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Abstract This paper generalizes a previously con-
ceived, continuation-based optimization technique for
scalar objective functions on constraint manifolds to
cases of periodic and quasiperiodic solutions of delay-
differential equations. A Lagrange formalism is used to
construct adjoint conditions that are linear andhomoge-
nous in the unknown Lagrange multipliers. As a con-
sequence, it is shown how critical points on the con-
straint manifold can be found through several stages
of continuation along a sequence of connected one-
dimensional manifolds of solutions to increasing sub-
sets of the necessary optimality conditions. Due to the
presence of delayed and advanced arguments in the
original and adjoint differential equations, care must
be taken to determine the degree of smoothness of the
Lagrange multipliers with respect to time. Such con-
siderations naturally lead to a formulation in terms
of multi-segment boundary-value problems (BVPs),
including the possibility that the number of segments
may change, or that their order may permute, during
continuation. The methodology is illustrated using the
software package coco on periodic orbits of both linear
and nonlinear delay-differential equations, keeping in
mind that closed-form solutions are not typically avail-
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able even in the linear case. Finally, we demonstrate
optimization on a family of quasiperiodic invariant tori
in an example unfolding of a Hopf bifurcation with
delay and parametric forcing. The quasiperiodic case
is a further original contribution to the literature on
optimization constrained by partial differential BVPs.

Keywords Delay-differential equations · Lagrange
multipliers · Adjoint equations · Successive continua-
tion

1 Introduction

The optimization of time-delay systems has been the
subject of intensive research for many years. Such
systems arise naturally in control applications where
unmodeled actuator dynamics results in delays between
input signals and actuator responses [19], car follow-
ing models that account for driver reaction times [15],
and machine tool dynamics due to the regenerative
effect [20]. The wide range of applications has moti-
vated the development of novel techniques for their
optimization. For example, Göllmann et al. [4] used a
formulation based on the Pontryagin minimum princi-
ple to derive necessary optimality conditions for opti-
mal control problems with delays in state and con-
trol variables. The obtained equations were discretized
and transformed into a large-scale nonlinear program-
ming model, which was then solved using off-the-shelf
solvers. In another investigation, Yusoff and Sims [22]
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combined the semi-discretizationmethod [10] for time-
periodic delay equations with differential evolution to
optimize a variable helix/pitch tool geometry for regen-
erative chatter mitigation. Their results were also val-
idated experimentally, confirming the predicted sig-
nificant improvements in chatter stability. This prob-
lem of optimal selection of parameters for subtractive
manufacturing was also reported in [8,9,21]. Liao et
al. [13] developed an optimization technique for peri-
odic solutions of delay-differential equations using the
harmonic balancemethod and continuation techniques.
They posed an amplitude optimization problem sub-
ject to the algebraic constraints obtained by substitution
of a truncated Fourier representation in the governing
equation along with the stability conditions. The sen-
sitivity expressions were analytically derived, and the
optimization problemwas then solved for the unknown
Fourier coefficients and the unknown parameters. The
delayed Duffing oscillator was used to validate the
methodology.

The calculus of variations serves as a useful tool for
constrained optimization problems.Here, a Lagrangian
functional is constructed by combining the objective
function with the imposed constraints using Lagrange
multipliers (adjoint variables) as coefficients. The van-
ishing of the variations of the Lagrangian with respect
to the design variables and the Lagrange multipliers
then yields the necessary optimality conditions for a
stationary point. In general, these equations cannot
be solved directly. Instead, nonlinear solvers may be
applied to various finite-dimensional discretizations.
A major challenge with this approach is the selection
of a good initial guess which converges to the desired
solution. A resolution built on principles of parame-
ter continuation was originally proposed in the work
of Kernévez and Doedel [11]. There, a sequence of
properly initialized stages of continuation along one-
dimensional manifolds of solutions to a subset of the
necessary optimality conditions was used to connect
the local extremum to an initial solution guess with
vanishingLagrangemultipliers. Thismethodologywas
recently revisited by Li and Dankowicz [12] and there
cast in terms of partial Lagrangians relevant to the
general context of constrained optimization of integro-
differential boundary-value problems without delay.
Importantly, this work showed how the Lagrangian
structure was consistent with a staged construction
paradigm implemented in the software package coco.

In this work, we generalize the successive continua-
tion approach of Kernévez and Doedel to optimization
along families of periodic and quasiperiodic orbits in
dynamical systems with delay. We derive the neces-
sary optimality conditions from a suitably constructed
Lagrangian without first discretizing the governing
equations and unknowns. This approach is in contrast
to other studies [16], in which the discretization of
the governing equations is first carried out, and then,
the Lagrangian is constructed based on the discretized
equations. In our formulation, the Lagrange multipli-
ers satisfy coupled, piecewise-defined, boundary-value
problems with both delayed and advanced arguments.
Depending on the imposed constraints, the Lagrange
multipliers may be discontinuous or nonsmooth at the
interval boundary points, naturally resulting in a multi-
segment problem [1].

We first motivate our interest and approach with the
problem of optimization of the response amplitude of
a harmonically forced, scalar, linear, delay-differential
equation in Sect. 2. The general framework for prob-
lems with single delays is then considered in Sect. 3,
first for periodic orbits and subsequently for families of
two-dimensional quasiperiodic invariant tori. As dis-
cussed in detail, the latter optimization problem falls
into the category of constrained optimization for par-
tial differential equations (PDEs) [5,6,14], for which
the necessary optimality conditions take the form of
coupled, piecewise-defined PDEs with non-local cou-
pling, as well as associated boundary and interval con-
ditions representing periodicity in one dimension and
rotation in the other. Subsections of Section 3 consider
example applications to the search for a saddle of the
response amplitude of a harmonically forced Duffing
oscillator subject to delayed feedback control and a
geometric fold along a family of quasiperiodic trajec-
tories for constant rotation number. Analysis using the
coco software package validates the successive contin-
uation approach, aswell as the simultaneous discretiza-
tion of the dynamic constraints and adjoint equations.
A number of additional considerations and opportuni-
ties for future work are considered in the concluding
section.

2 Motivating example

We illustrate the general framework for optimization
along families of solutions to delay-differential equa-
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tions (DDEs) by first considering periodic responses
z(t) of frequency ω for a harmonically forced, scalar,
linear, delay-differential equation

ż = −z − z (t − 1) + cosωt, (1)

where we omit (here, and throughout the paper) func-
tional arguments when they are obvious from the
context. It follows from the method of undetermined
coefficients that such responses are of the harmonic
form

z(t) = r(ω) cos(ωt − θ(ω)), (2)

where

r(ω) =
[
2 + ω2 − 2ω sinω + 2 cosω

]−1/2
(3)

and

cos θ(ω) = −1 + cosω

r3(ω)
, sin θ(ω) = sinω − ω

r3(ω)
. (4)

Let us consider the optimization problem of finding
the forcing frequency ω for which such a periodic
response has maximum amplitude. It follows from (3)
that the maximum amplitude rcrit

.= r(ωcrit) ≈ 0.89
is achieved for ωcrit ≈ 1.72 (cf. Fig. 1), and that
z(tcrit) = rcrit at time tcrit

.= θ(ωcrit)/ωcrit ≈ 2.24 (up
to multiples of the period Tcrit

.= 2π/ωcrit ≈ 3.65).
Hence, for this simple optimization problem all com-
ponents of the solution are known exactly, enabling a
comparison with the results of numerical algorithms.

2.1 Formulation as a constrained optimization
problem

We transform the above optimization problem into a
format suitable for a general numerical solver by intro-
ducing the excitation period T = 2π/ω as an unknown
(T replacesω) and rescaling time (calling the new time
τ ) such that x(τ )

.= z(T τ + Tφ/2π). Here, the free
phase φ is to be chosen so as to shift the time on the
interval [0, 1] when the periodic solution x has a criti-
cal point to τ = 0. Thus, we are seeking a solution to
the constrained optimization problem

maximize μA = x(0) (5)
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Fig. 1 Frequency response diagram for the steady-state peri-
odic solutions of the harmonically forced, scalar, linear delay-
differential equation (1). The maximum value of the ampli-
tude is rcrit ≈ 0.8911 which occurs for ω = ωcrit ≈ 1.7207
(T = Tcrit ≈ 3.6516)

with respect to a continuous function x on [0, 1], as
well as the variables T and φ, subject to the equality
constraints

x ′ = −T x − T x (τ + 1 − 1/T ) + T cos (2πτ + φ)

for τ ∈ (0, 1/T ), (6)

x ′ = −T x − T x (τ − 1/T ) + T cos (2πτ + φ)

for τ ∈ (1/T, 1), (7)

0 = x (0) − x (1) , (8)

0 = x (0) + x (1 − 1/T ) − cosφ. (9)

Here, constraints (6) and (7) impose the original delay-
differential equation on the interval (0, 1). They rely
on periodicity to wrap the delayed argument back into
this interval assuming that T > 1. Constraints (8) and
(9) are boundary conditions. Constraint (8) imposes
periodicity also on the interval boundary, while (9) is a
phase condition that ensures that x ′(0) = 0, consistent
with x having a critical point at τ = 0 and justifying the
maximization of x(0) as a substitute for the amplitude.
By continuity of x on [0, 1] and (8), it follows that x
is, in fact, a smooth function on [0, 1]. Indeed, from
the explicit solution in the previous section, it follows
that x(τ ) = r(2π/T ) cos 2πτ and φ = θ(2π/T ) and,
in particular, that optimality is obtained for x(τ ) =
xcrit(τ )

.= rcrit cos 2πτ and φ = φcrit
.= θ(2π/Tcrit)

for T = Tcrit .
The constrained optimization problem (5)–(9) gives

rise to the Lagrangian
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L (x(·), φ, T, μA, λ1(·), λ2, λ3, ηA)

= μA + ηA (x (0) − μA)

+
1/T∫

0

λ1
[
x ′ + T [x + x (τ + 1 − 1/T )

− cos (2πτ + φ)]
]
dτ

+
1−2/T∫

1/T

λ1
[
x ′ + T [x + x (τ − 1/T )

− cos (2πτ + φ)]
]
dτ

+
1−1/T∫

1−2/T

λ1
[
x ′ + T [x + x (τ − 1/T )

− cos (2πτ + φ)]
]
dτ

+
1∫

1−1/T

λ1
[
x ′ + T [x + x (τ − 1/T )

− cos (2πτ + φ)]
]
dτ

+ λ2 (x (0) − x (1))

+ λ3 (x (0) + x (1 − 1/T ) − cos (φ)) , (10)

where the Lagrange multipliers are λ1(τ ) (a function
on [0, 1]) for the DDE constraints (6) and (7), λ2 and
λ3 for the boundary conditions (8) and (9), and ηA for
the relationship between the fitnessμA and x(0) in (5).

In (10), the integral for the pairing between λ1
and the DDE constraints has been split into 4 parts,
one for each of the intervals (0,1/T ), (1/T, 1 − 2/T ),
(1 − 2/T, 1 − 1/T ), and (1 − 1/T, 1), reflecting dif-
ferent functional forms of the differential equations (6)
and (7) for x on (0,1/T ) and (1/T,1), respectively, and
anticipating possible discontinuities in λ1 and λ′

1. For
example, the split at τ = 1 − 1/T is in anticipation of
a potential discontinuity of the Lagrange multiplier λ1
at this instant caused by the imposition of a constraint
on x evaluated at this time in (9). This discontinuity
implies a potential discontinuity of λ′

1 at τ = 1−2/T .
For the same reason, the appearances of x(0) in (5) and
(9) suggest that λ1(0) �= λ1(1) resulting in a potential
discontinuity of λ′

1 at τ = 1 − 1/T . All functions are
assumed to be continuously differentiable on the par-
tition implied by the integrals in (10). The ordering of
the discontinuity points assumes that T > 3 (Fig. 1
shows that the optimal T is in this range).

Imposing vanishing variations of the Lagrangian L
with respect to variations in all its arguments recov-
ers the original constraints (5)–(9) and the follow-
ing adjoint system determining the Lagrange multipli-
ers. Specifically, vanishing variations with respect to x
imply

−λ′
1 + Tλ1 + Tλ1 (τ + 1/T ) = 0 (11)

for τ ∈ (0, 1/T ) ∪ (1/T, 1 − 2/T ) ∪ (1 − 2/T,

1 − 1/T ) and

−λ′
1 + Tλ1 + Tλ1 (τ − 1 + 1/T ) = 0 (12)

for τ ∈ (1 − 1/T, 1). Boundary and interface condi-
tions for these equations are obtained by considering
variations with respect to x(0), x(1/T ), x(1 − 2/T ),
x(1 − 1/T ), and x(1), corresponding in that order to

0 = −λ1(0) + λ2 + λ3 + ηA, (13)

0 = λ1(1/T )− − λ1(1/T )+, (14)

0 = λ1(1 − 2/T )− − λ1(1 − 2/T )+, (15)

0 = λ1(1 − 1/T )− − λ1(1 − 1/T )+ + λ3, (16)

0 = λ1(1) − λ2, (17)

using the convention that λ1(τ
∗)±

.= limτ→τ∗± λ1(τ )

and recalling that x(τ ) is continuous on [0, 1]. Vanish-
ing variationswith respect toφ and T imply the integral
constraints

0 =
1∫

0

Tλ1 sin (2πτ + φ) dτ + λ3 sin (φ) (18)

and

0 =
1/T∫

0

λ1
(
x(τ + 1 − 1/T ) + x ′(τ + 1 − 1/T )/T

)
dτ

+
1∫

1/T

λ1
(
x(τ − 1/T ) + x ′(τ − 1/T )/T

)
dτ

+
1∫

0

λ1 (x − cos(2πτ + φ)) dτ

+ λ3T
−2x ′(1 − 1/T ), (19)
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Optimization along families of periodic and quasiperiodic 841

respectively. Finally, vanishing variation with respect
to μA implies that

1 − ηA = 0. (20)

In summary, the system of original constraints (5)–(9)
and adjoint equations (11)–(20) is a nonlinear integro-
differential boundary-value problem (BVP) defining
the critical points of the Lagrangian L and the con-
strained optimization problem (5)–(9).

In this example, the dimension of the manifold on
which the constrained optimization problem is posed
equals 1, corresponding to the numbers of degrees of
freedom of the nonlinear subsystem (5)–(9) (with vari-
ables x , T and φ). In contrast, the full system (5)–(9),
(11)–(20) has no such degrees of freedom and, conse-
quently, generically has only isolated solutions. Several
properties put it beyond the reach of “off-the-shelf”
BVP solvers:

1. It consists of differential equations on multiple
intervals (thus, the problem is called a multi-
segment BVP) with differential functional forms
and continuous “right-hand sides.” The number and
length of these intervals is strongly problem depen-
dent and may even change during the optimization
process.

2. The differential equations evaluate their right-
hand sides at times deviating from τ (delayed or
advanced arguments).

3. The second point leads to non-local coupling across
segments that is not restricted to coupling at the
boundaries of the intervals. For example, (11) cou-
ples the values of λ1 in (1−2/T, 1−1/T ) to values
of λ1 in (1 − 1/T, 1).

On the other hand, system (5)–(9), (11)–(20) has
some additional structure that aids both in its construc-
tion and solution:

1. The equations are only forward coupled in that
a solution to the original constraints (5)–(9) can
be obtained independently of the values of the
Lagrangemultipliers, while a solution to the adjoint
equations (11)–(20) requires knowledge of x , T ,
and φ, and generically exists, at best, only for iso-
lated choices of x , T , and φ.

2. The adjoint equations (11)–(19) (thus excluding
(20)) are linear and homogeneous in the Lagrange
multipliers λ j ( j = 1, 2, 3) and ηA. A trivial solu-
tion of this subset of the adjoint system is therefore

given by vanishing Lagrange multipliers for any x ,
T , and φ.

3. The adjoint equation (20) is trivial in both construc-
tion and solution. Imposing its solution (ηA = 1)
on the remaining adjoint system, however, renders
the latter nonhomogeneous.

This structure will also be present for more general
cases than the example and can be exploited in the
search for solutions, as well as to generate the adjoint
equations (11)–(19) automatically during a staged con-
struction of the optimization problem similar to [12].

In this example, a few facts about the Lagrange mul-
tipliers may be deduced directly from the adjoint equa-
tions. It follows immediately from (14) and (15) that
λ1 is continuous at τ = 1/T and τ = 1 − 2/T , and
from (11) that λ′

1 is continuous at τ = 1/T . Moreover,
using the explicitly known solution for x , it follows
that the Lagrange multiplier λ3 must equal 0 at a local
extremum. Indeed, substitution of the modified phase
condition

δ = x (0) + x (1 − 1/T ) − cosφ (21)

in lieu of (9) implies that

μA = (cosφ + cos(ω + φ) + ω sin φ) /r(ω), (22)

where φ is implicitly determined by

δ = ω (sin φ + sin(ω + φ) − ω cosφ) /r(ω) (23)

for δ ≈ 0. Implicit differentiation of both conditions
with respect to the residual δ shows that the rate of
change of μA with respect to δ equals 0 at δ = 0. This,
in turn, implies that λ3 = 0 at an extremum, i.e., that
λ1 is, in fact, continuous also at τ = 1 − 1/T and,
consequently, continuously differentiable also at τ =
1− 2/T . In contrast, λ′

1 experiences a discontinuity at
τ = 1 − 1/T for nonzero ηA = λ1(0) − λ1(1).

2.2 Simple continuation

According to the properties enumerated above, a solu-
tion to (5)–(9), (11)–(20)may be sought using amethod
of successive continuation [11,12] with an embedded
multi-segment boundary-value problem implementa-
tion that permits evaluation of the right-hand side at
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842 Z. Ahsan et al.

arguments shifted by arbitrary times. Specifically, this
method overcomes the problem of initializing a non-
linear solver for the full system by defining a sequence
of continuation problems with one-dimensional solu-
tion manifolds that connect an initial solution guess
with Lagrangemultipliers all equal to 0 with the sought
critical point for which ηA must equal 1.

To this end, we consider the system given by
the relationship between μA and x(0) in (5), the
boundary-value problem constraints (6)–(9), and the
adjoint integral-differential boundary-value problem
(11)–(19), but purposely omit the algebraic constraint
(20). Although we anticipate that λ3 will equal 0
throughout the analysis, we keep λ3 as an unknown
and monitor its value during continuation. By lin-
earity and homogeneity of the adjoint subsystem in
the Lagrange multipliers λ j and ηA, it follows that
solutions to the full system lie on either of two one-
dimensional manifolds. The first of these consists of
functions x(τ ) = r(2π/T ) cos 2πτ with correspond-
ing T , φ, andμA = x(0) = r(2π/T ), and with vanish-
ingLagrangemultipliers. The secondmanifold consists
of the periodic solution xcrit(τ ) = rcrit cos 2πτ with
corresponding T = Tcrit , φ = φcrit , and μA = rcrit ,
and with varying Lagrange multipliers proportional to
ηA. The two manifolds clearly intersect at the local
extremum of μA along the first manifold. The sought
solution to the complete set of Eqs. (5)–(9), (11)–(20)
corresponds to the point along the second manifold
where ηA = 1.

In this example, the solutions along the first mani-
fold are known explicitly. In other cases, an initial peri-
odic response may be approximately obtained from the
dynamically stable solution by direct simulation. Given
such an initial solution guess for x , T , and φ, a non-
linear solver may be employed to converge to a point
on the manifold. A numerical continuation algorithm
(e.g., pseudo-arclength continuation) may then be used
to generate a sequence of points along the manifold,
meanwhile monitoring for local extrema ofμA and sin-
gular points for the system Jacobian (corresponding to
branch points on the manifold). As shown above, and
true also in the general case, these coincide. Using stan-
dard techniques, numerical continuation may proceed
from such a branch point along the secondary manifold
with the help of a candidate direction of continuation,
for example, one that is (i) transversal to the tangent
direction to the original solution manifold and (ii) in

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
0.6

0.65

0.7

0.75

0.8

0.85

0.9
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BP

Fig. 2 Results from numerical continuation with vanishing
Lagrange multipliers. The maximum value of μA is located at
T ≈ 3.6515 and is here identified by the label BP, since it approx-
imately coincides with a branch point

the plane spanned by the tangent directions to the two
manifolds at the branch point.

Continuation using such an implementation in the
coco software package [18] approximately locates an
extremum (in the form of a fold point in μA along the
solution manifold) at T ≈ 3.6515 as shown in Fig. 2.
Branch switching from the nearby branch point (exact
coincidence is lost due to discretization) and contin-
uation until ηA = 1 yields the graphs of x(τ ) and
λ1(τ ) shown in Fig. 3. As seen in the bottom panel,
λ1(τ ) is approximately continuous at 1− 1/T ≈ 0.73,
albeit with discontinuous derivative at this point, since
λ1(0) − λ1(1) = 1.

3 General optimization framework

In this section, we discuss the general methodology for
optimization on periodic and quasiperiodic solutions
z(t) ∈ R

n of delay-differential equations with a single
delay of the form

ż = f (t, z, z (t − α) , p) , (24)

where f : R1 × R
n × R

n × R
q → R

n is periodic in
its first argument with period T . Here, α and p denote
the time delay and the problem parameters (excluding
T ), respectively.

As the motivating example in the previous section
illustrates, the problem Lagrangian and, by implica-
tion, the adjoint equations are linear in the Lagrange
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Fig. 3 a x(τ ) and b λ1(τ ) at the terminal point of the second
stage of continuation with ηA = 1. The upper panel shows a
comparison between the numerical solution and the analytical
solution at the extremum. The bottom panel shows the Lagrange
multiplier associated with the imposition of the DDE admitting
a slope discontinuity at τ = 1 − 1/T

multipliers. The adjoint equations may therefore be
constructed term-by-term by successively deriving the
contributions of disjoint collections of constraints from
the corresponding partial Lagrangians associated with
a subset of the Lagrange multipliers. Until the full set
of constraints has been considered, the adjoint equa-
tions are not completely known. The following subsec-
tions discuss the partial Lagrangians and the implied
contributions to the adjoint equations resulting from
the DDE constraints and boundary conditions associ-
ated with periodic and quasiperiodic orbits. For partic-
ular examples, we indicate the additional contributions
associated with problem-specific constraints that com-
plete the construction of the adjoint equations. In all
cases, the contribution from the objective function to
the Lagrangian implies the algebraic adjoint condition

that the corresponding Lagrange multiplier (ηA in the
previous section) must equal 1 at a stationary point.

3.1 Periodic orbits

Suppose first that T > α and consider the problem
of optimizing a scalar-valued objective functional on a
family of continuous solutions x(τ ) to the differential
equations

x ′ = T f (T τ, x, x (τ + 1 − α/T ) , p) for τ ∈ (0, α/T ) ,

(25)
x ′ = T f (T τ, x, x (τ − α/T ) , p) for τ ∈ (α/T, 1) ,

(26)

and the boundary conditions

x (0) − x (1) = 0. (27)

By a rescaling of the independent variable by T , such
solutions correspond to periodic solutions of (24) with
period T . By continuity and periodicity, such solutions
must be continuously differentiable to all orders.

Suppose, in fact, that T > 3α and that the objec-
tive functional and any additional constraints depend
on pointwise values of x(τ ) only at τ = 0, τ = 1, and
τ = β for some β = β(α, T ) such that

2α/T < β < 1 − α/T . (28)

As we show below, such dependence results in an addi-
tional adjoint equation associated with variations with
respect to x(β). Other pointwise dependencies of the
objective functional would be treated similarly, while
dependence on an integral over the entire interval [0, 1]
of a function of x would not result in additional adjoint
equations. We may formulate a corresponding partial
Lagrangian

LBVP
(
x(·), α, T, p, λ f (·), λbc

)

= λTbc (x(0) − x(1)) +
α/T∫

0

λTf
(
x ′ − T f1

)
dτ
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844 Z. Ahsan et al.

+
β−α/T∫

α/T

λTf
(
x ′ − T f0

)
dτ +

β∫

β−α/T

λTf
(
x ′ − T f0

)
dτ

+
1−α/T∫

β

λTf
(
x ′ − T f0

)
dτ +

1∫

1−α/T

λTf
(
x ′ − T f0

)
dτ,

(29)

where f j (τ ) = f (T τ, x (τ ) , x (τ + j − α/T ) , p).
Here, λ f (τ ) and λbc are the Lagrange multipliers asso-
ciated with the imposition of the differential equations
and boundary conditions, respectively, and each inte-
grand is assumed to be continuously differentiable on
the corresponding interval. The splitting of the integral
is here motivated by an anticipated discontinuity of λ f

at τ = β and, consequently, of λ′
f at τ = β − α/T ,

the different functional forms of the original DDEs on
the intervals (0, α/T ) and (α/T, 1), and an anticipated
discontinuity in λ′

f also at τ = 1 − α/T .
By the stated assumptions on the objective function

and any additional constraints, it is easy to show that, at
a stationary point of the total Lagrangian, λ f (τ ) must
be continuous at τ = α/T , τ = β − α/T , and τ =
1 − α/T . Using the notation

f j,k(τ ) = ∂k f (T τ, x(τ ), x(τ + j − α/T ), p), (30)

f j,q(τ ) = d

d q
f (T τ, x (τ ) , x (τ + j − α/T ) , p)

(31)

for j = 0, 1 and q = α, T (∂k f is the partial deriva-
tive of f with respect to its kth argument, d/dq is the
total derivative of an expression with respect to q), the
contributions to the necessary adjoint conditions for a
stationary point of the total Lagrangian are given by

− λ′T
f − TλTf f1,2 − TλTf (τ + α/T ) f0,3 (τ + α/T )

(32)

for variations with respect to x(τ ) on τ ∈ (0, α/T );

− λ′T
f − TλTf f0,2 − TλTf (τ + α/T ) f0,3 (τ + α/T )

(33)

for variations with respect to x(τ ) on τ ∈ (α/T,

β − α/T ) ∪ (β − α/T, β) ∪ (β, 1 − α/T );

− λ′T
f − TλTf f0,2 − TλTf (τ + α/T − 1)

f1,3 (τ + α/T − 1) (34)

for variationswith respect to x(τ )on τ ∈ (1 − α/T, 1);

− λTf (0) + λTbc, λTf (β)− − λTf (β)+, λTf (1) − λTbc,

(35)

for variations with respect to x(0), x(β), and x(1),
respectively;

−
∫ α/T

0
λTf T f1,α dτ −

∫ 1

α/T
λTf T f0,α dτ (36)

for variations with respect to α;

−
∫ α/T

0
λTf

(
f1 + T f1,T

)
dτ

−
∫ 1

α/T
λTf

(
f0 + T f0,T

)
dτ (37)

for variations with respect to T ; and

−
∫ α/T

0
λT1T f1,4 dτ −

∫ 1

α/T
λT1T f0,4 dτ (38)

for variationswith respect to p. The terms f j,T and f j,α
in (36) and (37) both contain time derivatives x ′ with
delayed or advanced arguments, since T and α both
appear in the evaluation of x in the third arguments of
f0 and f1.
As previously anticipated, the explicit dependence

of theLagrangian on the internal state point x(β) results
in a potential discontinuity of the Lagrange multiplier
λ f (τ ) at τ = β. Continuous differentiability of x(τ )

on [0, 1] and of λ f (τ ) on (0, β −α/T ), (β −α/T, β),
(β, 1 − α/T ), and (1 − α/T, 1) implies that the nec-
essary conditions for an extremum are in the form of
a multi-segment boundary-value problem in a single
trajectory segment for x(τ ) and four coupled trajec-
tory segments for λ f (τ ). A similar result is obtained,
for example, in the limiting case when β = 1 − α/T .
This case specializes to the example discussed in the
previous section, since there α = 1, β = 1 − 1/T ,
and T > 3. In contrast, when β is either 0 or 1, i.e.,
when there is no dependence of the objective function
or any additional constraints on an internal point, then
we obtain a single trajectory segment for x(τ ) and three
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coupled trajectory segments for λ f (τ ) with both vari-
ables continuous throughout the interval [0, 1].

3.2 A Duffing oscillator with delayed PD control

As an application of the general methodology when
β = 0, consider the harmonically forced Duffing oscil-
lator with delayed state (proportional and derivative;
PD) feedback given by the DDE

z̈ + 2ζ ż + z + μz3 = 2az (t − α)

+ 2bż (t − α) + γ cos (2π t/T ) . (39)

Inspired by [7], for fixed ζ , μ, a, b, and γ , we seek
a delay α that minimizes the maximum amplitude of
oscillation along a family of periodic responses of this
system under variations in the excitation period T .
Since the optimization problem involves minimizing
a maximum, it corresponds to the search for a saddle
point in the value of the oscillation amplitude on the
two-dimensional constraint manifold.

Following Sect. 2.1, let x1(τ )
.= z(T τ + Tφ/2π)

and x2(τ )
.= ż(T τ + Tφ/2π) represent the displace-

ment and velocity, respectively, on the rescaled time
interval [0, 1]. The phase φ is again to be chosen so
as to shift the time on this interval when the oscillator
reaches its maximum displacement to τ = 0. It follows
that the objective functional is given by

μA = x1(0) (40)

for solutions of (25)–(27) subject to the phase condition

x2(0) = 0 (41)

and corresponding to the vector field

f (t, u, v, p) =
(

u2
−2ζu2 − u1 − μu31

)

+
(

0
2av1 + 2bv2 + γ cos (2π t/T + φ)

)
, (42)

where p = φ.
The partial Lagrangian for the objective functional

and phase condition is

Lopt
(
x(·), μA, λph, ηA

)

= μA + λphx2(0) + ηA(x1(0) − μA), (43)

where λph and ηA are additional Lagrange multipliers.
This partial Lagrangian adds the term (ηA, λph)

T to the
variation with respect to x(0) in (35) (first term) and
results in the algebraic adjoint constraint

0 = 1 − ηA, (44)

assuming no additional dependence of the problem
Lagrangian on μA.

Since neither the objective functional nor the addi-
tional phase conditions depend on x evaluated at an
interior point of the interval [0, 1], it follows that λ f

is continuous on the entire interval. This simplifies the
partial Lagrangian LBVP in (29) as the two integrals
with boundary β can be combined, and the resulting
adjoint DDE contribution (33) can be applied on the
combined interval (α/T, 1 − α/T ), such that λ f (τ )

is in fact continuously differentiable on (0, 1 − α/T ).
Correspondingly, the middle adjoint condition in (35)
can be omitted. Moreover, like in the motivating exam-
ple in Sect. 2.1, it is easy to see that the rate of change
of μA = x1(0) with respect to δ = x2(0) vanishes at
δ = 0. We conclude that λph = 0 at a stationary point
of the Lagrangian. This implies that λ f,2(1) = λ f,2(0)
and, by inspection of (33) and (34), that both com-
ponents of λ f are actually continuously differentiable
throughout the interval [0, 1].

Since the dimension nopt of the optimization man-
ifold equals 2, the successive continuation approach
proposed by Kernévez and Doedel [11] requires mul-
tiple stages (in contrast to the motivating example in
Sect. 2.1, where nopt = 1): one initially optimizes only
with respect to one variable, following a curve in the
optimizationmanifold, keeping nopt−1 variables fixed.
At each successive stage of continuation, one releases
one further optimization variable, until all variables are
free. In this analysis, we propose to keep α fixed during
the initial stage of continuation, corresponding to the
imposition of a constraint on the set of unknowns. To
this end, we consider the additional partial Lagrangian

Lsc(α, μα, ηα) = ηα(α − μα). (45)

This partial Lagrangian adds the constraint

α = μα (46)
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and the algebraic adjoint equation (for vanishing vari-
ation with respect to μα)

0 = ηα, (47)

and adds ηα to the adjoint variations with respect to α

in (36). The total problem Lagrangian is now given by

L
(
x(·), α, T, p, μA, μα, λ f (·), λbc, λph, ηA, ηα

)

= LBVP
(
x(·), α, T, p, λ f (·), λbc

)

+ Lopt
(
x(·), μA, λph, ηA

) + Lsc(α, μα, ηα).

(48)

The necessary conditions for an extremum of the total
Lagrangian are then given by (i) the original differ-
ential equations and boundary conditions, (25)–(27),
(40), (41), and (46), and (ii) the various adjoint equa-
tions, including (44) and (47), assembled in stages as
constraints and variables are added, setting the sums
of all resulting contributions equal to 0. Although we
anticipate that λph will equal 0 throughout the analy-
sis, we keep λph as an unknown and monitor its value
during continuation.

As in the previous section, we may locate an
extremum of L by several successive stages of contin-
uation, in each stage omitting one or both of the adjoint
conditions (44) and (47). In particular, by holding μα

fixed and letting ηA vary freely, wemay arrive at a solu-
tion with ηA = 1 in two stages of continuation: first,
by continuing along a one-dimensional manifold with
vanishing Lagrange multipliers, and next by branch
switching at a local extremum of μA to a secondary
branch along which only the Lagrange multipliers vary
and, in fact, do so proportionally to ηA. A final stage
of continuation then proceeds from the point on this
second manifold where ηA = 1, but this time with ηA

fixed at 1 and μα free to vary. A sought extremum is
obtained when ηα = 0.

An example of such an analysis for the case when
ζ = 0.05, μ = 0.05, a = 0.05, b = −0.05, and γ =
0.5 is shown in Fig. 4 (projected into the (α, 2π/T, μA)

space). Here, the full integro-differential boundary-
value problem is discretized and analyzed using the
coco [18] package following the methodology dis-
cussed in [2] in terms of continuous, piecewise-
polynomial approximants on a uniform partition of
every solution segment into N = 10 mesh intervals,
resulting in a large system of nonlinear algebraic equa-

tions. The successive continuation approach then pro-
ceeds along the following stages:

– Initial guess An initial solution guess for x(τ ) near
the first manifold is first constructed using direct
simulation with α = 0.1 and T = 2π , after which
φ is adjusted such that the maximum of x1 occurs
at τ ≈ 0. We finally let μA = x1(0) and μα = α.

– Stage 1: Continuation along manifold with vanish-
ing Lagrange multipliers The delay α is held con-
stant by fixing μα at its initial value. Continuation
proceeds along the blue curve in Fig. 4, monitoring
for branch points (coincident with extrema in μA

up to discretization errors).
– Stage 2: Continuation along manifold with vary-
ing Lagrange multipliers Branch off at the discov-
ered branch point (labeled BP in Fig. 4) with μα

still fixed, stopping when ηA reaches 1. During this
continuation all primary variables x(·), φ, T , α stay
constant. Only Lagrange multipliers change their
values. This continuation does not change any coor-
dinates in Fig. 4 (we remain at the point BP).

– Stage 3: Continuation with varying μα . Fix ηA at 1
and allow μα (and, consequently, α) to vary. Con-
tinue while monitoring ηα for zero crossings (red
curve in Fig. 4). The point where ηα = 0 along
the red curve is labeled “Local Optimum.” At this
point, all necessary conditions for a stationary point
of L are satisfied, including ηA = 1 and ηα = 0.

The end point of stage 3 corresponds to a critical
point at α ≈ 0.7824, φ ≈ 1.488, and T ≈ 5.88 (which
Fig. 4 confirms to be a saddle point). We may compare
the resulting optimal delay with the prediction from
a first-order multiple-scales perturbation analysis for
the weakly nonlinear (smallμ), weakly damped (small
ζ ), and weakly forced (small γ ) case, which predicts a
maximal (with respect to T ) response amplitude

γ

2|ζ + a sin α − b cosα|, (49)

(independent of μ, see the appendix for intermediate
steps; also see [7,17]). The computed optimal delay
α ≈ 0.7824 is in close agreement with the predicted
optimal delay π/4 ≈ 0.7854 obtained from (49) for
the case that b = −a. The optimal displacement pro-
file x1(τ ) and the components of λ f (τ ) are shown in
Fig. 5. The top panel shows close agreement between
the results obtained using continuation and the har-
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Fig. 4 Optimization of the displacement amplitude along peri-
odic orbits of the harmonically excited Duffing oscillator with
ζ = 0.05, μ = 0.05, a = 0.05, b = −0.05, and γ = 0.5
under variations in α and T . Three successive stages of contin-
uation connect the sought saddle point with an initial solution
guess with vanishing Lagrange multipliers. Stages 1 (blue) and
3 (red) described in the text are visible in the (α, 2π/T, μA)

space. In Stage 1, a peak in the displacement amplitude is approx-
imately detected in close proximity to a branch point for the
corresponding continuation problem. The second stage involves
branch switching to a branch alongwhich only theLagrangemul-
tipliers vary (not visible). The red curve shows the final stage of
continuation with fixed ηA = 1. The optimal delay and corre-
sponding period obtained at the terminal point with ηα = 0 equal
0.7824 and 5.88, respectively. At this pointμA = 1.9852. (Color
figure online)

monic response obtained from the perturbation anal-
ysis, at the computed optimal values of α, T , and
φ. Panel (b) of Fig. 5 shows the functional Lagrange
multipliers λ f , confirming that they are approximately
smooth in this example (since the objective does not
depend on β ∈ (0, 1)) but with λ f,1(1) �= λ f,1(0) and
λ f,2(1) ≈ λ f,2(0) (since the objective functional and
the phase constraints depend on x(0) and λph ≈ 0).

Further comparisons between the results obtained
using the successive continuation approach and those
predicted by the perturbation analysis are shown in
Figs. 6 and 7 for the case when the oscillator is only
subjected to displacement feedback, i.e., when b = 0,
with weak (μ = 0.05) and strong (μ = 1) nonlinear-
ity, respectively. In each case, the perturbation anal-
ysis predicts a saddle in the response amplitude for
α = π/2 ≈ 1.5708, while the computational results
are α ≈ 1.4712 and 0.8712, respectively. For the case
of weak nonlinearity depicted in Fig. 6, there is still
close agreement between the optimal time histories for
x1(τ ), while this is no longer true for the case of strong
nonlinearity shown in Fig. 7. The frequency response
curves shown in the lower panels of Figs. 6 and 7 were

0 0.2 0.4 0.6 0.8 1
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Continuation
Perturbation
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0.5

1

1.5(b)

Fig. 5 a x1(τ ) and b λ f,1(τ ) and λ f,2(τ ) at the terminal point
of the third stage of continuation illustrated in Fig. 4. The
upper panel shows a comparison between the numerical solu-
tions obtained using continuation at the computed optimal value
of α, and a first-order multiple-scales perturbation analysis at the
predicted optimal value of α

obtained using numerical continuation for the com-
puted and predicted critical values of α. In the case
of the weak nonlinearity, we note a weak dependence
on the location and magnitude of the peak on the value
of the delay, while the differences are stark in the case
of the strong nonlinearity. In the latter case, the optimal
delay predicted by the perturbation analysis produces a
peak amplitudemore than50% larger than that obtained
using the numerical method.

3.3 Quasiperiodic orbits

We proceed to consider the problem of optimizing
a scalar-valued objective functional on a family of
quasiperiodic solutions of (24), for which there exists
an irrational rotation number ρ and a smooth function
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Fig. 6 Optimization of the displacement amplitude along peri-
odic orbits of the harmonically excited, weakly nonlinear Duff-
ing oscillator with ζ = 0.05, μ = 0.05, a = 0.05, b = 0, and
γ = 0.5 under variations in α and T . a Comparison of the dis-
placement profile obtained from continuation at the computed
optimal delay α ≈ 1.4712 and period T ≈ 5.7151 with the
results predicted by perturbation analysis. b Frequency response
diagrams for the computed and predicted critical delay values
1.4712 and π/2, respectively

Z : S × S → R
n (here, S denotes the unit circle) such

that

z(t) = Z (θ1(t), θ2(t)) , θ̇1 = ρ�, and

θ̇2 = �
.= 2π/T (50)

in terms of the period T of the vector field f in its first
argument. Let subscripts θ1 and θ2 denote partial deriva-
tiveswith respect to the corresponding arguments. Sub-
stitution into the governing equation then yields the
partial differential equation (PDE)

0 0.2 0.4 0.6 0.8 1
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-2

-1

0

1
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3

Continuation
Perturbation

0.5 1 1.5 2 2.5 3
0
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1.5
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3
 = 0.8712
 = /2

(a)

(b)

Fig. 7 Optimization of the displacement amplitude along peri-
odic orbits of the harmonically excited, strongly nonlinear Duff-
ing oscillator with ζ = 0.05, μ = 1, a = 0.05, b = 0, and
γ = 0.5 under variations in α and T . a Comparison of the dis-
placement profile obtained from continuation at the computed
optimal delay α ≈ 0.8712 and period T ≈ 3.4192 with the
results predicted by perturbation analysis. b Frequency response
diagrams for the computed and predicted critical delay values
0.8712 and π/2, respectively

ρ�Zθ1 + �Zθ2 = f (t, Z , Z (θ1 − ρ�α, θ2 − �α) , p)
(51)

on the two-dimensional torus S × S.
We decompose this PDE along its characteristics.

To this end, consider the continuous function V : S ×
[0, 1] → R

n given by

V (ϕ, τ )
.= Z(ϕ + 2πρτ, 2πτ), (52)

such that τ = t/T , θ1(0) = ϕ, and without loss of gen-
erality θ2(0) = 0. Shifting and wrapping of arguments
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between and along characteristics will occur several
times below. To simplify notation, suppose that T > α

and introduce the wrapping operation W for the func-
tion V on S × [0, 1] as
[
W j

a V
]
(ϕ, τ )=V (ϕ−2π jρ, τ−a+ j), j = −1, 0, 1

(53)

for τ − a + j ∈ [0, 1] and all ϕ ∈ S. It follows by
periodicity that

Z(ϕ +2πρ(τ −a), 2π(τ −a)) =
[
W j

a V
]
(ϕ, τ ) (54)

for τ − a + j ∈ [0, 1] and all ϕ ∈ S. Differentiation
and use of (51) then implies that

Vτ =T f
(
T τ, V,W 1

α/T V, p
)

, (ϕ, τ ) ∈ S × (0, α/T ) ,

(55)

Vτ =T f
(
T τ, V,W 0

α/T V, p
)

, (ϕ, τ ) ∈ S × (α/T, 1) ,

(56)

along with the boundary conditions

V (ϕ, 1) − V (ϕ + 2πρ, 0) = 0, ϕ ∈ S. (57)

Equations (55)–(57) are a family of coupled DDE
BVPs in time τ , parametrized by the continuous peri-
odic angle ϕ. A family of orbit segments S × [0, 1] 	
(ϕ, τ ) 
→ V (ϕ, τ ) ∈ R

n solving this family of BVPs
then spans the sought quasiperiodic invariant torus.
Such a family is unique only up to a shift of its argu-
ment ϕ ∈ S. We isolate a locally unique solution by
introducing the integral phase condition

∫ 2π

0

(
V (ϕ, 0) − V ∗(ϕ)

)T
V ∗

ϕ (ϕ) dϕ = 0 (58)

in terms of a given continuously differentiable refer-
ence function V ∗ : S → R

n that is either fixed through-
out the analysis or updated as appropriate. For fixed
values of the problem delay α, excitation period T , and
problemparameters p, the resultant integro-differential
BVP (55)–(58) defining the quasiperiodic response is
over-determined (recall that the rotation number ρ is
fixed) such that one has to leave at least one system
parameter free to vary to obtain isolated solutions. For

example, for fixed α, we thus expect to obtain a one-
dimensional manifold of quasiperiodic invariant tori
under simultaneous variations in T and a single ele-
ment of p.

We now apply the construction of the Lagrangian
and adjoint equations to this family of DDE BVPs
to formulate optimization problems with constraints
of the form (55)–(58), following the procedure from
Sect. 3.1. We assume that neither the objective func-
tional nor any additional constraints depend on V eval-
uated for τ on the interior of the interval [0, 1], and
that they only depend on V on the boundaries τ = 0
and τ = 1 through integrals over ϕ. In this case, the
Lagrange multipliers λ f for the DDE constraint (55)
will be continuous on the domain S × [0, 1] (includ-
ing periodicity in their first argument ϕ). The partial
Lagrangian for constraints (55)–(58) is then given by

LBVP(V (·, ·), α, T, p, λ f (·, ·), λrot(·), λph)

=
∫

ϕ

α/T∫

0

dτ
[
λTf (Vτ − T f1)

]

+
∫

ϕ

1−α/T∫

α/T

dτ
[
λTf (Vτ − T f0)

]

+
∫

ϕ

1∫

1−α/T

dτ
[
λTf (Vτ − T f0)

]

+
∫

ϕ

λTrot(ϕ) (V (ϕ, 1) − V (ϕ + 2πρ, 0))

+ λph

∫

ϕ

(
V (ϕ, 0) − V ∗(ϕ)

)T
V ∗

ϕ (ϕ), (59)

where we abbreviate
∫
ϕ

= ∫ 2π
0 dφ and, similarly to

Sect. 3.1, let f j (ϕ, τ ) = f (T τ, V,W j
α/T V, p). The

vector-valued functions λ f (ϕ, τ ) and λrot(ϕ), and the
scalar λph are the Lagrange multipliers associated with
the imposition of the differential equations (55) and
(56), boundary conditions (57), and the integral phase
condition (58), respectively. Each integrand is assumed
to be continuously differentiable on the corresponding
interval, and λ f and λrot are assumed to be continuous
and, hence, periodic in ϕ for all τ . It is again straight-
forward to show that λ f must be continuous in τ on
τ = α/T and τ = 1− α/T at a stationary point of the
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total Lagrangian. In this case,λ f is continuously differ-
entiable in τ everywhere except at τ = 1−α/T , where
a slope discontinuity is anticipated from the boundary
conditions (57).

Analogously to Sect. 3.1, consider the notation

f j,k(ϕ, τ ) = ∂k f (T τ, V (ϕ, τ ), [W j
α/T V ](ϕ, τ ), p),

(60)

f j,q(ϕ, τ ) = d

d q
f
(
T τ, V (ϕ, τ ), [W j

α/T V ](ϕ, τ ), p
)

,

(61)

for j = 0, 1 and q = α, T . Then, the contributions to
the necessary adjoint conditions for a stationary point
of the total Lagrangian are given by

− λTf,τ − TλTf f1,2 − T
(
W 0−α/T λ f

)T
W 0−α/T f0,3

(62)

for variations with respect to V (ϕ, τ ) on (ϕ, τ ) ∈ S ×
(0, α/T );

− λTf,τ − TλTf f0,2 − T
(
W 0−α/T λ f

)T
W 0−α/T f0,3

(63)

for variations with respect to V (ϕ, τ ) on (ϕ, τ ) ∈ S ×
(α/T, 1 − α/T );

− λTf,τ − TλTf f0,2 − T
(
W−1

−α/T λ f

)T
W−1

−α/T f1,3

(64)

for variations with respect to V (ϕ, τ ) on (ϕ, τ ) ∈ S ×
(1 − α/T, 1);

λTf (ϕ, 0) + λTrot (ϕ − 2πρ) + λphV
∗�
ϕ (ϕ) (65)

for variations with respect to V (ϕ, 0) on ϕ ∈ S;

λTf (ϕ, 1) + λTrot (ϕ) (66)

for variations with respect to V (ϕ, 1) on ϕ ∈ S;

−
∫

ϕ

α/T∫

0

dτ
[
λTf T f1,α

]
−

∫

ϕ

1∫

α/T

dτ
[
λTf T f0,α

]
(67)

for variations with respect to α;

−
∫

ϕ

α/T∫

0

dτ
[
λTf

(
T f1,T + f1

)]

−
∫

ϕ

1∫

α/T

dτ
[
λTf

(
T f0,T + f0

)]
(68)

for variations with respect to T ; and

−
∫

ϕ

α/T∫

0

dτ
[
λTf T f1,4

]
−

∫

ϕ

1∫

α/T

dτ
[
λTf T f0,4

]
(69)

for variations with respect to p.

3.4 A Hopf unfolding with delay and forcing

Consider, for example, the problem of finding a local
maximum inω along a family of quasiperiodic invariant
tori of the vector field

f (t, u, v, p) =
(−ωu2 + v1 (1 + r (cos 2π t/T − 1))

ωu1 + v2 (1 + r (cos 2π t/T − 1))

)
,

(70)

where r =
√
u21 + u22, α = 1, and p = ω. Notably, an

example in the tutorial for the coco trajectory segment
toolbox [18] shows that no such local maximum exists
when α = 0, since then ωT = 2πρ. In the present
case, we consider the optimization problem

maximize μω = ω (71)

subject to constraints (55)–(58) (the coupled DDEs
with boundary conditions and phase condition, depend-
ing on ϕ). The problem Lagrangian is then given by

L(V (·, ·), T, p, μω, λ f (·, ·), λrot(·), λph, ηω)

= μω + ηω(ω − μω)

+ LBVP
(
V (·, ·), 1, T, p, λ f (·, ·), λrot(·), λph

)
,

(72)

where LBVP is given in (59) and ηω is the additional
Lagrange multiplier. The necessary conditions for an
extremum of the total Lagrangian are then given by (i)
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the original differential equations and boundary condi-
tions (55)–(58); (ii) the adjoint conditions (excluding
(67)) obtained by appending ηω to the variation with
respect to p (69) and setting all the resulting contribu-
tions equal to 0; and (iii) the condition that ηω = 1.

As in previous examples, we immediately note that
λph must equal 0 at a stationary point of the Lagrangian,
since the objective function is clearly independent of
the particular choice of family (ϕ, τ ) 
→ V (ϕ, τ )

selected by the phase condition. The adjoint boundary
conditions (65) and (66) then imply that

λTf (ϕ, 1) − λTf (ϕ + 2πρ, 0) = 0. (73)

Moreover, direct computation using (70) and the
boundary condition (57) shows that

f0,3(ϕ, 1) − f1,3(ϕ + 2πρ, 0) = 0. (74)

It follows from (63) and (64) that

λTf,τ (ϕ, 1 − 1/T )+ − λTf,τ (ϕ, 1 − 1/T )− = 0, (75)

i.e., that λ f is continuously differentiable in τ on the
entire interval [0, 1].

We proceed to locate an extremum by applying the
successive continuation technique to the set of equa-
tions obtained by omitting the trivial adjoint condition
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1.5

BP

Fig. 8 One-dimensional manifold obtained from the first stage
of continuation along a family of approximate quasiperiodic
invariant tori with vanishing Lagrange multipliers for the case
that ρ ≈ 0.6618. The local maximum μω ≈ 0.43685 when
T ≈ 5.3153 approximately coincides with a branch point (BP).
Solid and dashed lines denote dynamically stable and unstable
tori, respectively

that ηω = 1. To this end, we approximate V (ϕ, τ ),
λ f (ϕ, τ ), and λrot(ϕ) by truncated Fourier series in
ϕ with τ -dependent Fourier coefficient functions, as
appropriate, approximated by continuous piecewise-
polynomial interpolants on the interval [0, 1]. Although
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(b)
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Fig. 9 aOptimal quasiperiodic invariant torus andb correspond-
ing representation of λ f obtained at the terminal point (ηω = 1)
of the second stage of continuation with ρ ≈ 0.6618. c The com-
ponents of λrot at this point. Solid gray curves in a and b denote
the discretization of V (ϕ, τ ) and λ f (ϕ, τ ) using trajectory seg-
ments based at ϕ = (i − 1)/11, for i = 1, . . . , 11
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we anticipate that λph will equal 0 throughout continu-
ation, we keep λph as an unknown andmonitor its value
during continuation. We first continue along a one-
dimensional manifold alongwhich the Lagrangemulti-
pliers always equal 0, and then branch switch at a local
maximum of μω to a secondary branch along which
the family V remains unchanged, while the Lagrange
multipliers vary linearly in ηω. The solution to the nec-
essary conditions for a local stationary point is then
obtained once ηω = 1 along the secondary branch.

The results of such an analysis usingcoco are shown
in Figs. 8 and 9 for the case that ρ ≈ 0.6618. Here,
dependence onϕ is approximated using a Fourier series
truncated at the fifth harmonic corresponding to 11 tra-
jectory segments on the torus based at ϕ = (i − 1)/11,
i = 1, . . . , 11. Each τ -dependent Fourier coefficient is
discretized using polynomials of degree 4 on a uniform
mesh with 10 intervals. The one-dimensional family
of quasiperiodic orbits in Fig. 8 along the first man-
ifold with vanishing Lagrange multipliers indicates
the existence of a local maximum in μω ≈ 0.43685
for T ≈ 5.3153. Branch switching from the nearby
branch point (as before, exact coincidence is lost due
to discretization) and continuing until ηω = 1 yields
the approximate torus and the corresponding Lagrange
multipliers λ f and λrot shown in Fig. 9.

As an aside, direct numerical simulation using initial
conditions predicted by the continuation analysis sug-
gests that quasiperiodic tori found on the lower half of
the one-dimensional family shown in Fig. 8 are stable
to sufficiently small perturbations, while the tori found
on the upper half are unstable, with a critical loss of
stability coincident with the peak value of μω.

4 Conclusions

The various examples in previous sections illustrate
the successful application to the case with single
time delays of the general methodology to optimiza-
tion along implicitly defined solutions to integro-
differential boundary-value problems first proposed
by Kernevez and Doedel [11] for ordinary differen-
tial equations. Here, the partial Lagrangian approach
introduced in [12] was used to derive adjoint condi-
tions thatwere linear and homogeneous in the unknown
Lagrange multipliers. This allowed a search for local
extrema to proceed along a connected sequence of one-
dimensional manifolds of solutions to the necessary

conditions for such extrema minus the trivial algebraic
adjoint conditions on a subset of the Lagrange multi-
pliers: first, along a branch with vanishing Lagrange
multipliers, then switching to a branch with linearly
varyingLagrangemultipliers, and then along additional
branches until all the previously omitted trivial alge-
braic adjoint conditions were satisfied.

In contrast to the case of ordinary differential equa-
tions, the presence of time delays introduces poten-
tial discontinuities that must be accounted for in
any numerical solution strategy. By the properties
of differential equations with time-shifted arguments,
such discontinuities propagate across time, gaining an
order of continuity for each iteration. Here, we have
only accounted for zeroth- or first-order discontinu-
ities in the formulation of the governing boundary-
value problems. On each segment along which a func-
tion was shown to be continuously differentiable, we
have approximated such a function by a continuous
piecewise-polynomial function of degree 4 in each
mesh interval, ignoring continuity in the first deriva-
tive across mesh boundaries or discontinuities of order
twoor higherwithin eachmesh interval. The piecewise-
polynomial approximants have been used to impose a
discretization of the governing differential equations
at a set of collocation nodes within each interval and
to evaluate functions with time-shifted arguments on
the same or other intervals. Such a collocation strategy
is consistent with the approach in [3], and there com-
pared to an alternative mesh strategy that depends on
the delay. We have not undertaken a detailed analysis
of the sensitivity of the results to the numerical mesh or
polynomial degree. Notably, while we rely in this paper
invariably on uniformmeshes, it is common to consider
adaptive meshes for which the number of intervals and
their relative size may change during continuation. We
leave such an implementation for future work.

In all the examples, a Lagrangemultiplier associated
with a phase condition was found to equal 0 on a local
extremum of the corresponding Lagrangian. As stated
previously,wenevertheless retained thisLagrangemul-
tiplier as an unknown and monitored its value during
continuation. Experiments with the number of mesh
intervals were used to determine whether this value
was effectively 0 also in the computational analysis. An
alternative would have been to eliminate this variable
from the set of adjoint equations while simultaneously
eliminating one of the adjoint conditions. In a single
instance, this may indeed be useful, but when relying
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on a general-purpose implementation as envisioned in
a planned future implementation of coco, it is better
to retain the variable and use its numerical value as an
indicator of the accuracy of the solution.

There are a number of directions to go in futurework.
These include consideration of circumstances in which
the ratio α/T violates one or several of the inequalities
assumed in the previous sections during continuation.
Such violations may necessitate a piecewise definition
of the Lagrangian across parameter space with differ-
ent segmentations of the governing differential equa-
tions in each region. Problems with multiple delays, as
well as problems with state- or time-dependent delays
could also be explored asmotivated by particular appli-
cations.
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Appendix

We review the application of the method of multiple
scales to the optimal selection of a time delay that
results in a minimal peak displacement amplitude in
the harmonically forced response of a Duffing oscilla-
tor under delayed displacement and velocity feedback,
as discussed in Sect. 3.1.

Consider the delay-differential equation

z̈ (t) + 2εζ ż (t) + z (t) + εμz3 (t) = 2εaz (t − α)

+ 2εbż (t − α) + εγ cos ((1 + εσ )t) (76)

for 0 < ε � 1. We seek an approximate solution of
the form

z (t) = z0 (T0, T1, . . .) + εz1 (T0, T1, . . .) + · · · ,

(77)

where Ti = εi t . To leading order in ε,

z0 (T0, T1, . . .) = A (T1, . . .) e
iT0 + cc, (78)

where cc denotes complex conjugate terms. Elimina-
tion of secular terms at higher orders in ε then yields
a set of conditions on the derivatives of the complex
amplitude A with respect to its arguments. In particu-
lar, if we let

A (T1, . . .) = 1

2
ρ(T1, . . .)e

iσT1−ϕ(T1,...), (79)

it follows from the first-order analysis that steady-state
oscillations with angular frequency 1 + εσ result pro-
vided that

1

2
γ sin ϕ = ζρ + aρ sin α − bρ cosα, (80)

1

2
γ cosϕ = ρ

(
σ + a cosα + b sin α − 3μρ2

8

)
.

(81)

Eliminationofϕ yields thedesired, implicit, frequency–
amplitude relationship

ρ2
(

σ + a cosα + b sin α − 3μρ2

8

)2

+

ρ2 (ζ + a sin α − b cosα)2 − γ 2

4
= 0, (82)

from which we deduce the maximum value of ρ given
by

ρmax
.= γ

2|ζ + a sin α − b cosα| (83)
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obtained when

σ = 3μρ2
max

8
− a cosα − b sin α. (84)

In the special case that b = −a, the maximum value of
ρ achieves the local minimum γ /2(ζ +√

2a)2 for α =
π/4, while for b = 0, the local minimum γ /2(ζ + a)2

is obtained when α = π/2.
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