuracy is 73.10%, precision is: 77.90%, recall is:

73.10% and the F1-score is: 71.40%.

FE AN DI HA NE SA SU

FE 0.300 0.043 0.029 0.043 0.114 0.143 0.329

AN 0.000 0.771 0.114 0.029 0.071 0.014 0.000

DI 0.000 0.043 0.771 0.086 0.029 0.057 0.014

HA 0.014 0.014 0.000 0.914 0.057 0.000 0.00

NE 0.000 0.099 0.000 0.000 0.843 0.028 0.028

SA 0.043 0.100 0.043 0.014 0.229 0.543 0.029

SU 0.000 0.000 0.000 0.000 0.028 0.000 0.971

precision is: 75.30%, recall is: 70.50% and the F1-score is: 67.70%. It is noticeable

that with the HOG, LBP and the D-SURF, there was a considerable misclassification

with fear expression. The misclassification pattern in tables 4.1, 4.2 and 4.3 are very

similar to table 3.3, and this is a clear indication of the similarity between the

machine’s performance and the humans.

The combined features were also tested with random forest and 10-fold cross-

validation as well. Table 4.4 illustrates a visualisation of the performance. It is clear

from the table that the combined model performance is better than using a single

one of the three features, thus achieving an overall accuracy of 82.20%, precision is:

83.40%, recall is: 82.2% and the F1-score is: 82.3%. Figure 4.5 illustrates that the

out-of-bag error decreases with the number of grown trees for the combined features

with KDEF images.
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Table 4.2: Confusion matrix for the KDEF images with LBP features and random

forest classifier. The overall accuracy is 80.10%, precision is: 85.00%, recall is:

80.10% and the F1-score is: 79.10%.

FE AN DI HA NE SA SU

FE 0.457 0.057 0.029 0.043 0.057 0.043 0.314

AN 0.000 0.771 0.114 0.029 0.071 0.000 0.014

DI 0.000 0.043 0.914 0.043 0.000 0.000 0.000

HA 0.000 0.000 0.014 0.957 0.029 0.000 0.000

NE 0.000 0.029 0.000 0.000 0.943 0.000 0.029

SA 0.028 0.029 0.043 0.014 0.229 0.629 0.029

SU 0.000 0.000 0.000 0.000 0.071 0.000 0.929

Table 4.4: Confusion matrix for the KDEF images with the combined features and

random forest classifier. The overall accuracy is: 82.20%, precision is: 83.40%, recall

is: 82.20% and the F1-score is: 82.30%.

FE AN DI HA NE SA SU

FE 0.657 0.129 0.043 0.000 0.014 0.100 0.057

AN 0.000 0.829 0.100 0.000 0.000 0.057 0.014

DI 0.000 0.057 0.871 0.000 0.000 0.043 0.029

HA 0.014 0.014 0.014 0.943 0.000 0.014 0.000

NE 0.000 0.000 0.014 0.071 0.886 0.014 0.014

SA 0.071 0.043 0.057 0.000 0.000 0.800 0.029

SU 0.157 0.029 0.029 0.000 0.000 0.014 0.771

4.4.2 CK+ experiments

The Extended Cohn-Kanade database (CK+) (Lucey et al., 2010) is commonly used

for evaluating facial expression recognition, especially with deep learning methods. It

includes 593 video sequences obtained from 123 subjects labelled as 1 of 8 expressions,
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Table 4.3: Confusion matrix for the KDEF photos with D-SURF features and random

forest classifier. The overall accuracy is 70.50%, precision is: 75.30%, recall is:

70.50% and the F1-score is: 67.70%.

FE AN DI HA NE SA SU

FE 0.214 0.085 0.057 0.057 0.100 0.171 0.314

AN 0.014 0.714 0.171 0.028 0.057 0.000 0.014

DI 0.000 0.043 0.886 0.057 0.000 0.014 0.000

HA 0.000 0.000 0.014 0.957 0.028 0.000 0.000

NE 0.014 0.071 0.000 0.000 0.786 0.000 0.129

SA 0.029 0.057 0.057 0.143 0.171 0.443 0.0100

SU 0.029 0.000 0.000 0.000 0.043 0.000 0.929

anger, contempt, disgust, fear, happiness, sadness, surprise and neutral. Only the

last frame of each sequence is labelled. A general procedure, we use the last three

frames of each sequence with the provided label, which results in 981 images. We

tested the 981 CK+ images in the same way in the previous section. Tables 4.5, 4.6

and 4.7 show the results for the CK+ images with only one descriptor, HOG, LBP

and D-SURF respectively. HOG achieved 67.70% overall accuracy and the F1-score

60.90%, and LBP achieved better results with 71.60% overall accuracy and 65.70%

F1-Score. The combined features results as shown in table 4.8 are 78.30% for overall

accuracy is, precision is: 74.80%, recall is: 75.80% and the F1-score is: 73.90%.

Like the KDEF results, the D-SURF gave the lowest performance with only 60.50%

overall accuracy and 54.10% F1-score. Like with the KDEF results, it is noticeable

that with the HOG, LBP and the D-SURF there was a considerable misclassification

with fear expression.
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Figure 4.5: The out-of-bag error decreases with the number of grown trees for the

combined features with KDEF images.

Table 4.6: Confusion matrix for the CK+ images with LBP features and random

forest classifier. The overall accuracy is: 71.60%, precision is: 66.40%, recall is:

68.10% and the F1-score is: 65.70%.

FE AN DI HA NE SA SU

FE 0.333 0.040 0.120 0.120 0.120 0.133 0.133

AN 0.030 0.719 0.081 0.037 0.015 0.059 0.059

DI 0.040 0.028 0.723 0.062 0.051 0.040 0.056

HA 0.014 0.014 0.010 0.889 0.029 0.019 0.024

NE 0.019 0.037 0.056 0.037 0.796 0.000 0.056

SA 0.048 0.048 0.048 0.060 0.119 0.583 0.095

SU 0.032 0.024 0.060 0.056 0.068 0.048 0.711
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Table 4.5: Confusion matrix for the CK+ images with HOG features and random

forest classifier. The overall accuracy is: 67.70%, precision is: 61.70%, recall is:

63.30% and the F1-score is: 60.90%.

FE AN DI HA NE SA SU

FE 0.267 0.040 0.093 0.147 0.107 0.133 0.213

AN 0.000 0.667 0.126 0.030 0.022 0.074 0.081

DI 0.051 0.040 0.678 0.056 0.051 0.045 0.079

HA 0.019 0.010 0.005 0.841 0.068 0.019 0.039

NE 0.056 0.037 0.056 0.037 0.704 0.037 0.074

SA 0.071 0.048 0.083 0.036 0.119 0.548 0.095

SU 0.040 0.024 0.056 0.052 0.060 0.060 0.707

Table 4.7: Confusion matrix for the CK+ images with D-SURF features and random

forest classifier. The overall accuracy is: 60.50%, precision is: 54.70%, recall is:

56.80% and the F1-score is: 54.10%.

FE AN DI HA NE SA SU

FE 0.187 0.080 0.133 0.173 0.107 0.107 0.213

AN 0.037 0.696 0.104 0.067 0.030 0.030 0.037

DI 0.068 0.034 0.650 0.056 0.062 0.062 0.068

HA 0.029 0.029 0.039 0.715 0.077 0.043 0.068

NE 0.074 0.037 0.037 0.037 0.630 0.093 0.093

SA 0.083 0.048 0.107 0.060 0.131 0.464 0.107

SU 0.056 0.072 0.064 0.064 0.076 0.064 0.602
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Table 4.8: Confusion matrix for the CK+ images with the combined features and

random forest classifier. The overall accuracy is: 78.30%, precision is: 74.80%, recall

is: 75.80% and the F1-score is: 73.90%.

FE AN DI HA NE SA SU

FE 0.413 0.080 0.107 0.080 0.120 0.093 0.107

AN 0.059 0.793 0.007 0.052 0.030 0.015 0.044

DI 0.045 0.006 0.802 0.034 0.040 0.028 0.045

HA 0.014 0.019 0.005 0.908 0.029 0.019 0.005

NE 0.019 0.019 0.074 0.000 0.833 0.019 0.037

SA 0.012 0.060 0.036 0.060 0.060 0.738 0.036

SU 0.032 0.028 0.032 0.052 0.036 0.048 0.771

4.4.3 eLFW experiments

To test how the three texture features work with spontaneous rather than posed emo-

tions, we repeated the experiments described in sections 4.4.1 and 4.4.2. As before

we evaluated the performance using single feature types. 10-fold cross-validation was

used with 5000 random forest trees for the 1310 eLFW faces. The results are shown

in tables 4.9, 4.10 and 4.11. Table 4.9 shows the confusion matrix eLFW database,

and with only HOG features; the overall accuracy was 56.9%, precision is: 52.20%,

recall is: 56.30% and the F1-score is: 52.60%. Table 4.10 shows the confusion matrix

result with LBP feature, where the overall accuracy was 60.9%, precision is: 55.90%,

recall is: 59.20% and the F1-score is: 56.10%. Finally, table 4.11 shows the D-SURF

result with an overall accuracy of 51.2%, precision is: 46.70%, recall is: 48.80% and

the F1-score is: 46.50%.
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Table 4.9: Confusion matrix for the eLFW images with HOG features and a random

forest classifier. The overall accuracy is: 56.90%, precision is: 52.20%, recall is:

56.30% and the F1-score is: 52.60%.

FE AN DI HA NE SA SU

FE 0.137 0.158 0.195 0.058 0.084 0.184 0.184

AN 0.092 0.608 0.067 0.025 0.042 0.042 0.125

DI 0.069 0.044 0.681 0.063 0.044 0.050 0.050

HA 0.036 0.039 0.036 0.742 0.070 0.036 0.048

NE 0.042 0.054 0.071 0.083 0.638 0.046 0.054

SA 0.150 0.130 0.085 0.030 0.035 0.465 0.105

SU 0.086 0.043 0.029 0.057 0.043 0.071 0.671

Table 4.10: Confusion matrix for the eLFW images with LBP features and random

forest classifier. The overall accuracy is: 61.00%, precision is: 55.90%, recall is:

59.20% and the F1-score is: 56.10%.

FE AN DI HA NE SA SU

FE 0.184 0.153 0.195 0.047 0.074 0.179 0.168

AN 0.092 0.650 0.058 0.017 0.033 0.033 0.117

DI 0.069 0.044 0.719 0.050 0.038 0.038 0.044

HA 0.027 0.033 0.036 0.773 0.045 0.036 0.048

NE 0.025 0.033 0.050 0.079 0.729 0.042 0.042

SA 0.150 0.125 0.075 0.020 0.025 0.500 0.105

SU 0.114 0.071 0.057 0.057 0.043 0.071 0.586
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Table 4.11: Confusion matrix for the eLFW images with D-SURF features and ran-

dom forest classifier. The overall accuracy is: 51.20%, precision is: 46.70%, recall is:

48.80% and the F1-score is: 46.50%.

FE AN DI HA NE SA SU

FE 0.168 0.153 0.195 0.058 0.079 0.179 0.168

AN 0.100 0.508 0.067 0.092 0.050 0.058 0.125

DI 0.081 0.056 0.656 0.075 0.050 0.038 0.044

HA 0.042 0.039 0.045 0.645 0.100 0.052 0.076

NE 0.042 0.054 0.058 0.079 0.650 0.063 0.054

SA 0.155 0.145 0.085 0.060 0.040 0.375 0.140

SU 0.114 0.086 0.057 0.114 0.100 0.114 0.414

Table 4.12: Confusion matrix for the eLFW images with the combined features and

random forest classifier. The overall accuracy is: 67.30%, precision is: 59.80%, recall

is: 61.40% and the F1-score is: 59.60%.

FE AN DI HA NE SA SU

FE 0.232 0.153 0.184 0.026 0.079 0.168 0.158

AN 0.092 0.650 0.058 0.025 0.017 0.042 0.117

DI 0.063 0.044 0.738 0.050 0.038 0.038 0.031

HA 0.012 0.006 0.021 0.927 0.024 0.003 0.006

NE 0.008 0.008 0.021 0.054 0.879 0.017 0.013

SA 0.150 0.135 0.075 0.025 0.020 0.490 0.105

SU 0.157 0.143 0.171 0.043 0.014 0.086 0.386

It is clear from this section that with LBP, HOG and D-SURF, it was hard to

classify the fear expression whereas happy and neutral are more easily classified in

both datasets and fear is most often misclassified. The combination of the three

texture features improved the overall accuracy with both datasets. From table 4.12,

it is clear that the combined model performance is better than using a single one of
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Figure 4.6: Schematic of steps used for determining the feature importance mask.

This figure shows the steps of finding the importance mask by applying the Otsu

method to the total of the estimated importance values.

the three features, achieving an overall accuracy of 67.3% precision is: 59.80%, recall

is: 61.40% and the F1-score is: 59.60%.

The overall accuracy for eLFW is lower than CK+ and KDEF, but the pattern

for the three types of misclassification is similar, so it is clear that the fear emotion,

for instance, was the lowest accuracy where the happy emotion was the highest for

both datasets.
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Figure 4.7: Importance masking steps for a KDEF image.

4.5 Feature importance mask

After the three types of features were extracted and combined, the random forest

was trained by the features of the images to estimate the predictor importance for

each value of the combined feature vector. Each image block is matched matched

with its part of the combined vectors to decide where the important facial parts are.

To locate the important face part, we sum the importance values for each face block

to yield a matrix of 25 by 25 combined importance values. We applied the Otsu

method (Otsu, 1975) to covert the importance values to binary. A mask of size 25

by 25 was produced. After getting the mask, by bicubic interpolation, we resized it

to 400 by 400 to be the same as the size of the images. Figures 4.6 and 4.7 illustrate

the main steps of mask creation.

Figure 4.8 illustrates a comparison between the random forest importance pre-

diction values. Red colours show that the HOG features were the most important in
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Figure 4.8: HOG, LBP and SURF importance values comparison. Red, blue and

green indicate which feature type (HOG, LBP and D-SURF respectively) was most

important for each block. We use half of the face to make the mask symmetric.

the location, while green colour refers to LBP and blue to D-SURF. It is clear that

HOG and LBP occupy most of the facial region compared to D-SURF. As Figure 4.9

shows, this procedure identifies the eyes, mouth, the creases at the side of the nose

and the forehead as the most informative. We point out that this is an empirically

determined mask rather than one chosen a priori. We obtain slightly different masks

for the acted and wild faces. It is well known that the human faces are symmetrical,

so we made a horizontal-reverse the right half of the face mask, to ensure that we

deal with both of face sides in the same way.

Importance masks are slightly different according to the training data images, so

when we trained the system with the KDEF images, the mask was as shown in figure

4.7. The eLFW training produced a mask with some differences, as shown in figure

4.9.
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(a) KDEF mask (b) eLFW mask

Figure 4.9: Mask identifying the most important regions of the face for emotion

classification derived by binariesing feature importance mask.

4.6 Random forest classification with importance mask

After obtaining the masks from the two datasets KDEF and eLFW, we applied each

mask to all images in the relevant dataset to remove the unwanted parts and to

keep only those that were important. The resulting features were then classified

using random forest (5000 trees). 10-fold cross-validation was used to evaluate the

classification scheme.

4.6.1 Masked KDEF experiments

Table 4.13 shows the confusion matrix for masked KDEF images with the combined

features and random forest classifier. The overall accuracy is 89.80%; precision is:

90.80%, recall is: 89.80% and the F1-score is: 89.70%. The happy expression had

the highest classification rate, while the fear expression has the lowest. With these
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Table 4.13: Confusion matrix for the masked the KDEF images with the combined

features and random forest classifier. The overall accuracy is: 89.80%, precision is:

90.80%, recall is: 89.80% and the F1-score is: 89.70%.

FE AN DI HA NE SA SU

FE 0.671 0.143 0.043 0.000 0.000 0.143 0.000

AN 0.000 0.857 0.071 0.000 0.000 0.071 0.000

DI 0.000 0.043 0.929 0.000 0.000 0.029 0.000

HA 0.000 0.000 0.000 0.986 0.014 0.000 0.000

NE 0.000 0.000 0.000 0.014 0.986 0.000 0.000

SA 0.043 0.029 0.043 0.000 0.000 0.886 0.000

SU 0.014 0.000 0.014 0.000 0.000 0.000 0.971

two expressions, there is no significant improvement between masking and without.

Neutral and surprise rose significantly by applying the mask, 88.6% to 98.6% for

neutral, and 77.1% to 97.1% for the surprise expression.

4.6.2 Masked CK+ experiments

Table 4.13 shows the confusion matrix for the masked KDEF images with the com-

bined features and random forest classifier. The overall accuracy is 82.20%; precision

is: 79.10%, recall is: 81.30% and the F1-score is: 79.20%. Similar the achievements

with KDEF, the happy expression had the highest classification rate, while the fear

expression has the lowest. With these two expressions, there is no significant im-

provement between masking and without.
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Table 4.14: Confusion matrix for the masked CK+ images with the combined features

and random forest classifier. The overall accuracy is: 82.20%, precision is: 79.10%,

recall is: 81.30% and the F1-score is: 79.20%.

FE AN DI HA NE SA SU

FE 0.667 0.053 0.027 0.027 0.053 0.067 0.107

AN 0.059 0.748 0.037 0.044 0.037 0.022 0.052

DI 0.040 0.006 0.825 0.040 0.056 0.011 0.023

HA 0.014 0.014 0.005 0.913 0.014 0.029 0.010

NE 0.000 0.037 0.019 0.000 0.889 0.019 0.037

SA 0.024 0.095 0.024 0.012 0.012 0.798 0.036

SU 0.020 0.024 0.020 0.024 0.036 0.056 0.819

4.6.3 Masked eLFW experiments

Table 4.15 shows the confusion matrix for the masked eLFW images. It is clear that

applying the mask increases the accuracy from 67.3% without masking to 71.6% with

masking (see table 4.12). As more results i table 4.15 the precision is: 64.10%, recall

is: 66.00% and the F1-score is: 64.00%. The happy and neutral expressions are most

easily classified in both datasets and fear is most often misclassified, particularly in

the eLFW data, where it is confused with all the other classes except happy and

neutral.

Table 4.16 shows a confusion matrix for testing the eLFW database after training

our proposed system with the KDEF database. KDEF contains 70 faces for each

expression. We chose 70 random faces from the eLFW for testing. It is clear from the

table that gives good results for most of the facial expressions. The overall accuracy

was 74.7%.
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Table 4.15: Confusion matrix for the random forest classification of the masked

eLFW databases. The overall accuracy was 71.60%, precision is: 64.10%, recall is:

66.00% and the F1-score is: 64.00%.

FE AN DI HA NE SA SU

FE 0.263 0.153 0.200 0.016 0.042 0.168 0.158

AN 0.083 0.725 0.042 0.000 0.000 0.042 0.108

DI 0.063 0.031 0.775 0.038 0.031 0.031 0.031

HA 0.000 0.006 0.009 0.973 0.012 0.000 0.000

NE 0.004 0.004 0.017 0.054 0.908 0.008 0.004

SA 0.150 0.130 0.065 0.010 0.010 0.535 0.100

SU 0.157 0.129 0.157 0.029 0.000 0.086 0.443

4.7 Comparison with citizens’ classification

As mentioned in chapter 3, to avoid ambiguous classifications by the annotators,

we calculate the entropy of the empirical distribution of classifications. The entropy,

H = −
∑

n pn log2 pn, measures the agreement between the annotators, so the entropy

is maximised when all classes are assigned in equal proportion and it is minimised

when images are assigned to only a single class.

The patterns of misclassification for RF and the annotators are similar. Table

4.17 shows the average entropy of the distributions of the citizens’ votes for images

that were correctly and incorrectly classified. For each of the emotion classes, the

average entropy for the misclassified images is greater than or equal to the average

entropy of the correctly classified images displaying the same emotion. This indicates

that there was more disagreement about the emotion displayed that there was about

correctly classified images.
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Table 4.16: Confusion matrix on the eLFW database using proposed method, trained

with KDEF. Overall accuracy was 74.7%, precision is: 74.29%, recall is: 74.7% and

the F1-score is: 74.01%.

FE AN DI HA NE SA SU

FE 0.371 0.086 0.114 0.043 0.043 0.071 0.271

AN 0.057 0.643 0.157 0.000 0.014 0.057 0.071

DI 0.43 0.029 0.743 0.000 0.071 0.014 0.100

HA 0.029 0.014 0.000 0.929 0.014 0.014 0.000

NE 0.014 0.014 0.014 0.029 0.900 0.014 0.014

SA 0.029 0.014 0.043 0.000 0.029 0.871 0.014

SU 0.157 0.014 0.043 0.000 0.000 0.014 0.771

It is evident in table 4.17 that the correctly classified happy-labelled images are

lower than those has been missed classified. That means the lowest entropy images

were easier for both machine and annotators and vice versa, so this can be determined

as a consensus indicator between machine and annotators. From the same table, we

can notice that the images were labelled happy and natural were the easiest voting by

annotators. Fear images were the hardest for machine and annotators. The missed

classified images are 0.981 and those were correctly classified were 0.962.

4.8 Support vector machine performance

Random forest and SVMs have been used extensively for classification tasks recently

Datta et al. (2017); Munasinghe (2018), so in this section, we compare the perfor-

mance of SVMs with the performance of random forests. We used 1-vs-all SVM

with a radial bias function (RBF) kernel. There are two parameters that affect the

SVM performance. The first is the regularisation parameter C, which controls the
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Table 4.17: Average entropy of citizens’ voting distributions for correctly and incor-

rectly classified the eLFW images.

Entropy (bits)

Emotion Correct Misclassified

Fear 0.962 < 0.981

Anger 0.956 < 0.982

Disgust 0.983 = 0.983

Happy 0.777 < 0.902

Neutral 0.869 < 0.943

Sad 0.956 < 0.963

Surprised 0.937 < 0.976

Overall 0.920 < 0.961

trade-off between achieving a low error on the training data and minimising the norm

of the weights. The second parameter is γ, which can be seen as the inverse of the

radius of influence of samples selected by the model as support vectors. With low

γ, the curvature of the decision boundary is small, and thus, the decision region is

wide. When γ is large, the curvature of the decision boundary is high, which creates

islands of decision-boundaries around data points. To optimise the SVM, we need to

find the best SVM parameters, γ and C. We used Bayesian optimisation, which is a

powerful method to optimise functions (Mockus, 2012; Brochu et al., 2010). Figure

4.10 shows the surface plot of the Bayesian optimisation search for the error function

minimisation, This figure illustrates the estimated location of the minimum error,
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Table 4.18: Confusion matrices for the SVM classification of the KDEF database.

Without the mask. Accuracy 72%,

precision is: 73.90%, recall is: 72.4%

and the F1-score is: 72.40%.
FE AN DI HA NE SA SU

FE 0.643 0.014 0.057 0.100 0.029 0.071 0.086

AN 0.043 0.671 0.071 0.000 0.043 0.086 0.086

DI 0.086 0.057 0.714 0.000 0.000 0.071 0.071

HA 0.000 0.000 0.000 0.900 0.057 0.014 0.029

NE 0.000 0.000 0.014 0.071 0.843 0.057 0.014

SA 0.068 0.043 0.071 0.000 0.029 0.657 0.114

SU 0.157 0.057 0.043 0.014 0.014 0.071 0.643

With the mask.Accuracy 81.00%,

precision is: 82.00%, recall is: 81.00%

and the F1-score is: 80.70%.
FE AN DI HA NE SA SU

FE 0.714 0.057 0.043 0.000 0.000 0.100 0.086

AN 0.043 0.686 0.071 0.000 0.029 0.086 0.086

DI 0.043 0.057 0.786 0.000 0.000 0.057 0.057

HA 0.000 0.000 0.000 0.957 0.029 0.000 0.014

NE 0.000 0.000 0.000 0.057 0.900 0.029 0.014

SA 0.057 0.057 0.043 0.000 0.000 0.771 0.071

SU 0.071 0.029 0.014 0.014 0.000 0.029 0.843

and the location of the next proposed point to evaluate. An example of a Bayesian

optimisation search. We applied 10-fold cross-validation, so the optimisation aims

to minimise the loss function of the partitioned classification model, which measure

the predictive inaccuracy of classification models.

This cross-validation can be computationally expensive but it has a significant

advantage by not wasting too much data as when fixing an arbitrary test set (Chih-

Wei Hsu, 2003).

Table 4.18 (left) illustrates confusion matrices for the KDEF photos with SVMs

for whole facial features without applying the importance mask, the overall accuracy

was 72%. After applying the KDEF mask, the SVM overall classification rate rose

to 81% as shown in table 4.18 (right). The optimum parameters were γ ≈ 4.3× 104

and C ≈ 1019, indicating that the classifier is quite non-linear.

By comparing the result presented in table 4.18 (left) with those shown in 4.4
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Figure 4.10: Min objective vs number of function evaluations

and 4.13, we can see that the random forest gives better results for this classification

problem.

Table 4.19 illustrates a confusion matrix of the masked eLFW by SVMs. Com-

pared to the results in table 4.12, the random forest still gives slightly better accuracy

compared to the SVM with the importance masked combined features. According to

table 4.19, the overall classification accuracy for SVMs was 66.3% where the overall

classification in the table 4.12 was 67.3%.

4.9 Pairwise classification

Random forest classifiers combine decision trees which are naturally capable of multi-

class classification, as opposed to dichotomous classifiers, such as SVMs, for which
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Table 4.19: Confusion matrix for the SVM classification of the eLFW database with

the importance mask shown in Figure 4.7. Accuracy 66.3%, precision is: 61.30%,

recall is: 63.3% and the F1-score is: 60.60%.

FE AN DI HA NE SA SU

FE 0.237 0.137 0.184 0.042 0.058 0.153 0.189

AN 0.058 0.733 0.025 0.000 0.008 0.075 0.100

DI 0.056 0.025 0.750 0.025 0.038 0.025 0.081

HA 0.018 0.021 0.15 0.845 0.033 0.018 0.048

NE 0.025 0.013 0.038 0.063 0.829 0.021 0.013

SA 0.175 0.125 0.060 0.010 0.025 0.495 0.110

SU 0.157 0.114 0.143 0.029 0.000 0.014 0.543

strategies such as one-versus-all or pairwise voting must be employed. In an effort to

reduce the misclassifications of fear, anger, disgust and surprise, we also investigated

the use of pairwise classifiers for classifying emotions. In this framework, a single

classifier is trained to discriminate between a pair of classes. The item is then assigned

to the class which receives the majority of votes from the pairwise classifiers.

4.9.1 Equally weighted pairwise classification

For n-Class pairwise classification, the number of the classifiers is c = n(n−1)
2

, so to

classify the n = 7 emotions, there are 21 pairs of classifiers. Each pair of facial

expression classes was used to train one random forest classifier. At the testing

stage, each image was tested with all 21 classifiers. For each facial expression, we

calculate all votes from each classifier to get the total vote. The maximum vote

for the seven expressions is the final decision. As example, table 4.20 shows the

posterior probabilities of 21 random forest classifiers for two different images whose
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Table 4.20: Posterior probabilities for two different fear images tested by the 21 ran-

dom classifiers, the left has been wrongly classified and the right correctly classified.

Wrong classification decision
Fear Anger Disgust Happy Neutral Sad Surprise Total

Fear x 0.87 0.88 0.85 0.49 0.62 0.38 4.10

Anger 0.13 x 0.80 0.73 0.12 0.22 0.12 2.11

Disgust 0.12 0.21 x 0.56 0.08 0.10 0.07 1.13

Happy 0.15 0.27 0.44 x 0.07 0.11 0.08 1.12

Neutral 0.51 0.88 0.92 0.93 x 0.64 0.48 4.36

Sad 0.38 0.78 0.90 0.89 0.36 x 0.31 3.63

Surprise 0.62 0.88 0.93 0.92 0.51 0.69 x 4.55

Correct classification decision
Fear Anger Disgust Happy Neutral Sad Surprise Total

Fear x 0.94 0.93 0.86 0.85 0.69 0.48 4.76

Anger 0.06 x 0.78 0.77 0.27 0.16 0.10 2.13

Disgust 0.07 0.23 x 0.57 0.16 0.12 0.12 1.27

Happy 0.14 0.23 0.43 x 0.18 0.28 0.13 1.40

Neutral 0.15 0.73 0.84 0.81 x 0.19 0.31 3.04

Sad 0.31 0.84 0.88 0.72 0.81 x 0.31 3.86

Surprise 0.52 0.90 0.88 0.86 0.69 0.70 x 4.54

correct class was fear. Each cell in the tables is the posterior probability (classifier

score) with the expression in the same row vs the expression in the same column.

In the left table, the image has been wrongly classified as surprise (maximum total

4.55). Table 4.20 (right) shows another fear image which has been correctly classified

(maximum total 4.76).

Table 4.21 shows the accuracy of the RF and SVM classifiers on the KDEF

data, using the usual 10-fold cross-validation. We notice that the performance of

both classifiers is very similar, and that there is no significant difference between the

overall scores: the RF’s average accuracy was 0.963 and SVMs was 0.962. There is

one advantage of SVMs: all the 21 classifiers gave an accuracy of over 90%, whereas

RF gave two results lower than 90% with fear vs surprise, and neutral vs sad.

Figure 4.11 and 4.12 show two examples of the out-of-bag error decreases with

the number of grown trees. We can see how is the classification between happy and

surprise gives excellent accuracy, and that we do not need to build lots of trees to get

high accuracy. Fear and surprise are the most difficult to classify, but the random

forest achieved 88.3% accuracy, and this is an excellent result.
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Table 4.21: Pairwise RF classifiers and pairwise SVM classifiers performance with

KDEF.

Classifier RF SVM Classifier RF SVM

Fear vs Anger 0.956 0.935 Disgust vs Happy 0.976 0.978

Fear vs Disgust 0.968 0.978 Disgust vs Neutral 0.999 0.993

Fear vs Happy 0.976 0.978 Disgust vs Sad 0.960 0.942

Fear vs Neutral 0.940 0.957 Disgust vs Surprise 0.988 1.000

Fear vs Sad 0.920 0.900 Happy vs Neutral 0.999 0.993

Fear vs Surprise 0.883 0.900 Happy vs Sad 0.987 0.971

Anger vs Disgust 0.935 0.900 Happy vs Surprise 0.999 0.993

Anger vs Happy 0.993 0.985 Neutral vs Sad 0.895 0.940

Anger vs Neutral 0.952 0.950 Neutral vs Surprise 0.984 0.985

Anger vs Sad 0.936 0.950 Sad vs Surprise 0.976 0.978

Anger vs Surprise 0.994 1.000 Overall 0.963 0.962

Figure 4.12: The out-of-bag error decreases with the number of grown trees fear vs

surprise.
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Figure 4.11: The out-of-bag error decreases with the number of grown trees for happy

vs surprise.

Table 4.23: Confusion matrices for equally pairwise classification of the CK+

database. The overall accuracy is 89.40%, precision is: 88.20%, recall is: 88.80%

and the F1-score is: 88.20%.

FE AN DI HA NE SA SU

FE 0.773 0.040 0.027 0.000 0.000 0.027 0.133

AN 0.022 0.822 0.089 0.007 0.000 0.007 0.052

DI 0.023 0.023 0.898 0.017 0.000 0.006 0.034

HA 0.010 0.014 0.000 0.937 0.019 0.014 0.005

NE 0.000 0.019 0.000 0.019 0.926 0.000 0.037

SA 0.000 0.048 0.024 0.012 0.000 0.905 0.012

SU 0.040 0.004 0.004 0.008 0.016 0.008 0.920

Table 4.22 and 4.23 show the RF pairwise classification results of the KDEF,
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Table 4.22: Confusion matrices for equally pairwise classification of the KDEF and

eLFW databases. The overall accuracy is 92.2%., precision is: 93.20%, recall is:

92.2% and the F1-score is: 92.10% for KDEF. The overall accuracy is 73.3%, precision

is: 67.40%, recall is: 68.7% and the F1-score is: 66.9% for eLFW.

KDEF
FE AN DI HA NE SA SU

FE 0.814 0.029 0.043 0.000 0.000 0.029 0.086

AN 0.000 0.886 0.043 0.000 0.000 0.071 0.000

DI 0.000 0.043 0.929 0.000 0.000 0.029 0.000

HA 0.000 0.000 0.000 0.986 0.014 0.000 0.000

NE 0.000 0.000 0.000 0.014 0.986 0.000 0.000

Sad 0.029 0.029 0.043 0.000 0.000 0.900 0.000

SU 0.029 0.000 0.014 0.000 0.000 0.000 0.957

eLFW
FE AN DI HA NE SA SU

FE 0.463 0.095 0.142 0.016 0.042 0.079 0.163

AN 0.033 0.750 0.058 0.025 0.000 0.067 0.067

DI 0.056 0.019 0.781 0.044 0.031 0.025 0.044

HA 0.003 0.027 0.006 0.927 0.018 0.009 0.009

NE 0.008 0.017 0.013 0.017 0.917 0.029 0.000

SA 0.165 0.120 0.065 0.030 0.025 0.485 0.110

SU 0.100 0.071 0.086 0.029 0.114 0.114 0.486

eLFW and CK+ data respectively. As we can see in the tables, the overall accuracy

is 92.2%., precision is: 93.20%, recall is: 92.2% and the F1-score is: 92.10% for

KDEF. The overall accuracy is 73.3%, precision is: 67.40%, recall is: 68.7% and the

F1-score is: 66.9% for eLFW. The overall accuracy is 89.40%, precision is: 88.20%,

recall is: 88.80% and the F1-score is: 88.20%. By comparing these results with

the results in table 4.13, 4.14 and 4.15, it is clear that pairwise classification has

enhanced the overall accuracy from 89% to be 92.2% for KDEF, and from 71.7%

to 73.3% for eLFW, and from 82.20% to 89.40% for CK+. We note that the fear

expression classification rate has been significantly improved.
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Table 4.24: Random forest pair-classifiers optimised weights for 7 classes

Fear Anger Disgust Happy Neutral Sad Surprise

Fear x 0.198 0.202 0.159 0.106 0.159 0.176

Anger 0.226 x 0.247 0.232 0.045 0.127 0.122

Disgust 0.205 0.187 x 0.175 0.114 0.155 0.164

Happy 0.210 0.187 0.184 x 0.114 0.150 0.156

Neutral 0.216 0.187 0.174 0.107 x 0.157 0.159

Sad 0.206 0.195 0.172 0.106 0.158 x 0.164

Surprise 0.204 0.190 0.171 0.116 0.151 0.169 x

4.9.2 Weighted pairwise classification

In most pairwise architectures each of the constituent classifiers has an equal vote.

Here we weigh the votes from each classifier and learn appropriate weights by opti-

mising the classification accuracy of a validation set.

More specifically, suppose yij(xn) ∈ [0, 1] is the output of the classifier discrimi-

nating between classes i and j for image features xn. Here we use random forest for

each dichotomous classifier, so that yij(xn) is the proportion of decision trees in the

(i, j)-th forest that voted for class i. Then the overall score for class i is

Yi(xn) =
∑
j 6=i

λijyij(xn) (4.4)

where the weights are λij, and the image is assigned to the class with the largest

overall score: argmaxi Yi(xn). The weights are constrained to be non-negative, λij ≥

0 for all i and j, and we demand that
∑

j λij = 1 for all i.

Training takes place in two phases. First, the constituent classifiers are indepen-

dently trained on the pairs of classes. Secondly, the accuracy of the overall classifier
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Table 4.25: Confusion matrices for the weighted pairwise classification of the KDEF

and eLFW databases. The overall accuracy is 95.1%, precision is: 95.70%, recall is:

95.1% and the F1-score is: 95.0% for KDEF. The overall accuracy is 76.6%, precision

is: 71.10%, recall is: 72.10% and the F1-score is: 70.6% for eLFW.

KDEF

FE AN DI HA NE SA SU

FE 0.914 0.029 0.000 0.000 0.000 0.000 0.057

AN 0.000 0.943 0.014 0.000 0.000 0.043 0.000

DI 0.000 0.014 0.971 0.000 0.000 0.014 0.000

HA 0.000 0.000 0.000 0.986 0.014 0.000 0.000

NE 0.000 0.000 0.000 0.014 0.986 0.000 0.000

SA 0.043 0.029 0.043 0.000 0.000 0.886 0.000

SU 0.014 0.000 0.014 0.000 0.000 0.000 0.971

eLFW

FE AN DI HA NE SA SU

FE 0.495 0.089 0.142 0.011 0.042 0.074 0.147

AN 0.025 0.792 0.050 0.000 0.000 0.083 0.050

DI 0.056 0.019 0.788 0.044 0.031 0.025 0.038

HA 0.003 0.012 0.003 0.970 0.009 0.003 0.000

NE 0.004 0.013 0.000 0.017 0.938 0.029 0.000

SA 0.150 0.130 0.065 0.010 0.010 0.535 0.100

SU 0.086 0.086 0.071 0.014 0.129 0.086 0.529

on a second training data set is maximised by optimising the voting weights using

an evolutionary optimiser. Here we used CMA-ES (Hansen, 2006), a popular and

effective evolutionary optimiser. Constraints were enforced by working in terms of

variables θij with

λij =
θij∑
k θik

. (4.5)

We note that the procedure is efficient because once the pairwise classifiers have been

trained, classification scores yij(xn) need only be calculated once before optimisation

of the weights.
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Table 4.26: Confusion matrices for weighted pairwise classification of the CK+

database. The overall accuracy is 91.30%, precision is: 90.70%, recall is: 89.40%

and the F1-score is: 89.60%.

FE AN DI HA NE SA SU

FE 0.733 0.000 0.027 0.013 0.000 0.013 0.213

AN 0.037 0.896 0.030 0.007 0.000 0.000 0.030

DI 0.017 0.011 0.932 0.006 0.000 0.006 0.028

HA 0.000 0.000 0.000 0.976 0.024 0.000 0.000

NE 0.000 0.019 0.000 0.019 0.926 0.000 0.037

SA 0.024 0.048 0.012 0.036 0.000 0.810 0.071

SU 0.040 0.004 0.004 0.004 0.004 0.004 0.940

Table 4.24 shows the weights λij obtained by the optimisation processes. This

weights can show which pairwise-classier is more important to make a decision than

others. In the first raw the fear-vs-disgust classifier has the largest weight, where

fear-vs-neutral is the lowest. Moreover, in the disgust raw the fear-vs-disgust was

the most important.

Table 4.25 shows the confusion matrix obtained with the optimised pairwise clas-

sification using 10-fold cross-validation testing. The accuracies for the data sets have

increased to 95.1% for KDEF and 76.6% for eLFW. As can be seen from the confusion

matrix, classification accuracies of fear, anger, surprise and disgust have increased

substantially, although for the eLFW data there is still considerable misclassification

of fear (confused with disgust and surprise), sadness (confused with fear and anger)

and surprise (confused with neutral, fear, anger and disgust). We remark that these

emotions are all often expressed through a grimacing expression which may account

for the difficulty in distinguishing them. Furthermore, these are the emotions about
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which the citizens showed the most disagreement (see section 4.7).

Table 4.27: Comparison of classification accuracy of random forest classification

using masked LBP, HOG and D-SURF texture features with other recent techniques.

Evaluation on the KDEF and CK+ databases.

Method Database Accuracy

SURF with AdaBoost Rao et al. (2015) KDEF 74.05%

LDBP with SVM Santra and Mukherjee (2016a) KDEF 83.51%

LSiBP with SVM Santra and Mukherjee (2016b) KDEF 84.07%

Our proposed method KDEF 95.10%

CNN Meng et al. (2017) CK+ 95.37%

CNN Cai et al. (2018) CK+ 94.39%

GAN (cGAN) Yang et al. (2018) CK+ 97.30%

CNN Zhang et al. (2018) (6 classes) CK+ 98.00%

Our proposed method CK+ 91.30%

Table 4.27 shows a comparison between our proposed system with some of recent

works of the state-of-the-art methods. It is seen by comparing our proposed method

with some of the recent works Rao et al. (2015); Santra and Mukherjee (2016a,b)

which used images descriptors; our method gave the highest overall accuracy 95.10%

with KDEF database. In the table, we show some of recent works that have used the

KDEF database, with image descriptors such as SURF, LDBP, LSiBP. In the last

few years, deep learning algorithms have seen great attention from researchers, which
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has achieved amazing and promising results. The CK+ database is widely used by

researchers to evaluate their proposed deep learning systems. For this reason, we

tested our method with CK+ to compare our method with deep learning. In table

4.27 we show four recent works by Meng et al. (2017); Cai et al. (2018); Yang et al.

(2018); Zhang et al. (2018). We use the same number of CK+ images (981) as the

same as Meng et al. (2017); Cai et al. (2018); Yang et al. (2018) and 10-fold cross-

validation. Our method gave 91.30% overall accuracy whereas the GAN (cGAN)

Yang et al. (2018) gave 6% higher accuracy than our method. Zhang et al. (2018)

method achieved 98.00% but with only 6 facial expressions: angry, happy, surprise,

sad, disgust and fear. In other words, our method, which based is on a combination of

image descriptors and weighted pairwise random forest classifiers , achieved better

results rather than using only one. Deep learning still gives better results than

traditional image features.

4.10 Conclusion

Table 4.28 summarises the improvement progress with the two databases, KDEF and

eLFW, after combining the three texture descriptors, rather than using only one.

Moreover, the table shows how the masking gives better accuracy than without. It

is clear from the table that the random weighted-pairwise classification gives much

better accuracy.

Rather than using a single type of texture descriptor for the appearance-based

classification of emotions, we showed that a combination of LBP, HOG and D-SURF

significantly increases classification accuracy. Furthermore, the feature selection was



4.10. Conclusion 88

Table 4.28: The improvement progress summary for the proposed method.

Accuracy Precision Recall F1 Score

Method KDEF CK+ eLFW KDEF CK+ eLFW KDEF CK+ eLFW KDEF CK+ eLFW

HOG 73.10% 67.70% 56.90% 77.90% 61.70% 52.20% 73.10% 63.30% 56.30% 71.40% 60.90% 52.60%

LBP 80.10% 71.60% 60.90% 85.00% 66.40% 55.90% 80.10% 68.10% 59.20% 79.10% 65.70% 56.10%

D-SURF 70.50% 60.50% 51.20% 75.30% 54.00% 46.70% 70.50% 56.80% 48.80% 67.70% 54.10% 46.50%

Combined feature 82.20% 78.30% 67.30% 83.40% 74.80% 59.80% 82.20% 75.80% 61.40% 82.30% 73.90% 59.60%

Masked imeages 89.90% 82.20% 71.60% 90.80% 79.10% 64.10% 89.80% 81.30% 66.00% 89.70% 79.20% 64.00%

Equally pair-wise classification 92.20% 89.40% 73.30% 93.20% 88.20% 67.40% 92.20% 88.80% 68.70% 92.10% 88.20% 66.90%

Weighted pair-wise classification 95.10% 91.13% 76.6% 95.70% 90.70% 71.10% 95.10% 89.40% 72.10% 95.00% 89.60% 70.60%

used to empirically identify the important regions of the faces for classifying emotion.

As might be expected these are mainly around the eyes, mouth, the creases on either

side of the nose and the forehead. Use of our empirically defined importance mask

enhances the classification accuracy.

Further improvements to classification accuracy were obtained by pairwise weighted

voting between dichotomous classifiers, and we showed how to learn optimal weights

using an evolutionary algorithm. The resulting accuracies are significantly better

than the current published state of the art results on the posed KDEF data. Nonethe-

less, particularly for spontaneous data, classification of fear, anger, disgust, sadness

and surprise remains imperfect, and we obtain overall classification accuracies of

about 77%. We observe that these are the emotions that humans find more chal-

lenging to classify from static images in eLFW data.
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5.1 Introduction

In this chapter, we apply the method proposed in chapter 4 to the DynEmo (Tcherkas-

sof et al., 2013) video database. We investigate methods of smoothing the classifier

predictions to exploit the temporal continuity of emotions and therefore, the classi-

fication error. Several smoothing techniques are investigated and optimised.

The field of video automatic facial expression analysis has grown in recent years.

Nevertheless, most researchers still depend on databases that contain acted emotions

from models or actors (Pantic et al., 2005; O’Toole et al., 2005; Lucey et al., 2010). It

is clear that the way that facial expressions in real life are different from those posed

in many databases. A recent exciting database showing spontaneous facial expression

is the DynEmo database which was created by a group of psychological researchers,

computer scientists, statisticians, experimentation and instrumentation specialists,

and a legal professional (Tcherkassof et al., 2013). The DynEmo database contains

dynamic and natural emotional facial expressions filmed in natural but standardised

conditions.

To compare our proposed method with the state-of-the-art methods, we use all

sequences of The Extended Cohn Kanade (CK+) database which labelled as the

seven basic facial expressions, fear, anger, disgust, happy, neutral, sad and surprised.

CK+ database is the most widely used laboratory-controlled database for evaluating

facial expression recognition systems. CK+ includes 593 video sequences from 123

subjects. The sequences differ in duration between 10 to 60 frames and show a shift
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Table 5.1: DynEmo database data type.

C INDUC SEX Sujet SEXE Juge C Juge C Video E Detectee TC Debut TC Fin

EM F N 237 DVD3 5.mpg Surprise 7181 10183

EM F N 237 DVD3 5.mpg Surprise 23438 29080

EM F N 237 DVD3 5.mpg Surprise 39798 50305

from a neutral facial expression to the peak expression.

In this chapter, section 5.2 will show how the DynEmo database has been pre-

pared to be usable in our work. In section 5.3, we show the result of applying the

proposed method in the previous chapter to the new video database. Section 5.4

shows how smoothing the classifier scores improves accuracy. Finally, conclusions

are drawn in section 5.5.

5.2 DynEmo database preparation

The DynEmo database has been labelled over time, not frame by frame. In our exper-

iments, we need labelled frames to be used for training and testing. The researchers

in the DynEmo database worked on the following facial expression expressions in

the DynEmo database: curiosity, happy, Surprise, boredom, disgust, fright (fear),

shame, annoyance (anger), disappointment, humiliation and other marginal expres-

sions. This was in an attempt to extract as much as possible of the expressions. For

the data collection, the researchers have recorded films using hidden cameras while

people (called encoders) were sitting on a chair at a small table facing the wall where

a PC was projected on the wall using a video projector. During the video playback,
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the experimenters were sitting in an adjacent room watching the encoder’s reactions.

There recorded videos properties are width: 768, height: 576, frame rate: 25 frames

per second, bits per pixel: 24 and video format: RGB24.

Table 5.1 shows a sample of the original data layout in the DynEmo database.

The most important columns for us in the data are C Video, which means the video

name, E Detectee which is the labelled emotion and TC Debut and TC Fin are the

start and end time in milliseconds. The DynEmo database contains 358 videos, but

not all of them were available to download. The first objective for us, was to make the

labelling based on frames rather than time. To ensure that there was a consensus on

the judgements on each frame. Work started by preparing the database to be usable

in training and testing. From the available videos on their website, we extracted the

44 sequences for 5 facial expressions, and these 44 sequences were consensus voted.

Similar to the work in chapter 3, we need to ensure that there was a consensus

on the facial expression on each frame. To achieve this, each frame must be assigned

the same emotion and at least four different judges. To qualify the quality of the

consensus, we calculate the entropy value for the votes. The entropy must be less

than 1 to accept the consensus vote. The entropy for n probabilities (p1, p2, ..., pn) is

calculated by using the following equation:

H = −
n∑

i=1

pi log2(pi) (5.1)

where p; is the fraction of judges voting for class i.

We adapted the labelling way to be based in every single frame rather than the

original method, which was based on time sectors. The 44 sequences include 14543
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Happy Fear Anger Surprise Disgust

Figure 5.1: Examples of the five facial expression in the database

frames that had been voted with consensus (H < 1). We removed some the short

parts of the 44 videos which have no consensus (H > 1). Some videos have more

than one expression during the video, so we cut out the short parts from those videos

which did not get a consensus, and we kept the sequences of frames with a consensus

vote. Only 5 facial emotions were remaining after calculating the entropy: fear,

anger, disgust, happy and surprise, as shown in figure 5.1.

Facial expressions in real life vary even for the same person. For example, the

happy expression has many different levels. The same person may express a small

smile or a wide smile. People sometimes try to hide their expressions, so this causes

facial expression variation. This variation is a big challenge for natural facial expres-

sions recognition. Figures 5.2a, 5.2b and 5.2c show happy expression variation for the

same person from the DynEmo database. In most unnatural expression databases,

the actors express a very similar way of showing the same facial expression.

The DynEmo preparation process produced 44 videos labelled based on frames

rather than time. Table 5.2 illustrates the new dataset, which contains 14543 frames

distributed over 5 facial expressions as 8902 frames labelled as happy; 313 as fear,
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Table 5.2: General statistics about the new database

Number of videos Happy frames Fear frames Anger frames Surprise frames Disgust frames

44 8902 313 2192 2665 471

(a) Low smile. (b) Average smile. (c) Wide smile (laugh).

Figure 5.2: Happy expression variation for the same person.

2192 as angry, 2665 as surprise and 471 as disgust. Figure 5.1 shows examples of

newly labelled frames. We used these data in the experiments described in section

5.3.

5.3 Video Classification Experiments

In our experiments, we used five facial expressions: happy, fear, anger, surprise and

disgust. We trained our new system on videos and photos containing the 5 facial

expressions. Because the videos are sequences of frames, we do not need to train the

system using all frames in the same video. We chose only one frame from each 25

frames for: happy, anger and surprise and all fear and disgust frames. We add to

each class of the training data 70 images from KDEF and 70 images from eLFW. It is

important to know that in the testing, we have never used any video for testing and
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Table 5.3: Confusion matrix on the DynEmo database using the proposed method,

the left is by 5-class RF classifier, and the right 10-pairwise random forest classifiers

Overall accuracy was 79.6%

FE AN DI HA SU

FE 0.390 0.093 0.163 0.118 0.236

AN 0.045 0.728 0.175 0.018 0.034

DI 0.085 0.176 0.609 0.011 0.119

HA 0.044 0.043 0.022 0.850 0.040

SU 0.134 0.026 0.072 0.014 0.753

Overall accuracy was 83.4%

FE AN DI HA SU

FE 0.422 0.093 0.150 0.118 0.217

AN 0.038 0.776 0.141 0.019 0.026

DI 0.064 0.174 0.631 0.011 0.121

HA 0.029 0.030 0.018 0.890 0.034

SU 0.114 0.024 0.068 0.014 0.781

training at the same time. This training and testing were repeated 5 times (5-fold

cross-validation), with each time leaving different complete videos out for testing,

and training with the remaining videos mixed with KDEF and eLFW images.

A trained 5000 trees random forest model has been used to predict the testing

videos, and this returns scores for each training class. The scores (posterior proba-

bility) generated by each tree have been represented as a matrix with one row per

predicted frame and one column per class. Figure 5.3 shows the prediction behaviour

of random forest classifiers with two happy-labelled videos (DVD31 1 and DVD14 ).

Random forest returned voting values (scores) for each frame referring to the training

classes.

Table 5.3 right shows two confusion matrices, the left for 1 RF classifier and

the right shows a confusion matrix for the 10 pairwise classifiers. In the left table,

the happy expression was the best rate 85% accuracy, and fear like with the static

images was the lowest accuracy with only 39%. The overall accuracy was 79.6%. The
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Table 5.4: Confusion matrix on the CK+ database using the proposed method, the

left is by 5-class RF classifier, and the right 10-pairwise random forest classifiers

Overall accuracy was 81.2%

FE AN DI HA NE SA SU

FE 0.639 0.033 0.093 0.022 0.082 0.064 0.066

AN 0.022 0.810 0.023 0.005 0.103 0.017 0.022

DI 0.021 0.013 0.801 0.015 0.104 0.028 0.020

HA 0.008 0.017 0.010 0.860 0.080 0.018 0.008

NE 0.013 0.013 0.026 0.034 0.863 0.039 0.013

SA 0.007 0.022 0.013 0.018 0.122 0.808 0.009

SU 0.013 0.015 0.011 0.010 0.093 0.020 0.838

Overall accuracy was 89.0%

FE AN DI HA NE SA SU

FE 0.828 0.018 0.048 0.020 0.035 0.016 0.035

AN 0.008 0.889 0.011 0.003 0.069 0.006 0.014

DI 0.015 0.006 0.872 0.013 0.071 0.012 0.012

HA 0.005 0.008 0.007 0.924 0.044 0.008 0.005

NE 0.004 0.009 0.026 0.021 0.914 0.013 0.013

SA 0.007 0.018 0.009 0.015 0.044 0.901 0.005

SU 0.011 0.011 0.008 0.008 0.065 0.014 0.883

overall rise by pairwise classification in the right table to 83.4%, which is an increase

of nearly 4%, similar to the static images. Table 5.4 right shows two confusion

matrices, the left for one RF classifier, and the right shows a confusion matrix for

10 pairwise classifiers. In the left table, the happy expression was the best rate 86%

accuracy, and fear like the static images was the lowest accuracy with only 63.9%.

The overall accuracy was 81.2%. The overall rise by pairwise classification in the

right table to 89.0%, which is an increase of nearly 8%, similar to the static images.

Like with the static images, our proposed system gives good results with the videos

as shown in table 5.3 and 5.4.

The weights are shown in table 5.5. We note that the weights have a similar

weights-pattern to table 4.24, so for example, fear-vs-disgust is the largest weight in

the fear row as well. In the next step in section 5.4, we investigate improving the

performance of the classifiers by smoothing their scores, and then we impose that

the short misclassification for few sequence frames should be fixed depending on the
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Table 5.5: Five-Class random forest pair-classifiers with their optimised weights

Fear Anger Disgust Happy Surprise

Fear x 0.281 0.295 0.174 0.249

Anger 0.257 x 0.301 0.283 0.158

Disgust 0.272 0.274 x 0.248 0.205

Happy 0.268 0.251 0.259 x 0.22

Surprise 0.281 0.273 0.257 0.187 x

Figure 5.3: Classifier prediction behaviour for 2 happy-labelled videos

nearby frames.

It may be expected that the neighbouring frames in a video mostly contain the

same facial expression. In other words, we assume that if the classifier has classified

a frame as fear where the adjacent frames were happy, then it is likely to be a

misclassification. To solve this problem, we suppose that smoothing the posterior

probabilities of the classifier may reduce this misclassification and enhance the overall

accuracy.
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5.4 Smoothing

In smoothing, the individual data points that are higher than the adjacent points are

reduced, and those that are lower than the adjacent points are increased (Simonoff,

2012). In this work, the smoothing techniques are applied to the classifier’s scores in

order to reduce the misclassification according to a group of adjacent frames called

span.

5.4.1 Smoothing techniques overview

To smooth classifiers’ scores, several smoothing techniques have been tested: Moving

average smoothing, Locally weighted scatterplot smoothing (LOWESS and LOESS)

(Cleveland, 1979; Cleveland and Devlin, 1988) and their robust versions, the Savitzky-

Golay filter (Savitzky and Golay, 1964).

One of the simplest ways to smooth fluctuating data is by a moving average. The

moving average filtering smoothed value is determined by the neighbouring data

points within a span. Moving average filtering smooths data by displacing each data

point with the average of data points within the span (Smith, 1997). This method

is described by the following equation:

ys(i) =
1

2U + 1

u=+U∑
u=−U

y(i+ u) (5.2)

where ys(i) is the smoothed value for the ith data point, U > 0 is integer represents

the number of neighbouring data points on either side of ys(i), and 2U + 1 is the

span.
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Another method we used in this chapter is called the Savitzky-Golay filter (Sav-

itzky and Golay, 1964). It aims to remove high-frequency noise without causing

distortion. The method is based on least-squares error approximation, by apply-

ing a smooth polynomial line on the data points in the neighbourhood of a sample

and adjusting the latter’s amplitude to the fitted lines. This method is known as

a weighted moving average with weighting given as a polynomial of specific degree

(Savitzky and Golay, 1964). The coefficients of a Savitzky-Golay smoothing method,

when applied to data, fit a polynomial of the degree k to U = Ur + Ul + 1 points of

the signal, where U is the span. Ur and Ul are signal points in the right and data

points in the left of a current data point to the span, respectively; Ur = Ul here.

Locally weighted scatterplot smoothing LOWES (Cleveland, 1979) and locally es-

timated scatterplot smoothing LOESS (Cleveland and Devlin, 1988) are also known

as moving regression. These methods depend on a weighting function with the effect

that the influence of a neighbouring value on the smoothed value at a particular loca-

tion decreases with their distance to that location. The difference between LOWESS

and LOESS is that LOWESS allows for only 1 predictor, whereas LOESS can be

used to smooth multivariate data into a kind of surface.

The methods start with computing the regression weights for each data point in

the data window. Unlike the moving average filter, it is possible that the number of

points to the left and right may differ.

In the next step, a weighted linear least-squares regression is performed. For

LOWESS, the regression uses the first-degree polynomial. For LOESS, the regres-

sion uses a second-degree polynomial. Finally, the smoothed value is given by the
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Table 5.6: Optimising of the smoothing span by Nelder–Mead (Staring point (0.5))

Smoothing method Optimal smoothing (span) Overall accuracy

Savitzky-Golay 69 0.833

Moving average 73 0.871

Lowess 87 0.869

Loess 64 0.794

Robust Lowess 88 0.845

Robust Loess 81 0.834

weighted regression at the predictor value of interest. LOWESS and LOESS methods

have robust versions that include an additional calculation of robust weights, which

is resistant to outliers values in the span.

5.4.2 Smoothing optimisation

To smooth the classifier scores, we need to find the optimal span size to get the

best results. To achieve that, we use the Nelder–Mead method (Nelder and Mead,

1965) which is a popular numerical method to find the maximum or minimum of an

objective function. It provides improvements in the first few iterations and quickly

produces satisfactory results (Barati, 2011). By applying Nelder–Mead to the clas-

sifier scores, we aim to find the optimal span that minimises the error. Table 5.6

shows the optimisation results for the 6 smoothing methods described above. The

table shows the best window size (span), i.e. that gives the best accuracy for each

smoothing method. We found that the moving average and Lowess methods give the
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Figure 5.4: The overall accuracy vs. smoothing span, (25 frames per second.)

best smoothing accuracy. The Moving average smoothing result was 87.1%, where

Lowess was 86.9%.

Figure 5.4 illustrates the relationship between changing the smoothing span and

the overall accuracy. We chose a range of span size from 40 to 120 to show this figure,

and these correspond to 1.6 and 4.8 seconds of video since the video rate is 25 frames

per second. All the optimal span sizes are in this size range. All smoothing methods

give the best accuracy between 65 and 90 (2.6 to 3.6 seconds). LOESS is consistently

poorer, whereas the moving average filter and the LOWESS are the best.

Figure 5.5 shows an example of a smoothing video (DVD79 5). The top plot

shows the classifier scores before the smoothing, followed by the smoothing results

obtained by applying the moving average to the optimal span. This classifier gave

100% accuracy until frame number 20, which was misclassified as happy, and the

smoothing fixed this misclassification. From figure 5.5 (top) a noticeable disorder

between frame 96 to 144 can be seen. This disorder has been fixed, as shown in the

middle plot, and the overall accuracy rose as illustrated in the bottom of the figure.

Between frame 426 and 485, we can see another disorder has been fixed.
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Figure 5.5: Smoothing result for video DVD79 5 with the optimal span. The top

plot shows the scores before smoothing whereas the middle shows the scores after

smoothing. The bottom plot illustrates the overall accuracy for all frames before a

particular frame.

Table 5.7 shows two confusion matrices for the DynEmo database and by applying

5-fold cross-validation after applying the smoothing method. The right confusion

matrix shows the 1 RF classifier and the left shows the 10-pairwise classifiers. We

can see that something improved both methods with marked increase, from 79.6%

to 87.1% for the one classifier, which is an increase of nearly 8%, and from 83.4%

to 88.3% for the one classifier which is an increase of nearly 5%. Table 5.8 shows

two confusion matrices for the same the CK+ database sequences after applying the

smoothing method. The right confusion matrix show the 1 RF classifier and the left

shows the 10-pairwise classifiers. We can see that something improved both methods
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Table 5.7: Confusion matrices for the DynEmo database using the proposed method

after smoothing, the left is by 1 RF classifier, and the right 10-pairwise classifiers

Overall accuracy was 87.1%

(Normal RF classifier)

FE AN DI HA SU

FE 0.457 0.045 0.198 0.099 0.201

AN 0.043 0.766 0.145 0.012 0.034

DI 0.085 0.117 0.679 0.000 0.119

HA 0.014 0.009 0.018 0.938 0.021

SU 0.083 0.009 0.071 0.022 0.815

Overall accuracy was 88.3%

(10-pairwise classifiers).

FE AN DI HA SU

FE 0.543 0.058 0.157 0.054 0.188

AN 0.031 0.826 0.124 0.010 0.010

DI 0.064 0.174 0.641 0.000 0.121

HA 0.013 0.011 0.009 0.952 0.016

SU 0.115 0.026 0.065 0.010 0.784

with marked increase, from 79.6% to 84.4% for the one classifier, which is an increase

of nearly 5%, and from 89.0% to 93.% for the one classifier which is an increase of

nearly 5%.

Table 5.8: Confusion matrices for the CK+ database using the proposed method

after smoothing, the left is by one RF classifier, and the right 10-pairwise classifiers

Overall accuracy was 84.4%

(Normal RF classifier)

FE AN DI HA NE SA SU

FE 0.749 0.033 0.081 0.009 0.077 0.031 0.020

AN 0.017 0.837 0.016 0.002 0.095 0.014 0.021

DI 0.018 0.009 0.827 0.009 0.096 0.029 0.012

HA 0.004 0.016 0.010 0.876 0.081 0.008 0.006

NE 0.013 0.013 0.017 0.030 0.884 0.039 0.004

SA 0.002 0.005 0.004 0.015 0.124 0.848 0.002

SU 0.008 0.010 0.008 0.004 0.087 0.026 0.857

Overall accuracy was 93.2%

(10-pairwise classifiers).

FE AN DI HA NE SA SU

FE 0.874 0.022 0.044 0.005 0.026 0.009 0.020

AN 0.002 0.932 0.003 0.000 0.059 0.000 0.005

DI 0.010 0.000 0.924 0.000 0.058 0.002 0.006

HA 0.001 0.008 0.004 0.952 0.032 0.002 0.003

NE 0.000 0.000 0.017 0.009 0.970 0.004 0.000

SA 0.004 0.000 0.005 0.000 0.042 0.949 0.000

SU 0.001 0.004 0.000 0.000 0.053 0.014 0.929
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Table 5.9: Comparison of the classification accuracy of smoothed random forest

pairwise classification using the masked LBP, HOG and D-SURF texture features

with other recent techniques. Evaluation on the CK+ databases (for dynamic-based

deep facial expression recognition).

Method Accuracy

Kim et al. (2017) 95.22%

Kim et al. (2017) 97.93%

Sun et al. (2017) 97.28%

Kuo et al. (2018) 98.47%

Our proposed method(smoothed pairwise classifiers) 93.20%

Table 5.9 shows a comparison with some of the state-of-the-art methods which

are based on deep learning algorithms. All of the shown methods in table 5.9 have

been applied to the CK+ sequences. Kuo et al. (2018) have achieved excellent

performance, with overall accuracy reached to 98.47. It is clear that the deep learning

methods give better results than our method, but our result is still comparable. Our

proposed method can be complementary to many methods which work with dynamic

problems, like the sequences frames in videos.

5.5 Conclusion

In this chapter, we used an existing psychological facial emotion video dataset called

DynEmo and prepared it to be used for machine training and testing purposes. We
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prepared 44 videos to include 14543 frames distributed on 5 facial expressions happy,

fear, anger, surprise and disgust. We use the method proposed in chapter 4 to train

the random forest model with data from the DynEmo dataset mixed with some

images from masked KDEF and eLFW. In order to compare our results with the

state-of-the-art, we used 7 facial expression from the CK+ database sequences. We

tested some smoothing techniques to reduce the misclassification by smoothing the

classifier scores (posterior probability). To find the optimal smoothing span, we used

the Nelder–Mead method to minimise the error.

As a result, like static images, our proposed system gives good results with videos.

We found that applying smoothing methods with an optimal span value improved

the performance of the classifiers by smoothing their scores. As we have imposed,

the small misclassification should be fixed depending on the nearby frames. The best

span size is between 65 and 90, which is 2.8 to 3.6 seconds. This effects on the ability

of our proposed system to work in real-time applications because it needs about 3

seconds to give the most accurate results.



Chapter 6

Conclusion and perspectives

With the advancement in human-computer interaction, machines are becoming a

more critical part of our lives. Facial expressions are an essential language to un-

derstand more about humans. One important factor that should be considered in

developing a spontaneous facial expression recognition system is the availability of a

useful database that does not contain posed portraits of actors displaying emotions.

Our work started with the building of a website to construct a new natural facial

expression database based on a current database called Labelled Faces in the Wild

(LFW) (Huang et al., 2007b).This was done by asking citizens to vote what emo-

tions they see in a selected group of images. Another current emotionally-labelled

database, the Karolinska Directed Emotional Faces (KDEF) (Lundqvist et al., 1998)

was used to evaluate the citizens’ performance. The new database is called the

Emotional Labelled Faces in the Wild (eLFW).

We presented an automated new approach for facial expression recognition of

7 emotions. Three types of texture features from static images were combined:
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Local Binary Patterns (LBP) Ojala et al. (1996), Histogram of Oriented Gradients

(HOG) (Dalal and Triggs, 2005) and Dense Speeded Up Robust Features (D-SURF)

(Lowe, 2004; Uijlings et al., 2010), then the resulting features were classified using

random forests. The use of random forests (Breiman, 2001) allows identification

of the most important feature types and facial locations for emotion classification.

Regions around the eyes, forehead, sides of the nose and the mouth were found to

be the most significant. We classified the important features with random forest

and support vector machines (Cortes and Vapnik, 1995), and we found that the

classification performance became better than using all extracted facial features. We

achieved better than some state-of-the-art accuracies using multiple texture feature

descriptors.

Further improvements to classification accuracy were obtained by pairwise weighted

voting between dichotomous classifiers, and we showed how to learn optimal weights

using an evolutionary algorithm. The resulting accuracies were significantly bet-

ter than the current published state of the art results on the posed KDEF data.

Nonetheless, particularly for unposed data, classification of fear, anger, disgust, sad-

ness and surprise remains imperfect, and we obtain classification accuracies of about

77%. We observe that these were the emotions that humans find more difficult to

classify from static images in the eLFW data.

We use the method which was proposed in chapter 4 to train random forests

model with data from the DynEmo dataset mixed with some images from KDEF

and eLFW. We tested some smoothing techniques to reduce the misclassification by

smoothing the classifiers scores. To find the optimal smoothing span, we used the
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Nelder–Mead method to minimise the error.

As a result, like static images, our proposed system gives good results with videos.

We found that applying smoothing methods with an optimal span value improved

the performance of the classifiers by smoothing their scores. As we have imposed,

that the small misclassification should be fixed depending on the nearby frames.

6.1 Future Work

Our work has examined 7 principle types of emotions, so more research effort is

required focused on recognising more complicated facial expressions or on getting

more information from expressions like stress (Giannakakis et al., 2017), pain, and

mental states such as agreeing, disagreeing, lying, frustration and thinking as they

have numerous application areas. Moreover, the differences in emotion recognition

between males and females need more investigation to see how theses differences

effect machine recognition ability (Wright et al., 2018).

In this thesis, we have considered spontaneous facial emotions recognition. For

this mission, we used existing data contains spontaneous emotion, and we labelled it

or modified the labelling method. However, our bodies are effectively contributing

to our faces to show our emotion (Burgoon et al., 2016). It would be important

in the future to use both humand and objects estimation techniques (Zhou et al.,

2016; Kiforenko and Kraft, 2016; Mehta et al., 2017). For this, we may create a

new database for video, and static images contain labelled data for both face and

body language. 3D Models became powerful statistical models, which describes both

identity and expression, with an “in-the-wild” texture model (James Booth, 2017).
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3D models describe faces and bodies and strongly employable in the face and body

analysis (Booth et al., 2016, 2018; Zafeiriou et al., 2018).

Our proposed method in this thesis works with frontal face images and in a

lighting condition. However, in real life, we need to consider the facial pose and

suboptimal lighting conditions. 3D models offer a promising solution to the problems

facing 2D images such as pose and lighting (Liu and Ward, 2005). The recent success

of convolutional neural networks (CNNs) (LeCun et al., 1998) in computer vision

classification tasks, it has been extended to facial expression recognition problems

(Fan et al., 2018). Detection using CNNs is a robust method against changes in

shape due to camera lenses, different lighting conditions, different facial poses, the

presence of partial occlusions and both horizontal and vertical shifts (Hijazi et al.,

2015).

Real-time performance is a significant factor in many applications, as we saw in

chapter 5, smoothing needs 2.6 to 3.6 seconds (the smoothing span size) to get the

result. The time that was taken for image preprocessing and extracting the features

is computationally expensive (Davison et al., 2018a), so we need to investigate how

can we solve this problem in our proposed system. A possible solution that may re-

solve this issue is to explore Micro-Expression (Ekman and Rosenberg, 1997), which

has taken great interest in recent times (Yap et al., 2018; Liong et al., 2018). Micro-

expression recognition should be investigated and work with datasets based on the

Action Unit with deep learning techniques (Merghani et al., 2018). Samm is a sponta-

neous micro-facial movement dataset (Davison et al., 2018b) is the highest resolution

available and it includes a very diverse demographic of the micro-movement datasets
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currently available which to be used in the future Micro-Expression works. This data

set has a variety of emotions, which simulate spontaneous emotion expressions.
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Carcagǹı, P., Del Coco, M., Leo, M., and Distante, C. (2015). Facial expression recog-

nition and histograms of oriented gradients: a comprehensive study. SpringerPlus,

4(1):1–25.

Caridakis, G., Malatesta, L., Kessous, L., Amir, N., Raouzaiou, A., and Karpouzis,

K. (2006). Modeling naturalistic affective states via facial and vocal expressions

recognition. In Proceedings of the 8th international conference on Multimodal in-

terfaces, pages 146–154. ACM.



Bibliography 114

Chen, J., Chen, Z., Chi, Z., and Fu, H. (2014). Facial expression recognition based

on facial components detection and hog features. In International Workshops on

Electrical and Computer Engineering Subfields, pages 884–888.

Chen, X., Udupa, J. K., Alavi, A., and Torigian, D. A. (2013). GC-ASM: Synergis-

tic integration of graph-cut and active shape model strategies for medical image

segmentation. Computer Vision and Image Understanding, 117(5):513–524.

Cheng, S., Kotsia, I., Pantic, M., and Zafeiriou, S. (2017). 4dfab: A large

scale 4d facial expression database for biometric applications. arXiv preprint

arXiv:1712.01443.

Cheon, Y. and Kim, D. (2008). A natural facial expression recognition using

differential-AAM and k-NNS. In Multimedia, 2008. ISM 2008. Tenth IEEE Inter-

national Symposium on, pages 220–227. IEEE.

Chih-Wei Hsu, Chih-Chung Chang, C.-J. L. (2003). A practical guide to support

vector classification. Technical report, Taipei, Taiwan: National Taiwan Univer-

sity.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatter-

plots. Journal of the American Statistical Association, 74(368):829–836.

Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach

to regression analysis by local fitting. Journal of the American Statistical Associ-

ation, 83(403):596–610.



Bibliography 115

Cohn, J. F., Zlochower, A. J., Lien, J. J., and Kanade, T. (1998). Feature-point

tracking by optical flow discriminates subtle differences in facial expression. In

Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE Interna-

tional Conference On, pages 396–401. IEEE.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (1998). Active appearance models.

In ECCV98, volume 2, pages 484–498.

Cootes, T. F., Edwards, G. J., and Taylor, C. J. (2001). Active appearance models.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685.

Cootes, T. F. and Taylor, C. J. (1992). Active shape models-‘smart snakes’. In

BMVC, volume 92, pages 266–275.

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1992). Training models

of shape from sets of examples. In BMVC92, pages 9–18. Springer.

Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J. (1995). Active shape

models-their training and application. Computer Vision and Image Understanding,

61(1):38–59.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273–297.

Dahmane, M. and Meunier, J. (2011). Emotion recognition using dynamic grid-

based HOG features. In Automatic Face & Gesture Recognition and Workshops

(FG 2011), 2011 IEEE International Conference on, pages 884–888. IEEE.



Bibliography 116

Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human de-

tection. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE.

Datta, S., Sen, D., and Balasubramanian, R. (2017). Integrating geometric and

textural features for facial emotion classification using SVM frameworks. In Pro-

ceedings of International Conference on Computer Vision and Image Processing,

pages 619–628. Springer.

Davison, A., Merghani, W., and Yap, M. (2018a). Objective classes for micro-facial

expression recognition. Journal of Imaging, 4(10):119.

Davison, A. K., Lansley, C., Costen, N., Tan, K., and Yap, M. H. (2018b). Samm:

A spontaneous micro-facial movement dataset. IEEE Transactions on Affective

Computing, 9(1):116–129.

Davison, A. K., Yap, M. H., Costen, N., Tan, K., Lansley, C., and Leightley, D.

(2014). Micro-facial movements: an investigation on spatio-temporal descriptors.

In European Conference on Computer Vision, pages 111–123. Springer.

Den Uyl, M. and Van Kuilenburg, H. (2005). The facereader: Online facial expression

recognition. In Proceedings of Measuring Behavior, volume 30, pages 589–590.

Citeseer.

Dhall, A., Goecke, R., Ghosh, S., Joshi, J., Hoey, J., and Gedeon, T. (2017). From

individual to group-level emotion recognition: Emotiw 5.0. In Proceedings of the



Bibliography 117

19th ACM International Conference on Multimodal Interaction, pages 524–528.

ACM.

Dhall, A., Goecke, R., Lucey, S., Gedeon, T., et al. (2012). Collecting large, richly

annotated facial-expression databases from movies. IEEE multimedia, 19(3):34–41.

Dhall, A., Ramana Murthy, O., Goecke, R., Joshi, J., and Gedeon, T. (2015). Video

and image based emotion recognition challenges in the wild: Emotiw 2015. In Pro-

ceedings of the 2015 ACM on International Conference on Multimodal Interaction,

pages 423–426. ACM.

Edwards, G. J., Taylor, C. J., and Cootes, T. F. (1998). Interpreting face images

using active appearance models. In Automatic Face and Gesture Recognition, 1998.

Proceedings. Third IEEE International Conference on, pages 300–305. IEEE.

Ekman, P. (1973). Cross-cultural studies of facial expression. New York: Academic

Press.

Ekman, P. (1978). Facial expression. Nonverbal Behavior and Communication, pages

97–116.

Ekman, P. and Rosenberg, E. L. (1997). What the face reveals: Basic and applied

studies of spontaneous expression using the Facial Action Coding System (FACS).

Oxford University Press, USA.

El Ayadi, M., Kamel, M. S., and Karray, F. (2011). Survey on speech emotion

recognition: Features, classification schemes, and databases. Pattern Recognition,

44(3):572–587.



Bibliography 118

Essa, I. A. and Pentland, A. P. (1995). Facial expression recognition using a dy-

namic model and motion energy. In Computer Vision, 1995. Proceedings., Fifth

International Conference on, pages 360–367. IEEE.

Fabian Benitez-Quiroz, C., Srinivasan, R., and Martinez, A. M. (2016). Emotionet:

An accurate, real-time algorithm for the automatic annotation of a million facial

expressions in the wild. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5562–5570.

Fan, Y., Lam, J. C., and Li, V. O. (2018). Multi-Region Ensemble Convolutional

Neural Network for Facial Expression Recognition. In International Conference

on Artificial Neural Networks, pages 84–94. Springer.

Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time head pose estimation with

random regression forests. In Computer Vision and Pattern Recognition (CVPR),

2011 IEEE Conference on, pages 617–624. IEEE.

Giannakakis, G., Pediaditis, M., Manousos, D., Kazantzaki, E., Chiarugi, F., Simos,

P. G., Marias, K., and Tsiknakis, M. (2017). Stress and anxiety detection using

facial cues from videos. Biomedical Signal Processing and Control, 31:89–101.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. in advances in

neural information processing systems. pages 2672–2680.

Goodfellow, I. J., Erhan, D., Carrier, P. L., Courville, A., Mirza, M., Hamner, B.,

Cukierski, W., Tang, Y., Thaler, D., Lee, D.-H., et al. (2013). Challenges in repre-



Bibliography 119

sentation learning: A report on three machine learning contests. In International

Conference on Neural Information Processing, pages 117–124. Springer.

Gross, R., Matthews, I., Cohn, J., Kanade, T., and Baker, S. (2010). Multi-pie.

Image and Vision Computing, 28(5):807–813.

Hansen, N. (2006). The CMA evolution strategy: a comparing review. In Lozano, J.,

Larranaga, P., Inza, I., and Bengoetxea, E., editors, Towards a new evolutionary

computation. Advances on estimation of distribution algorithms, pages 75–102.

Springer.

Hazewinkel, M. (2001). Affine transformation. Encyclopedia of Mathematics,

Springer.

Hijazi, S., Kumar, R., and Rowen, C. (2015). Using convolutional neu-

ral networks for image recognition. Technical report. Also avail-

able as http://www.multimediadocs.com/assets/cadence_emea/documents/

using_convolutional_neural_networks_for_image_recognition.pdf.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of data

with neural networks. science, 313(5786):504–507.

Huang, D., Shan, C., Ardabilian, M., Wang, Y., and Chen, L. (2011). Local binary

patterns and its application to facial image analysis: a survey. IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 41(6):765–

781.

http://www.multimediadocs.com/assets/cadence_emea/documents/using_convolutional_neural_networks_for_image_recognition.pdf
http://www.multimediadocs.com/assets/cadence_emea/documents/using_convolutional_neural_networks_for_image_recognition.pdf


Bibliography 120

Huang, G., Mattar, M., Lee, H., and Learned-Miller, E. G. (2012). Learning to

align from scratch. In Advances in Neural Information Processing Systems, pages

764–772.

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007a). Labeled faces in

the wild: A database for studying face recognition in unconstrained environments.

Technical Report 07-49, University of Massachusetts, Amherst.

Huang, G. B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007b). Labeled faces

in the wild: A database for studying face recognition in unconstrained environ-

ments. Technical report, University of Massachusetts, Amherst.

James Booth, Epameinondas Antonakos, S. P. G. T. Y. P. S. Z. (2017). 3d face

morphable models “in-the-wild”. In Proceedings of the IEEE Conference on Com-

puterVision and Pattern Recognition, volume 1, pages 48–57.

Kanade, T., Cohn, J. F., and Tian, Y. (2000). Comprehensive database for facial ex-

pression analysis. In Automatic Face and Gesture Recognition, 2000. Proceedings.

Fourth IEEE International Conference on, pages 46–53. IEEE.

Kanan, C. and Cottrell, G. W. (2012). Color-to-grayscale: does the method matter

in image recognition? PloS One, 7(1):e29740.

Karami, E., Prasad, S., and Shehata, M. (2017). Image matching using SIFT, SURF,

BRIEF and ORB: Performance comparison for distorted images. Newfoundland

Electrical and Computer Engineering Conference.



Bibliography 121

Kendall, D. G. (1989). A survey of the statistical theory of shape. Statistical Science,

pages 87–99.

Khan, R. A. (2013). Detection of emotions from video in non-controlled environment.
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Ojala, T., Pietikäinen, M., and Harwood, D. (1996). A comparative study of texture

measures with classification based on featured distributions. Pattern recognition,

29(1):51–59.

O’Toole, A. J., Harms, J., Snow, S. L., Hurst, D. R., Pappas, M. R., Ayyad, J. H., and

Abdi, H. (2005). A video database of moving faces and people. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 27(5):812–816.

Otsu, N. (1975). A threshold selection method from gray-level histograms. Auto-

matica, 11(285-296):23–27.

Panchal, P., Panchal, S., and Shah, S. (2013). A comparison of SIFT and SURF.

International Journal of Innovative Research in Computer and Communication

Engineering, 1(2):323–327.



Bibliography 127

Pantic, M., Pentland, A., Nijholt, A., and Huang, T. S. (2007). Human computing

and machine understanding of human behavior: A survey. In Artifical Intelligence

for Human Computing, pages 47–71. Springer.

Pantic, M., Valstar, M., Rademaker, R., and Maat, L. (2005). Web-based database

for facial expression analysis. In 2005 IEEE international conference on multimedia

and Expo, pages 5–pp. IEEE.

Rao, Q., Qu, X., Mao, Q., and Zhan, Y. (2015). Multi-pose facial expression recogni-

tion based on SURF boosting. In Affective Computing and Intelligent Interaction

(ACII), 2015 International Conference on, pages 630–635. IEEE.

Ratliff, M. S. and Patterson, E. (2008). Emotion recognition using facial expressions

with active appearance models. In Proceedings of the Third IASTED International

Conference on Human Computer Interaction,(Innsbruck, Austria), pages 138–143.

Santra, B. and Mukherjee, D. P. (2016a). Local dominant binary patterns for recogni-

tion of multi-view facial expressions. In Proceedings of the Tenth Indian Conference

on Computer Vision, Graphics and Image Processing, page 25. ACM.

Santra, B. and Mukherjee, D. P. (2016b). Local saliency-inspired binary patterns for

automatic recognition of multi-view facial expression. In Image Processing (ICIP),

2016 IEEE International Conference on, pages 624–628. IEEE.

Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by

simplified least squares procedures. Analytical Chemistry, 36(8):1627–1639.



Bibliography 128

Scherer, K. R., Bänziger, T., and Roesch, E. (2010). A Blueprint for Affective

Computing: A sourcebook and manual. Oxford University Press.

Setyati, E., Suprapto, Y. K., and Purnomo, M. H. (2012). Facial emotional expres-

sions recognition based on active shape model and radial basis function network. In

Computational Intelligence for Measurement Systems and Applications (CIMSA),

2012 IEEE International Conference On, pages 41–46. IEEE.

Shan, C., Gong, S., and McOwan, P. W. (2005). Robust facial expression recog-

nition using local binary patterns. In Image Processing, 2005. ICIP 2005. IEEE

International Conference on, volume 2, pages 914–917. IEEE.

Shan, C., Gong, S., and McOwan, P. W. (2009). Facial expression recognition based

on local binary patterns: A comprehensive study. Image and Vision Computing,

27(6):803–816.

Simonoff, J. S. (2012). Smoothing methods in statistics. Springer Science & Business

Media.

Smith, S. W. (1997). The scientist and engineer’s guide to digital signal processing.

California Technical Pub. San Diego.

Soyel, H. and Demirel, H. (2012). Localized discriminative scale invariant feature

transform based facial expression recognition. Computers & Electrical Engineering,

38(5):1299–1309.

Sun, N., Li, Q., Huan, R., Liu, J., and Han, G. (2017). Deep spatial-temporal



Bibliography 129

feature fusion for facial expression recognition in static images. Pattern Recognition

Letters.

Sung, J., Lee, S., and Kim, D. (2006). A real-time facial expression recognition

using the STAAM. In Pattern Recognition, 2006. ICPR 2006. 18th International

Conference on, volume 1, pages 275–278. IEEE.

Susskind, J. M., Anderson, A. K., and Hinton, G. E. (2010). The toronto face

database. Department of Computer Science, University of Toronto, Toronto, ON,

Canada, Tech. Rep, 3.

Suwa, M. (1978). A preliminary note on pattern recognition of human emotional

expression. In Proc. of The 4th International Joint Conference on Pattern Recog-

nition, pages 408–410.
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