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We shall not cease from exploration 
And the end of all our exploring 

Will be to arrive where we first started 
And know the place for the first time. 

 

TS Elliot 
Little Gidding, 1942 
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Abstract 

Many carnivore species are experiencing declines due to anthropogenic factors 

such as direct killing, habitat loss, secondary exposure to chemical control 

agents, and depletion of prey resources. Due to their top-down effects on the 

structure and function of ecosystems, carnivores are, however, increasingly the 

focus of efforts towards ecological restoration. To enable such restoration to 

take place, wildlife managers need to understand both the ecological processes 

and the social-ecological factors that may affect carnivore recovery and 

establishment.  

In this thesis, I use the European polecat Mustela putorius, which is currently 

recolonising Great Britain following near extirpation in the nineteenth century, as 

a case study through which to explore the processes of carnivore recovery. I 

investigate social and ecological risks to the polecat’s continuing range and 

population expansion, which may also be pertinent to the wider challenges of 

carnivore conservation. 

In my introduction, I outline the importance of carnivores to ecosystem function 

and review the wide-ranging and cascading effects their reinstatement can 

have. I provide an overview of human-carnivore interactions and the 

anthropogenic processes that directly or indirectly lead to carnivore declines. I 

give a historical context to human-carnivore relations in Great Britain, introduce 

polecats, their biology and changing status and provide an overview of my 

research objectives and thesis structure. 

I then carry out a detailed literature review of the changing status of the eight 

terrestrial mammalian carnivores native to Great Britain. I summarise the 

anthropogenic processes that have influenced their status. I find that polecats 

have recolonised Great Britain less quickly than otters Lutra lutra but more 

quickly than pine martens Martes martes. Badgers Meles meles have increased 

in abundance. Foxes Vulpes vulpes are experiencing a decline and wildcat are 

imperilled by hybridisation with domestic cats. Stoats Mustela erminea and 

weasels Mustela nivalis are data deficient, but evidence suggests that stoats 

may be increasing in number relative to weasels. 
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Next, I explore polecat resource use during a period of ecological change by 

analysing the stable isotopes of carbon and nitrogen from a museum collection 

of polecat whiskers. I find that variation in isotope ratios and isotopic niches 

indicate differences in resource use between polecats collected from the 

leading edge of the range compared to the established parts of the range and 

that this effect was greatest in the 1960s when rabbits Oryctolagus cuniculus—

an important prey for polecats—were in low abundance. I also find that female 

polecats show greater variation in resource use than males, indicating that they 

may have different needs as part of conservation efforts.  

Next, I carry out a study of polecat diets to assess responses to fluctuating 

abundance of rabbits. I analyse the stomach contents from polecat carcasses 

collected between 2013 and 2016. I compare my results with those from earlier 

polecat dietary studies and find that the proportion of lagomorphs increased in 

polecat diet between the 1960s and 1990s. Although rabbit populations have 

been declining since the 1990s, I find no difference in the proportion of 

lagomorphs in polecat diet between the 1990s and 2010s. 

Secondary exposure to second generation anticoagulant rodenticides is a 

contemporary risk to polecat recovery that is also related to their diet, as 

polecats are likely exposed to rodenticides by eating contaminated rodents. In 

Chapter 5, I analyse the livers from polecat carcasses collected between 2013 

and 2016 to measure current levels of secondary exposure and explore factors 

that may affect exposure. I find that the frequency of exposure to rodenticides 

was 79% in polecats and that this represents a 1.7 fold increase in exposure 

frequency over 25 years. I find that the probability of exposure increases with 

age and with increasing values of ẟ15N, suggesting that resource use 

influences polecat exposure to rodenticides.  

I then explore the principles underpinning modern gamekeeping practices, by 

carrying out interviews with gamekeepers to find out what they do and why. In 

this qualitative study, I analyse gamekeepers’ conception of The Balance, which 

is an overarching narrative that they have adopted to explain their approach to 

wildlife management. Although The Balance includes echoes of the heuristic of 

the ‘balance-of-nature’, it is most often employed in the context of maximising 

shootable game surpluses while providing opportunities to other wildlife that do 
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not conflict with this objective. I find that keeping The Balance requires a 

ritualised, highly interventionist approach to producing game that presents both 

risks and rewards to predators. The multiplicity of The Balance—in which 

gamekeepers are stewards of both game and the countryside—creates an 

ambiguity that, when associated with the regular culling of predators and 

negative perceptions of sport shooting, may cause misunderstandings between 

gamekeepers and other publics. 

In conclusion, I find that polecats have been able to recolonise most of southern 

Britain despite the risks of fluctuating rabbit populations, increasing exposure to 

rodenticides and predator controls. Polecat recovery has occurred with minimal 

direct conservation effort. It has also taken a long time: one hundred years after 

their population nadir, polecats are yet to fully recolonise their former range. 

More broadly, a low-intervention approach is unlikely to succeed, or be 

desirable, for all carnivores. In particular, those that are slower to mature, have 

lower reproductive rates, more specialised resource requirements and greater 

impact on anthropogenic practices, or where the potential ecological benefits 

that may be derived from a species’ restoration necessitate an expedited 

recovery.  
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Chapter 1: Introduction 

The trophic downgrading of planet earth, through global declines of apex 

predators, is an insidious consequence of anthropogenically-induced loss of 

biodiversity (Estes et al. 2011). Extensive ecological research carried out over 

several decades finds that predators are important to the structure and function 

of ecological communities (Ripple et al. 2014). Predators cause a cascade of 

direct and indirect effects throughout an ecosystem (Trussell et al. 2006, 

Heithaus et al. 2008, Estes et al. 2011). Direct effects occur when predators 

reduce prey populations by eating them (Terborgh 1988) while indirect effects 

occur when prey behaviour is influenced through predation avoidance and can 

be as far reaching as to affect disease dynamics, invasive species 

establishment, carbon sequestration, atmospheric composition, wildfire 

frequency and extent, and species diversity (Estes et al. 2011).  

In a review of evidence of the impacts of carnivores on ecosystems, Schmitz et 

al. (2000) found that removal of predators increased the numbers of herbivores, 

along with concomitant increases in plant damage and reductions in plant 

biomass in 75% of studies. Sustained increases in herbivory can dramatically 

change visual as well as functional aspects of ecosystems (Estes et al. 2011).  

The return of predators can trigger trophic cascades that reinstate ecosystem 

functions. When grey wolves Canis lupus were reintroduced to Yellowstone 

National Park, female elk Cervus elaphus and female bison Bison bison 

increased their vigilance levels and modified their foraging patterns and use of 

the landscape (Laundré et al. 2001, Ripple & Larsen 2000, Ripple & Beschta 

2007). By regulating prey and their behaviours, carnivore controls cascade 

further down to plant communities and beyond. Wolf recovery in Yellowstone 

National Park increased the aspen Populus tremuloides overstory (Ripple & 

Beschta 2007), plant diversity and songbird abundance (Hebblewhite et al. 

2005). In the Aleutian Islands, reduced herbivory following sea otter Enhydra 

lutris recovery resulted in a reduction in herbivorous sea urchins 

Strongylocentrotus polyacanthus which lead to the restoration of kelp forests 

(Estes et al. 1978). However, the later arrival of a top predator, in the form of 

killer whales Orcinus orca, changed the ecological dynamics. The killer whales 

predated on the sea otters, reducing sea otter populations, allowing sea urchins 
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to increase in number again and the kelp forest biomass declined once more 

(Estes et al. 1998). These wolf and sea otter examples underline the 

importance of taking a long-term view in assessing species recoveries and 

trophic interactions (Estes et al. 1998, Miller et al 2001, Ripple & Beschta 2007). 

They also highlight that top predators can affect mesopredator populations. The 

removal of top predators can cause mesopredator release (Crooks & Soulé 

1999), which can then lead to declines in prey species (e.g. Palomares et al. 

1995, Rogers et al. 1998). This has been demonstrated in a study of dingoes 

Canis dingo in Australia, which were found to control numbers of invasive non-

native red fox Vulpes vulpes (Letnic et al. 2012). The reduction in foxes then led 

to increased numbers of endangered small mammals (Letnic et al. 2012). 

Cascades can also affect multiple species among guilds with a ripple effect of 

consequences. For example, in the United States, elevated coyote C. latrans 

abundance had been associated with increasing songbird and small mammal 

diversity through suppressing mesopredators such as domestic cats F. catus 

and foxes. Returning wolf populations in North America have reduced coyote 

numbers, but this has subsequently released foxes from top down control by 

coyotes (Levi & Wilmers 2012).  

While there is a substantial body of literature in support of the “top-down” effects 

of predators on ecosystems, historically popular “bottom up” paradigms of 

trophic flows still pervade (Estes et al. 2011). These assume that plant and 

herbivore communities regulate population densities through competitive 

interactions (Polis & Strong 1996, Miller et al. 2001). In the “bottom up” 

paradigm, carnivores are situated at the top of the chain. Carnivores may act as 

indicators of the state of the ecosystem as a whole, but play a largely passive 

role in ecosystem function and as such may be viewed as ‘passengers’ in an 

ecosystem (Estes et al. 2001, Estes et al. 2011). The perception of a lack of 

functional role played by carnivores may legitimise management approaches 

that aim to reduce carnivore populations as part of prioritising human needs 

(Miller et al. 2001). 

Of course, both “top-down” and “bottom-up” models simplify ecological systems. 

In reality, energy flows may be multi-directional and simultaneous, although the 

size of the effects may be greater in one direction than another in different 

scenarios (Power 1992) and therefore the extent to which “top-down” or 
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“bottom-up” effects are more important is context-dependent. Regardless of the 

model adopted, these examples illustrate the importance of carnivores to 

ecosystem function and the cascading impacts of their declines or recoveries. 

The consequences of changing carnivore abundance may not only affect 

wildlife. In West Africa, declines in lions Panthera leo and leopard P. pardus 

coincided with increases in olive baboons Papio anubis and decreases in small 

ungulate and small primate populations. Olive baboons are a species that 

consume agricultural crops (Brashares et al. 2010) and so the potential for 

conflict between baboons and humans also increased as a result of reduced 

carnivore numbers. 

Carnivore-human interactions  

Carnivores and humans share a long history of complicated interactions (Kruuk 

2002). Carnivores pose a very real threat to human life, livelihoods and 

recreational activities and anti-carnivore attitudes in the interests of self-

preservation are a commonplace human sentiment (Kruuk 2002). But humans 

have also domesticated carnivores and have long exploited them for their fur, 

sport, guardianship, aesthetic beauty, or company in the home environment. 

Consideration of the social implications of carnivore presence therefore adds 

value to any wildlife management planning that involves them (Breitenmoser 

1998). 

Although it is now clear that carnivores play an important role in ecosystem 

function, many carnivores have experienced population declines as a result of 

interactions with anthropogenic processes. Some carnivore declines have been 

due to direct killing via overexploitation (tigers P. tigris - Walston et al. 2010; 

African lions - Packer et al. 2009) or predator controls (wolves– Mech 1998). 

Other risks to populations are indirectly the result of human activity and include 

prey depletion due to human activity (snow leopards P. uncia – Berger et al. 

2013, tigers – Chapron et al. 2008), environmental contamination (European 

otter Lutra lutra - Mason & Macdonald 1993), habitat destruction (Sumatran 

tiger P. t. sumatrae – Linkie et al. 2003) and introduction of domestic species 

with which they may hybridize (wolves – Andersone et al. 2002, European 

wildcat Felis silvestris – Driscoll et al. 2007). In the case of the wildcat, genetic 
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extinction as a result of hybridisation is now a very real threat (Breitenmoser 

2019). 

Effective conservation of threatened species requires an understanding of both 

the contemporary threats to a species recovery and the ecological processes 

that may support a species’ recolonisation. Species range expansions can be 

likened to simple diffusion models (Skellam 1951). Increases in the population 

of a recovering species lead to a ‘wave-front’ of individuals who move the 

leading edge of the population’s range outwards (Skellam 1951). As recoveries 

among threatened carnivores are relatively rare, invasive species provide a 

potential source of information about the processes for recolonising native 

species. Invasive species usually display behavioural and dietary flexibility 

(Ehrlich 1989, Sol & Lefebre 2000, Sol et al. 2002, Jeschke & Trayer 2006, 

Ibarra et al. 2009, Bodey et al. 2010). Whether species that successfully 

recover former native ranges exhibit similar ecological flexibility is of interest as 

it may inform conservation policy and the extent of management intervention 

required in support of recolonisation.  

Carnivores in Britain 

Britain is a microcosm for the effects of different approaches to wildlife 

management on carnivores. There are eight mammalian carnivores native to 

Britain that are currently extant: European wildcat, red fox, European otter, 

European badger Meles meles, European pine marten Martes martes, stoat 

Mustela erminea, weasel Mustela nivalis, and European polecat Mustela 

putorius. Top predators such as wolves, Eurasian lynx lynx lynx and brown bear 

Ursus arctos were extinct as a result of human controls by the Middle Ages 

(Yalden 1999). The loss of these top predators means that there is an absence 

of “top down” population regulation on medium and small carnivores in Britain, 

which would otherwise have been exerted by these species (Tapper 1995). 

Foxes, otter and badgers are the largest of Britain’s native mammalian 

carnivores and may have some regulatory effects on smaller carnivores. For 

example, intraguild predation is documented between foxes and stoats (Mulder 

1990) and foxes and pine martens (Strachan et al. 1996), but has not been 

reported between foxes and polecats, or otters and polecats, or polecats and 

stoats. There are intraguild effects between carnivores of similar size. For 
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example, reductions in badger numbers have led to local increases in fox 

abundance (Trewby et al. 2008). Among the mustelids, coexistence has been 

theorized to be facilitated by the partitioning of resources, i.e. size of 

mammalian prey (Dayan & Simberloff 1994). While there is empirical evidence 

of resource partitioning between the sexes of some mustelids, there is no 

evidence to support a theory of resource partitioning by prey size between 

species (McDonald 2002).  

That being said, abundance of stoats and weasels does fluctuate with the 

abundance of their prey: rabbits (stoats) and voles (weasels) in a dynamic 

system where rabbit numbers impact vole populations through affecting the 

amount of grass sward and cause fluctuations in stoat and weasel populations 

as a result. Studies on the behaviour of sympatric polecats and American mink 

Neovison vison in Britain indicate that the two species adjust their activity 

patterns to reduce competition, with mink becoming more active in daytime 

(Harrington and Macdonald 2008). This change in behaviour coincided with the 

return of otters Lutra lutra to the study area, and changes in mink activity may 

have been influenced by the presence of otters rather than polecats. Analysis of 

studies from across Europe has found that polecat sex ratios can be affected by 

the presence of non-native American mink (Barrientos 2015). The consequence 

of a lack of large carnivores in Britain, and the presence of non-native additional 

carnivores such as American mink and the feral ferret Mustela furo, is that 

wildlife managers in Britain have to decide whether to intervene and control 

mesocarnivores (Tapper 1995). 

Thousands of years of human activity on mainland Britain have meant that there 

are ‘few, if any, nooks’ unaffected by human hand (Simmons 2001). Even the 

landscape in the Scottish Highlands, considered by some as the ‘last 

wilderness’ in western Europe, is a result of anthropogenic environmental 

degradation (Coates 1998). Early attitudes and actions towards wildlife, based 

on Judeo-Christian traditions concerning humankind’s role in nature, were 

informed by judgements on the relative utility of plants and animals to people 

(Thomas 1983). The resulting combination of centuries of habitat conversion 

and widespread state-sponsored culling initiated by the Tudor Vermin Act 1566 

(which placed bounties on all wildlife species that were classified as agricultural 

pests (Lovegrove 2007)), followed by predator controls to protect sporting 
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interests, were instrumental in causing the decline, of many of Britain’s native 

mammalian carnivores. By the turn of the twentieth century the pine marten, 

polecat and wildcat had been almost eliminated from Great Britain (Langley & 

Yalden 1977, Lovegrove 2007).  

Although a less anthropocentric view of nature now prevails, anthropogenic 

processes continue to affect carnivores in Britain. In the twentieth century, 

organochlorine compounds used as agricultural pesticides were associated with 

catastrophic declines of the otter population in Britain (Chanin & Jefferies 1978). 

Similarly, all mammalian carnivores examined to date have been found to have 

been secondarily exposed to second generation anticoagulant rodenticides 

(McDonald et al. 1998, Shore et al. 2003; Shore et al. 2015, Ruiz-Suárez et al. 

2016). Agricultural intensification in general has been associated with 

reductions in farmland biodiversity with broad implications for the prey 

availability for carnivore species (Tattersall & Manley 2003).  

In last 100 years there has been a change in cultural emphasis towards 

carnivore protection (Reynolds & Tapper 1996). Legal protections were put in 

place for some species in 1970s, 1980s and 1990s. In Britain, badgers, otters, 

pine martens, polecats and wildcats are protected – albeit to varying degrees - 

by law. Lethal predator controls may only be used legally on stoats, weasels 

and foxes without specific licenses. Examples of predator controls that wildlife 

managers may employ include lethal and non-lethal methods. Lethal 

approaches include trapping, snaring and shooting, or a combination thereof. 

Use of chemical control agents to manage predators, such as poisons, may 

have been widespread in the past, but are now regulated. Non-lethal deterrents 

include use of electric fencing and scent, visual and auditory deterrents. There 

is little information on the uptake or efficacy of non-lethal controls. There is 

evidence to suggest that bird populations can and do benefit from 

implementation of appropriately applied lethal controls (e.g. Côté & Sutherland 

1997, Tapper et al. 1996, Fletcher et al. 2010).  

Translocation programs have been carried out for some carnivore species, such 

as pine marten and otter, to support population recovery. Otters, polecats, pine 

martens, badgers and foxes have all increased in distribution and / or number 

since the 1960s (Aebischer et al. 2011, Birks 2015, Birks 2017, Judge et al. 
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2017). The growth in salience of environmental issues has placed the British 

countryside under increasing pressure to provide for competing cultural 

interests and requirements. For example, it is required to provide adequate food 

for humans, as well as the necessary habitat for protected flora and fauna, or to 

provide the background to recreational field sports, such as fox hunting and 

game shooting, which are central to elements of its aesthetic identity (Franklin 

2002), while simultaneously supporting increasing numbers of carnivores. Given 

these current competing pressures, it is timely to understand the status of 

Britain’s carnivore species and what the contemporary ecological and 

anthropological processes affecting carnivores in Britain might be. 

The European polecat Mustela putorius 

The European polecat is a medium-sized member of the mustelid family with a 

pan-European distribution (Skumatov et al. 2016). Genetically it is most similar 

to the Steppe polecat Mustela eversmanii and is the ancestor to the domestic 

ferret Mustela furo with which it can produce fertile hybrid offspring (Costa et al. 

2013). Ferrets were introduced to Britain for the purpose of rabbit (Oryctolagus 

cuniculus) hunting at some point between the Norman Conquest and the 

fourteenth century AD (Thomson 1951, Davison et al. 1999). Scattered records 

of ferrets have appeared regularly in national polecat surveys, probably due to 

the continued widespread use of domesticated ferrets for rabbiting leading to 

lost working animals, escapees and / or releases (e.g. Birks & Kitchener 1999, 

Birks 2008, Kitchener & Birks 2008, Croose 2016). There is no evidence to 

suggest that feral ferrets are widely established on mainland Britain beyond 

isolated populations in North Yorkshire, Speyside, Renfrewshire, Argyll and 

Caithness, although they have become established on some islands of Britain, 

including Isle of Man, Jersey, Arran, Benbecula and South Uist, Bute, Islay, 

Lewis, Mull, North Uist, Shetland, Rathlin Island, and Northern Ireland (Bodey et 

al. 2011, Mathews et al. 2018).  

The polecat has dark brown fur with a paler undercoat and distinctive white 

facial markings above the eyes, under the chin and on its ear tips (Fig. 1.1). 

Polecat-ferret hybrids usually possess a preponderance of paler fur, less 

distinctive facial markings and are often smaller in size, although the ability of 
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physical characteristics to identify hybrid animals without genetic analysis is 

limited (Costa et al. 2013). 

 

Figure 1.1. The European polecat Mustela putorius. With kind permission from 

A. Newton 

The polecat releases a malodorous stink when alarmed, much like a skunk 

(Blandford 1987). Males are larger than females such that a large male may 

weigh several times that of a small female (Blandford 1987). A single male 

polecat usually occupies the territory of multiple females (Lodé 1996). They 

breed once a year in the spring. The polecat is a generalist obligate carnivore 

with a diverse diet across its range although, in Britain, rabbits are an important 

food source (Blandford 1986, Birks & Kitchener 1999). Polecats also frequently 

make use of rabbit burrows as den sites (Birks & Kitchener 1999). They utilise a 

wide range of habitats, and although they are described elsewhere in their 

range as semi-aquatic, in Britain they show a preference for woodland edge, 

field boundaries, and wetlands (Birks & Kitchener 1999). They also make use of 

agricultural premises such as farmyard buildings and barns (Birks & Kitchener 

1999). 
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Once common across Britain, the polecat was hunted for its fur, for sport and 

culled as vermin as part of statutory controls and by gamekeepers (Lovegrove 

2007). No creature was more unpopular than the polecat:  

‘The polecat has earned for itself a most unenviable fame, having been 

long celebrated as one of the most noxious pests to which the farmyard 

is liable. Slightly smaller than the marten, and not quite so powerful, it is 

found to be a more deadly enemy to rabbits, game, and poultry, than any 

other animal of its size.’ (Wood 1885). 

The polecat’s distribution extent reached a nadir c. 1915, when it persisted in 

only central Wales and northern Scotland (Langley & Yalden 1977). Only the 

population in Wales proved viable. Since then, the polecat has expanded its 

distribution out of its Welsh refugium and is now present across most of central, 

southern and eastern England (Croose 2016). Much of this expansion into 

England occurred after the 1970s (Langley & Yalden 1977, Birks & Kitchener 

1999). Reductions in predator controls, the banning of the gin trap (a leg-hold 

trap commonly used to control rabbits) in 1958 and the recovery of rabbit 

populations post-myxomatosis are all thought to have contributed to its recovery 

in Britain (Birks 2015). More recently, research suggest that the polecat is 

declining across much of the rest of its European range (Croose et al. 2018).  

The principal contemporary risks to polecats include: secondary exposure to 

second generation anticoagulant rodenticides (Shore et al. 2003), predator 

controls (Packer & Birks 1999), hybridisation with feral domestic conspecifics 

(Costa et al. 2013) and changing food availability as rabbit populations continue 

to fluctuate (Harris et al. 2018). These risks are representative of those that may 

affect other carnivores as a result of anthropogenic processes. As such 

polecats are a useful proxy for the wildlife management challenges facing 

carnivores in Great Britain and more widely.  

The thesis 

My work has aimed to understand some of the ecological aspects of a species 

recovery as well as the broader context in which this particular case study 

species is situated. To investigate all of the potential ecological aspects of 

polecat recovery and all of the contemporary risks associated with the species 
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is beyond the scope of this thesis. For example, I do not address the prevalence 

of polecat-ferret hybridisation here as this has already been explored 

extensively by Costa (2014). My research objectives were focussed on the 

following areas: 

1. To assess the current status of polecats in Great Britain and to relate this 

to the changing status of other British mammalian carnivores.  

2. To elucidate mechanisms relating to resource use that may influence 

polecat recovery. 

3. To understand contemporary risks to polecat recovery, including: 

a. Secondary exposure to second generation anticoagulant 

rodenticides.  

b. Fluctuations in rabbit populations. 

c. The practices of modern gamekeeping. 

Thesis structure 

Following this introduction, the thesis is structured into five original research 

chapters, each comprising an individual academic paper, and a concluding 

general discussion. The research chapters focus on two themes. Chapters 2 

and 3 explore what we know about and can learn from polecat recovery. 

Chapters 4, 5 and 6 examine some of the ecological and anthropogenic 

processes that may have influenced polecat recovery in Britain. Specifically, the 

chapters comprise the following: 

 Chapter 2: I review the changing status of all of Britain’s terrestrial 

mammalian carnivores between the 1970s and 2010s. I gather together 

all available survey data from systematic monitoring of British carnivores 

to plot their range and / or population changes. I examine the 

anthropogenic processes that have influenced, and continue to influence, 

carnivore distributions and densities in Britain. 

 Chapter 3: I explore polecat resource use through the past 40 years 

using stable isotopes of carbon and nitrogen. I examine whether isotopic 

signatures differ between males and females and whether such 

differences have varied over time and space. I particularly focus on 
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potential differences between polecats at the core of their expanding 

range compared to those at the frontline of expansion. 

 Chapter 4: I analyse polecat diet using stomach contents from road 

casualty carcasses to see how this may have changed with varying 

availability of a key food source for polecats in Britain–rabbits. I contrast 

current consumption levels of lagomorphs with historical levels recorded 

in dietary studies from the 1960s, 1980s and 1990s. 

 Chapter 5: I examine current levels of secondary exposure to second-

generation anticoagulant rodenticides in polecats and examine whether 

there are key factors that determine likelihood and extent of exposure. I 

also examine whether levels of exposure have changed in the last 25 

years, a significant period in which polecats have expanded into regions 

of heavier use of rodenticides.  

 Chapter 6: I explore the principles underpinning twenty-first century 

gamekeeping, in the words of gamekeepers themselves. Gamekeepers 

were implicated in the original declines of polecats and are important 

agents of wildlife management in Great Britain. The profession remains 

controversial, primarily due to conflicts relating to raptor persecution, but 

little has been written in the academic literature about gamekeepers’ 

approach to wildlife management, their relationship with carnivores and 

the implications of their actions for carnivores. 

 Chapter 7: I conclude this thesis with a general discussion of the 

implications of my research for understanding the changing status of 

polecats in Great Britain and for the management of carnivores in 

general. 

Data collection approach 

In the course of writing this thesis I carried out a combination of desk research 

(Chapter 2), lab work using samples from polecat carcasses (Chapters 3, 4 and 

5) and fieldwork (ecological: see “Polecat fieldwork” section below, and 

ethnographic: Chapter 6) to generate data for analysis.  

In Chapters 3, 4 and 5, polecat carcasses collected as part of the Vincent 

Wildlife Trust’s National Polecat Survey 2013-2016 (Croose 2016) were 

sampled to represent polecats collected during the 2010s decade. The varied 



29 

condition of the carcasses (which were predominantly road casualties) meant 

that different samples were available from each specimen. While there was 

some overlap of the polecat specimens collected 2013-2016 utilised in each 

chapter, the degree of overlap was limited due to the availability of samples 

from each animal (for example, some contained gut contents but not livers, 

others had teeth and whiskers but no liver or gut contents for analysis). Chapter 

3 also includes samples taken from polecats that are part of the National 

Museum of Scotland’s full polecat collection.  Chapter 5 utilises historical 

analyses of secondary exposure to rodenticides in polecats collected in two 

earlier polecat rodenticide survey periods (Shore et al. 2003). Some of the 

analyses in these chapters are necessarily limited by the metadata available for 

these historical datasets. The covariates analysed in each chapter were 

determined by the research objectives for each individual chapter. As a result, 

some variables (e.g. polecat age) were analysed in Chapter 5, but not in 

Chapters 3 or 4 (Table 1.1). 

Table 1.1 Overview of covariates included in statistical models by chapter 

Chapter Response variable Explanatory variables 

2 Distance from central point in 
1960s range for pine 
martens, polecats and 
wildcats 

Time (decade) 

3 Stable isotopes of carbon and 
nitrogen, individual whisker 
variation in carbon and 
nitrogen 

Time (decade) 

Position in range 

Distance from the centre of the 
polecats 1915 refugium in Wales 

Sex 

4 Presence or absence of 
lagomorph in polecat gut 
contents 

Sex 

Season 

Region 

5 Extent of secondary exposure 
to rodenticides  

Age 

Fat score 
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Land class (arable or pastoral) 
from which the polecat was 
collected 

Sex 

Season 

Stable isotopes of carbon and 
nitrogen 

Region 

Time of year (first half or second 
half) that the polecat was collected 

Survey period that the polecat was 
collected from. 

Position in range (in relation to the 
1990s polecat range) 

 

Statistical methods 

I use generalised linear models (glm) to estimate the effects of variables in 

chapters 2, 3, 4 and 5. All statistical analyses were carried out in R (R Core 

Team 2013). In Chapter 2, I fit a glm using range extent statistics for polecats, 

pine martens and wildcats in order to calculate the rate of range expansion for 

each species for decades with available distribution data between 1960 and 

2018. In Chapters 3 and 5, I use an information-theoretic approach (Burnham & 

Anderson 2004) to identify top models using AIC to evaluate model 

performance and determine which variables should be included in average 

models to explain isotopic variation and rodenticides exposure respectively. In 

both of these chapters, the relative complexity of both the underlying systems 

being explored and the number of variables being examined for inclusion 

indicate that an information-theoretic approach would be most appropriate. 

Adopting an information-theoretic approach can help to minimise type II errors 

(false negatives) during the model simplification process and in doing so may 

aid the inclusion of all larger biological effects that are present (and detectable 

given the level of statistical power in the model). In Chapter 4, I fit a binomial 

glm to explore the determinants of lagomorph detection in polecat gut contents. 

Due to the relatively low number of variables included in this model and 
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simplicity of the system, I opted to use step-wise deletion using p-values to 

determine the most parsimonious model. I analyse the data in Chapter 6 using 

qualitative methods. In all chapters using statistical models I report confidence 

intervals to assess biological and statistical significance.  

 

Polecat fieldwork 

Between June 2016 and December 2016, I planned and executed a licensed 

polecat trapping exercise in Herefordshire and Gloucestershire. The aim of this 

study was to evaluate how polecats use their home ranges given the 

anthropogenic risks present in the landscape (including but not limited to 

rodenticide use, predator controls and roads). Eight 1x1km squares were 

selected in areas of high polecat presence, which was determined by records 

reported in the Vincent Wildlife Trust’s 2014-2016 National Polecat Survey of 

Britain (Croose 2016). Trapping followed the protocol defined in Birks & 

Kitchener (1999). Six polecats were successfully caught, anaesthetised, PIT 

tagged, sampled for whiskers, fitted with radio collars and released. 

Unfortunately due to the low number of polecats caught and poor rates of radio 

collar retention, it was not possible to analyse the data that was collected as 

part of this study and I decided not pursue a second field season. 
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Chapter 2: Recent history, current status, conservation 

and management of native mammalian carnivore 

species in Great Britain 

This chapter has been published in full as: 

Sainsbury KA, Shore RF, Schofield H, Croose E, Campbell RD, McDonald RA 

(2019) Recent history, current status, conservation and management of native 

mammalian carnivore species in Great Britain. Mammal Review 49: 171—188. 

DOI: https://doi.org/10.1111/mam.12150 

Copyright by John Wiley & Sons Ltd and The Mammal Society. 

Abstract 

After historical declines in population sizes and ranges, we compare and 

contrast the recent history and contemporary variation in the status of Great 

Britain's eight native mammalian carnivore species from the 1960s to 2017. 

Wildcat Felis silvestris conservation status is unfavourable and is masked by 

hybridisation with domestic cats Felis catus. Red foxes Vulpes vulpes remain 

widespread but are currently declining. European otter Lutra lutra, European 

pine marten Martes martes and European polecat Mustela putorius populations 

are characterised by rapid recovery. Otters have almost completely recolonised 

Great Britain, polecats have expanded their range throughout southern Britain 

from refugia in Wales and pine martens have expanded their range from the 

Scottish Highlands. European badgers Meles meles have generally increased in 

population density. Status assessments of stoats Mustela erminea and weasels 

Mustela nivalis are data‐deficient but available evidence suggests that stoats 

may have increased while weasels may have declined.  

Anthropogenic processes influencing carnivore status include legal protections, 

habitat quality, reintroductions, predator control, pollutants, hybridisation and 

diseases and their associated control practices. Population effects of 

contaminants, such as anticoagulant rodenticides, remain poorly characterised. 

The widespread interface with domestic and feral cats makes the wildcat's 

situation precarious. Recent declines in rabbit Oryctolagus cuniculus 

https://doi.org/10.1111/mam.12150


34 

populations are a concern, given that several carnivore species depend on 

them as food.  

We conclude that, with the exception of the wildcat, the status of Great Britain's 

mammalian carnivores has markedly improved since the 1960s. Better 

understanding of the social aspects of interactions between humans and 

expanding predator populations is needed if conflict is to be avoided and long‐

term co‐existence with people is to be possible. 

Introduction 

Eight species of terrestrial mammalian carnivore are native to, and extant in, 

Great Britain (defined here as England, Scotland, Wales and their islands): 

wildcat Felis silvestris, red fox Vulpes vulpes, European otter Lutra lutra, 

European badger Meles meles, European pine marten Martes martes, stoat 

Mustela erminea, weasel Mustela nivalis, and European polecat Mustela 

putorius. Since their arrival 5000–20000 years ago (Montgomery et al. 2014), 

they have had mixed fortunes, depending in part on whether they were reviled 

as vermin, used for sport, valued for fur, appreciated as rodent‐catchers, or 

combinations thereof, during their shared histories with humans (Lovegrove 

2007). Langley and Yalden (1977) illustrated the eighteenth and nineteenth 

century declines of what they termed Britain's ‘rarer carnivores’ (wildcat, pine 

marten and polecat), which they attributed largely to intensive predator control 

by gamekeepers, leading to persistence only in refugia where control was least 

intensive. Badger and otter populations were also greatly reduced but did not 

experience such pronounced range contractions (Cresswell et al. 1989, 

Jefferies 1989), despite local pressures from digging (Cresswell et al. 1989) and 

hunting (Jefferies 1989). By the twentieth century, only fox, stoat, and weasel 

appeared unaffected by control (Tapper 1992). The advent of World War I, 

cessation of sporting activities and the loss of a generation of gamekeepers led 

to a reduction in predator control (Langley & Yalden 1977). Contemporaneous 

reports suggest that the most affected species showed signs of recovery almost 

immediately (Lovegrove 2007). By the 1970s, there was evidence that the 

wildcat, pine marten and polecat were beginning to recolonise their former 

ranges (Langley & Yalden 1977). Otters, however, were experiencing 
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catastrophic decline (Jefferies 1989), later ascribed primarily to exposure to 

organochlorine pesticides (Chanin & Jefferies 1978).  

Since the 1970s, legal, social, and practical developments have altered the 

anthropogenic pressures faced by Britain's carnivores. Management practices 

have changed, with bans on certain traps and toxicants, and greater reliance on 

rearing and releasing pheasants Phasianus colchicus, as opposed to fostering 

wild gamebirds (Tapper 1992). Legal protections have been put in place 

internationally (e.g. the European Union's Habitats Directive 1992) and 

nationally for conservation (e.g. Wildlife & Countryside Act 1981) and on animal 

welfare grounds (e.g. Protection of Badgers Act 1992). Land use change 

(Swetnam 2007) and agricultural intensification have been associated with 

biodiversity loss (Robinson & Sutherland 2002). The mechanisms and 

implications of exposure to some contaminants are now better understood 

(Shore & Rattner 2001), advances in genetics have revealed the extent of 

hybridisation between wild and domestic species (Driscoll et al. 2007, Costa et 

al. 2013), and developments in epidemiology have enhanced knowledge of 

carnivores as disease reservoirs (Delahay et al. 2009).  

A century after the rarest of Britain's carnivores reached their nadir and 40 

years after the publication of the paper by Langley and Yalden (1977), it is 

timely to compare and contrast the status of the eight species. We have 

gathered literature from the 1960s to 2018 and include the latest population 

estimates. We review processes that affect carnivores, positively and 

negatively. Although two non‐native carnivore species, feral ferret Mustela furo 

and American mink Neovison vison, have become established in Great Britain, 

they are not considered here, other than as an influence on native species.  

Methods 

We searched Scopus, Google Scholar, and Google using scientific and 

common names (wildcat, [red] fox, [European] otter, [European] badger, 

[European] pine marten, stoat, weasel, [European] polecat) and the keywords 

‘Britain’, ‘England’, ‘Scotland’ or ‘Wales’ and ‘distribution’, ‘density’ and 

‘monitoring’. Publications until 5 October 2018 comprising systematic surveys of 

distribution and abundance were catalogued. Further publications were added 

from their citations. Ad hoc records were not included because of the difficulty of 
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distinguishing hybrids (wildcats and polecats) and because our objective was to 

assess status using large‐scale accounts.  

Distribution data were digitised (QGIS Development Team 2009) and scaled to 

hectads. Range expansion, if any, was modelled following Preuss et al. (2014), 

using R v3.5.1 (R Core Team 2013). Only surveys using comparable 

approaches, i.e. nationwide surveys using carcass collection and verifiable 

sightings, were included. Central points of the 1960–1975 core ranges (Langley 

& Yalden 1977) were used as the starting point from which later expansion was 

measured. For wildcats the starting point was Scotland, for pine martens it was 

northern Scotland, and for polecats it was central Wales. Range change was 

measured between starting points and range margins in each decade. 

Distances from central points were measured to the centre of each hectad in 

which presence was confirmed in later surveys. Outliers unlikely to be part of a 

contiguous population were removed. Range margins were estimated by fitting 

a gamma distribution to distance to central point data, using the 95th quantile to 

represent the location of the range edge. This approach was preferred as it is 

less sensitive to sampling variation (Preuss et al. 2014). The slope of the 

regression with time was taken as the rate of expansion.  

Population change and current status 

Wildcat Felis silvestris 

The wildcat's range diminished earlier than those of pine marten or polecat. In 

1915, wildcats were limited to the Scottish Highlands, showing the most 

restricted distribution of Langley and Yalden's (1977) rarer carnivores. By the 

1970s, wildcats could be loosely grouped into two populations: a south‐western 

population in the southern Highlands and Argyll and Bute; and a north to north‐

eastern population stretching from the north‐central Highlands to the Grampians 

(Langley & Yalden 1977). Three distribution surveys using carcass collection, 

live trapping, and sightings were undertaken between the 1980s and 2010s 

(Fig. 2.1). An intensive camera‐trapping survey was also carried out by Kilshaw 

et al. (2016) to assess wildcat occupancy with habitat covariates. It is difficult to 

assess changes in wildcat distribution, or to model range expansion, owing to 

the presence of, and changes in reporting of, hybrids (Fig. 2.1). Our model of 
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wildcat range change was inconclusive (expansion rate 0.2 km per year over 

30 years, 95% confidence interval: −4.4 to 4.9, Appendix 2.1b).  

 

Figure 2.1. Wildcat Felis silvestris distribution in Scotland from 1960 to 2008. 

Data are from Langley and Yalden (1977), Easterbee et al. (1991), Daniels et 

al. (1998), Davis and Gray (2010). Black circles indicate presence. All presence 

points were scaled to hectads. On the 2000s map, black circles indicate 

‘probable’ wildcats, grey triangles indicate ‘possible’ wildcats (Davis & Gray 

2010). 1992–1993 dates are the dates of Daniels et al.'s (1998) live trapping.   
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In the 1980s, wildcats were distributed throughout northern and central Scotland 

and there was an increase in records in the east of the country and an 

expansion of range north‐east into Caithness, compared to the 1970s 

(Easterbee et al. 1991). The two population groupings (Langley & Yalden 1977) 

were less evident. Davis and Gray (2010) divided records into ‘possible’ (44%) 

and ‘probable’ (56%) wildcat sightings, using pelage characteristics (Kitchener 

et al. 2005). ‘Probable’ wildcat records were more common north of the 

Highland boundary line than ‘possible’ wildcat records, which appeared more 

frequently in the south and east of Scotland. Wildcat distribution is currently 

assumed to be that of the ‘probable’ records (Scottish Natural Heritage 2013). 

Kilshaw et al. (2016) reported that the probability of wildcat occupancy is 

highest in the central and eastern Highlands, the edges of the Cairngorms, 

along the west coast and in a few areas in the far north. The Scottish Wildcat 

Action project has not received any records verified as wildcats from the 

northern Highlands since 2015 (R. Campbell, unpublished data). It is also 

believed that there are no wildcats south of central Scotland (Kilshaw et al. 

2016). The latest population estimate for wildcats is 200 (95% confidence 

interval: 30–430; Mathews et al. 2018; Appendix 2.2). However, the reliability of 

this estimate is considered to be low and estimates vary, depending on how 

strict a definition of wildcat is used.  

Red fox Vulpes vulpes 

Red foxes are present throughout mainland Great Britain, Anglesey, Isle of 

Wight and Skye (Harris et al. 1995, Webbon et al. 2004). It is likely that the 

species’ value in sport hunting meant that foxes were protected to some degree 

from systematic control and this prevented the historic declines seen in other 

carnivores (Tapper 1992). Foxes feature in numerous surveys, including the 

Game and Wildlife Conservation Trust's (GWCT) National Gamebag Census 

(NGC; Aebischer et al. 2011) and the British Trust for Ornithology's (BTO) 

Breeding Birds Survey (BBS). The NGC provides a long‐term index of 

individuals killed per unit area as part of game management. NGC records of 

foxes killed on game estates suggest a population increase in Britain from the 

1960s, followed by stabilisation from the 1990s to 2009 (Fig. 2.2; Aebischer et 

al. 2011). Data from the BBS over a similar time period partly corroborate this; 

however, recent data indicate a 45% decline in the numbers of foxes seen on 
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BBS sites in England (−41% throughout the UK) from 1996 to 2016, particularly 

after c. 2008 (BTO 2018, Harris et al. 2018). There are no other data to 

corroborate this decline and causes are not understood, though timing is 

coincident with significant declines in BBS records of rabbits Oryctolagus 

cuniculus in England (−44%), Scotland (−82%), and Wales (−48%; Harris et al. 

2018).  

 

Figure 2.2. National Gamebag Census index of red fox Vulpes vulpes bags in 

Great Britain from 1961 to 2009. Index values are relative to the start year, 

which has an arbitrary value of 1. Error bars represent 95% confidence 

intervals. Reproduced by kind permission of the Game and Wildlife 

Conservation Trust (Aebischer et al. 2011). 

Previous causes of fox declines include hunting pressure (Tapper 1992) and 

localised outbreaks of mange caused by Sarcoptes scabiei (Soulsbury et al. 

2007). Some of these declines have been offset by spread into areas or 

habitats where foxes were previously scarce (Baker et al. 2006), such as 

Norfolk (Tapper 1992) and urban spaces (Scott et al. 2014). A survey of 

England and Wales found that in the 2010s foxes were recorded in ~90% of 65 

cities where they had been scarce or absent in the 1980s (Scott et al. 2014). 
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Although urban foxes are increasing, they still comprise a small proportion of 

the total population. Webbon et al. (2004) estimated the total rural fox 

population in Britain to be 225000, whereas the estimate for urban foxes was 

33000 in 1995 (Harris et al. 1995). The latest estimate of the total fox population 

is 357000 (95% confidence interval: 104000–646000; Mathews et al. 2018; 

Appendix 2.2).  

European otter Lutra lutra 

As an apparent competitor with humans for fish, the European otter has long 

been viewed as a pest. Otter hunting began in the Middle Ages (Lovegrove 

2007). Historical records indicated a slow decline in numbers from the late 

eighteenth century onwards, caused by predator control, sport hunting with 

hounds, and pollution (Jefferies 1989). Otters rarely scavenge and have large 

territories, making them less likely than other carnivores to enter baited traps 

(Jefferies 1989). While local extinctions occurred in some catchments, regional 

extinctions were initially avoided (Harris et al. 1995).  

By the late 1950s, hunt records indicated that otters were experiencing sudden 

and rapid decline, with the most severe reductions in southern England 

(Jefferies 1989). Various potential drivers were considered, including habitat 

destruction, disturbance, introduction of American mink, the associated spread 

of canine distemper virus, hunting pressure and the possibility of increased 

mortality arising from the severe winter weather of 1962–1963 (Chanin & 

Jefferies 1978). The timing and sudden onset of the decline, simultaneous to 

that observed in predatory birds, suggested that organochlorine pesticides, 

principally dieldrin, were likely to be responsible for increased mortality (Chanin 

& Jefferies 1978). Dieldrin, introduced in the 1950s as a sheep dip and seed 

dressing, was detected in 81% of otters examined between 1963 and 1973 

(Mason et al. 1986). Voluntary restrictions were placed on dieldrin use in the 

1960s and 1970s, followed by mandatory bans in the 1980s (Macdonald 1983).  

National otter surveys began in the 1970s (Fig. 2.3, Appendix 2.3), when otters 

were recorded at only 6% of sites in England (Lenton et al. 1980), 20% in Wales 

(Crawford et al. 1979) and 57% in Scotland (Green & Green 1980). By the 

1980s, European otters were present at 10% of sites in England (Strachan et al. 

1990), 38% in Wales (Andrews & Crawford 1986) and 65% in Scotland (Green 
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& Green 1987). Reintroductions were carried out in East Anglia, Hertfordshire 

and the upper Thames in the 1980s and early 1990s (Jefferies et al. 1986, 

Harris et al. 1995, Roche et al. 1995). Surveys in the 1990s recorded otters 

present at 23% of sites in England (Strachan & Jefferies 1996), 53% in Wales 

(Andrews et al. 1993), and 88% in Scotland (Green & Green 1997). By the 

2000s, European otters were recorded at 36% of sites in England (Crawford 

2003), 72% in Wales (Jones & Jones 2004), and 92% in Scotland (Strachan 

2007). The most recent surveys found European otters at 59% of the original 

sites surveyed in England (Crawford 2010) and, when accompanied by spot 

checks in areas not covered by the original surveys, these data show that only 

Kent and East Sussex are yet to be substantially recolonised (Fig. 2.3). Otters 

are considered to be at carrying capacity in south‐west England and the Wye 

Valley, with evidence of otter presence at over 80% of sites (Crawford 2010). 

The 2009–2010 survey in Wales indicated otter presence at 90% of sites 

(Strachan 2015). The contemporaneous survey in Scotland indicated that there 

may have been a decline in occupancy since the previous decade, with 

detection at 78–80% of sites surveyed (Findlay et al. 2015). However, there was 

some uncertainty as to whether this was a real decline or a result of inclement 

weather during surveying and reduced detectability (Findlay et al. 2015). Otters 

are now widespread throughout both Wales and Scotland (Fig. 2.3). In England, 

Crawford (2010) estimated that otter distribution had expanded at approximately 

3.6km per year, and this trend is expected to lead to complete recolonisation of 

England, and therefore Great Britain, by 2030 (Crawford 2010).  

Dieldrin is still detectable in otters (Chadwick 2007) but is not considered likely 

to affect populations at the observed trace levels (Crawford 2010). The 

presence of invasive American mink, which became widespread during the 

otter’s absence, has not impeded otter recolonisation, probably because otters 

cause shifts in mink behaviour (Harrington et al. 2009a). The latest population 

estimate for otters in Britain is 11000, although the reliability of this estimate is 

considered to be very low (Mathews et al. 2018; Appendix 2.2).  
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Figure 2.3. European otter Lutra lutra distribution in Great Britain from 1977 to 

2012. Maps recreated from National Otter Surveys of England (Lenton et al. 

1980, Strachan et al. 1990, Strachan & Jefferies 1996, Crawford 2003, 2010), 

Scotland (Green & Green 1980, 1987, 1997, Strachan 2007, Findlay et al. 

2015), and Wales (Crawford et al. 1979, Andrews & Crawford 1986, Andrews et 

al. 1993, Jones & Jones 2004, Strachan 2015) using data provided by 

Environment Agency (2018), Scottish Natural Heritage, Natural Resources 

Wales and Joint Nature Conservation Committee (2018). Black circles indicate 

presence. Grey circles indicate surveyed areas where otters were recorded as 

absent. Blank areas do not indicate absence. 1980s Scotland survey did not 

include the Western Isles, Northern Isles or the Scottish Highlands (Green & 

Green 1987). In England, surveys were carried out in alternate 50 × 50km 

squares until the most recent survey (Crawford 2010).   
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European badger Meles meles 

European badger populations declined during the nineteenth century to the 

extent that the species were considered uncommon (Cresswell et al. 1989). 

Declines were due to a combination of control by gamekeepers, sett 

disturbance and badger baiting (Wilson et al. 1997). The extent of pressure 

varied regionally. For example, in East Anglia, intensive activity by 

gamekeepers reduced numbers to a 10th of those in neighbouring counties 

(Harris 1993).  

By the 1970s, badgers were more common in south‐west and central England, 

and central and north Wales (Appendix 2.3), but remained unrecorded in parts 

of East Anglia and northern Scotland (Neal 1972). In the 1980s, badger 

distribution expanded and the population was estimated to be 250000 in Great 

Britain, although gaps remained in London, East Anglia, Lincolnshire, 

Lancashire, and northern Scotland (Cresswell et al. 1990). By 1994–1997, the 

number of badger social groups in Britain had increased by 24%, although 

colonisation of new areas was minimal (Wilson et al. 1997).  

In 2006–2009, surveys of mainland Scotland indicated that badger main sett 

numbers had increased since the 1990s, though differences in methodology 

made direct comparisons difficult (Rainey et al. 2009). In England and Wales, 

numbers of badger social groups increased by 88% (equivalent to 2.6% per 

annum) between 1985–1988 and 2011–2013 (Judge et al. 2014). The 

magnitude of changes in sett density varied by region, due to a combination of 

landscape and local effects. England saw a 103% increase, whereas in Wales 

densities remained stable (Judge et al. 2014). Combining results from Scotland 

(Rainey et al. 2009), with Judge et al. (2014), leads to an estimate of 81000 

(95% confidence interval: 75400–86600) badger social groups in Britain by 

2013. Judge et al. (2017) combined their earlier sett survey with analysis of 

social group size variation, to derive a population estimate of 485000 individual 

badgers in England and Wales. Even allowing for methodological differences, 

evidence suggests that badger populations increased substantially in England 

and Wales between the 1980s and 2011–2013 (Cresswell et al. 1990, Judge et 

al. 2017).  
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European pine marten Martes martes 

When the European pine marten population reached its nadir in c. 1915, its 

range was restricted to the north‐west of the Scottish Highlands and small, 

isolated areas of northern England and north Wales (Langley & Yalden 1977). 

By 1975, there was some spread eastwards into the Scottish Grampians, while 

the Welsh population was not thought to have expanded and English records 

were limited to sporadic sightings in Yorkshire and the Lake District (Langley & 

Yalden 1977).  

By the 1980s in Scotland, the main populations were still confined to north of 

the Great Glen, though pine marten occurrence was nearly continuous 

throughout the central and western Highlands (Velander 1983). As the 

prevailing view was that this northern population was too remote to recolonise 

southern Scotland, a reintroduction took place in Galloway Forest, southwest 

Scotland in 1980 and 1981 (Shaw & Livingstone 1992). In the 1990s, pine 

martens expanded south of the Highlands into Argyll and Bute, Stirling and 

Perth and Kinross. By 2013, they had been recorded throughout much of 

central and eastern Scotland, on Skye and Mull and beyond the release sites in 

Galloway (Fig. 2.4; Croose et al. 2013, 2014). Our model of range expansion 

estimates that between 1975 and 2015 the Scottish pine marten population 

expanded at a rate of 1.7km per year (95% confidence interval: 0.8–2.7km, 

Appendix 2.1b). Despite repeated surveys during the 1980s and 1990s 

(Appendix 2.3), evidence of pine marten presence in England and Wales 

remained limited, suggesting that at best only a few low‐density populations 

remained. There is occasional evidence of pine martens from Shropshire and 

Hampshire, potentially the result of covert releases. Recent evidence in 

Northumberland indicates that European pine martens are expanding south 

through the Borders, recolonising parts of northern England (Vincent Wildlife 

Trust [VWT], unpublished data). Between 2015 and 2017, 51 pine martens were 

translocated from Scotland to Wales in order to reinforce populations there; this 

has proven successful with high survival and breeding in the wild (VWT, 

unpublished data). The latest population estimate for pine martens is 3700 

(95% confidence interval: 1600–8900; Mathews et al. 2018; Appendix 2.2).  
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Figure 2.4. European pine marten Martes martes distribution in Great Britain 

from 1960 to 2018. Data from Langley and Yalden (1977), Velander (1983), 

Bright and Harris (1994), McDonald et al. (1994), Balharry et al. (1996), 

Strachan et al. (1996), Birks and Messenger (2010), Croose et al. (2013, 2014), 

and VWT (unpublished data). Black circles indicate presence. All presence 

points were scaled to hectads. Only verified records in Birks and Messenger 

(2010) were included. No surveys were carried out in Scotland in the 2000s, 

and the 2010s Scotland surveys included only central and southern Scotland 

(Croose et al. 2013, 2014).   
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Stoat (ermine) Mustela erminea 

There are no national surveys for the stoat and so data are from the GWCT's 

NGC. Stoats are thought to be common and widespread throughout Great 

Britain, including on the Isle of Wight and the Scottish islands of Shetland, Islay, 

Jura, Mull, Skye, Raasay and Bute (McDonald & King 2008a). In 2010, stoats 

were sighted for the first time on Mainland, Orkney and an eradication 

programme is underway there in an attempt to protect ground‐nesting birds, 

Orkney voles Microtus arvalis orcadensis and the predatory birds that eat them 

(Fraser et al. 2015). In spite of intensive predator control in the nineteenth 

century, stoat numbers did not exhibit the declines seen amongst the larger 

mustelids (Tapper 1992). This is likely to be due to the stoat's high productivity, 

reducing potential for culling to cause decline, and its mobility, facilitating 

immigration into areas where numbers are reduced (McDonald & Harris 2002).  

Stoat numbers were severely reduced by myxomatosis in rabbits (Sumption & 

Flowerdew 1985). One game estate in Suffolk reported a tenfold reduction in 

the numbers of stoats killed in the years after the initial outbreak (Tapper 1992). 

Stoats were, and remain, extremely reliant on rabbits (McDonald et al. 2000) 

and the loss of this important food source was believed to have impaired 

productivity and survival (Sumption & Flowerdew 1985). The NGC shows that 

indices of the numbers of stoats killed per unit area on game estates increased 

steadily from the 1960s (Fig. 2.5; Aebischer et al. 2011), alongside rabbit 

recovery, though the NGC reported another dip in stoats killed in the 1980s 

(Aebischer et al. 2011). In a comparative study of stoat and weasel diets 

between the 1960s and 1990s, McDonald et al. (2000) concluded that there 

was little evidence that reductions in prey were causing this downturn, some of 

which may have been attributable instead to changes in trapping effort affecting 

the NGC (McDonald & Harris 1999). Since then, there has been a steady 

increase in stoats killed on game estates from the 1990s to 2009 (Fig. 2.5). The 

impact on stoats of the recent apparent reductions in rabbit numbers is 

unknown. The latest population estimate for stoats is 438000 (Mathews et al. 

2018), unchanged from that of Harris et al. (1995), indicating the sparsity of 

data. Both of these estimates are considered to have low reliability (Appendix 

2.2).  
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Figure 2.5. National Gamebag Census indices for stoats Mustela erminea and 

weasels Mustela nivalis in Great Britain from 1961 to 2009. Black diamonds are 

for stoats and grey circles are for weasels. Gamebags are indices of the 

numbers killed per unit area on game estates. All index values are relative to 

the start year, which has an arbitrary value of 1. Error bars represent 95% 

confidence intervals. Data reproduced by kind permission of the Game and 

Wildlife Conservation Trust (Aebischer et al. 2011).  

Weasel (common weasel, least weasel) Mustela nivalis 

Weasel population trends are also from the GWCT's NGC. Weasels are 

relatively prolific breeders and, similar to stoats, did not appear to experience 

nineteenth century declines (Tapper 1992). They are also thought to be 

common and widespread throughout mainland Great Britain (McDonald & King 

2008b). In contrast to stoats, weasel abundance increased during and after 

myxomatosis, likely a result of reduced rabbit grazing, increased rough 

grassland and increased abundance of field voles Microtus agrestis (Jefferies & 

Pendlebury 1968), which are frequent prey of weasels (McDonald et al. 2000).  
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The NGC reveals a decline in indices of weasels killed per unit area on game 

estates from the 1960s onwards (Fig. 2.5). Models of weasel populations 

suggest that this decline is unlikely to be the result of trapping by gamekeepers 

as, similar to the stoat, the weasel's high productivity and mobility buffer 

populations against intense culling (McDonald & Harris 2002). Weasel 

productivity is particularly sensitive to prey abundance (King 1980) and 

populations fluctuate with vole abundance (Tapper 1979). It is therefore 

possible that there has been a negative effect of rabbit recovery on field vole 

populations and, consequently, weasels (Sumption & Flowerdew 1985). Weasel 

indices from the NGC started to increase again from the 1990s but are still 

below those recorded in the 1960s (Fig. 2.5). The latest population estimate for 

weasels is 450000 (Mathews et al. 2018). In common with stoats, this estimate 

is the same as that of Harris et al. (1995), indicating the paucity of data for 

these species (Appendix 2.2).  

European polecat Mustela putorius 

Having reached their nadir in c. 1915, European polecat populations began to 

recover following the alleviation of predator control during the early twentieth 

century, the banning of gin traps in 1958, and the recovery of rabbit populations 

after the myxomatosis epizootic of the mid‐twentieth century (Langley & Yalden 

1977). Rabbits are also important prey for polecats (Birks & Kitchener 1999) 

and, although rabbits were previously abundant, they were catastrophically 

reduced as the disease swept across the country (Sumption & Flowerdew 

1985). Rabbit numbers began to recover by the 1960s and by the 2000s were 

approaching pre‐myxomatosis levels (Aebischer et al. 2011), although more 

recently rabbits have experienced significant declines (see the red fox section). 

Reports suggest that polecats were already expanding their range by the 1960s 

but rabbit and polecat recovery are likely to be closely linked (Sumption & 

Flowerdew 1985).  

National polecat surveys have taken place between the 1980s and 2010s 

(Appendix 2.3). From the 1990s, surveys attempted to distinguish between 

polecats and hybrid polecat‐ferrets, based on a pelage classification system 

(Birks & Kitchener 1999). Classifications of carcasses in this way and, more 
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recently, using molecular genetic techniques, suggest that polecat‐ferrets are 

more prevalent at the edge of the polecat's range (Costa et al. 2013).  

In the 1980s, polecats occupied most of Wales and the border counties of 

Shropshire and Worcestershire (Tapper 1992). By the 1990s, polecats were 

present in all counties on the English side of the Welsh border (Birks & 

Kitchener 1999). The 2000s were characterised by increased density of records 

in Derbyshire, Buckinghamshire, Berkshire, Wiltshire, Dorset, and Hampshire 

(Birks 2008). Unofficial releases led to polecats becoming established in 

Cumbria, Argyll, and Perthshire, well outside of the core range, though the 

pelage characteristics of some of these animals suggested they were from 

captive stock (Birks 2008). By 2015, polecats had recolonised most of central 

and southern England (Fig. 2.6) and remained widespread in Wales and the 

West Midlands (Croose 2016). The most noticeable gaps in current distribution 

are in northern England and Scotland, potentially due to difficulties in dispersing 

around conurbations. Overall, the polecat's range expanded eastwards at 

4.9km per year between 1975 and 2015 (95% confidence interval: 2.6–7.1km, 

Fig. 2.6, Appendix 2.1b). This is faster than the pine marten's expansion, which 

is not unexpected; polecats have faster reproductive ability and greater flexibility 

in habitat requirements than pine martens (Birks 2015, 2017). The latest 

population estimate for polecats is 83300 (95% confidence interval: 68000–

99000; Mathews et al. 2018; Appendix 2.2).  
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Figure 2.6. European polecat Mustela putorius distribution in Great Britain from 

1960 to 2016. Data are from Langley and Yalden (1977), Blandford (1987), 

Tapper (1992), Birks and Kitchener (1999), Birks (2008) and Croose (2016). 

Black circles indicate presence. Grey triangles indicate polecat‐ferret hybrids. 

All presence points were scaled to hectads.   
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Anthropogenic processes affecting carnivore status 

Legislation 

There are various legal protections for carnivores in Great Britain (Fig. 2.7, 

Appendix 2.4). Protections that ban direct control and disturbance are likely to 

aid species recovery where these pressures were a cause of population 

decline. Range expansions and population increases have occurred for some 

species (notably otters, badgers, pine martens and polecats) following the 

introduction of legal protection. However, legal protection is less effective where 

non‐compliance is high, or where other factors beyond the legal mandate are 

limiting populations. Hybrid animals create a particular legal difficulty, as hybrids 

are not usually protected, even when sympatric ‘pure’ wild types are 

(Trouwborst 2014). ‘Pure’ animals may be confused with hybrids by hunters, 

leading to inadvertent killing. While badger recovery in Great Britain has been 

coincident with legislation, badger populations elsewhere have not increased 

following legal protection. For example, badger populations in Northern Ireland 

appear to be constrained by climate, habitat, farming practices, or food 

availability, rather than by persecution (Reid et al. 2012).  

Habitat quantity, quality and connectivity 

Habitat loss and fragmentation are major contributing factors to biodiversity loss 

and can be more significant for habitat specialists (otters and pine martens) 

than for generalists that are better able to exploit modified landscapes (foxes, 

stoats, and weasels; Bright 1993, Crawford 2010). Habitat fragmentation may 

increase intra‐guild predation among carnivores, as has been observed 

between foxes and pine martens (Lindström et al. 1995). To counter habitat 

loss, a series of international and national regulations aimed at protecting 

habitat extent and quality have been implemented over the last six decades, 

including the European Union's Habitats Directive and Water Framework 

Directive. The result has been a wide‐ranging protected area network that 

includes Special Areas of Conservation, Ramsar wetlands, national parks, and 

Sites or Areas of Special Scientific Interest. Existing habitats have been 

enriched via the creation and maintenance of den sites for otters and pine 

martens (Chanin 2003, Croose et al. 2016) and the promotion of wildcat‐friendly 

forestry management in wildcat priority areas (Scottish Natural Heritage 2013). 
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More generally, afforestation since the 1950s, notably in Scotland, has provided 

additional, if not ideal, habitat for pine martens (e.g. Croose et al. 2013, 2014). 

Even with the protected area network, a lack of connectivity, through 

fragmentation or via natural or anthropogenic barriers, may prevent dispersal. 

Many monitoring tools rely on collecting road casualty carcasses, testament that 

these species are vulnerable to road mortality (Appendix 2.3). Roads, urban 

areas, and large continuous tracts of other unfavourable habitat may act as 

physical barriers to recolonisation. Genetic studies on badgers and wildcats 

suggest that while large roads can have a significant impact on gene flow, they 

are not impermeable, as animals can utilise crossing points (Frantz et al. 2010, 

Hartmann et al. 2013). Recolonisation of areas that require crossing of 

landscape barriers may therefore be possible, but the rate of expansion is likely 

to depend upon barrier size and landscape configuration.  

Agricultural intensification and its consequences for biodiversity are well 

documented (e.g. Tattersall & Manley 2003). Agri‐environment schemes aimed 

at mitigating the effects of agricultural intensification have been implemented 

since the 1980s, the most recent being the Environmental Stewardship scheme, 

which was introduced in 2005. Although Environmental Stewardship has been 

criticised for its limited benefits and high costs (Kleijn et al. 2011), studies show 

that it can lead to increases in small mammal abundance (Broughton et al. 

2014), potentially benefitting their predators (Johnson & Baker 2003, Askew et 

al. 2007).  
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Figure 2.7. Timeline of interventions providing legal protection for native mammalian carnivores in Great Britain. 
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Translocations, releases and escapes 

Range expansion and density increase have, in some carnivore species, been 

assisted by human intervention. Formal conservation translocations have been 

carried out for otters and pine martens. These may use captive‐bred stock, such 

as for otters (Jefferies et al. 1986) and possible future wildcat releases (Scottish 

Natural Heritage 2013), or translocations from the wild, such as for pine 

martens (Shaw & Livingstone 1992, VWT unpublished data). Rehabilitated 

animals are also released from wildlife rescue centres (Kelly et al. 2010, 

Mullineaux 2014). Furthermore, unofficial or accidental releases have occurred; 

examples include polecat releases in Cumbria and Argyll (Birks & Kitchener 

1999, Fig. 2.6) and the arrival of stoats on Orkney (Fraser et al. 2015). Other 

unofficial releases have been smaller in scale, e.g. there are sporadic records of 

pine martens in England, where presumably individuals have escaped or been 

released from fur farms or wildlife collections (Birks & Messenger 2010, Jordan 

et al. 2012). The extent of, and survival rates of animals from, unofficial 

releases are unknown, but releases of sufficient scale can sometimes aid 

expansion. Polecat populations derived from such releases are thriving in 

Cumbria but apparently dwindling in Argyll (Fig. 2.6, VWT unpublished data).  

Direct control 

Nineteenth century declines in carnivore populations are testimony to the 

impact of intensive control measures, as are the resurgences of some species 

once control diminished (Langley & Yalden 1977). While managing predators 

remains central to game management, the intensity of control (with localised 

exceptions) is unlikely ever to return to pre‐1915 levels (Tapper 1992). While 

some British carnivores are protected from unlicensed predator control, the 

trapping or shooting of foxes, stoats and weasels is not regulated in practice, 

other than to prevent cruelty. Land managers applying control must comply with 

welfare regulations and ensure that control is sufficiently discriminatory to avoid 

taking legally protected species. Wildcats (Macdonald et al. 2010), otters 

(Crawford 2010), pine martens (Strachan et al. 1996) and polecats (Packer & 

Birks 1999) are legally protected from unlicensed control, but are sometimes 

caught in traps, nets or snares set for other species. The potential for 

unintentional capture may be greatest in areas that are newly recolonised, as 
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practices that were previously unproblematic may need to be adapted. For 

species with low reproductive rates, such as pine martens, any additional 

mortality might impede recovery. The current extent of any intentional or 

unintentional killing of protected carnivores is unclear. Collaboration between 

carnivore conservationists, farmers and managers of game estates and 

fisheries is required to find workable solutions for reducing conflicts with 

expanding carnivore populations. Mitigation methods include electric fencing to 

prevent carnivores gaining access to pheasant pens (Balharry & Macdonald 

1996), exclusion barriers for spring traps (Short & Reynolds 2001) and 

diversionary feeding and translocations. There is little evidence of the uptake or 

efficacy of such mitigation methods in practice (Balharry & Macdonald 1996, 

Thirgood et al. 2000, Graham et al. 2005).  

Environmental pollutants 

Predators are at particular risk from bioaccumulating and biomagnifying 

pollutants. Carnivores may be exposed to insecticides herbicides, fungicides 

and biocides used for agricultural purposes, a wide range of industrial organic 

contaminants, toxic metals, and human and veterinary pharmaceuticals (Shore 

& Rattner 2001, Harrington & Macdonald 2002, Shore et al. 2014). There are 

relatively few data on current exposure of British carnivores to most of these 

(Appendix 2.5).  

Although dieldrin is most commonly cited as the cause of otter decline, 

polychlorinated biphenyls (PCBs) may also have contributed by impairing 

reproduction in individuals not poisoned by dieldrin (Mason & Wren 2001). The 

combined effect of dieldrin and PCBs on otters may have been analogous to 

how dieldrin (acute mortality) and dichlorodiphenyltrichloroethane (DDT; 

eggshell thinning leading to reproductive failure) caused catastrophic declines in 

predatory birds (Ratcliffe 1980, Newton 1986). Otters in Britain are also 

frequently exposed to polybrominated diphenyl ethers (PBDEs; Pountney et al. 

2015), which are structurally similar to PCBs and may have a cumulative effect 

with PCBs (Hallgren & Darnerud 2002), though there is no evidence that 

exposure of otters in Britain to PCBs and PBDEs is impairing their reproductive 

output (Pountney et al. 2015).  
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Second generation anticoagulant rodenticides (SGARs) are widely used to 

manage rodent populations (Dawson et al. 2003). SGARs disrupt the blood‐

clotting mechanism (Watt et al. 2005) leading to fatal haemorrhaging. Evidence 

of sub‐lethal effects caused by exposure is uncertain (Van den Brink et al. 

2018). Predators are exposed secondarily by consuming contaminated target 

prey (rats Rattus norvegicus, mice Mus domesticus) and non‐target prey (mice 

Apodemus spp., voles; Tosh et al. 2012, Van den Brink et al. 2018). SGAR 

residues have been detected in most British mammalian carnivores (Appendix 

2.5) and rates of exposure in polecats have increased over the last 20 years 

(Sainsbury et al. 2018). While mortality caused by rodenticide does occur in 

mammalian carnivores in Britain (Appendix 2.5), the extent of this mortality and 

whether it affects populations, remains unknown.  

Hybridisation 

In Britain, hybridisation occurs between wildcats and domestic cats (Driscoll 

et al. 2007) and between polecats and feral ferrets (Costa et al. 2013). There is 

also evidence of limited historical hybridisation between European pine martens 

and American martens Martes americana that had presumably escaped from 

fur farms (Kyle et al. 2003). Hybridisation between wildcats and domestic cats 

occurs throughout the wildcat's range (Macdonald et al. 2010). Domestic cat 

DNA is commonly, if not universally, present in Scottish wildcats (Driscoll et al. 

2007, Senn & Ogden 2015, Senn et al. 2018), which have experienced the 

highest levels of introgression among wildcats in Europe (Hertwig et al. 2009). 

Classifications of wild‐living cats using combinations of skull morphology, 

pelage and genetic techniques suggest that, depending on the definition used, 

between 40% and 90% of wild‐living cats in Scotland do not qualify as ‘true’ 

wildcats (Kitchener et al. 2005). Hybrids occupy similar habitat to wildcats, 

masking potential range expansion, impeding population estimation and 

perpetuating introgression (Kilshaw et al. 2016). Currently, a ‘trap, neuter, 

vaccinate and return’ programme for farm and feral cats is underway in five 

priority wildcat areas in the Scottish Highlands, with the aim of reducing 

hybridisation (Scottish Wildcat Action 2018). In comparison to the wildcat, 

polecat‐ferret hybridisation appears less problematic. Analysis by Costa et al. 

(2013) of polecats collected during the 1990s and 2000s found that 31% of wild 

polecats were hybrids, with the highest frequency of hybrids at the eastern 
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edges of the polecat's range. First‐generation hybrids were not detected, 

suggesting that the incidence of hybridisation may have been greater in the past 

(Costa et al. 2013).  

Disease and associated interventions 

Disease, both naturally occurring and in association with human intervention, 

can reduce carnivore populations directly. For example, in 1994–1995, 

sarcoptic mange reduced fox numbers in Bristol by over 95% (Soulsbury et al. 

2007). Carnivore populations may also be affected indirectly by disease if it 

alters the abundance of prey or other sympatric species, as evidenced by 

changes in stoat and weasel abundance associated with myxomatosis in rabbits 

(Aebischer et al. 2011). Recent and current effects of rabbit calicivirus on rabbit 

populations in Britain, and the potential impact on dependent carnivores, are 

unquantified, although it is possible that rabbit diseases and the associated 

declines may be contributing to coincident reductions in fox numbers (Harris et 

al. 2018).  

Other indirect consequences may arise from human intervention to control the 

risk of transmission of zoonoses or diseases of livestock. Wild species may 

become persistent reservoirs for zoonotic disease (Hassell et al. 2017) and this 

can lead to control efforts, such as for managing bovine tuberculosis (bTB) in 

badgers (Wilson et al. 2011). Bovine tuberculosis is enzootic in a large part of 

the badger population in England and Wales and badgers are implicated in the 

spread of the infection to cattle (Delahay et al. 2013). Methods used to control 

bTB differ between the countries of Great Britain. Scotland, officially free of bTB 

since September 2009, has no proactive policy for managing the disease in wild 

animals, the Welsh government has pursued a badger vaccination strategy 

since 2012 (Welsh Government 2012) and in England proactive, large‐scale 

badger culling is one of a range of policies aimed at eradicating bTB (DEFRA 

2011). From 2013 to 2017 inclusive, 34103 badgers were killed as part of 

licensed culls in England (Giesler & Ares 2018) and 32601 badgers were killed 

in 2018 (DEFRA & Natural England 2018). Culling aims to reduce badger 

populations by around 70% in licensed areas and draws on evidence derived 

from the Randomised Badger Culling Trial (Bourne et al. 2007). This Trial 

showed that reduced badger numbers resulted in increased fox numbers in cull 
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areas (Trewby et al. 2008), indicating that there may be broader implications for 

carnivore community structures emerging from badger culling.  

Conclusions 

Our aim was to compare and contrast the current status of Britain's mammalian 

carnivores and the anthropogenic processes that affect their populations. 

Overall, the outlook for British carnivores is more positive than in the account of 

decline drawn by Langley and Yalden (1977). Two of their three ‘rarer 

carnivores’ (pine marten and polecat) have staged remarkable recoveries, while 

the third (wildcat) continues to be threatened by hybridisation. Meanwhile, akin 

to pine martens and polecats, the formerly rare and restricted otter has 

recovered much of its former range and is increasing in density. Of the 

nationally distributed species, badgers have increased in population density but 

are subject to increasingly widespread, intensive culling; foxes have increased 

but appear to be in a current period of decline; and stoats and weasels remain 

data‐deficient. The recent apparent declines in rabbit records are a cause for 

concern, given the number of native carnivores that depend on them as food. 

Since the 1970s there have been significant advances in our understanding of 

the anthropogenic processes that affect carnivore populations. If humans are to 

coexist with more abundant carnivores, in more places and in greater diversity, 

greater emphasis will need to be placed on the social aspects of these 

processes, whether concerning best‐practice use of rodenticides, selective 

predator control practices, minimisation of hybridisation or management of 

disease risk.  
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Chapter 3: Recovery of European polecats (Mustela 

putorius) in Great Britain: stable isotopes indicate 

ecological changes over time 

This chapter is to be submitted to the Journal of Animal Ecology as:  

Sainsbury KA, Drake L, Shore RFS, Schofield H, Croose E, Hantke G, 

Kitchener AC, Sykes N, McDonald RA (in prep) Recovery of European polecats 

(Mustela putorius) in Great Britain: stable isotopes indicate ecological changes 

over time.  

Abstract 

Following severe declines in the nineteenth century, the European polecat 

Mustela putorius has been returning to much of its former range in Great Britain. 

To examine spatial, temporal and ecological variation in resource use by 

polecats during their recovery, we analysed variation in stable isotope ratios 

and isotopic niche characteristics of polecats collected from 1960 to 2016. δ15N 

in whiskers was lower at the frontline of their expansion compared to their core 

range and the size of this effect varied among decades. δ13C was lower in all 

decades compared to the 1960s. δ13C declined with distance from the polecat’s 

historical refugium and this effect was greater in males than in females. Within 

individual variation in δ13C was greater at the frontline of expansion than in the 

core. Male polecats exhibited significantly less within-individual variation in δ15N 

than female polecats. There was a significant difference between male and 

female isotopic niche size at the core of the polecat range, but not at the 

frontline. The isotopic niche sizes of females were significantly smaller in the 

1960s than all other decades, whereas niche sizes of male polecats remained 

relatively unchanged throughout the period of range expansion. This study 

highlights the interacting effects of sex, time and position in a dynamic range in 

this generalist predator. Our results indicate that, even in a generalist predator, 

the distinct ecological requirements of the two sexes may need to be 

considered separately during the process of population recovery.   

  



62 

Introduction  

Contrary to global declines in populations of mammalian carnivores (Schipper et 

al. 2008), and in contrast to their fortunes elsewhere in Europe (Croose et al. 

2018), the European polecat Mustela putorius is currently recovering its range 

in Great Britain (Sainsbury et al. 2019). In the 1970s the species’ distribution 

was largely restricted to Wales and the Welsh border counties (Langley & 

Yalden 1977) and successive monitoring studies have since shown how 

polecats have recolonised much of central, southern and eastern England 

(Sainsbury et al. 2019). The manner of polecat recolonisation is consistent with 

simple diffusion models, in which increases in population density within settled 

areas lead to a ‘wave-front’ of expansion at the edge of the range, akin to 

colonisations of invasive species (Skellam 1951, Elton 1958, Andow et al. 1990, 

Hastings et al. 2005). Invasive species typically display flexibility in behaviour 

(Sol & Lefebre 2000, Sol et al. 2002, Bodey et al. 2010), diet and habitat 

selection (Ehrlich 1989, Jeschke & Trayer 2006, Ibarra et al. 2009) and while 

polecats are a native species in Britain, it is possible that the process of 

colonisation has involved similar plasticity in their patterns of resource use. 

Expanding populations of invasive species go through a staged process of 

colonisation and naturalization as they become established (Richardson et al. 

2000). Overall habitat use and selection in low density populations is generally 

less well understood than in saturated habitats at carrying capacity (Greene & 

Stamps 2001). A variety of factors, including search costs (Stamps et al. 2005) 

and conspecific cues (Stamps & Krishnan 2005) may affect habitat selection in 

dispersing individuals, especially those at the leading edge of an expanding 

range. Polecat range expansion in Britain therefore provides a rare opportunity 

to study ecological variation associated with population recovery and range 

expansion in a native species.  

Stable isotope analysis provides a quantitative means of examining the 

processes underpinning ecological change (English et al. 2018). Stable 

isotopes of consumer tissues reflect variation in what they consume over the 

period of tissue synthesis in a predictable way (Peterson & Fry 1987). This 

property has led to the now commonplace application of stable isotope 

approaches to provide insight into resource use (e.g. Peterson & Fry 1987, 

Hopkins & Kurle 2016), behaviour change (Bodey et al. 2010), as well as 



63 

contemporary (Hobson 1999, Rubenstein & Hobson 2004) and historical 

movements of species (Hoppe et al. 1999, Pellegrini & Longinelli 2008, Sykes 

et al. 2016). Ratios of the heavier to lighter stable isotopes of 13C to 12C and 15N 

to 14N, denoted as δ13C and δ15N respectively, can provide powerful measures 

for exploring diversity in resource use (DeNiro & Epstein 1981). Progressive 

increases in δ15N occur with trophic level of consumers as a result of the 

enrichment of 15N that takes place through trophic transfer between prey and 

predator while variation in δ13C tends to reflect diversity in resource production, 

e.g. between marine and terrestrial systems or between plants with C3, C4 or 

CAM photosynthetic pathways (Smith & Epstein 1971, DeNiro & Epstein 1978, 

1981). Stable isotope ratios may be analysed individually or in combination to 

create “isospaces” that present quantitative indicators of variation in some 

dimensions of the ecological niche (Jackson et al. 2011). Metabolically inert 

keratinous tissues such as vibrissae (whiskers), claws or nails fix the 

consumer’s isotope ratios during their synthesis (Bearhop et al. 2003, Newsome 

et al. 2007, Robertson et al. 2013) and such keratinous tissues, along with bone 

collagen, have the dual advantages of preserving well and being frequently kept 

by museums. This makes stable isotope approaches a particularly useful 

investigative tool for species that are otherwise difficult to study for ecological 

reasons (Crawford et al. 2008) and when applied to temporal series of museum 

specimens, stable isotope analyses have the potential to reveal long-term 

ecological trends that would otherwise be unobservable (English et al. 2018).  

In common with many other carnivorans (Karanth & Chellam 2009), polecats 

occur at relatively low population densities and are hard to observe directly 

(Blandford 1987, Birks & Kitchener 1999). As a result, the polecat is one of 

Britain’s least studied mammals and its ecology remains poorly characterised 

(Blandford 1987, Birks & Kitchener 1999). Indirect means of studying polecats 

are therefore important tools for understanding their ecology. Polecats have 

been described as generalists in terms of diet (Blandford 1987, Lodé 1997, 

Santos et al. 2009) and habitat selection (Lodé 1994, Birks & Kitchener 1999). 

In Britain, they specialise on rabbits Oryctolagus cuniculus, although brown rats 

Rattus norvegicus, other small mammals and amphibians are frequently eaten 

(Birks & Kitchener 1999). Dietary studies from the 1980s and 1990s, using gut 

contents and faecal samples, showed that while females may eat smaller-sized 
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prey than males, there was no statistical difference in diet between the sexes 

(Blandford 1986, Birks & Kitchener 1999). Male home ranges usually 

encompass multiple female territories (Blandford 1987) and studies in mainland 

Europe have shown that home range sizes can vary with resource availability 

(Weber 1989a). Although males and females utilise similar proportions of 

habitat types, radio-tracked polecats in France have demonstrated between-sex 

temporal and spatial segregation, particularly when resources are less 

abundant (Lodé 1996a). In the 1950s, rabbit populations in Britain crashed 

following the myxomatosis epizootic (Sumption & Flowerdew 1985) and 

recovered between the 1970s and 1990s, but are currently experiencing a 

further period of decline (Harris et al. 2018). These marked changes in the 

availability of rabbits, as an important food resource for polecats, may have led 

to variations in resource use during polecat expansion. 

As polecats have recolonised Britain from west to east, they have moved from 

landscapes largely comprising unimproved and semi-improved pasture and 

woodlands in Wales to more diverse mixed farming and improved grasslands in 

central England and onwards to the predominantly arable landscapes in the 

east of England (Cole et al. 2015, Rae 2017). To date, studies of polecat 

behaviour and ecology in Britain have focused initially on animals inhabiting 

their refugium in central Wales (Walton 1968, Blandford 1986) and latterly to the 

English counties that border Wales (Birks & Kitchener 1999). Now that the 

polecat’s range once again extends from the west coast to the east coast of 

Britain, there is an opportunity to explore any changes in resource use that may 

have accompanied the expansion process either on a west-east gradient, or 

between animals at the frontline of expansion compared to the centre of the 

range.  

Therefore, our research objectives were to assess whether polecats displayed 

any between-sex differences in resource utilisation and how these differences 

may have varied through time and space, particularly as these relate to the 

species’ expanding range as it has recovered from near extirpation. To achieve 

this, we took whiskers from polecats collected between 1960 and 2016 and 

analysed variation in carbon and nitrogen stable isotope ratios. These 

specimens have been collected as part of recurring distribution surveys to 

monitor polecat range expansion (e.g. Walton 1968, Birks & Kitchener 1999, 
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Birks 2008, Croose 2016) and their skins are preserved in the collections of 

National Museums Scotland. We compared variation in δ15N and δ13C and the 

isotopic niche sizes of polecats at the frontline of the species range as it 

expanded to that at the centre of the range over time, as we hypothesised 

polecats may demonstrate greater variation in resource use at the frontline of 

their expansion. We compared changes over time between the sexes as we 

hypothesised that behavioural differences between the sexes may be 

associated with different patterns of resource use during expansion. We did not 

aim to reconstruct the specifics of polecat diet but instead have explored broad 

trends and discuss our findings in the context of what is known about the 

availability of resources to polecats over the period of their recovery. 

Methods 

Sampling approach 

All samples were from polecats in the collections of National Museums 

Scotland. We sampled whiskers from polecats that died in the 1960s, 1990s, 

2000s, 2010s. These four decades were chosen as they contained sufficient 

numbers of polecats from across the whole of what was the species’ range at 

the time of collection (Walton 1968, Birks & Kitchener 1999, Birks 2008, Croose 

2016). Specimens classified as ferrets were excluded from the analysis. Most of 

the animals died as a result of road-traffic collisions, with a minority due to being 

killed by dogs, traps, shot or poisoned (Birks & Kitchener 1999, Birks 2008, 

Croose 2016). Museum records included the location and date of carcass 

collection. At least two whiskers were taken at random from each specimen and 

stored at room temperature. 

Stable isotope analysis 

Whiskers were cleaned in distilled water and freeze dried for 24 hours. One 

whisker per animal was selected at random. Starting at the base, whiskers were 

cut into ~1mm sections. Serial sections were put into a tin cup until the sample 

weight reached ~0.6mg (mean±SE: 0.615 ± 0.004 mg) when the cup was 

sealed for analysis. These steps were repeated until the whole whisker was 

used. Some whiskers only produced one or two samples of sufficient mass, 

whilst longer whiskers resulted in between three and five. All samples were 
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placed under continuous-flow isotope ratio mass spectrometry with a Sercon 

Integra 2 Elemental Analyser at the University of Exeter (samples from the 

1960s, 1990s and 2000s) or on a Thermoquest EA1110 elemental analyser 

linked a to a Europa Scientific 2020 isotope ratio mass spectrometer at Elemtex 

Ltd Cornwall UK (samples from the 2010s) for analysis of δ15N and δ13C. δ15N 

and δ13C levels are expressed as δ-values as a per mil (‰) deviation from 

international reference standards (Vienna PeeDee Belemnite for carbon and air 

for nitrogen) (Mariotti 1983): 

𝝏𝟏𝟓𝑿‰ = [
( 𝑿𝟏𝟓 𝑿𝟏𝟒⁄ )𝒔𝒂𝒎𝒑𝒍𝒆

( 𝑿𝟏𝟓 𝑿𝟏𝟒 )𝒔𝒕𝒂𝒏𝒅𝒂𝒓𝒅 − 𝟏]⁄
 ] × 𝟏, 𝟎𝟎𝟎 

Replicate analysis of standards on University of Exeter instrument (using 

Alanine) returned standard deviations of 0.149 for δ15N and 0.151 for δ13C. 

Analysis of standards on Elemtex instrument (USGS 40, USGS 41, USGS 41A 

and an in-house bovine liver standard) returned standard deviations of 0.153 – 

0.179 for δ15N and 0.054 – 0.121 for δ13C. The mean difference between actual 

and measured values on the University of Exeter instrument was 0.027‰ 

(standard deviation 0.152) for δ15N and -0.008‰ (standard deviation 0.055) for 

δ13C. The mean difference between the actual and measured values on the 

Elemtex equipment was -0.017‰ (standard deviation 0.167) for δ15N and -

0.014‰ (standard deviation 0.108) for δ13C. The variation due to instrument 

accuracy was <=5% of individual whisker variation and therefore the decision 

was made not to correct for any differences in estimates between instruments. 

Data analysis 

All data were analysed using R [version 3.5.1] and R Studio [version number 

0.99.896] (R Core Team 2013). Separate generalised linear mixed models were 

built using δ13C and δ15N as the response variables. Sub-samples of whiskers 

were used as repeated measures of the individual polecat and so polecat 

identity was included as a random effect. Within-individual variation was also 

investigated, using the standard deviation of δ13C or δ15N as response 

variables. The standard deviations were based on three basal samples for each 

individual, thereby excluding any animals with fewer than three sections and 

excluding distal samples from any animals with more than three sections. 

Separate general linear models (GLM) with normal error structures were built 
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for the standard deviations of δ13C and δ15N. The response variables were log-

transformed to conform with assumptions of normality.  

Fixed variables included in all models were: decade of collection (1960s / 1990s 

/ 2000s / 2010s), distance from the species’ refugium (km), position in the range 

(core / edge), sex (male / female) and interactions between the effects of sex 

and each of decade, distance to refugium and position in the range. The 

species’ refugium was taken as the centroid of the 1915 range (Langley & 

Yalden (1977) and the distance from this point to the collection location was 

included to represent changes in space as polecats expanded outwards from 

their refugium in Wales. Distances were calculated in Quantum GIS (QGIS 

Development Team 2009). Animals that were not considered part of the 

expansion from the 1915 stronghold, for example those from Scotland and from 

a discrete Cumbrian population that was reintroduced during the twentieth 

century, were excluded from these analyses. Position in the range was included 

to subdivide space between the established parts of the polecat range. This 

variable was established by creating a polygon of the known polecat distribution 

for each decade (1960s - Langley & Yalden 1977; 1990s – Birks & Kitchener 

1999; 2000s – Birks 2008; 2010s – Croose 2016) and drawing a 20km 

perimeter around the inside of the range extent. Collection locations that were 

more than 20km inwards from the range edge were considered to be from an 

established part of the range (“core”), polecats less than 20km from the range 

edge were considered to represent the frontline of the range expansion 

(“edge”). The western side of the core range extended all the way to the Welsh 

coastline, i.e. no edge boundary was allocated to this side, as west Wales has 

been part of the polecat’s established range since the 1960s. Other “edge” parts 

of the range became “core” in future decades as the species’ range expanded.  

Although we accounted for any effects of expansion into new areas with the 

distance from refugium variable within our GLMMs, we also carried out a 

separate comparison between a subset of samples from a single 100 x 100km 

area on the Welsh/English border (OSGB grid reference SO) and the rest of the 

dataset to check that temporal effects were consistent between areas with and 

without polecat expansion. This grid square was selected as polecats had been 

present there throughout the four decades and it maximised the number of 

points available for comparison across all four decades. It encompasses the 
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eastern edge of the polecat range in the 1960s, but a central part of the polecat 

range in all later decades (Fig. 3.1). We created boxplots for δ13C and δ15N for 

both the whole dataset and the subset and compared the two in order to check 

whether the effects of time differed when range expansion was excluded. 

Models were built using lme4, MuMIn and car packages. Models were checked 

for spatial autocorrelation and collinearity (none was evident). Collection 

locations were not strongly correlated and we concluded there was no spatial 

structure to the data. As models were found to be better (lower AIC) without 

including spatial correlation we excluded it. Explanatory variables were 

standardised in models (Gelman 2008). Standardised conditional average 

models were created from a top model set which included all models with an 

increase in Akaike’s Information Criterion (∆AIC) values of no more than two 

when compared to the best model. Model fit was assessed using QQ plots.  

Samples from three decades (1960s, 1990s and 2000s) were taken from 

specimens that had undergone a museum preservation process. Although the 

whiskers were not subject to specific treatments, the whole pelts, of which the 

whiskers were part, had been treated in turn with solutions of salt and formic 

acid, aluminium triformate, sodium carbonate and were then oiled with 

Lipederm. To test for the potential effect of preservation on isotopic signatures, 

a subset of 23 animals from the 2010s from which both fresh and preserved 

whiskers were taken, were analysed to compare the values of preserved and 

fresh samples. Separate linear regression models (LMs) for δ13C and δ15N were 

created. The LMs showed that preservation had no significant effect for δ13C 

(coefficient estimate: 0.17, 95% confidence intervals: -0.09 – 0.44) and were 

borderline for δ15N (coefficient estimate: -0.29, 95% confidence intervals: -0.55 

– -0.02). indicating that correction factors were not required to account for the 

preservation process for δ13C but might be for δ15N. To this end, we checked 

the effect of preservation by adding correction factors derived from the effect 

sizes of preservation treatment from these models to the δ13C and δ15N values 

from fresh material from the 2010s and rerunning the main statistical analysis. 

As there was no significant difference evident in the model selection or the size 

of the effects in average models between models including the correction 

factors and those without, we did not include the correction factors in the final 

models reported here. 
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Analysis of isotopic niches 

Polecat isotopic niches were represented by Bayesian variants of standard 

ellipse areas (SEAB) estimated using the statistical package “Stable isotope 

ellipses in R” (SIBER) (Jackson et al. 2011). SEABs were calculated using the 

per specimen mean value of all sections in each polecat whisker. Separate 

SEABs were created for each decade, sex, position in range, sex*decade and 

sex*position in range and decade*position in range. Significant differences 

among the SEABs were calculated by comparing the differences in SEAB within 

each category of polecats. Using the example of “decade”, the SEABs were 

estimated for 1960s, 1990s, 2000s and 2010s using 160000 SEAB replicates 

calculated as part of the Bayesian methodology. Then the replicate SEABs for 

the 1990s, 2000s and 2010s were each subtracted from the 1960s SEABs and 

then the replicate SEABs from the 1990s were subtracted from the 2000s and 

2010s and so on until all combinations of categories had been compared. The 

mean difference in SEAB size between each category and associated credible 

intervals were then calculated for each category.  Mean differences where 

credible intervals did not cross zero were considered to be significant. We 

checked for a three-way interaction effect between sex*decade*position in 

range, but as the direction of the effects of core and edge were the same for 

males and females in all decades with data available, we concluded there was 

none.   

Results 

Whiskers from 256 polecats (178 male and 78 female) were analysed, of which 

34 were from the 1960s, 73 from the 1990s, 61 from the 2000s and 88 were 

from the 2010s (Fig. 3.1). At the time of collection, 188 were from the core of 

the species’ range and 73 from the edge. There were 117 polecats with three or 

more whisker segments (97 male and 20 female) of which 18 were from the 

1960s, 38 from the 1990s, 43 from the 2000s and 18 from the 2010s. 78 

animals were from the core, 39 from the edge.  
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Figure 3.1. Map of the collection locations of polecat specimens by decade. 

Specimens collected in the 1960s are indicated by triangles (n=34), in the 

1990s by crosses (n=73), in the 2000s by diamonds (n=61) in the 2010s by 

circles (n=88). The square marks out the area (OSGB SO) of the subset of 

samples that were analysed to compare the temporal effects on isotopes 

without any effect of range expansion. The grey star in mid-Wales marks the 

central point of the polecat’s range in 1915. 

Variation in δ13C and δ15N 

For analysis of variation in δ15N (Table 3.1a), Decade and Position in range 

appeared in the two top models and the Decade*Position in range interaction in 

one. The average model showed that δ15N values were lower (15N was 

depleted) at the edge when compared to the core of the range and that the 

magnitude of this difference varied among decades (Table 3.1b, Fig. 3.2).  

  



71 

(A)  

(B)  

Figure 3.2. Boxplots of (A) mean δ15N and (B) mean δ13C values for polecat 

whiskers. Plots show the median values and interquartile ranges for the 

combined effects of decade (1960s, 1990s, 2000s and 2010s) and position in 

range (white boxes = core and grey boxes = edge).  
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Table 3.1. Models of variation in stable isotope ratios of polecat whiskers in 

Great Britain, 1960-2016. a) Top models (∆AIC <2) explaining variation in i) 

δ15N, ii) δ13C, iii) standard deviation of δ15N and iv) standard deviation of δ13C 

and b) Average model coefficients and importance of variables included in the 

top models. Top model sets are based on ∆AIC <2. i) and ii) are generalised 

linear mixed models with individual polecat as a random effect. iii) and iv) are 

generalised linear models with log transformed response variables. Conditional 

average results of standardised models are presented. Base model is decade: 

1960s, position: core, sex: female. Bold indicates parameters where CI do not 

cross zero. Importance is the number of models in which each variable features. 

Table 3.1a 

 

  

Model  

Covariates 

 

df 

Log 

likelihood 

 

AIC 

 

∆AIC 

 

Weight 

δ15N Decade + position in range 7 -829.7 1673.7 0.0 0.7 

 Decade + position in range + decade*position in 

range 

10 -827.5 1675.5 1.7 0.3 

δ13C Decade + sex + position in range + distance + 

decade*position in range + sex*distance 

13  -1018.9 2064.3 0.0 0.3 

 Decade + sex + position in range + distance + 

decade*position in range + sex*position in range 

+ sex*distance 

14 -1018.1 2064.9 0.5 0.3 

 Decade + sex + position in range + distance + 

decade*position in range + decade + position in 

range + sex*distance 

16 -1016.4 2065.7 1.3 0.2 

 Decade + sex + position in range + 

decade*position in range + decade + position in 

range 

14 -1018.61 2065.9 1.5 0.1 

 Decade + sex + position in range + 

decade*position in range 

11 -1022.0 2066.3 1.9 0.1 

SD 

δ15N 

Sex  3 13.5 -21.0 0.0 1.0 

SD 

δ13C 

Position in range 3 -8.1 22.5 0.0 0.4 

 Null 2 -9.5 23.1 0.6 0.3 

 Decade + position in range 6 -5.7 24.1 1.7 0.2 

 Decade  5 -6.9 24.3 1.8 0.2 
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Table 3.1b 

The degree of 15N depletion at the edge versus the core was greatest in the 

1960s and lowest in the 2010s. For analysis of variation in δ13C, there were five 

evenly weighted top models (Table 3.1a). Of the variables that appeared in the 

top models (Decade, Sex, Position in range and all two-way interaction terms), 

Decade was in all six models (Table 3.1b), the Position in range*Sex interaction 

appeared in only one model and was of low importance, while all the other 

variables featured in at least four of the top models. In the average model, there 

was a significant effect of Decade, in which δ13C was significantly lower (13C 

was depleted) in all decades compared to the 1960s (Table 3.1b). This effect 

was greatest in the 2010s compared to the 1960s and least in the 2000s 

compared to the 1960s. There was also a significant effect of Distance from 

refugium*Sex, in which male δ13C declined more (became more depleted) than 

female δ13C the further away from the 1915 refugium that the polecats were 

 

Model 

 

Parameter 

Coefficient 

estimate 

 

SE 

2.5% 

CI 

97.5% 

CI 

 

Importance 

δ15N (intercept) 9.83 0.22 9.40 10.27 - 

 Decade (1990s) -0.91 0.26 -1.42 -0.41 1.0 (2) 

 Decade (2000s) -0.81 0.27 -1.33 -0.28 1.0 (2) 

 Decade (2010s) 0.33 0.27 -0.19 0.86 1.0 (2) 

 Position in range (edge) -0.84 0.45 -1.72 0.04 1.0 (2) 

 Decade(1990s)*position(edge) 0.93 0.52 -0.10 1.96 0.3 (1) 

 Decade(2000s)*position(edge) 0.86 0.50 -0.11 1.84 0.3 (1) 

 Decade(2010s)*position(edge) 0.98 0.48 0.04 1.92 0.3 (1) 

δ13C (intercept) -21.73 0.46 -22.63 -20.83 - 

 Decade (1990s) -2.70 0.50 -3.69 -1.71 1.0(5) 

 Decade (2000s) -1.82 0.51 -2.82 -0.83 1.0(5) 

 Decade (2010s) -3.32 0.54 -4.38 -2.27 1.0(5) 

 Sex (male) -0.26 0.46 -1.17 0.64 1.0(5) 

 Position in range (edge) -1.01 0.63 -2.24 0.23 1.0(5) 

 Distance to refugium 0.93 0.39 0.17 1.68 0.7(3) 

 Decade(1990s)*position(edge) 0.17 0.69 -1.19 1.54 1.0(5) 

 Decade(2000s)*position(edge) 1.31 0.65 0.04 2.58 1.0(5) 

 Decade(2010s)*position(edge) 0.22 0.63 -1.02 1.46 1.0(5) 

 Sex (male)*distance to 

refugium 

-1.04 0.42 -1.87 -0.21 0.7(3) 

 Sex(male)*position(edge) 0.55 0.55 -0.53 1.64 0.3(1) 

 Decade (1990s)*sex(male) -0.77 0.71 -2.15 0.61 0.3(2) 

 Decade (2000s)*sex(male) 0.15 0.79 -1.40 1.71 0.3(2) 

 Decade (2010s)*sex(male) -0.60 0.83 -2.22 1.02 0.3(2) 

SD 

δ15N 

(intercept) 0.53 0.05 0.43 0.62 - 

 Sex (male) -0.15 0.05 -0.26 -0.05 1.0(2) 

SD 

δ13C 

(intercept) 0.43 0.06 0.30 0.57 - 

 Position in range (edge) 0.08 0.05 -0.02 0.19 0.6(2) 

 Decade (1990s) 0.09 0.08 -0.06 0.24 0.3(2) 

 Decade (2000s) 0.16 0.07 0.01 0.31 0.3(2) 

 Decade (2010s) 0.12 0.09 -0.05 0.29 0.3(2) 
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collected (Table 3.1b, Fig. 3.3). The confidence intervals for all of the other 

variables crossed zero and were not considered significant.  

 

 

Figure 3.3. Relationship between mean δ13C values for polecat whiskers and 

distance from 1915 refugium (in 100kms) for male (blue) and female (red) 

polecats. Bands show 95% confidence intervals. 

We did not find any consistent patterns of isotopic difference for either δ13C and 

δ15N between the subset of data that included polecats from the area (OSGB 

SO) where they had been present for four decades and the rest of the data 

which included polecat expansion (Appendix 3.1). The boxplots indicated there 

was a difference in the mean δ13C and δ15N values between the subset and 

whole dataset in the 1960s, when this square largely constituted the edge of the 

species’ range, that was not present in subsequent decades. In later decades 

the subset area is in the core of the range and the rest of the data comprises a 

mixture of core and edge polecats.  
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Individual whisker variation 

For analysis of variation in the standard deviation (SD) of δ15N, there was one 

top model, which included Sex as the only variable (Table 3.1a). Males had 

lower SD (less within-individual variation) in δ15N than females (Table 3.1b). For 

analysis of the standard deviation of δ13C, there were four top models (Table 

3.1a) and in the average model, polecats collected at the edge of the range 

exhibited greater SD in δ13C than those collected in the core (Table 3.1b). 

Polecats from the 1990s, 2000s and 2010s had greater SD in δ13C than those 

collected in the 1960s, although the difference was only significant between the 

2000s and 1960s. 

Analysis of isotopic niche size 

Analysis of variation in isotopic niche size by sex and decade showed there was 

no significant variation in male standard Bayesian ellipse areas (SEABs) among 

decades but that female SEABs varied among the decades (Fig. 3.4). There 

was a significant increase in female SEABs between the 1960s and 1990s 

(mean difference = 1.74‰2, 95% credible intervals: 0.05 to 3.50‰2), between 

the 1960s and 2000s (mean difference = 4.12‰2, 95% credible intervals: 1.34 

to 8.47‰2) and between the 1960s and 2010s (mean difference = 3.47‰2, 95% 

credible intervals: 1.55 to 5.63‰2). Male SEABs were significantly greater than 

those of females in the 1960s (mean difference = 3.39‰2, 95% credible 

intervals: 1.32 to 5.85‰2) but not in other decades.  

SEABs differed between the sexes at the edge of the range compared to the 

core: SEABs were significantly larger for males than females at the core (Fig. 

3.4 mean difference = 2.07‰2, 95% credible intervals: 0.19 to 3.91‰2). There 

was a similar between-sex difference at the edge, although the difference was 

not statistically significant (Fig. 3.4, mean difference = 3.51‰2, 95% credible 

intervals: -0.12 to 6.91‰2). Male edge SEAB was also significantly larger than 

the female core SEAB (mean difference = 3.61‰2, 95% credible intervals: 1.05 

to 6.57‰2). There was no significant difference in SEAB sizes between polecats 

at different positions in range either for males (Fig. 3.4, mean difference = -

1.53‰2, 95% credible intervals: -4.46 to 0.98‰2), or for females (Fig. 3.4, mean 

difference = -0.10‰2, 95% credible intervals: -3.30 to 2.36‰2).  
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Figure 3.4. Isotopic niche space, measured by Bayesian Standard Ellipse 

Areas (SEABs), occupied by polecats in Great Britain, categorised by decade, 

sex and position in range. SEABs were calculated from δ13C and δ15N values 

from polecat whiskers collected from the 1960s to 2010s. The core range = >20 

km from the edge of the range, edge = <20 km of the range edge. A) SEABs for 

male and female polecats by decade, B) SEABs for male and female polecats 

by position in range and C) SEABs for polecats at the core and edge of the 

range by decade. Black dots indicate the mode SEAB and grey bars are 

credible intervals (50%, 95% and 99%). Red crosses indicate the size of the 

standard ellipse areas estimated using the raw data.  
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Comparisons of SEABs between the edge and the core of the range through 

the decades showed SEABs of polecats in the edge exhibited greater variation 

in size over time (1.79‰2 to 6.38‰2) than SEABs of polecats in the core 

(3.27‰2 to 5.33‰2; Fig. 3.4). SEABs in the core were significantly smaller in the 

1990s than in the 2010s (mean difference = -1.98‰2, 95% credible intervals: -

3.83 to -0.36‰2). Analysis of SEABs of polecats at the edge showed that 

isotopic niche size was significantly smaller in the 1960s than in 1990s (mean 

difference = -5.54‰2, 95% credible intervals: -12.50 to -1.34‰2) and the 2000s 

(mean difference = -4.42‰2, 95% credible intervals: -7.94 to -1.39‰2) and that 

in the 2000s SEABs were significantly larger than in the 2010s (mean difference 

= 2.80‰2, 95% credible intervals: 0.03 to 6.29‰2). SEABs at the edge were 

significantly larger than the core in the 1990s, (mean difference = 4.24‰ 2, 95% 

credible intervals: 0.41 to 11.10‰2) but not in any other decade. 

Discussion 

As polecat populations and ranges have expanded in England and Wales from 

the 1960s to the 2010s, we have identified that location, sex and time interact to 

affect isotopic measures of variation in polecat ecology. 

Collectively, our models of δ15N, δ13C, within-individual variation in δ13C and of 

isotopic niche size suggest that position in range influenced resource use by 

polecats during their range expansion. Several of the models (SEAB and within-

individual variation in δ13C) indicated that resource use was more variable at the 

edge of the polecat range than at the core. δ15N values were lower at the edge 

than the core and this difference was greatest in the 1960s. The fact that we did 

not observe any significant effects of distance from the 1915 stronghold in our 

models of δ15N or individual variation in δ15N suggests that the exact 

geographical location of the animal’s collection contributed less to variation in 

these metrics than whether the polecat was located at the front line of 

expansion or in a more core part of the range. 

Foraging theory dictates that generalist predators, such as polecats, should 

consume abundant and high-quality resources to maximise net energy intake 

(Pyke et al. 1977). This behaviour has been observed in dietary studies of other 

mustelids such as American martens Martes americana during seasonal 

resource fluctuations (Ben-David et al. 1997) and American mink Neovison 
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vison switching to eat the most abundant prey during the process of invasion 

(Ibarra et al. 2009). There is no reason to think that food availability would be 

consistently different at the (moving) edge of the polecat’s range compared to 

the core over time, particularly given that the edge becomes core in subsequent 

decades. However, population densities are typically lower towards the 

periphery of species’ ranges (Lomolino & Channell 1995) and we expect that 

this principle would apply to polecats as, through the process of recolonisation, 

polecats were expanding into areas without other conspecifics. Reduced 

population densities at the edge may have permitted easier access to some 

resources than was later available as the edge became core and intraspecific 

competition increased with polecat abundance. Changes to relative trophic 

position associated with varying population densities has been observed in 

invasive carnivorous Argentine ants Linepithema humile, Tillberg et al. (2007) 

observed that the relative trophic position of the ants was higher at the frontline 

of an invasion, but declined after population establishment, due to resource 

depletion.  

Dietary and habitat niche breadth and behavioural flexibility are important 

attributes of successful colonisers (Ehrlich 1989, Sol & Lefebre 2000). In a 

study of brown rats Rattus norvegicus released on rat-free islands in New 

Zealand, Russell et al. (2008) found some rats dispersed far further than would 

be expected of normal ranging behaviour in higher density, established 

populations. It is possible that the greater isotopic variation evident in polecats 

at the edge of their range is a result of exploratory behaviours that are manifest 

at low population densities. Overall our results suggest that resource utilisation 

varies markedly depending on position within a dynamic, expanding species 

range. 

We predicted that polecat isotopic niche sizes would increase over time as 

polecats expanded into more intensely managed habitats from the pastures and 

woodlands of Wales and that male polecats would have greater isotopic niche 

sizes over time, due to their larger territories and exposure to a greater variety 

of basal resources than females. Contrary to this, we observed significant 

variation in the isotopic niche size of female polecats over time, whereas males 

had relatively consistent SEABs (Fig. 3.3). Our models of within-individual 

variation of δ15N indicate that isotopic variation was greater for females than 
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males, and there was no evidence that this effect varied over time. It is possible 

that this is a result of variations in territory sizes of females, which may have 

altered depending on the availability of resources in different habitat types. 

Female polecats had smaller isotopic niches in the 1960s than in any other 

decade (Fig. 3.3) but isotopic niche size increased subsequently, suggesting 

that female polecats diversified their resource utilisation after expanding out of 

the species’ refugium in Wales. Increases in dietary niche breadth have been 

observed in American mink, during a period of colonisation (Sidorovich et al. 

2010), although these increases were not observed to be different between the 

sexes.  

Intraspecific resource partitioning by prey size is common between the sexes in 

mustelids (McDonald 2002), although it does not always occur; stoat diet differs 

between the sexes, but weasel diet does not (McDonald et al. 2000). The 

relative scarcity of rabbits in the 1960s may have resulted in partitioning of 

resources between male and female polecats that subsequently diminished as 

rabbit numbers recovered. Anecdotal reports suggest that rabbit populations in 

Wales were particularly severely affected by myxomatosis compared to the rest 

of Britain (Blandford 1986). The loss of rabbits in Wales was not considered to 

have had a devastating effect on the relict polecat population there as polecats 

were able to exploit alternative prey (Blandford 1986). Dietary studies of polecat 

stomach contents and scats have demonstrated an increase in the proportion of 

lagomorphs occurring in polecat diet over time (Blandford 1986, Birks & 

Kitchener 1999), consistent with increases in rabbit populations over the same 

time period (Aebischer et al. 2011). It is notable that there was also an increase 

between the 1960s and 1990s in the proportion of rabbit in the gut contents of 

stoats, which in Britain have a more similar dietary niche to polecats than other 

mustelids (McDonald et al. 2000). In Britain, stoat records appear to be 

positively correlated with rabbit numbers (Sumption & Flowerdew 1985, 

Sainsbury et al. 2019). It is possible that rabbit recovery in Wales also fuelled 

polecat expansion by increasing the abundance of prey, leading to increased 

polecat numbers locally and enabling colonisation of new areas at the periphery 

of the species’ range (e.g. Brown 1984).  

Our findings are inconsistent with previous point-in-time estimates of polecat 

diets in Britain, where no significant differences between the sexes were 
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observed (e.g. Birks & Kitchener 1999). This may be due to the limitations of 

dietary analyses using gut contents and faecal samples, which can only reveal 

items consumed during a brief window of time and may be biased by the 

digestibility of items consumed. Overall the variations in size of female SEABs 

indicate plasticity of resource use through a period of change. It is unclear why, 

given the reported scarcity of rabbits, males do not exhibit the same variation in 

isotopic niche size, even in the 1960s when compared to other decades. This 

may be a function of intraspecific competition whereby males have preferential 

access to resources (compared to females) when resources are less abundant 

– for example Lodé (1996) found that intraspecific tolerance between male and 

female polecats increased with resource abundance.  

We have revealed differences in polecat resource use between the sexes and 

in different parts of their range through time. The coincident expansion of 

polecats, changes in δ15N and recovery and decline of rabbit populations 

suggest that rabbits may have been a major driver of polecat expansion. Our 

results also suggest that the current declines in rabbit populations in Britain 

(Harris et al. 2018) have the potential to affect polecat resource use, particularly 

in females. Our study highlights the utility of forensic analysis of long-term 

historical datasets in understanding the ecology underpinning changes in 

species abundance and distribution. In particular that, even for a generalist 

predator like the polecat, it should not be assumed that males and females use 

resources in the same way, as resource utilisation may vary between the sexes 

in time and space throughout the process of recovery. 
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Chapter 4: The diets of European polecats Mustela 

putorius in Great Britain during 50 years of population 

recovery 

This chapter has been submitted to Mammal Research as: 

Sainsbury KA, Shore RF, Schofield H, Croose E, Hantke G, Kitchener AC, 

McDonald RA (in prep.) The diets of European polecats Mustela putorius in 

Great Britain during 50 years of population recovery. 

Abstract 

Polecats Mustela putorius are recolonising their former range in Great Britain, 

following severe historical declines. Two potential risks to their continuing 

recovery relate to their diet: i) population fluctuations of rabbits Oryctolagus 

cuniculus, which are particularly important prey for polecats in Great Britain, and 

ii) secondary exposure to second generation anticoagulant rodenticides, via 

consumption of contaminated rodents. We analysed stomach contents from 99 

polecats collected from 2013 to 2015 and compared our results with earlier 

studies of polecat diet in Great Britain, carried out since the 1960s. Lagomorphs 

were the most abundant prey in the polecats we examined (66% frequency of 

occurrence (FO), followed by amphibians/fishes (13% FO), other mammals 

(12% FO) and birds (7% FO). Diet varied seasonally, with lagomorph 

occurrence highest in the spring and summer and lowest in the autumn. Dietary 

niche breadth was greatest in the 1960s, when rabbits were most scarce. Niche 

breadth did not differ between the 1990s and the 2010s, indicating that polecat 

diets have not diversified during current declines in rabbit populations. Rodents 

did not increase as a proportion of diet between the 1990s and 2010s and 

remain at <10% of diet. This indicates that rodents need not constitute a high 

proportion of polecat diet for these carnivores to be exposed to rodenticides, 

potentially limiting the effectiveness of management actions designed to 

minimise polecat exposure to contaminated rodent prey.  
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Introduction 

Successfully colonising species often demonstrate ecological flexibility during 

the process of population establishment and expansion (Rosecchi et al. 2001, 

Lee & Gelembiuk 2008). Some species have flexible foraging strategies that 

allow them to exploit variation in resource availability across temporal and 

spatial scales (Zhou et al. 2011). The European polecat Mustela putorius is a 

medium-sized generalist carnivoran that is currently recolonising its former 

range in Great Britain following severe declines, mostly in the nineteenth 

century (Langley & Yalden 1977, Sainsbury et al. 2019). A significant period of 

this range expansion has coincided with extreme population fluctuations of 

rabbits Oryctolagus cuniculus (Sumption & Flowerdew 1985, Aebischer et al. 

2011, Harris et al. 2018), which are a major source of food for polecats in Great 

Britain. It is unknown whether polecats in Britain may have altered their feeding 

strategy in response to recent rabbit declines and whether these declines may 

have impacted upon their continued recolonisation.  

Foraging theory predicts that animals will maximise their net energy intake 

(MacArthur & Pianka 1966, Pyke et al. 1977, Perry & Pianka 1997), which may 

be maximised via different foraging strategies. For instance, specialist predators 

have narrow dietary niches and will forage for specific prey species, 

independent of their availability, whereas generalists have comparatively large 

dietary niches and will adapt their feeding strategy based on what prey are 

available (Futuyma & Moreno 1988, Amundsen 1995). Polecats exhibit dietary 

flexibility across their European range and are usually described as generalist 

predators (Erlinge 1986, Lodé 1995, Baghli et al. 2002, Santos et al. 2009, 

Malecha & Antczak 2013). Rodents and amphibians are common food items in 

all regions (Lodé 1997), although polecats appear to specialise on lagomorphs 

in Britain and the Mediterranean (Birks & Kitchener 1999, Santos et al. 2009) 

and on amphibians in Switzerland (Weber 1989b). However, it may be that any 

impression of specialisation simply reflects the relative abundance of a given 

prey item in a local place or time (Lodé 1995). This foraging strategy is thought 

to allow polecats to occupy and exploit diverse habitats, such as lowland, 

grassland, farmland and riparian habitats (Blandford 1987) and may play an 

important role in enabling population persistence (Lodé 1997). 
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In Great Britain, studies since the 1960s have found that mammals, primarily 

lagomorphs, comprise the majority of polecat dietary items (Walton 1968, 

Blandford 1986, Birks & Kitchener 1999), though there is some evidence of 

seasonal preferences for rodents (including brown rats Rattus norvegicus, and 

field voles Microtus agrestis) particularly in the winter months (Birks 1998, Birks 

& Kitchener 1999). Consumption of rodents is thought to be the major route by 

which polecats are exposed to second generation anticoagulant rodenticides 

(SGARs) in Britain (Shore et al. 2003). Exposure of polecats to SGARs 

increased 1.7 fold between 1993 and 2016 and currently some 78% of polecats 

appear to be exposed (Sainsbury et al. 2018) and it may be that this increase 

has been a result of an increase in the proportion of rodents in polecat diet.  

In the 1950s, rabbit populations crashed by up to 95% across Great Britain as a 

result of a myxomatosis epizootic (Sumption & Flowerdew 1985), and this is 

known to have affected the diet composition and population dynamics of other 

small carnivorans, such as stoats Mustela erminea and weasels M. nivalis 

(McDonald et al. 2000). Rabbit populations recovered to their pre-myxomatosis 

levels by the 1990s (Aebischer et al. 2011) but since then, rabbit numbers have 

declined across Britain (England: -44%; Scotland: -82%; and Wales: -48%; 

Harris et al. 2018), possibly as the result of rabbit haemorrhagic disease (RHD), 

which has devastated rabbit populations across mainland Europe (Lees & Bell 

2008). In Spain, carnivorans have shown reduced consumption of rabbits, in 

response to declines in rabbit populations following RHD outbreaks (Ferreras et 

al. 2011). While between-sex dietary differences have been observed in some 

mustelids (McDonald 2002), there is no evidence of this occurring in polecats 

(e.g. Blandford 1986, Birks & Kitchener 1999). However, it is possible that as 

rabbits have again declined in numbers, there may be evidence of more 

pronounced dietary differences between male and female polecat diet.  

To explore dietary variation and niche breadth in polecats through the process 

of polecat population recovery and rabbit population variation, we analysed gut 

contents from polecats collected from 2013 to 2016 and compared our findings 

with historical analyses of polecat diet in Britain in the 1960s (Walton 1968), 

1980s (Blandford 1986) and 1990s (Birks & Kitchener 1999). We hypothesised 

that i) rabbits will be reduced in importance in polecat diet compared to the 

1990s, in response to reduced rabbit abundance; ii) rodent prey may have 
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increased as a proportion of diet over the same period; iii) polecat dietary niche 

breadth will have fluctuated over time in line with known long-term variations in 

rabbit abundance but this may not be equally reflected in males and females. 

We discuss our findings in the context of prospects for polecat recovery. 

Methods 

Polecat carcasses, predominantly of animals killed on the road, were collected 

across Great Britain during the Vincent Wildlife Trust’s national polecat survey 

2012 – 2016 (Croose 2016). Date of death and location were recorded on 

collection. Animals were stored frozen until necropsy, which was carried out at 

National Museums Scotland. Stomach contents were collected from 99 polecats 

(Fig. 4.1) and refrozen prior to dietary analysis. Stomach contents were soaked 

in biological detergent for 24 hours, rinsed through a 53μm sieve, then stored in 

70% ethanol. Identifiable animal remains (undigested body parts, fragments of 

bone, feathers, fur, individual hair and insect remains) were separated from 

unidentifiable tissues. The first ten processed samples were analysed for 

earthworm (Lumbricidae) chaetae and other microscopic remains (after 

Reynolds & Aebischer 1991). As no identifiable microscopic remains were 

found, the rest of the analyses only considered macroscopic remains. Plant 

debris was considered to be ingested when catching prey (Walton 1968) and 

was not included in diet composition quantification.  

Fur remains were identified using guard hair cuticle patterns after Teerink 

(1991). All loose hairs were collected. Cuticle patterns were examined under a 

microscope at x40 magnification. Mammal remains were identified to species 

level, except for rabbits and brown hares Lepus europaeus, which were not 

separated and were classified as lagomorphs. Most bones were fragmented 

and unidentifiable but those that were intact, together with teeth, were identified 

as insectivore, rodent, larger mammal or amphibian. Bird remains were 

identified to order using Day (1966). Amphibians were determined by skin 

texture and, where possible, by webbing on feet. Fishes were identified by their 

bones and scales but not identified to species. Previous studies have indicated 

that polecat guts mostly only contain one item (Weber 1989b, Birks & Kitchener 

1999). This was true in the current study, with only three stomachs (4%) 

containing remains of more than one identifiable item. 
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Figure 4.1. Map showing the origin of polecat carcasses collected between 

2013 and 2016. Sample size = 97, as two polecats came from unverified 

locations. Shaded circles indicate polecats with items in their stomach, white 

circles indicate empty stomachs.  
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Two methods were used to assess accuracy when identifying guard hair cuticle 

pattern. First, 10% of samples were randomly selected for a second blind 

analysis by the same analyst; the correspondence in the results was 100%. A 

third analysis, again blind, was carried out by a second researcher, this time on 

10% of samples that contained hard parts and 20% of the samples that relied 

on hair identification. There was a 100% match between analysts for samples 

containing hard parts, an 86% correspondence for hair samples and a 

calculated Cohen’s Kappa test of interrater agreement of 0.7, which is 

“substantial” according to Landis & Koch (1977). The level of overlap in 

identification indicated that identification of guard hair was sufficiently robust for 

inclusion in our data analysis. 

All analyses were carried out in R (R Core Team 2013). Diet was summarised 

as the percentage frequency of occurrence (%FO), calculated as the number of 

each type of dietary item as a percentage of the total number of identifiable prey 

items (e.g. Lodé 1994; McDonald et al. 2000). Frequency of occurrence values 

were bootstrapped with replacement 1000 times to generate 95% confidence 

intervals following Reynolds and Aebischer (1991). Levins’ (1968) niche breadth 

was calculated following the formula: 

Nb = 1/∑pi
2 

Where pi is the proportion of records for each species in each group. Results 

were again bootstrapped with replacement 1000 times to generate 95% 

confidence intervals (Reynolds & Aebischer 1991). 

To analyse variation in the occurrence of lagomorphs in polecat diets, a logistic 

regression model of presence/absence was fitted to sex, season (where spring 

is March to May, summer is June to August, autumn is September to November 

and winter is December to February) and region (north, south, east and west 

based on British government regions) as explanatory variables. Stepwise model 

selection was carried out to find the most parsimonious model. The baseline 

levels in the model were set to the lowest effect sizes to aid interpretation. 

Our results were compared with earlier large scale studies of polecat diets by 

Walton (1968), Blandford (1986) and Birks and Kitchener (1999). Levins’ niche 

breadth was calculated using four categories (all mammals, birds, 
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amphibians/fishes and invertebrates) for comparisons between 1960s, 1980s, 

1990s and 2010s, as the available data from the 1960s did not distinguish 

between polecat sex or identify mammal species. For analyses of variation by 

polecat sex and decade between the 1980s and 2010s, Levins’ niche breadth 

was calculated based on five categories (lagomorphs, other mammals, birds, 

amphibians/fishes and invertebrates). Analysis of niche breadth changes over 

time involved comparing the differences in the confidence intervals of the 

bootstrapped values. 

Results 

The stomachs from 99 polecats collected in the 2010s were examined (65 male, 

32 female, 2 sex unknown), of which 14 were empty and six contained 

unidentifiable remains, such as undigested tissue. This left 79 stomachs 

containing identifiable prey items (54 male, 24 female, 1 unknown). Sixteen 

stomachs contained polecat hair, but this was excluded from the dietary 

analysis as it was assumed to be the result of grooming (Rysava-Novakova & 

Koubek 2009). Ten stomachs contained plant matter. 

Mammals were the most frequently identified prey group (78%FO) and 

lagomorphs comprised two-thirds (66%FO) of prey items (Table 4.1). Eight of 

the 54 lagomorph samples (15%FO) were neonates or juveniles, identified on 

the basis of intact ears, tails or feet (Fig. 4.2). Amphibians/fishes were the 

second most frequently identified prey group (13%FO) and mostly comprised 

frogs. “Other mammals” constituted 12%FO of items, although brown rat 

remains were identified in only one polecat stomach. Birds and invertebrates 

comprised approximately 7% and 1%FO of all items, respectively. Only one 

instance of carrion was found, based on the presence of maggots in the tissue, 

which was classified as lagomorph. 

The %FO of all prey items in male and female polecat stomachs was similar 

across the board and there was no significant difference in niche breadth 

between male (Levins’ index = 2.2, 95% CI: 1.6- 2.3) and female polecats (2.2, 

95% CI: 1.4-3.2). 
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Figure 4.2. Example of juvenile rabbit remains found in polecat stomachs. 

Photo a) shows two hind feet, b) front leg plus tail, and c) a pair of ears. 

Samples were collected from three different polecat specimens.   
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Table 4.1. Summary of composition of polecat Mustela putorius stomach 

contents in Great Britain between 2013 and 2016. Main prey groups are 

highlighted in bold. 95% percentile range confidence intervals are a 

bootstrapped estimate of the variability associated with sampling errors. There 

were 2 animals whose sex was unidentifiable (1 gut contained lagomorph, the 

other was empty). 

  Total  Males  Females 

Prey  FO % FO  
(95% CI) 

 FO % FO  
(95% CI) 

 FO % FO  
(95% CI) 

Lagomorph  54 65.9 (53.7-74.0)  36 65.5 (50.8-76.5)  17 65.4 (44.4-
81.5 

Other mammals  10 12.2(4.2-17.5)  7 7.3 (22.3-19.5)  3 11.5 (0.0-23.0) 

Microtus agrestis  1 1.2 (0.0-3.5)  1 1.8 (0.0-5.4)    

Myodes glareolus  1 1.2 (0.0-3.6)     1 3.8 (0.0-10.8) 

Sciurus spp.  3 3.7 (0.0-7.7)  3 5.5 (0.0-11.3)    

Rattus norvegicus  1 1.2 (0.0-3.6)     1 3.8 (0.0-11.2) 

Sorex spp.  1 1.2 (0.0-3.7)     1 3.8 (0.0-11.0) 

Unidentified small 
mammals 

 3 3.7 (0.0-5.8)  3 5.5 (0.0-8.7)    

Birds  6 7.3 (1.2-12.9)  4 7.3 (0.4-14.2)  2 7.7 (0.0-17.2) 

Galliformes  1 1.2 (0.0-3.6)  1 1.8 (0.0-5.4)    

Columbiformes  1 1.2 (0.0-3.6)     1 3.8 (0.0-11.2) 

Passeriformes  2 2.4 (0.0-5.9)  1 1.8 (0.0-5.4)  1 3.8 (0.0-11.0) 

Unidentified bird  2 2.4 (0.0-5.5)  2 3.6 (0.0-8.7)    

Amphibians/fishes  11 13.4 (5.8-20.7)  7 12.7 (4.0-21.4)  4 15.4 (0.5-29.1) 

Rana temporaria  7 8.5 (2.2-14.7)  3 5.5 (0.0-11.5)  4 15.4 (1.0-28.6) 

Bufo bufo  1 1.2 (0.0-3.7)  1 1.8 (0.0-5.4)    

Fish  3 3.7 (0.0-20.7)  3 5.5 (0.0-11.5)    

Other          

Invertebrate  1 1.2 (0.0-3.6)  1 1.8 (0.0-5.3)    

Non-prey items          

Mustela putorius  16   10   5  

Vegetation  10   8   2  

Stomachs examined  99   65   32  

Empty stomachs 

(excluding polecat 
guard hairs) 

 14   8   5  

Stomachs 
containing remains 

 85   57   27  

Stomachs 
containing 
identifiable remains 

 79   54   24  

Stomachs with 2 

items 

 3   1   2  

Total number of 
prey items 

 82 100  55 100  26 100 
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Our model analysing the factors influencing polecat diet found that Season was 

the only factor that significantly affected the occurrence of lagomorphs (Fig. 

4.3). The occurrence of lagomorph remains identified in the diet was higher in 

the spring (odds: 8.9, 95% CI: 2.5-38.8), summer (odds: 3.4, 95% CI: 1.0-12.8) 

and winter (odds: 1.8, 95% CI: 0.5-7.4) than in the autumn. Niche breadth was 

greater in autumn (Levins’ index, 95% CI. Spring: 1.1, 1.0-1.3) than in all other 

seasons (Summer: 1.9, 1.2-3.1; Autumn: 4.1, 2.5-5.0; Winter: 2.6, 1.4-4.3; Fig 

4.3). 

 

 

Figure 4.3. Percentage frequency of occurrence of five categories of prey 

groups identified in polecat stomachs from animals collected between 2013 and 

2016. Presented by season and as a percentage of prey items collected. 

Seasons are divided so that Spring: March – May (n = 24), Summer: June – 

August (n = 20), Autumn: September – November (n = 24), Winter; December – 

February (n = 13). The collection season of 1 animal was unknown. 
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Analysis of changes in polecat diets over time indicated that the occurrence of 

all mammals more than doubled between the 1960s (35%) and the 2010s 

(78%), while birds, amphibians/fishes and invertebrates decreased (Table 4.2). 

Lagomorph occurrence increased between the 1980s (25%) and 1990s (69%) 

but did not differ between samples collected in the 1990s and the 2010s (66%). 

There was no difference in the occurrence of all mammals between male and 

female polecats in the1980s, 1990s or 2010s (Table 4.2). However, the 

occurrence of lagomorphs did differ between males and females between 

decades and was similar for males and females in the 1980s and 2010s but 

greater in males (75%) than in females (58%) in the 1990s. Polecat dietary 

niche breadth was greatest in the 1960s and least in the 1990s and 2010s 

(Table 4.2).  
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Table 4.2. Summary of percentage frequency of occurrence (FO) of items found 

in polecat diets from the 1960s to the 2010s. Sources are Walton (1968), 

Blandford (1986), Birks and Kitchener (1999) and the current study. 1960s data 

are calculated using FOC in stomachs (n=38). 1980s data are calculated based 

on FO in scats (n=754, males = 411, females = 343). 1990s data (n=87, males 

= 56, females = 31) and 2010s data (n = 82, males = 55, females = 26, 1 animal 

of unknown sex) are calculated based on the total prey items identified. Levins’ 

niche breadth was calculated using four categories (all mammals, birds, 

amphibians/fishes and invertebrates) for the 1960s, 1980s, 1990s and 2010s. 

For the male and female calculations by decade, Levins’ niche breadth was 

calculated based on five categories (lagomorphs, other mammals, birds, 

amphibians/fishes and invertebrates). 95% percentile range confidence 

intervals are a bootstrapped estimate of the variability associated with sampling 

errors. Dietary information by sex was not available for the 1960s. 

 1960s 
% FO (95% CI) 

 1980s 
% FO (95% CI) 

 1990s 
% FO (95% CI) 

 2010s 
% FO (95% CI) 

All mammals 35.1 (19.6-48.8)  73.7 (70.6-76.9)  79.3 (71.8-89.0)  78.0 (64.4-85.0) 

  Lagomorph NA  25.1 (21.8-28.1)  69.0 (59.0-78.9)  65.9 (53.7-74.0) 

Birds 14.0 (2.2-24.1)  16.0 (13.4-18.7)  9.2 (2.9-15.5)  7.3 (1.2-12.9) 

Amphibians/fishes 26.3 (11.7-40.9)  8.2 (6.2-10.2)  9.2 (2.7-15.6)  13.4 (5.8-20.7) 

Invertebrates 24.6(9.8-37.5)  2.0 (0.9-3.1)  1.1 (0.0-3.3)  1.2 (0.0-3.6) 

Levins’ niche 
breadth (95% CI) 

3.9 (1.9-4.3)  1.7 (1.6-1.9)  1.6 (1.3-1.9)  1.6 (1.3-1.9) 

n= 38  754  87  82 

        

Males        

All mammals   73.2 (69.0-77.5)  82.1(71.9-92.4)  78.2 (63.1-85.9) 

  Lagomorph   26.3 (21.9-30.7)  75.0 (63.1-86.9)  65.5 (50.8-76.5) 

Birds   14.4 (10.9-17.8)  7.1 (0.5-13.8)  7.3 (22.3-19.5) 

Amphibians/fishes   8.8 (6.1-11.5)  8.9 (1.3-16.5)  12.7 (4.0-21.4) 

Invertebrates   3.6 (1.8-5.5)  1.8 (0.0-5.3)  1.8 (0.0-5.3) 

Levins’ niche 
breadth (95% CI) 

  3.1 (2.9-3.4)  1.7 (1.4-2.3)  2.2 (1.6-2.3) 

n=   411  56  55 

        

Females        

All mammals   74.3 (69.6-79.0)  74.2 (58.3-90.1)  76.9 (54.4-93.7) 

  Lagomorph   23.6 (19.0-28.2)  58.1 (40.5-75.6)  65.4 (44.4-81.5) 

Birds   18.1 (13.9-22.3)  12.9 (0.8-25.0)  7.7 (0.0-17.2) 

Amphibians/fishes   7.6 (4.8-10.4)  9.7 (0.0-20.1)  15.4 (1.0-28.6) 

Invertebrates     3.2 (0.0-9.6)   

Levins’ niche 

breadth (95% CI) 

  2.9 (2.6-3.1)  2.7 (1.8-3.8)  2.2 (1.4-3.2) 

n=   343  31  26 
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Discussion 

Polecat diet composition in Great Britain was dominated by lagomorphs in all 

the samples analysed between the 1960s and 2010s, although there was 

seasonal variation which reflects the opportunistic foraging of this species. 

Contrary to our expectations, there was no evidence of a reduction in rabbit 

consumption by polecats since the 1990s, despite declines in rabbit records 

over this period (Harris et al. 2018). We did find an increase in the frequency of 

occurrence of lagomorphs in polecat diet since the 1960s, consistent with 

similar variation in the importance of lagomorphs in the diet of stoats over the 

same time period (McDonald et al. 2000). We also found that lagomorphs were 

equally important as prey for both male and female polecats in the 1990s and 

2010s (Table 4.1) and so there was no evidence of resource partitioning 

between the sexes, consistent with McDonald (2002). We found frequent 

evidence of polecat predation on young rabbits, which was also found in the 

1990s study (A. Kitchener, unpublished data).  

There are several possible explanations for this lack of dietary shift in response 

to declining resources. One is that the more recent rabbit declines have been 

patchy across the landscape, unlike the 1950s myxomatosis epizootic 

(Sumption & Flowerdew 1985), and so polecats have still been able to find and 

take rabbits as their major prey item. Walton’s (1968) study, for which samples 

were collected when rabbit populations were at their nadir, suggested that when 

rabbit availability was very restricted, polecats did increase the size of their 

dietary niche (Table 4.2). Similarly, when rabbit numbers were still low in Wales 

in the 1980s (Aebischer et al. 2011) and polecats were predominantly found 

only in Wales (Sainsbury et al. 2019), lagomorphs comprised a lower proportion 

of polecat diet than in the 2010s and niche breadth was correspondingly greater 

than in the 1990s or 2010s (Table 4.2, Blandford 1986). There was also some 

evidence of differences in resource use between males and females in the 

1980s (lower lagomorph consumption by females) when rabbits were reduced 

in availability (Table 4.2, Blandford 1986); this resource partitioning was not 

evident in the 2010s. 

The continued high prevalence of rabbits in polecat diets means that other prey 

items, notably rodents, were detected less frequently than might have been 
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expected. The relatively high occurrence of amphibians is in line with polecat 

diet studies in France (Lodé 2000), Switzerland (Weber 1989b) and Denmark 

(Hammershøj et al. 2004). While some dietary studies have correlated 

amphibian consumption to periods of abundance (Lodé 2000), others have 

found that polecats eat them preferentially (Weber 1989c). In our study, where 

amphibians were consumed, more than just the hind limbs were found in the 

stomach. Weber (1989b) demonstrated that polecats usually only consume 

muscle meat when amphibians are very abundant, and as we only found whole 

hind limbs, it is possible that the amphibians found in this study were not 

necessarily eaten in a period of especially high abundance. Unlike in France, 

where amphibians are more commonly eaten in spring when amphibians are 

more active at the beginning of their breeding season (Lodé 2000), amphibians 

were most commonly caught in autumn in this study. The skin of the common 

toad Bufo bufo was consumed intact, irrespective of its apparently distasteful 

dermal secretions (Sidorovich & Pikilik 1997).  

Given recent increases in the rates of exposure of polecats to SGARs 

(Sainsbury et al. 2018), it is perhaps surprising that we did not observe an 

increase in the proportion of rodents, especially brown rats, consumed by 

polecats over this same time period. Furthermore, our data indicate that the 

current high proportion of polecats exposed to SGARs is associated with an 

intake of rodents that comprises less than 10% of total diet. This suggests that 

even relatively low rates of rodent consumption can result in high rates of 

secondary exposure to rodenticides, especially when such exposure is likely 

cumulative over time. This means that our ability to minimise exposure of 

polecats to SGARs may be limited, as rodents comprise only a small 

component of their diet.  

The recent occurrence of birds in the diet of polecats was consistent with that 

observed in previous decades. However, the importance of bird remains is often 

underestimated in analysing stomach contents (Reynolds & Aebischer 1991). 

Furthermore, polecats eat eggs but we did not detect any evidence of this, 

possibly because polecats tend to break them open and lick out the contents 

(Weber 1989b). In the 1980s, Blandford (1986) found that Galliformes (the order 

of birds that includes the locally abundant ring-necked pheasant Phasianus 

colchicus and red-legged partridge Alectoris rufa) comprised 5%FO of polecat 
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diet. This study was carried out before polecats had expanded beyond the 

Welsh border counties, an area where game management is less widespread 

(Tapper 1992). Birks and Kitchener (1999), who collected roadkill carcasses 

from across Wales and the English Midlands, did not identify any Galliformes in 

polecat stomachs and our results are broadly consistent with this. Polecats 

spend time on game estates in Britain (Packer & Birks 1999) and, in other 

countries, polecats are known to consume wounded or dead gamebirds 

(Rysava-Novakova & Koubek 2009). Given this and the difficulties associated 

with detecting birds in stomach contents, it is possible that birds might be eaten 

more frequently than our results suggest.  

Conclusion 

We have highlighted long-term increases in the proportion of lagomorphs in 

polecat diet in Britain during a period of polecat population recovery. When 

rabbits were almost extirpated from Britain in the 1950s and 1960s, polecat diet 

was significantly more diverse. Polecat niche breadth has since declined as 

rabbit populations have recovered. Our results, which show how niche breadth 

and diet composition has varied over time, demonstrate the importance of long-

term studies for determining whether species are generalist or specialists. 

Overall, polecats in Great Britain appear to be generalist feeders. Although 

rabbit populations are once again in decline, there is no evidence of a 

concomitant reduction in rabbit consumption but it is possible that such effects 

may only be apparent from studies conducted at a finer spatial scale. Finally, 

our study shows that rodents do not have to constitute a high proportion of 

polecat diet, to lead to the frequent secondary exposure to rodenticides seen in 

polecats in Great Britain. 
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Abstract 

As a result of legal protection and population recovery, European polecats 

Mustela putorius in Great Britain are expanding into areas associated with 

greater usage of second-generation anticoagulant rodenticides (SGARs). We 

analysed polecat livers collected from road casualties from 2013 to 2016 for 

residues of five SGARs. We related variation in residues to polecat traits and 

potential exposure pathways, by analysing stable isotopes of carbon (δ13C) and 

nitrogen (δ15N) in their whiskers. 54 of 68 (79%) polecats had detectable 

residues of at least one SGAR. Bromadiolone (71%) was the most frequently 

detected compound, followed by difenacoum (53%) and brodifacoum (35%). 

Applying historical limits of detection to allow comparison between these new 

data and previous assessments, we show that in the 25 years from 1992 to 

2016 inclusive, the rate of detection of SGARs in polecats in Britain has 

increased by a factor of 1.7. The probability of SGAR detection was positively 

related to increasing values of δ15N, suggesting that polecats feeding at a 

higher trophic level were more likely to be exposed. Total concentrations of 

SGARs in polecats with detectable residues were higher in polecats collected in 

arable compared to pastoral habitats, and in the west compared to the east of 

Britain. The number of compounds detected and total concentrations of SGARs 

increased with polecat age. There was no evidence of regional or seasonal 

variation in the probability of detecting SGARs, suggesting that the current risk 

https://doi.org/10.1016/j.envpol.2018.02.004
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of exposure to SGARs does not vary seasonally and has increased (from that in 

the 1990s) throughout the polecat's range. We recommend quantification of 

current practices in rodenticide usage, particularly in the light of recent 

regulatory changes, to enable assessment and mitigation of the risks of 

secondary exposure to rodenticides in non-target wildlife. 

Introduction 

Rodents, primarily brown rats Rattus norvegicus, are estimated to cost the UK 

economy between £60 and £200 million a year, arising primarily from spoiling of 

food and from disease transmission (Battersby 2004). Anticoagulant 

rodenticides dispensed in baits are the primary means of reducing this damage. 

They function by interrupting the blood clotting mechanism by inhibiting the 

action of Vitamin K epoxide reductase (Watt et al. 2005) and lethal exposure 

leads to death by internal haemorrhaging (Watt et al. 2005, Rattner et al. 2014). 

In response to the emergence of resistance in rats to warfarin and other first 

generation rodenticides, second-generation anticoagulant rodenticides (SGARs) 

with higher acute toxicity were developed (Buckle et al. 1994, World Health 

Organization 1995) and are now used routinely worldwide to control rodent 

infestations (Stone et al. 2003, Buckle & Smith 2015). 

The extensive use of SGARs has led to secondary exposure in a range of 

mustelids including stoats Mustela erminea and weasels Mustela nivalis 

(McDonald et al. 1998, Elmeros et al. 2011), European polecats Mustela 

putorius (Shore et al. 2003, Elmeros et al. 2018), American mink Neovison 

vison (Ruiz-Suárez et al. 2016), stone martens Martes foina (Elmeros et al. 

2018) and fishers Pekania pennanti (Gabriel et al. 2012, Thompson et al. 2014). 

There is also evidence of widespread exposure in other predators such as red 

foxes Vulpes vulpes (Tosh et al. 2011, Geduhn et al. 2015), San Joaquin kit 

foxes Vulpes macrotis mutica (Cypher et al. 2014), mountain lions Puma 

concolor and bobcats Lynx rufus (Riley et al. 2007, Serieys et al. 2015), barn 

owls Tyto alba (Geduhn et al. 2016, Shore et al. 2016, Shore et al. 2017), 

sparrowhawks Accipiter nisus (Hughes et al. 2013, Walker et al. 2015) tawny 

owls Strix aluco (Walker et al. 2008) and red kites Milvus milvus (Walker et al. 

2017). Secondary exposure occurs via the consumption of exposed prey (Smith 

et al. 1990, Smith et al. 2007, Rattner et al. 2014). These may be target species 
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that are the subject of control measures, such as the brown rat and house 

mouse Mus domesticus, or non-target species that feed on bait and are 

inadvertently contaminated during control campaigns targeted at commensal 

rodents (Tosh et al. 2012, Elliott et al. 2014). The scale of secondary exposure 

in predators can vary with habitat (Geduhn et al. 2014, Nogeire et al. 2015), sex 

(McDonald et al. 1998) and time of year (Shore et al. 2003). In some species 

the magnitude of residues is greater in older animals (Ruiz-Suárez et al. 2016), 

arising from the cumulative effect of multiple sub-lethal exposures and the 

relatively long tissue half-lives of these compounds (Vandenbroucke et al. 2008, 

Environmental Protection Agency (EPA) 2008). 

There is concern that secondary exposure may lead to significant impacts on 

predators, many of which are species of conservation interest. The extent of 

any mortality is likely to be species-dependent as tolerance varies by several 

orders of magnitude (World Health Organization 1995, Erickson & Urban 2004, 

Thomas et al. 2011, Berny et al. 2010). Relatively few poisoned animals are 

reported in national surveillance schemes, when compared to the numbers 

known to be exposed (e.g. Barnett et al. 2004, Barnett et al. 2005). The 

likelihood that exposed individuals die out of sight (Newton et al. 1999), 

combined with limited external signs of toxicosis (Murray 2011) and difficulties 

with using liver residues as a diagnostic of mortality (Thomas et al. 2011), mean 

that the true extent of secondary poisoning may be underestimated. There may 

also be sub-lethal effects such as increased susceptibility to natural and 

anthropogenic stressors (Albert et al. 2010), reduced body condition (Elmeros 

et al. 2011) and less resistance to pathogens mediated through impairment of 

the immune system (Riley et al. 2007, Serieys et al. 2015). However, the 

mechanisms by which any sub-lethal effects occur and their possible impacts 

on long-term survival and reproductive output remain unclear. 

Species that consume rats and other target species may be at particular risk of 

secondary exposure and poisoning by SGARs (Eason & Spurr 1995, Brakes & 

Smith 2005). The European polecat, a medium-sized carnivore that occurs 

across Europe, is one such species. It is protected in England and Wales under 

the Wildlife and Countryside Act (1981) and is currently expanding its 

distribution, having been extirpated (through predator control) from most of its 

range in Great Britain during the nineteenth century (Birks 2015, Croose 2016). 
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Although the polecat is a generalist feeder with a diverse diet that varies across 

its European range (Blandford 1987, Lodé 1996b, Lodé 1997, Birks & Kitchener 

1999, Baghli et al. 2002, Hammershøj et al. 2004, Rysava-Novakova & Koubek 

2009, Santos et al. 2009, Malecha & Antczak 2013), in England and Wales 

rabbits Oryctolagus cuniculus and rats are the primary prey (Birks & Kitchener 

1999). 

A study of rodenticide residues in polecats in Great Britain that died between 

1992 and 1999 established that 31 out of a sample of 100 animals had 

detectable residues of at least one SGAR (Shore et al. 2003). Detection rates 

were slightly higher (40%) in animals that died in the first half of the year. It was 

speculated that this may have been a result of the predominance of rats in the 

diet during the winter, since rats may comprise up to 65% of polecat diet in the 

winter months (Birks 1998). However, SGAR exposure in polecats has not 

specifically been linked to any contemporary dietary analysis. Stable isotope 

analysis offers the opportunity to explore such links. δ15N and δ13C are 

measures of the ratio of heavier to lighter stable isotopes of nitrogen (15N–14N) 

and carbon (13C–12C) relative to a standard (DeNiro & Epstein 1981). As the 

lighter 14N is preferentially excreted during metabolic processes, 15N enrichment 

from prey item to predator occurs (DeNiro & Epstein 1981). Variation in δ13C 

reflects diversity in basal resources consumed, e.g. between marine and 

terrestrial, and plants with C3 or C4 photosynthetic pathways (Smith & Epstein 

1971, DeNiro & Epstein 1978). Analysis of δ15N has been widely used for 

developing understanding of biomagnification of contaminants with increasing 

trophic level in fresh-water and marine environments (Spies et al. 1989, Cabana 

& Rasmussen 1994, Kidd et al. 1995, Jarman et al. 1996, Bearhop et al. 2000, 

Hobson et al. 2002), and can be applied to examine secondary exposure to 

rodenticides. Rats are omnivorous opportunistic feeders and their diets vary 

with location (Major et al. 2007, Dammhahn et al. 2017), so polecats feeding on 

rats might be expected to have enriched δ15N signatures compared to those 

eating a greater proportion of rabbits, which are herbivorous (Southern 1940). If 

rats are the main trophic pathway through which polecats are secondarily 

exposed to SGARs, it would be expected that there might be a positive 

association between liver SGARs and enriched δ15N signatures. 
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In the 20–25 years since the last quantification of the exposure of polecats in 

Great Britain to SGARs (Shore et al. 2003), populations of this species have 

undergone a substantial recovery and have expanded their range into areas of 

the country associated with higher usage of SGARs (Packer & Birks 1999, Birks 

2000, Dawson et al. 2003, Dawson & Garthwaite 2004). It might therefore be 

predicted that overall exposure in the polecat population is likely to have 

increased, if animals in newly recolonised areas subject to greater SGAR usage 

also feed on rats. Furthermore, the methods of chemical analysis for 

rodenticides have become more sensitive (lower limits of detection) and so 

earlier studies in any case are likely to have underestimated levels of exposure 

(Dowding et al. 2010). The current extent of exposure of polecats to SGARs, 

and how and why this varies between individuals, is therefore unknown. Using 

polecat carcasses collected from across their range in Great Britain between 

2013 and 2016, our aims in the present study were to: (i) determine the current 

extent of SGAR exposure in polecats (via measurement of liver residues) and 

whether this has changed over the last 20–25 years; (ii) identify any spatial and 

temporal patterns in exposure; (iii) elucidate trophic correlates of exposure 

through stable isotope analysis of whiskers, and (iv) explore the effect of age on 

rodenticide accumulation in polecats, a factor not examined by Shore et al. 

(2003), but recently found to be important in other mustelids (Ruiz-Suárez et al. 

2016). 

Methods 

Carcass collection and sample preparation 

Polecat carcasses were collected as part of a national monitoring survey carried 

out by the Vincent Wildlife Trust between December 2013 and March 2016 

(Croose 2016). Sixty-eight carcasses were selected for rodenticide analysis, 

based on stratification by sex, location and collection date. Of the animals 

selected, 82% (n = 56) were road traffic casualties; the remainder were found 

dead in fields, killed by dogs, trapped or the cause of death was unknown. 

Collection date and location were recorded for all carcasses, which were stored 

frozen until necropsy examination at the National Museums Scotland. The poor 

condition of the majority of the carcasses precluded assessment of clinical signs 

of exposure to rodenticides. Where carcass condition allowed, gross necropsy 
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examination included recording of sex, head and body length (nose to tip of 

tail), mass and internal fat, scored on a five-point scale (McDonald et al. 1998). 

A body condition score (e.g. Schulte-Hostedde et al. 2005) was not calculated 

because many carcasses were damaged or incomplete. Teeth (for ageing), 

whiskers (for stable isotope analysis) and liver tissue (for rodenticide analysis) 

were collected. Liver samples were frozen and transferred to the Centre for 

Ecology & Hydrology (CEH) for rodenticide analysis. Whiskers were prepared 

for analysis at the University of Exeter and analysed at Elemtex, UK and teeth 

were sent to Matson's Lab LLC, USA for aging by analysis of cementum layers. 

Determination of rodenticides in liver using liquid chromatography tandem mass 

spectrometry 

Concentrations of the five SGARs licensed for use in Great Britain 

(bromadiolone, difenacoum, brodifacoum, flocoumafen and difethialone) were 

determined in the polecat livers. The analytical method is summarised here. A 

detailed description is available in Walker et al. (2017). A 0.25 g sub-sample of 

each liver was thawed, weighed accurately, ground and dried with anhydrous 

sodium sulphate. Labelled standard (d5- Bromadiolone, QMx) was added to 

each sample for quality control purposes and determination of analyte recovery. 

Each liver sub-sample was solvent-extracted and then cleaned-up using size 

exclusion chromatography followed by elution through solid-phase cartridges. 

Extraction was carried out twice with clean solvent. Each extraction involved 

vortex mixing of the sample with 1:1 v/v chloroform:acetone, mechanical 

shaking and centrifugation. The resultant supernatants from the two extraction 

runs were combined, solvent-exchanged into (1:1; v/v) chloroform:acetone, 

filtered (0.2 mm PTFE filter), subjected to a further solvent exchange into (1:23; 

v/v) acetone:DCM, filtered again, and cleaned-up by size-exclusion 

chromatography (Agilent 1200 HPLC). The cleaned extract was solvent-

exchanged into 1:1:8; v/v. chloroform:acetone:acetonitrile and underwent a 

second clean-up using solid phase, methanol-washed, acetonitrile-activated 

extraction cartridges (ISOLUTE® SI 500 mg, 6 ml). The cartridges were eluted 

with the same solvent and the eluate exchanged for the mobile phase. 

Liver SGAR residues were quantified by HPLC linked to a triple quadrupole 

mass spectrometer interfaced with an ion max source in Atmospheric Pressure 
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Chemical Ionisation mode (APCI) with negative polarity. Full details of the 

operational parameters used are as given by Walker et al. (2017). All 

rodenticide standards (Dr Ehrenstorfer) were matrix matched and linear 

calibration curves were defined such that R2 > 0.99. A blank was run with each 

batch of unknowns. The mean method limit of detection (LOD) across batches 

for each compound was 0.0014 μg/g, except for difethialone which was 

0.0022 μg/g. The mean (±SE) recovery for the total procedure was calculated 

from the labelled bromadiolone standard applied to each sample and was 

68.0 ± 2.1%. Liver SGAR concentrations were not recovery corrected and are 

expressed on a wet weight basis. Summed (Σ) SGAR liver concentrations in 

individual animals were calculated by summing the concentrations of the five 

different SGARs, a zero concentration being assigned to individual compounds 

that were not detected. 

Stable isotope analysis 

Whiskers were gently rinsed in distilled water and then freeze dried for 24 h. 

One whisker per animal was cut into ∼1 mm segments using a scalpel, starting 

at the proximal end of the whisker. Consecutive segments were pooled until the 

summed sample weight was ∼0.7 mg (mean ± SE sample weight 

0.68 ± 0.01 mg). The sample was enclosed in a tin cup and put into a tray for 

analysis. The next segment was prepared in the same way and the process 

was further repeated until either the whole whisker was used, or less than 

0.2 mg was remaining. Samples were analysed on a Thermoquest EA1110 

elemental analyser linked to a Europa Scientific 2020 isotope ratio mass 

spectrometer at Elemtex Ltd (Cornwall, UK) for δ15N and δ13C. δ15N and δ13C 

abundance are reported as δ-values and expressed as a per mil (‰) deviation 

from the international reference standards (VPDB for carbon and AIR for 

nitrogen) (Mariotti 1983). Replicate analysis of standards (USGS 40, USGS 41 

and an in-house bovine liver standard) yielded standard deviations of 0.05–0.29 

for δ15N and 0.05–0.22 for δ13C. 

Cementum aging 

Cementum ageing was undertaken by Matson's Lab LLC (Manhattan, MT, USA) 

following a standard protocol (Matson et al. 1993). In brief, after decalcification 

in a weak hydrochloric acid solution, teeth were sectioned sagittally and 
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mounted on glass slides. The sections were stained to allow visual 

differentiation of annual cementum growth layers. These layers (annuli) were 

examined microscopically for age estimation at time of death. Birth date was set 

to 1 May for the purpose of estimating age in months. 

Data analysis 

All data were analysed using R [version 3.4.1] and R Studio [version number 

0.99.896]. Generalised linear models were built using a) the 2013-16 data 

(henceforth “new data”) and b) a combination of new data and the historical 

polecat rodenticides data from Shore et al. (2003) (“combined data”). 

Combination of new and historical data involved applying the limits of detection 

(LOD) for each compound from Shore et al. (2003), which were higher than 

those in the present study, to eliminate biases caused by changes in analytical 

sensitivity. 

We modelled exposure in three ways: i) probability of detecting at least one 

SGAR; ii) number of SGARs detected; and iii) of those polecats with detectable 

residues, total concentration levels of all SGARs detected. Total SGAR 

concentration data were log-transformed before building models so that they 

were normally distributed. Polecats with no SGARs detected were excluded 

from the total SGAR concentration models to allow us to explore the variables 

related to differences in concentration levels. 

Explanatory variables included in the three “new data” models were: age 

(months), sex (male/female), half of year in which the carcass was collected 

(first/second), region (North/South/East/West), land class (arable/pastoral), fat 

score, δ13C (‰) and δ15N (‰). Carcasses collected between January–June 

were categorised as “first” half of the year, those collected between July–

December were categorised as “second”. Regions were defined using U.K. 

Government Office Regions. North comprised North East, North West, 

Yorkshire and the Humber; South comprised London, South East and South 

West; East comprised Eastern and East Midlands and West comprised Wales 

and West Midlands. No animals were analysed from Scotland. Quantum GIS 

[version 2.12.3] was used to generate land class classifications. Carcass 

collection locations were overlaid onto the CEH Land Cover map (2007 

https://www.ceh.ac.uk/services/land-cover-map-2007), 1 km buffers were 
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applied around each carcass coordinate and the majority land class calculated 

for each point, for whichever was largest between “arable” or “pastoral”, i.e. 

improved grasslands. Models included the mean δ15N and δ13C for each 

whisker. We also modelled the maximum δ15N value for each whisker in place 

of the mean δ15N, as it was considered that it may only take one contaminated 

meal to cause secondary exposure and maximum δ15N might better reflect such 

episodic incidents than the mean value for the whole whisker. However, models 

with the maximum δ15N did not differ markedly from the models with the mean 

δ15N and hence analysis of maximum values is not reported. 

The “combined data” models, adjusted for limits of detection, included two 

categorical explanatory variables: collection period (1992–1995, 1996–1999, 

2013–2016) and location (inside or outside of the 1990s polecat range, as 

determined by Birks & Kitchener (1999)). The first two carcass collection 

periods were 1992–1995 and 1996–1999 and represent an approximately even 

split (in calendar years and numbers) of the 100 polecats analysed by Shore et 

al. (2003). The third collection period related to the “new data” carcasses 

collected in 2013–2016. Location was included with the aim of assessing 

whether polecat expansion into new areas, where SGAR use may have been 

greater, might affect the frequency of SGAR exposure. 

Models were built using lme4, MuMIn and car packages in R. Models were 

checked for collinearity (none was evident). Model fit was assessed using QQ 

plots. Models were mean centred and standardised using two standard 

deviations to facilitate comparisons between effect sizes (Gelman 2008). Top 

models were then selected using Akaike's Information Criterion (AIC), where 

values differed by less than two from the best model. Averaged models were 

created using the top models as none of the top models was weighted >0.9 

(Grueber et al., 2011). Interaction effects between parameters were not 

significant and did not appear in any of the top models when added, and so 

were removed for simplicity. Standardised conditional averaged model outputs 

were summarised. Model predictions were drawn using the ggplot2 package in 

R. 
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Results 

The 68 polecats analysed for SGARs came from throughout England and 

Wales (Fig. 5.1); 29 were female, 38 male and the sex of one could not be 

determined.  

 

Figure 5.1. Collection locations of polecat carcasses used for analysis of 

second generation anticoagulant rodenticides. Black points are carcasses 

collected and analysed in this survey while white points are carcasses collected 

and analysed in Shore et al. (2003).  

The age of the polecats in our sample ranged from one month to six years. The 

youngest polecats with detectable residues of SGARs were two months old 

while the oldest polecat without detectable SGARs was three years old. Mean 

δ15N values for polecat whiskers ranged between 7.2 and 13.2‰. Mean δ13C 
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values ranged from −27.98 to −21.41‰. In all, 54 of 68 (79%) polecats had 

detectable liver residues of at least one SGAR compound (Table 5.1). The 

number of polecats with one, two, three or four compounds in the liver were 19 

(27.9%), 16 (23.5%), 16 (23.5%) and 3 (4.4%) respectively. The median 

number of compounds detected in polecat livers was 2.  

Table 5.1. Prevalence and concentrations of residues of second generation 

anticoagulant rodenticides (SGARs) in the livers of 68 polecats collected in 

England and Wales, 2013–2016. Totals are the prevalence of residues of any 

SGAR and the median of the summed SGAR concentrations. 

Compound 
Number (% of total sample) of 
polecats with detected 
residues 

Median (range) concentration 
(µg/g wet weight) 

Bromadiolone 48 (71%) 0.0581 (0.0014 – 3.0833) 

Difenacoum 36 (53%) 0.0587 (0.0021 – 0.5125) 

Brodifacoum 24 (35%) 0.0080 (0.0016 – 0.7298) 

Difethialone 3 (4%) 0.0193 (0.0035 – 0.0505) 

Flocoumafen 0 (0%) N/A 

Total 54 (79%) 0.1204 (0.0014 – 3.1628) 

The rate of detection of liver SGARs differed significantly between compounds 

(χ2 = 77.5, df = 4, p < 0.0001), with bromadiolone most frequently detected, 

followed by difenacoum and brodifacoum (Table 5.1). Difethialone was only 

detected in livers that contained residues of all three commonly detected 

SGARs. Flocoumafen was never detected. There was no significant difference 

between compounds in the median concentrations of residues in those animals 

with detected residues (KW = 2, df = 2, p = 0.37). Appendix 5.1 provides a 

histogram of the distribution of total SGAR concentrations contained in Table 

5.1.  

Probability of detecting at least one SGAR in the liver 

The probability of detecting liver SGAR residues could be explained by a set of 

top models that included age, δ15N, δ13C, fat score and land class; age and 

δ15N appeared in all the top models (Table 5.2a). In the resultant averaged 

model (Table 5.2b), there was a positive effect of enriched δ15N signatures on 

the likelihood of SGAR detection in livers. The model predicted that at the mean 
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level of δ15N (9.9‰), the probability of detecting SGARs was 89% (95% 

confidence limits: 68%–97%, Fig. 5.2). Although age, δ13C, fat score and land 

class also featured in the averaged model, the confidence intervals for the 

effects of these parameters overlapped 0, indicating that they had no significant 

effect on the probability of detecting liver SGAR residues. 
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Table 5.2a. Summary of statistical models of variation in second generation 

anticoagulant rodenticide (SGAR) residues in polecat livers collected from 2013 

to 2016. Top models are from analyses of i) probability of detecting residues ii) 

number of compounds for which residues were detected and iii) total 

concentrations. AIC is Akaike's Information Criterion and ΔAIC is the difference 

in AIC from the best model. Only models with ΔAIC <2 are included in the top 

model set. Weight is the weighting given to that model when the averaged 

model is calculated. Sample sizes vary because of missing variables and the 

exclusion of animals with no residues detected in models of total 

concentrations. 

Model Covariates df Log 

likelihood 

AIC ∆ 

AIC 

Weight 

i) Probability of detecting ≥ 1 liver SGAR residue (n = 59)  

1 Age + δ15N 3 -24.72 55.8

7 

0.00 0.24 

2 Age + δ15N + land class 4 -23.76 56.2

6 

0.39 0.20 

3 Age + δ15N + δ13C + land class 5 -22.70 56.5

3 

0.66 0.17 

4 Age + δ15N + δ13C 4 -24.04 56.8

3 

0.96 0.15 

5 Age + δ15N + fat score + land class  5 -23.04 57.2

1 

1.34 0.12 

6 Age + δ15N + fat score 4 -24.34 57.4

1 

1.54 0.11 

ii) Number of SGARs detected (n = 59)  

1 Age + δ13C + δ15N 4 -85.54 179.

82 

0.00 0.27 

2 Age 2 -88.31 180.

82 

1.01 0.16 

3 Age + δ13C 3 -87.24 180.

92 

1.10 0.15 

4 Age + δ15N 3 -87.33 181.

10 

1.28 0.14 

5 Age + half of year + δ13C 4 -86.20 181.

14 

1.33 0.14 

6 Age + half of year + δ13C + δ15N 5 -85.04 181.

21 

1.40 0.13 

iii) Total SGAR concentration (n = 46)  

1 Age + land class + region 7 -87.51 191.

97 

0.00 0.33 

2 Age + land class 4 -92.11 193.

19 

1.22 0.18 

3 Age + land class + δ13C 5 -90.86 193.

22 

1.25 0.18 

4 Age + land class + δ13C + region 8 -86.71 193.

31 

1.34 0.17 

5 Age + land class + region + fat score 8 -86.92 193.

72 

1.75 0.14 
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Table 5.2b. Standardised conditional averaged model coefficients and relative 

importance of variables included in top model sets (ΔAIC < 2) of variation in 

second generation anticoagulant rodenticide residues in polecat livers. Three 

measures were assessed: i) probability of detecting residues; ii) number of 

compounds for which rodenticides were detected; and iii) total concentrations. 

Parameter names with brackets show the effect of that parameter category 

against the reference category (half of year = first, land class = arable, 

region = east). Parameters highlighted in bold are those where the confidence 

intervals do not span zero on the model scale, indicating a consistent directional 

effect. Coefficient estimates, standard errors and confidence limits are 

presented on the model scales. Importance reflects the number of models that 

the parameter appears in and its importance to the averaged model. 

Parameter Coefficient 
estimate  

SE 2.5% CI 97.5% CI Importance 

i) Probability of detecting ≥ 1 liver SGAR residue (binomial regression, logistic scale)  

(intercept) 1.54 0.55 0.44 2.65 - 

Age 2.20 1.18 -0.17 4.57 1.00 (6) 

δ15N 2.53 0.92 0.68 4.37 1.00 (6) 

Land class (pastoral) 1.16 0.80 -0.43 2.76 0.50 (3) 

δ13C  1.10 0.88 -0.66 2.86 0.32 (2) 

Fat score -0.78 0.78 -2.34 0.78 0.24 (2) 

ii) Number of SGARs detected (Poisson regression, log scale) 

(intercept) 0.46 0.13 0.20 0.73 - 

Age 0.47 0.17 0.13 0.81 1.00 (6) 

δ13C 0.40 0.22 -0.05 0.84 0.70 (4) 

δ15N 0.36 0.22 -0.09 0.81 0.54 (3) 

Half of year (second) -0.28 0.24 -0.76 0.19 0.27 (2) 

iii) Total SGAR concentration (linear regression, log scale) 

(intercept) -1.97 0.52 -3.03 -0.92 - 

Age 1.44 0.56 0.30 2.57 1.00 (5) 

Land class (pastoral) -1.98 0.67 -3.33 -0.62 1.00 (5) 

Region (north) 0.29 0.97 -1.67 2.25 0.64 (3) 

Region (south) 0.37 0.79 -1.22 1.97 0.64 (3) 

Region (west) 1.97 0.82 0.32 3.63 0.64 (3) 

δ13C 0.74 0.55 -0.38 1.85 0.35 (2) 

Fat score 0.56 0.56 -0.56 1.69 0.14 (1) 
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Figure 5.2. Predictions based on output of the averaged model for the 

probability of detecting second generation anticoagulant rodenticide residues in 

polecat livers at different levels of δ15N in pastoral landscapes. Polecat age, 

δ13C and fat score are kept constant at their mean values (16.2 months, 

−25.54‰ and 2.6, respectively). 

Number of SGARs detected in the liver 

Age, δ13C, δ15N and half of year were included in the top models of the number 

of liver SGARs detected in individuals (Table 5.2a). Age appeared in all of the 

top models and, in the averaged model (Table 5.2b), was positively associated 

with the number of compounds detected. The effects of δ15N, δ13C and time of 

year were also included in the averaged model but had no clear effect on the 

number of SGARs detected. Overall, the model predicted that by thirty-six 

months old, polecats will on average have accumulated detectable 

concentrations of 2.1 SGARs (95% confidence limits: 1.5–2.7) in their livers, 

assuming mean δ15N, mean δ13C and first half of year values. 
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Total SGAR concentrations 

There were five top models for total SGAR concentrations and these contained 

age, land class, region, δ13C and fat score as variables (Table 5.2a). Age was 

positively associated with total SGAR concentrations in the averaged model. 

Total SGAR concentrations were also significantly higher in polecats collected 

from arable compared with pastoral landscapes and in animals in the west 

compared with those in the east (Table 5.2b). There was no clear effect of δ13C 

or fat score on total SGAR concentrations. 

Comparison of exposure in polecats from 1992–9 and 2013–16 

When historical limits of detection (0.027, 0.010 and 0.005 μg/g for 

bromadiolone, difenacoum, and brodifacoum respectively) from less sensitive 

analytical techniques as used in the earlier study by Shore et al. (2003) were 

applied to our “new data” for animals that died in 2013–16, the rates of 

detection in the “new data” were reduced to 40% (bromadiolone), 35% 

(difenacoum), 21% (brodifacoum) and 54% (any SGAR). As flocoumafen was 

not detected in any animals in either study and difethialone was not tested for in 

the 1990s, these compounds were excluded from this part of the analysis. 

These compare to detection rates of 12%, 22%, 3% and 31% respectively in 

Shore et al. (2003). The change in prevalence from 31% to 54% of polecats 

with one or more SGAR detected equates to an increase in the rate of detection 

by a factor of 1.7 between the two studies. A greater proportion of animals in 

the “new data” had two (24%) and three compounds (9%) than those recorded 

by Shore et al. (2003), who found that only 2% of polecats had liver residues of 

two compounds and a further 2% had detectable liver residues of three 

compounds. 

Survey period and location appeared in all top model sets (Table 5.3a). In the 

averaged models of the probability of detecting SGARs residues and the 

number of SGARs detected, the period 2013–2016 was associated with higher 

rates of detection of rodenticides than the period 1992–1995 (Table 5.3b). 

There was also an increase in the rate of detection between the period 2013–

2016 when compared to polecats collected in the period 1996–1999, but this 

was a smaller effect. The number of compounds detected was higher in the 

most recent survey period than both of the previous collection periods. Survey 
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period did not have a consistent effect on the total concentrations of SGARs 

detected. Location (animals in 1990s range vs animals in areas colonised post 

1990s) did not have a consistent effect in any of the averaged models. 

 

Table 5.3a. Summary of statistical models of variations in second generation 

anticoagulant rodenticide (SGAR) residues in polecat livers. Top models from 

analysis of i) probability of detecting residues; ii) number of rodenticides 

detected and iii) total concentrations using “combined” Shore et al. (2003) and 

new rodenticide data. AIC is Akaike's Information Criterion and ΔAIC is the 

difference in AIC from the best model. Only models with ΔAIC <2 are included 

in the top model set. Weight is the weighting given to that model when the 

averaged model is calculated. Sample sizes vary because of the exclusion of 

animals with no residues detected in models of total concentrations. 

Model rank Covariates df Log 
likelihood 

AIC ∆AIC Weight 

i) Probability of detecting ≥ 1 liver SGAR residue (n = 168) 

1 Survey 3 -107.70 221.55 0.00 0.72 

2 Survey + location  4 -107.59 223.43 1.88 0.28 

ii) Number of SGARs detected (n = 168) 

1 Survey 3 -168.05 342.26 0.00 0.52 

2 Survey + location  4 -167.10 342.45 0.19 0.48 

iii) Total SGAR concentrations (n = 68) 

1 Null 2 -104.13 212.44 0.00 0.43 

2 Location 3 -103.26 212.90 0.46 0.34 

3 Survey 4 -102.53 213.69 1.25 0.23 
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Table 5.3b. Standardised conditional averaged model coefficients and relative 

importance of variables include in top model sets (ΔAIC < 2) of variation in 

second generation anticoagulant rodenticide (SGAR) residues in polecat livers. 

Three metrics were modelled: i) probability of detecting residues; ii) number of 

compounds for which rodenticides were detected; and iii) total concentrations 

using “combined data” incorporating Shore et al. (2003). Parameter names with 

brackets show the effect of that parameter category against the reference 

category (survey = “2013–2016”, location = “inside 1990s range”). Parameters 

highlighted in bold are those where the confidence intervals do not span zero on 

the model scale, indicating a consistent directional effect. Coefficient estimates, 

standard errors and confidence limits are presented on the model scales. 

Importance reflects the number of models that the parameter appears in and its 

importance to the averaged model. 

Parameter Coefficient 
estimate 

SE 2.5% 
CI 

97.5% 
CI 

Importance 

i) Probability of detecting ≥ 1 liver SGAR residue (binomial regression, logistic scale) 

(intercept) 0.21 0.28 -0.34 0.76 - 

Survey (1992 - 1995) -1.40 0.46 -2.30 -0.50 1.00 (2) 

Survey (1996 - 1999) -0.75 0.39 -1.52 0.03 1.00 (2) 

Location (outside 1990s range) -0.23 0.49 -1.19 0.74 0.28 (1) 

ii) Number of SGARs detected (Poisson regression, log scale) 

(intercept) 0.03 0.16 -0.29 0.35 - 

Survey (1992 - 1995) -1.22 0.32 -1.86 -0.59 1.00 (2) 

Survey (1996 - 1999) -0.89 0.26 -1.41 -0.38 1.00 (2) 

Location (outside 1990s range) -0.35 0.25 -0.85 0.15 0.48 (1) 

iii) Total SGAR concentrations (linear regression, log scale) 

(intercept) -1.93 0.20 -2.32 -1.54 - 

Survey (1992 - 1995) -0.49 0.40 -1.28 0.31 0.23 (1) 

Survey (1996 - 1999) -0.48 0.31 -1.09 0.13 0.23 (1) 

Location (outside 1990s range) 0.41 0.31 -0.22 1.04 0.34 (1) 
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Discussion 

The detection of SGARs in 79% of the polecats collected in the period 2013–16 

was comparable with the findings of recent studies of other mustelids from 

elsewhere. Detection rates of ∼79% were reported for American mink in 

Scotland (Ruiz-Suárez et al. 2016), 78% for fishers in California (Gabriel et al. 

2012) and 95% for stoats and weasels in Denmark (Elmeros et al. 2011). A 

recent study of the exposure of polecats and stone martens (Martes foina) in 

Denmark detected SGARs in 94% and 99% of animals respectively (Elmeros et 

al. 2018). Similarly high prevalence of residues has been found in birds of prey 

in Britain, with 94% of barn owls (a generalist small mammal predator) with 

detectable residues of one or more SGARs (Shore et al. 2016) and 100% of a 

sample of 18 red kites, a scavenger that often feeds on rats, with detectable 

liver SGAR residues (Walker et al. 2017). 

Overall, the prevalence of residues in the present study is greater than that 

reported for polecats that were collected in the 1990s in Britain (Shore et al. 

2003). This is in part due to improvements in analytical sensitivity, but even 

when this methodological difference is accounted for (by applying common 

limits of detection), we identified an increase by a factor of 1.7 in the prevalence 

of SGAR residues over the 25 years from 1992 to 2016 inclusive. We found no 

evidence of differences in rates of detection between polecats within and 

beyond the limits of their 1990s range, suggesting that the increase in exposure 

over time has occurred throughout the polecat's current range in Britain, and 

has not been caused simply by expansion into areas where SGAR usage has 

traditionally been considered to be higher (Dawson et al. 2003, Dawson & 

Garthwaite 2004). 

SGAR detection in polecats may have increased owing to more widespread use 

of SGARs and/or changes in polecat diet. There is some evidence of an 

increase over time in SGAR usage. In a nationwide survey of rodenticide usage, 

Dawson et al. (2003) found that between 1992 and 2000 the proportion of farms 

in Britain using SGARs changed from 74% to 89%. Furthermore, rabbit 

populations have declined since 1995 (Aebischer et al. 2011, Battersby 2005), 

which may have increased the reliance of polecats on rats and other rodents as 

prey. In our study, the increased prevalence of brodifacoum from 3% in Shore 
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et al. (2003) to 35% in our most recent survey (21% using historical LODs) was 

particularly notable and may reflect growing resistance in rats to bromadiolone 

and difenacoum in England and Wales (Buckle 2013) and a consequent attempt 

to control resistant populations through use of brodifacoum. The proportion of 

American mink in Scotland recently found with liver residues of brodifacoum 

and flocoumafen was only 10% (Ruiz-Suárez et al, 2016) but resistance to 

bromadiolone and difenacoum is not widely documented in Scotland (Buckle & 

Prescott 2012) and so there may be less pressure to use compounds, such as 

brodifacoum, when there is little or no known resistance in rats. 

The positive relationship between higher values of δ15N and the presence of 

rodenticide residues (Fig. 5.2) was consistent with our hypothesis that polecats 

would be more likely to be exposed to SGARs due to their consumption of 

contaminated target prey, primarily rats, which are likely to have higher δ15N 

signatures than herbivorous rabbits. Other studies have found that detection of 

SGAR residues in predators varies with available food sources (Hegdal & 

Blaskiewicz 1984, Tosh et al. 2011, Geduhn et al. 2016) and while it seems 

most likely that the elevated δ15N signatures reflect polecats feeding at higher 

trophic level, we cannot be certain whether the sources of contamination are 

rats as the target species, or other non-target omnivorous rodents. Alternatively, 

enriched δ15N signatures might distinguish polecats that had been living and 

feeding in landscapes exposed to anthropogenic enrichment of soil 15N, 

perhaps associated with practices associated with agricultural intensification 

(Rubenstein & Hobson 2004, Crawford et al. 2008). It was notable that there 

was no significant relationship between δ15N and total SGAR concentrations 

and this suggests that dietary preferences may have the greatest effect on 

whether exposure takes place at all, rather than influencing the magnitude of 

exposure. The frequency of exposure and resultant residue accumulation is 

likely to be driven more by patterns that influence the extent of exposure in the 

prey and the numbers of those prey that are eaten over time. 

Age was positively related to number of SGARs detected in the liver and to total 

SGAR concentrations in polecats that died between 2013 and 2016. This 

reflects the greater time period over which older polecats can encounter and eat 

contaminated prey, together with the persistence of SGAR residues in liver 

tissues. Similar positive associations between age and exposure have been 
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found in birds (Christensen et al. 2012, Walker et al. 2015) and mustelids 

(Gabriel et al. 2012, Ruiz-Suárez et al. 2016). 

We found that total SGAR concentrations in the 2013–16 polecats varied with 

the predominant land-use in the area in which they died. Geduhn et al. (2015) 

found a significant difference in contamination between urban areas and areas 

with high livestock density. Total SGAR concentrations were higher in polecats 

from arable than pastoral areas, which may indicate heavier SGAR usage on 

arable farms. This is in line with findings from previous national rodenticide 

usage surveys on arable farms compared to farms growing grass and fodder 

(De'Ath et al. 1999, Garthwaite et al. 1999). The higher total SGAR 

concentrations in polecats collected in the west compared to the east was 

surprising, as we might have expected rodenticide usage to be higher in the 

east of England, where there is a greater density of arable farms (Dawson et al. 

2003). However, this finding is consistent with those of Shore et al. (2003), in 

which bromadiolone residues were higher in polecats in Wales, Midlands and 

West England than in animals in the East and the South-East of England, and 

difenacoum residues were higher in Wales than in the East and South-East of 

England. We did not detect significant variation between exposure at different 

times of year in the polecats that died in 2013–16, contrary to the earlier polecat 

surveys (Shore et al. 1999, Shore et al. 2003). Thus we have no evidence that 

current exposure in polecats is greatest in the autumn and winter, as previously 

thought, and may indicate that exposure is now similar year-round. 

In conclusion, we have determined that SGAR contamination in polecats in 

Britain is likely to be greatest in older animals that eat rodents, live in the west 

of the country and inhabit arable areas; these individuals may therefore be at 

greater risk of adverse effects. We have also demonstrated that exposure has 

increased in scale (proportion of animals exposed, number of residues 

accumulated) since the 1990s and that this increase appears to have occurred 

throughout the polecat's range. The implications for polecats arising from this 

widespread exposure to SGARs is a key question arising from this study. 

Diagnosis of mortality caused by rodenticides would ideally draw upon ante-

mortem observations, post-mortem detection of non-trauma related 

haemorrhaging and quantification of liver residues (Murray 2018). Although liver 

concentrations >0.2 μg/g wet weight have elsewhere been considered to be 
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potentially lethal (in barn owls; Newton et al. 1999), liver residues alone cannot 

be used as clear indicators of lethal poisoning, as the relationship between 

residue magnitude and likelihood of mortality is variable (Thomas et al. 2011). 

We have identified high liver SGAR residues in some polecats but most of these 

animals were killed on the road and the resultant trauma precluded clinical 

detection of any rodenticide-related haemorrhaging. It is conceivable that SGAR 

exposure may have contributed to their mortality, if such exposure affected the 

likelihood of animals being run over and/or if it exacerbated trauma. It is also 

possible that these animals may ultimately have succumbed to SGAR 

poisoning, had they not been run over. We did not find any evidence of sub-

lethal effects, such as reduced kidney fat levels, in animals with detectable liver 

residues, which might have been expected, given that reduced body condition 

has been observed in other studies of secondary exposure in mustelids 

(Elmeros et al. 2011). Overall, whilst we have shown that the rate of detection of 

SGARs and the number of compounds detected per animal have both 

increased over time, polecats have continued to recolonise Great Britain over 

the same period (Birks & Kitchener 1999, Birks 2008, Croose 2016). They are 

now widespread in central, eastern and southern England, but are yet to re-

establish themselves in parts of northern England and Scotland. Research 

exploring polecat survival and productivity in relation to varying degrees of 

exposure to SGARs would help inform our understanding of the impacts that 

SGARs may have on polecat populations and rates of recolonisation. 

The regulatory framework concerning SGAR deployment in Britain changed in 

July 2016, with a relaxation of restrictions on the use of brodifacoum, 

flocoumafen and difethialone, but there has been a concomitant introduction of 

a stewardship scheme designed to promote best practice in use and thereby 

reduce non-target primary and secondary exposure 

(http://www.thinkwildlife.org/stewardship-regime/Stewardship). The effect of 

these regulatory changes for primary consumers of SGAR target species, such 

as polecats, is uncertain. The outcome could be less prolonged use of 

difenacoum and bromadiolone in areas where resistance in rats to these two 

compounds is a problem, while at the same time there may be an increase in 

the use of more acutely toxic, “resistance-busting” SGARs, such as 

brodifacoum and flocoumafen. 
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One of the biggest gaps in our understanding of the risk posed by SGARs to 

polecats and other non-target wildlife, concerns usage patterns and rodent 

control practices. There is a need to determine how much and how frequently 

SGARs are used and how usage varies between different types of landowners 

in different parts of the country. Contemporary research into predator diets, 

including fine-scale application of stable isotope approaches to predators and 

their prey, will also improve understanding of pathways of exposure. Exploring 

user practices and how these may change following the introduction of 

stewardship is critical to inform our understanding of the current and likely future 

scale of the risks presented to non-target wildlife by anticoagulant rodenticides. 
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Keeping The Balance: gamekeeping perspectives on 

wildlife management in Britain 

 

 

 

 

‘The Gamekeeper forms, indeed, so prominent a figure in rural life as almost to 

demand some biographical record of his work and ways. From the man to the 

territories overwhich he bears sway—the meadows, woods, and streams—and 

to his subjects, their furred and feathered inhabitants, is a natural transition.’  

Richard Jefferies (1878) The gamekeeper at home: sketches of natural history 

and rural life.  
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Chapter 6: Keeping The Balance: gamekeeper 

perspectives on wildlife management in Britain  

This paper is to be submitted to People and Nature as: 

Sainsbury KA, DeSilvey C, Crowley SL, Shore RFS, Schofield H, McDonald RA 

(in prep.) Keeping The Balance: gamekeeper perspectives on wildlife 

management in Britain. 

Abstract 

Gamekeepers play an influential and widespread role in countryside 

management in Great Britain by managing landscapes to produce game for 

sport shooting. As individuals and collectively as a profession, gamekeepers 

often frame their management approach through notions of ‘keeping the 

balance’. The balance-of-nature is a term used in popular science and culture. 

In order to understand gamekeepers’ conceptions of ‘The Balance’, we carried 

out 23 ‘go-along’ interviews with gamekeepers working in a variety of 

landscapes across Great Britain. We found that the gamekeepers’ Balance is 

articulated as a concept unifying habitat management, animal husbandry and 

predator control to mitigate pressures from predators and disease. For 

gamekeepers, keeping The Balance is a collection of ritualised processes and 

responses, with the primary goal of creating local, shootable surpluses of game, 

but also fulfilling wider stewardship objectives, including correction of 

anthropogenic perturbations, which may also stem from their own actions, in 

their system of nature. Their explanations of keeping The Balance uncover a 

complex social-ecological system of interacting anthropogenic and ecological 

processes, to which gamekeepers see themselves as integral and connected 

via the interdependencies of humans, gamebirds and predators. Ambiguity 

around potential multiple interpretations of The Balance and the intensity of 

management required to achieve it, opens up potential lines of 

misunderstanding between gamekeepers and other users of the term.  
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Introduction 

In his nineteenth century account The Gamekeeper at Home, Jefferies (1878) 

describes in some detail the position held by the gamekeeper (keeper) in the 

workings of a rural estate, including how the keeper is connected to ‘meadows, 

woods, and streams—and to his subjects, their furred and feathered 

inhabitants.’ Today, keepers continue to play an influential, if sometimes 

controversial, role in countryside management in Great Britain. Some 60% of 

rural land area is managed for gamebirds that will be shot for sport in some 

form (Piddington 1981). This management is undertaken by 3-5000 keepers 

(Tapper 1992), a relatively small number compared to the 120000 keepers 

employed in the heyday of sport shooting in the nineteenth century (Tapper 

1992).  

The National Gamekeepers Organisation (NGO) was established in 1997 by 

gamekeepers who felt that the profession was ‘threatened by public 

misunderstanding and poor representation’ (NGO n.d., Mitchell & Manning 

2014) and, according to their website, “gamekeeping helps to ensure a 

balanced environment with plentiful wildlife”. The NGO’s byline is ‘Keeping the 

Balance’, which is also the title of their magazine (Fig. 6.1), issued quarterly to 

some 16000 members. The Game and Wildlife Conservation Trust’s1 first 

published ‘comprehensive’ policy document is entitled ‘A Question of Balance’ 

and it emphasises the role of game preservation in conserving the countryside 

and all of the wildlife within it (Tapper 1999). In this context, it seems that ‘the 

balance’ is employed to mean improving the balance of opinion towards 

keepers and game management given public misunderstanding. A study of the 

motivations behind predator controls in 2016 by Swan et al. (in prep) found that 

keepers talked about ‘balance’ in terms of reducing predator numbers to what 

was perceived to be more natural levels of abundance. An online media search 

for the term ‘balance’ in relation to keepers uncovers a variety of interpretations: 

                                         

1 Formerly the Game Conservancy Trust. The Game and Wildlife Conservation Trust (GWCT) is 
a ‘UK charity conducting conservation science to enhance the British countryside for public 

benefit.’ GWCT researches and develops game and wildlife management techniques and uses 
its findings to provide training and advice on ‘on how best to improve the biodiversity of the 
countryside. www.gwct.org.uk. 
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balancing the needs of humans and wildlife, providing ‘a conservation balance’, 

restoring nature, considered decision making, providing a public service and 

rearranging the ‘wildlife equilibrium’ (Table 6.1). Unpacking notions of ‘balance’ 

therefore seem an appropriate starting point for exploring the gamekeepers’ 

worldview. 

 

 

 

Figure 6.1. The National Gamekeepers Organisation issues a quarterly 

members magazine called ‘Keeping the Balance’. (Source: NGO website) 
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Table 6.1. Summary of views about gamekeepers and ‘balance’. Results from 

an internet search using the terms ‘gamekeeper’ and ‘balance’ on 26 June 

2019. Bold is added for emphasis. 

Reference to ‘balance’ Source 

‘The skilled management of predators and habitat helps to 

maintain a balance in the countryside, providing food for species 

such as golden eagles and over-winter sustenance for many 

species. Gamekeepers and stalkers also manage deer, using their 

knowledge to provide a sporting cull but also to keep deer 

numbers at a level which balances sport with animal welfare  

and the need to reduce grazing impacts on land and forestry.’ 

Scottish 

Gamekeepers 

Association 

(n.d.). 

Webpage 

about 

gamekeeping. 

‘Achieving the balance between environmental stewardship 

and cover crop requirements needs knowledge and know-how, 

but when you’ve cracked the formula, you have achieved 

something very worthwhile.’ 

NGO (2014). 

Article about 

game crop 

management. 

‘There is no doubt in my mind that if we lose our keepers our 

wildlife will suffer, and we will lose that broad biodiversity that our 

public may take for granted … Governments and their agencies 

need the gamekeepers to hold the balance in our fragile 

communities although this is rarely acknowledged. They have 

now spent millions of public money trying to eradicate mink, stoats, 

badgers and hedgehogs. Gamekeepers offer this service to the 

nation for nothing.’ 

Financial 

Times (n.d.) 

Letter from 

Alex Hogg, 

Chairman of 

Scottish 

Gamekeepers’ 

Association. 

‘Always feisty and forthright in his opinions, Balharry came to 

realise that the key to success in managing wild land lay in 

restoring the balance between grazing animals and the natural 

vegetation.’ 

Marren (2015) 

Obituary about 

a gamekeeper 

in The 

Independent.  

‘The thing is, in order to keep conditions just right for shooting 

game and admiring songbirds, Garrod finds that quite a lot of other 

animals living on the estate require shooting too … It sounds like 

a delicate - not to mention messy - rearrangement of the 

wildlife equilibrium. “It is," he agrees. "By controlling foxes we've 

now got a nice population of hares. That brings trouble because 

then you've got poachers and hare coursers coming in." He shrugs. 

"But that's the price you pay.”’ 

Snowdon 

(2008) Article 

about 

gamekeeping 

as a career in 

The Guardian. 

‘Like any other use of woodland, whether recreational or economic, 

the underlying objective in creating or managing woods for 

game is to provide an overall conservation balance which is 

positive, i.e. where the wider benefits of woodland management 

for game to wildlife and their habitats are maximised and not 

outweighed by any potentially negative impacts.’ 

GWCT and 

Woodland 

Trust (n.d.) 

Publication on 

best practice in 

woodland 

management. 

‘Many animal populations are stable over time and have 

reproduction and death rates that exactly balance each other. 

This happens because natural resources (e.g. food supply, nesting 

habitat) are limited and as these resources are used up and 

Tapper (2005) 

Report on the 

benefits of 

gamekeeping. 
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Reference to ‘balance’ Source 

competition for them intensifies, the mortality rate increases 

(density dependent mortality) and fecundity reduces (density 

dependent natality). This density dependence maintains the 

population around a stable equilibrium level… Game managers 

(gamekeepers and others) try both to enhance the productivity by 

providing better breeding habitat and more food, and reduce the 

natural mortality due to predators and disease.’  

‘If gamekeepers and others could legally control excess badgers as 

local circumstances required, just as they do now with foxes, 

badger numbers nationally would slowly return to a lower, 

sustainable level, in balance with the needs of man and wildlife .’ 

NGO (n.d.b) 

Position 

statement on 

badger 

management. 

In this 17-minute DVD, ‘Adam - who is lost on the moors after 

becoming separated from his school party - meets Fred, the 

gamekeeper. On the way back to the minibus Fred teaches Adam 

about the moorland - the landscape, the wildlife it supports, the bird 

species which need protecting, the importance of sustainable 

management and the need to maintain a natural balance.’ 

National 

Gamekeepers 

Organisation 

(2013). Video 

about 

moorland 

gamekeeping. 

 

The keepers’ ‘balance’ is evocative of the longstanding heuristic of the balance-

of-nature (Egerton 1973). Ideas of an inherent natural ‘balance’ date back to 

antiquity (see Egerton (1973) for a full account) and have profoundly influenced 

Western perspectives of human relationships with nature, with the natural world 

seen variously as something to be exploited (White 1967), perfected (Thomas 

1983), mastered (Leiss 1974) and, more recently, protected (McKibben 2010). 

From ancient Greece until the Reformation, discussions were primarily 

Christian-centric and it was believed that Providence had determined species 

traits to ensure a harmonious co-existence of the whole of Creation2 (Egerton 

1973). Since then, although the concept of balance has been implicit in 

theoretical and applied conceptions of nature for centuries, its exact meaning, 

and therefore the role of humans in perturbing and redirecting it, has been much 

debated (see Simberloff (2014) for a detailed review). By the eighteenth 

century, scholarly debate had moved to exploring interactions between species, 

rather than pre-determined traits that would keep nature in balance (Simberloff 

2014). In the early twentieth century, the idea of balance became synonymous 

                                         

2 For example, lower reproductive rates in carnivores compared to herbivores was interpreted as 

Divine punishment for their carnal desires (Egerton 1973). 
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with ideas of equilibria in natural processes as part of a whole supraorganism 

(e.g. Clements 1936). Nicholson (1933), one of the few scholars to attempt to 

precisely define the concept as opposed to exploring the processes that may 

enable it (Egerton 1973), described nature as a system moving around an 

equilibrium but never settling at it: 

‘The balance of animal populations is similar to that of a balloon acted 

upon by the changing temperatures of night and day. Such a balloon 

rises and falls in relation to the change in temperature, for this varies the 

volume of the balloon and the density of the surrounding air. The balloon 

is continually in a state of tending towards a position of stationary 

balance, but continues to rise and fall because the position of stationary 

balance is changing all the time.’ (1933: 133) 

Early animal ecologist Charles Elton (1930) rejected the balance-of-nature 

concept on the basis that it was precluded by irregular variabilities in population 

cycles among communities of species. At the same time, while developing the 

science of wildlife management, Aldo Leopold (1933) thought that while there 

may be a balance in nature, human intervention could have unforeseen 

consequences. Centuries of human disturbance had come to be seen as having 

destroyed any natural biological equilibrium that may have existed and instead 

a new ‘human ecological equilibrium’ would need to be sought (De La Tour 

1956). Since then, whether or not such a balance exists has continued to be 

questioned (e.g. Ehrlich & Birch 1967) and it has been dubbed a ‘panchreston’: 

a broad term that oversimplifies a complex idea with the result that it means 

many different things to many people, and in doing so becomes redundant 

(Simberloff 2014). In the second half of the twentieth century ecological 

research turned away from equilibria to focus more on community dynamics 

and interactions (Wu & Loucks 1995). Ecological debates notwithstanding, 

concepts of balance continue to be part of popular framings of nature and of 

language, particularly among environmentalists and wildlife managers, where 

the usual application of the term implies a nature that is fragile and requires 

human intervention, or alternatively human abstention, to be protected 

(Simberloff 2014). 
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In this paper our objective is to explore the ‘balance’ as it is understood and 

realised by modern gamekeepers through their specific land and wildlife 

management practices. To this end, we interviewed gamekeepers from across 

Britain to ask them about the what and the why of how gamekeeping is done. It 

is not our aim to review the efficacy of their approach or assess the viability of 

specific game management practices, rather to arrive at an understanding of 

keepers’ worldviews through the general lens of keeping ‘the balance’.  

Background to gamekeeping in Great Britain 

In Britain, gamekeeping is a venerable profession that is steeped in tradition 

(Munsche 1981). Since its earliest days, when the job of the keeper was to 

provide game for the Royal table during Norman times (Munsche 1981, 

Lovegrove 2007), keepers have held a unique position in rural society. Acting 

as a gateway to game—a valued recreational resource and an important source 

of protein—from the Middle Ages onwards, the keeper was caught between the 

landed gentry for whom they worked and the rural classes, with whom they lived 

but were sometimes unpopular, due to their key responsibility of protecting 

game from poachers3 (Munsche 1981, Lovegrove 2007). 

By the eighteenth century, developments in artificial brood rearing4 and the 

growing popularity of sport shooting lead to increases in predator controls, to 

maximise game returns (Munsche 1981). Today, the role of the gamekeeper 

broadly entails fostering young game, whether these are wild birds or are reared 

and released for shooting, providing food and enhancing their habitat, protecting 

birds, eggs, and chicks from being eaten by predators and overseeing the 

successful shooting of the produced game on shoot days (Bell 2015). Keepers 

follow an annual cycle of management, although exact timings and details vary 

by shoot. Predator controls are most important during the spring egg laying, 

incubation and hatching of wild broods and in the early lives of juvenile birds 

(called ‘poults’) that are released on reared game shoots. Once wild birds are 

able to fly, smaller ground predators like stoats Mustela erminea and weasels 

                                         

3 Taking of game was not permitted without a licence by Game Laws (Munsche 1981). 
4 In which birds were fenced into enclosures, thereby creating pockets of high densities of birds 
that would attract predators. 
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M. nivalis become less of a risk, although larger predators like foxes Vulpes 

Vulpes and goshawks5 Accipter gentilis continue to be a problem all year round. 

For reared birds, pens6 are erected in which to release the birds and it is 

important that the released birds see these pens and their vicinity as a ‘home’ or 

relaxed haven where they can return each evening to roost or ‘jug’7, depending 

on the species. During the day, reared birds are encouraged, by regular feeding 

and provision of game crops8, to make regular trips to the areas from which 

they will eventually be driven9 during the shoot. In wild game shoots, there is 

less direct intervention with the birds and habitat management and predator 

controls are fundamental to a successful season (Appendix 6.3 summarises the 

different habitat management efforts carried out on different shoot types). 

Management by gamekeepers is generally limited to areas within the 

boundaries of their shoot, though within larger shooting estates multiple beat 

keepers can be responsible for their discrete patches, or beats10. Underkeepers 

working on the same estate may assist with activities as necessary. Keepers 

often have permission from owners of land adjacent to the shoot to control pest 

species on their land, while some keepers will travel to help colleagues and 

friends on other shoots. 

                                         

5 Predator controls of birds of prey are only permitted for some species under specific licenses.  
6 Pheasant pens are built in woodland, or woodland edge and may be several acres in size, 
including a mixture of woodland and open features (ideally 1/3 woodland, 1/3 game crop, 1/3 

open. They may contain cover crops, or the crops may be adjacent to pens. The pens are in 
place from just before the poults are introduced to wood until the end of the shooting season 
and may be dismantled over the shooting hiatus and reinstated again in spring. Partridge pens 
are smaller, temporary structures and typically placed in arable fields. They are dismantled once 
the birds are mature enough to live outside of them. Pheasants are usually released at 6-8 
weeks old, partridges may be 12 weeks depending on the field management system in place as 

they cannot be released into fields until crops have been harvested. 
7 When birds sit on the ground at night to rest. 
8 Game crops are used to provide food and cover. Typically include mixes of one or more of: 
maize, kale, triticale, buckwheat, fodder radish, sorghum, chicory, quinoa, red millet, millet, 
asparagus, elephant grass, as well as small bird, bee and wildflower mixes. Some game crop is 
part of HLS stewardship schemes, others are not. Used by lowland keepers (wild and reared 

game). 
9 The majority of gamebird shooting in Britain is ‘driven’. Birds are flushed from over the line of 
Guns by beaters following instructions of someone, usually the head or beatkeeper, to ensure 
that the birds fly over the Guns at the optimum speed, height and direction. Beaters and pickers 
up are people who help the gamekeeper on shoot day by assisting with flushing birds (walking 
in a line with flags and dogs) and collecting dead and pricked (wounded) birds respectively. 
10 Game estates are divided up into areas of responsibility called ‘beats’ which each keeper is 
assigned too. Smaller shoots may just comprise one beat, others will have multiple beats with 
different keepers responsible for each one. 
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The vast majority of birds produced for shooting in Great Britain are reared 

pheasant Phasianus colchicus and red-legged partridge Alectoris rufa, of which 

20 to 40 million birds are released11 each year for commercial and private 

shoots (Madden et al. 2018)12. Wild red grouse Lagopus lagopus scotica and 

grey partridge Perdix perdix, are fostered in the wild by enhancing the 

productivity of wild stock. Red grouse live in upland heath and moorland and 

comprise approximately 12% of game shot per annum (PACEC 2006). Grey 

partridge, which declined dramatically in population numbers and distribution 

due to agricultural intensification in the twentieth century, have been subject to 

major conservation efforts from game shooting interests (Potts 1980, Potts & 

Aebischer 1995, Aebischer & Ewald 2004) and are gaining in popularity as a 

quarry on lowland shoots. Ducks are also shot from reared and wild stock, but 

are not our primary focus here. In this paper we refer to red grouse and grey 

partridge as ‘wild’ game, while pheasant and red-legged partridge are ‘reared’ 

game. 

The gamekeeping profession has been associated with a number of 

controversies over its long history. Eighteenth and nineteenth century predator 

controls made a significant contribution to the catastrophic population declines 

in many native mammalian and avian predators, some of which (pine marten 

Martes martes, wildcat Felis silvestris and polecat Mustela putorius) were 

almost eliminated from Britain (Langley & Yalden 1977, Reynolds & Tapper 

1996, Lovegrove 2007). At the time, predator controls by keepers were a 

continuation of state-sponsored culls of pest species, or ‘vermin’, that had been 

in place since the sixteenth century13 (Lovegrove 2007). Predators were seen 

as inimical to game management (Reynolds & Tapper 1996) and in this 

historical context, keepers were considered to be doing their job (Lovegrove 

2007) to keep population numbers low. The societal shift towards valuing the 

conservation of predators is a relatively recent phenomenon, when compared to 

                                         

11 In lowland shoots, improvements in husbandry techniques of game birds have made rearing 
and releasing birds preferable to fostering wild game (Reynolds & Tapper 1996). 
12 The shift away from managing wild game towards to fostering reared game continued apace 
in the twentieth century. Approximately nine times as many pheasants were released in 2011 

compared to 1961 (Robertson et al. 2017). 
13 The Tudor Vermyn Acts were first introduced in 1532 by Henry VIII and subsequent laws 
enacted by Elizabeth I in 1566 were aimed at protecting grain from pest species. 



133 

centuries of controls (Reynolds & Tapper 1996). Viewed through a twenty-first 

century lens, the near eradication of certain species to protect sporting interests 

is ethically difficult to justify, even before considering the fundamentals of 

shooting for sport, the ethics and social acceptability of which continue to be 

hotly debated topics in their own right.  

Game management is associated with the ethic ‘conservation through wise 

use’, which is a belief that conservation occurs from intelligent sustainable use 

of natural resources achieved through appropriate human intervention (Tapper 

2005). Culling predators remains central to game management (Tapper 1992), 

but due to a combination of legal protections and regulations stipulating the use 

of more discriminate and humane traps and restricting the use of some poisons, 

gamekeepers no longer pose the generalised threat to predator populations that 

they once did. Indeed, Britain’s native mammalian carnivore populations are 

now more numerous and widely distributed than at any time in the last 150 

years (Sainsbury et al. 2019). Most of the growth in numbers of native species 

has occurred through natural increase and spread, but in some cases, notably 

pine marten and otter, populations have been translocated to support the 

recovery process. Carnivores are literally ‘being brought back into’ the 

countryside (Wolch & Emel 1995). How gamekeepers interact with predators in 

keeping the balance is therefore of particular interest. 

Since the introduction of legal protections, some keepers have been prosecuted 

for illegal killing of predators, leading to negative coverage and perceptions of 

the gamekeeping profession more generally (Britten 2008, North Yorkshire 

Police 2018, Carrell 2018). Conflict between conservation groups and shooting 

interests over management of hen harrier Circus cyaneus predation of red 

grouse has become one of the most intractable human-wildlife conflicts in 

Britain (e.g. Sotherton et al. 2009, Redpath et al. 2010). At the same time, the 

gamekeeping profession is keen to promote understanding of the positive 

benefits of their countryside management (Fig. 6.2). Studies comparing the 

effects of keepered versus unkeepered land show the benefits of keepered land 

for biodiversity (Tapper 2005). This includes, for example, the preservation of 

heather moorland, a globally rare habitat (Thompson et al. 1995), elevated 

wading bird abundance on grouse moors (Tharme et al. 2001), improved plant 

and butterfly diversity in woodlands (Ludolf et al. 1984, Clarke & Robertson 
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1993) and increased abundance of overwintering birds in game crops compared 

to arable fields (Parish & Sotherton 2004). At a national scale, the evidence for 

the benefits of game management are less conclusive, as this incorporates 

areas that are also managed for biodiversity conservation (Mustin et al. 2011). 

 

 

 

 

Figure 6.2. Trifold educational leaflet created by the North Yorkshire Moors 

Moorland Organisation (NYMMO) entitled ‘Moorland nesting season: what you 

need to know and how you can help’. The outside cover (A) provides 

information about the organisation, predator controls and public responsibility. 

The interior (B) contains information about ground nesting birds on the moor. 

 

Here, we examine how keepers practice countryside management in order to 

maintain what they see as an important balance between sustainable use of 

natural resources and conservation of wildlife. We consider how keepers 

maintain a balance through gamebird, predator and habitat management. We 

conclude by highlighting how the keepers’ balance may differ from other popular 

conceptualisations of the natural world, and the implications of this for social 

conflict surrounding wildlife management.   
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Methods 

In the course of this research, the first author carried out twenty-three semi-

structured interviews with gamekeepers from across Great Britain14. Six 

keepers mainly produced red grouse or grey partridge15 and the remainder 

produced primarily reared game16. Most interviews were conducted at the 

keeper’s home and while walking or driving around their beat. Conducting 

interviews in situ enabled keepers to talk about what they do in relation to 

features of the estate and explain or demonstrate the use of objects relating to 

their daily work. The researcher was able to observe the keeper interacting with 

gamebirds and carrying out other day-to-day activities on their rounds. The 

observations made during ‘go-along’ interviews provide a richer contextual 

understanding of keeper perspectives and practices (Carpiano 2009). Interview 

questions focused on finding out what gamekeepers do at different times of 

year and why, but the semi-structured format enabled simultaneous exploration 

of broader themes and concerns (Appendix 6.1 provides an example interview 

guide).  

All interviews were carried out between April and August 2018. This timing 

enabled the researcher to observe keeper activity and the situation of estates 

through the early life of reared and wild birds. The breadth of participation was 

maximised by having a broad base (n=9) of starting interviewees, who were 

identified from a diverse range of informants with varied perspectives, including 

members of gamekeeper and conservation organisations, academics, and 

attendees of a county fayre and a shooting event. Thereafter a snowball 

approach to identifying more interviewees was employed, through which 

participating keepers assisted with the recruitment of others. All participants 

provided written consent to participate in the study (Appendix 6.2 contains a 

sample consent form). All interviews were anonymised and here participants 

                                         

14 Keepers interviewed were based at shoots in the counties of Cornwall, County Durham, 

Devon, Dorset, Hampshire, Powys, West Sussex, Wiltshire, Gloucestershire, Herefordshire, 
Hertfordshire and Yorkshire. Four keepers had also worked in Scotland. 
15 Some wild game shoots also produced pheasants and / or red-legged partridge, but wild 

game was the main focus of the shoot. 
16 Some keepers were also involved in producing wild grey partridge on their shoots as part of a 
conservation initiative. 
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are referred to by pseudonyms to protect their anonymity. All but two interviews 

were audio recorded in their entirety and transcribed. When permission to 

record was not given, detailed notes were taken, and written up as soon as 

possible after the event. Exploratory analysis of transcripts using NVIVO 

(Version 12) identified and developed themes for discussion, including balance, 

the balance of nature, habitat management, bird husbandry, predator 

management and how gamekeepers felt about gamebirds, predator species 

and other prey species. More participants were interviewed until no new themes 

were identified and therefore theoretical saturation was reached. 

Results 

The keepers’ Balance 

Almost without exception keepers volunteered unprompted to speak of their role 

in maintaining ‘the balance’. As it quickly became clear that the keepers’ use of 

‘the balance’ was as a way of collectively organising multiple related narratives 

and experiences, from here on we refer to the keepers’ balance as The 

Balance. As Harry articulated: 

‘That’s what keepers do. They’re there to keep the balance.’  

Keeping The Balance is based on an assumption that there is a cause and 

effect within nature, that ‘as one thing goes up, something has to go down’ 

(Michael). A keeper of wild game (Alan), explained that the role of a keeper is to 

prevent prey populations from cycling downwards. The combination of habitat 

management and predator controls allowed him to manage The Balance:  

‘You’re keeping it in balance. And that’s what you get on a game 

keepered or a managed shoot… You’ve always to look after the 

environment, get the prey species fairly abundant and never let the 

predators get to the point where they make the prey species go down or 

get to the point where they then have to start coming down. And that’s 

keeping a balance.’ (Alan) 

The Balance is not limited to the interactions between predators and gamebirds, 

but also includes the wider connections between potential prey and predators in 

the ecosystem. Killing too many pest species, such as rabbits, may cause 
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predators, like stoats and weasels, to ‘kill loads of little chicks and have a 

massive knock on effect on everything. Wagtails, pied flycatchers, bullfinches, 

everything that’s endangered they’ll just keep hammering it as well’ (Luke)17.  

The Balance is more than a hypothetical concept, it is a guiding principle for a 

way of being. Ideas of ‘a balance’ or being ‘balanced’ flowed through the 

everyday language that keepers used to explain decisions about time and 

resource management. For example, Harry said, when talking about managing 

their personal life with work, ‘I just know how to balance things’.  

Keeping The Balance presumes that a long history of intervention by humans in 

the British countryside has created a dependency on continued management, 

without which ‘opportunists’ (i.e. predators) would overtake ‘underdogs’ (i.e. 

ground nesting birds). The keeper’s intervention is therefore required to control 

the nature under their auspices. Without management, the system would ‘get 

out of control’ (Dean) as ‘the wildlife doesn’t manage itself’ (Harry). In this way, 

the management of The Balance is presented as a moral duty to be corrected, 

as humans have ‘made a such a rickets’ (Dougal) of the countryside and it is 

the keeper’s role to redress the imbalance that has been created as a result.  

If The Balance isn’t kept, opportunistic predators in a human-dominated 

environment may decimate prey numbers:  

‘I’ve seen areas which haven’t been keepered and nothing’s fed and 

there’s nothing there. Because the vermin of life are opportunists… there 

has to be a balance.’ (Nigel) 

In this context, keeping The Balance is justified on the basis of a need to 

address inequalities between species, which are judged as more or less able to 

capitalise on human practices: 

‘You hear … “Let nature do it.” …But you’re not letting nature do it if 

nature’s living off dustbins, roadkill, farming activity and any other human 

                                         

17 In ecology, this phenomenon is known as ‘hyperpredation’ (e.g. Blanco-Aguiar 2012). 
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activity that keeps the predator species in abundance and never letting 

the prey species ever come into fruition.’ (Alan) 

Each keeper is principally concerned with The Balance in their locality: 

‘I’ve got no interest in foxes over there. Whereas a lot of people would be 

like “fucking hell, do this, do that.” If it’s over there, it’s over there. Until it 

crosses the boundary across the road I’ve got no interest in it.’ (Luke) 

While keepers might limit most of their activity to the areas directly relevant to 

them, wild animals didn’t adhere to these defined areas. Wild animals were 

described as being free to move into areas being ‘balanced’. This freedom of 

movement perpetuated the need to maintain The Balance, otherwise reductions 

in predators through controls would be sustained: 

‘If we were having an impact on the population you'd have nothing, 

nothing, nothing and then up again... Because we’re killing a regular 

amount of stoats ... they’re coming from somewhere, breeding from 

somewhere. We haven’t wiped them out. Kept them low enough that the 

prey species thrive and then obviously we take our share of the prey 

species like the grouse.’ (Alan) 

Additionally, the focal areas prioritised by the keepers were fluid and subject to 

change as the layout and size of rearing areas, pens and drives evolved with 

the shoot itself. Where the footprint of shooting activity on an estate had grown, 

the space available for predators to roam unchallenged declined with the 

inevitable consequence of increasing the likelihood of interactions between 

keepers and predators: 

‘Over the years the pens have got bigger, there’s more pheasants going 

in and now unfortunately if the fox wants to go in that wood, he’s got to 

be in my pen. And so I’ve created a problem for myself. Because the pen 

is so big he comes to it, looks that way 100 yards, looks that way 100 

yards and he’s got to dig in, jump over, or go through the fox gate… I do 

get a little bit of problems from that. It’s par for the course.’ (Leslie) 

The very fact that to achieve The Balance requires human intervention indicates 

that is not a ‘natural’ state, rather something that is humanmade:  
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‘Some people say there’s a balance in nature. There is a balance in 

nature. Some things have to be balanced by humans to keep that 

balance in nature.’ (Jesse) 

It cannot therefore constitute the balance-of-nature, rather is a balance-of-

nature: 

‘If they [keepers] are naïve enough to think they’re trying to maintain 

some sort of natural balance… they’re maintaining an unnatural balance, 

but a different sort of unnatural balance to what there would be if they 

weren’t out there doing it.’ (John) 

This, then, begs the question: what exactly is the balance that is being kept?  

‘I am trying to seasonally reduce the population of this, that and the other 

at the time of year when they are going to impact on what I am trying to 

achieve. So I am taking effectively a sustainable harvest out of them to 

produce a larger sustainable harvest of the game.’ (John) 

Thus what the right balance is depends on what comprises a sustainable 

harvest of game. Setting the desired shootable surplus is subject to local 

differences and, ultimately, commercial and / or private goals as sufficient game 

surplus for one individual or estate may be insufficient to meet the needs of 

another. It also means that the management required to keep The Balance 

locally will differ by shoot type, with a clear distinction between wild and reared 

game shoots, as Michael, a gamekeeper on a reared-bird shoot explained: 

‘There are many sorts of keepers though. We are a shoot that rears and 

releases pheasants. The grey partridge keepers and grouse keepers, 

totally different because they’re reliant on wild birds. So the only thing 

they can do is protect their stock by traps or that sort of thing and 

manage the habitat.’ (Michael) 

As reared keepers can ‘top up’ their stock there was more value in their 

focussing on fox control than spending time setting and checking spring traps 

set for smaller predators, when it was just easier to ‘let him [the stoat or weasel] 

have the pheasant’ (Michael). Whereas for wild game, there wasn’t that option: 
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‘if you didn’t do it, you wouldn’t have any.’ (Ali). This creates an imperative to try 

to minimise losses, as any losses are irreplaceable: 

‘you only get one shot at it. You can’t release a handful more to 

compensate for the litter of cubs, something scoffing a few. What you 

have has to produce. And you have to keep the vermin off its back and 

make sure it is there to produce’ (Mark).  

Mark, a wild gamekeeper, estimated that 90% of his time was spent on predator 

control. Most keepers did not pursue carnivores all year round; keeping The 

Balance needs the greatest intervention during egg production in the spring, or 

when the juvenile birds are most vulnerable after they’ve been released, 

whereas others disagreed with this approach as they were concerned that 

predators would recovery over the rest of the year.  

This means that The Balance is variable in relation to the status of the 

extractable resource, game, and subject to individual differences in 

management approach. In addition, many keepers spoke about The Balance as 

something that applied more broadly to the management of nature: 

‘I think everything should be balanced. If there’s too much of one thing 

they need getting rid of and not enough of another thing they need 

protecting. Everything needs keeping in balance.’ (Leslie) 

The Balance was tied to keeper experiences, knowledge and perceptions of 

nature. Having too many predators in particular was perceived as unnatural: 

‘I don’t think at the moment that things are particularly in balance … 

There’s different rules and regulations that say what you can and can’t 

do. Like the red kite population. Lovely to see, don’t get me wrong. But 

where you’ve got hundreds of them, that’s not natural. So it should be 

balanced, I feel… I’m very much we want a little bit of everything. Not a 

great load of pheasants or a great load of red kites. We want everything 

balanced … And if I can create that, I’d love it.’ (Leslie) 

In this broader view of The Balance, it is not the existence of predators that is 

problematic per se, but their abundance. Some keepers spoke of achieving 

personal wildlife management aspirations in terms of maintaining numbers of 
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rare birds, which included raptors such as merlins Falco columbarius and hen 

harrier. When arriving at one keeper’s residence, four juvenile buzzards were 

perched on fence posts in the field opposite. The keeper remarked on how he 

enjoyed watching them through the early summer. The level at which a predator 

becomes too abundant was informed by keepers’ past experiences as to how 

many they might expect to see at different times of year. This is similar to the 

findings of Swan et al. (in prep.), where keepers judged the amount of 

management intervention necessary based on perceived population trends. 

Gamebirds in The Balance 

In general, gamebirds were conceptualised by keepers as ‘stock’, ‘crop’ and a 

‘harvest’ and, after providing sporting entertainment, their ultimate utility was to 

become part of the food chain (without which keepers said they would find it 

hard to justify the scale of shooting). Paul was not alone in comparing keepers 

of reared birds to ‘livestock farmers’: 

‘They rear their birds. Their animals for slaughter. For the food chain. It is 

exactly what we do. ... It’s the same end product… When it’s loaded on a 

trailer and taken and killed, or pushed out a bit of game cover and killed. 

It’s same thing.’  

Some keepers spoke of ‘loving their stock’ as a collective, while others 

volunteered stories of recognising and looking forward to seeing individual 

birds: 

‘You get attached to pheasants. I expect all the keepers have told you 

that. I’ve put one in feed bins before now. Put him in the bin so’s it 

doesn’t get shot [during the shoot]… and then got him out at the end of 

the day.’ (Murray) 

Here keepers differed from livestock farmers. A study of poultry farmers in 

Europe by Bock et al. (2007) found that, in the main, poultry farmers did not 

have an emotional attachment to their birds as individuals but connected with 

the flock.  

Keepers spend considerable time with their birds to monitor their health and 

general wellbeing, watching them ‘play’, seeing ‘how they’re feeling’ and if 
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they’re ‘happy’ or ‘mopey’ (Jesse). On the keepers’ rounds, we spent time 

sitting quietly and observing the birds and their behaviour. We listened to cock 

birds alarm calling and waited to observe the cause: in one case it was a fox, in 

another a goshawk. We crept up to grey partridge hens on the nest to check on 

their wellbeing, careful not to leave flattened vegetation for predators to follow. 

We watched red grouse hens leading their broods across tracks in the moor 

and counted the brood sizes. We stopped at wet mud patches to look for signs 

of predator tracks. We watched for corvids ‘egging’18 along beetle banks and 

hedgerows. We picked up any dead birds that had been predated upon and 

looked for signs of what animal or bird might have killed it. When we found a 

dead sheep, the keeper touched its eyes to approximate how recently it had 

died before calling the farmer. When we smelled a fox, the keeper explained 

how he would go about setting snares in the vicinity that evening. We checked 

Larson traps to make sure that call birds were watered and fed and several 

keepers explained how they take steps to prevent corvids from eating feed out 

of feed drums, or hoppers, in order to prevent disease transfer. Good 

husbandry was described as very important to mitigate diseases and prevent 

birds pecking one another, both a major source of mortality. One keeper picked 

up numerous dead birds that had died from disease, although he had been 

treating them. Though saying little, the keeper’s dismay as we found each 

corpse was evident in his body language. We cleaned water drinkers and made 

sure that watering systems functioned. We topped up feed hoppers and hand 

fed birds to a whistle, watching as the birds strode into the release pen from 

some distance away in response to the keeper’s call. Collectively, these 

experiences demonstrate just how intimately and corporeally keepers are 

involved in the day-to-day practice of protecting and caring for their birds. 

Another way that gamekeeping differs to livestock farming is that ‘wildness’ is 

unlikely to be considered a desirable attribute in most domestic livestock 

(indeed docility is often a defining characteristic of domesticated species (Price 

1984)). Unlike gamebirds, there is no point in the lifecycle of domestic poultry at 

                                         

18 Hunting for birds on nests. 
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which demonstrating wildness is required. In contrast, to provide ‘good sport’ on 

a shoot day, reared birds must be raised to be as wild as possible: 

‘It’s knowing that your bird that’s coming, it’s not wild but it’s as close to 

that as reared keepers can get... It’s all a little bit false. We get birds, we 

put ‘em into a wood in a pen. But as soon as they go to wood fully 

winged, fully beaked they are wild, they can go where they like. It’s up to 

us to keep ‘em there.’ (Paul) 

Realising this wildness in the reared birds was a source of pride for Leslie: 

‘I get quite a thrill to think that a little bird like that, I can get him up to 

adult and he’s totally self-sufficient and can survive in the wild without 

me.’ 

It is therefore expected that the birds will show a degree of autonomy and it is 

up to the keepers to ‘keep them’. The gamebirds go where they want to go, 

some turning up miles away from their original point of release, others migrating 

to the neighbouring shoot. Some keepers spend hours every day ‘dogging in’ - 

rounding the birds up with dogs and shepherding them back to drives. Walking 

and exercise leads to strong, healthy birds. Mostly, however, birds wander 

during the day and return ‘home’ at feeding times: ‘as long as they’ve got food 

and water and they’re safe from predators they’ll be here’ (Luke). The 

requirement to foster wildness, the birds’ natural inclination to roam, and the 

importance of minimising the threats from other birds and disease caused by 

keeping too many birds in close proximity to one another, means that the birds 

cannot be completely shut away and protected from predators.  

Habitat management in The Balance 

While raising gamebirds is a keepers’ primary role, managing the 

‘environment’—or habitat—is the foundation of keeping The Balance:  

‘I’ve got to create the environment in which the pheasants and partridges 

can successfully complete their whole life cycle. So I’ve got to have the 

right basic environment for them. I’ve got to have a food source … And 

I’ve got to have reasonable freedom from being eaten by something 

else.’ (John) 
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Habitat provides cover from predators and inclement weather, gives natural 

forage for the different life stages of birds and ensures sufficient birds can be 

held19 on the estate to provide for the desired number of shoot days. The exact 

habitat management activities carried out differ between shoot types and the 

richness of the environment provided varies across the landscape of the estate, 

but the underlying principles are the same (Appendix 6.3). In the uplands, Alan 

explains that a healthy environment is the foundation for everything on the 

moor: 

‘You know the heather's more important than the grouse. The grouse are 

only a barometer for the health of the moor. The key thing you want is 

healthy land. Healthy environment and, if that's right, everything else 

comes round.’  

In the lowlands, keepers were keen to talk of the change in emphasis towards 

habitat enrichment over the preceding decades, which has become necessary 

as the number of birds released has increased (Mitchell & Manning 2014). 

‘People are changing… Somebody’s turned around and gone, “We put 

down ten thousand pheasants, we only shoot a thousand. Where’s the 

other nine [thousand]?” They’ve wandered off because they don’t want to 

stay there. All that wood there, it’s drafty, it’s cold. Where you’ve got your 

bit of game crop … the wind blows. So, if we thicken the hedge up, if we 

planted a nice bit of kale on one side to stop the wind and a bit of maize 

so they can feed. Do you know, we’d shoot more pheasants?’ (Michael) 

As a result, a significant amount of effort goes into drilling, spraying and 

maintaining large quantities of game or cover crops for pheasants and 

partridges (both red-legged and grey). As an example, Leslie runs a lowland 

shoot over 5500 acres of mixed farmland, in which he plants 35 acres of maize 

and 150-170 acres of mixed game crops. Larger estates plant crops that flower 

and seed at different times so there is always cover and additional forage 

available. Most lowland estates provided food all year round. The provision of, 

                                         

19 Holding the birds involves keeping them near the woods and drives that are designated to 
them for the purpose of shooting. 
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and investment in, habitat and food provide a bottom-up improvement that 

cascades through the whole food chain:  

‘People really do underestimate the whole food chain and ecosystem and 

all the rest of it. … if you can … reinstate the habitat for the insects …, 

it’s funny how everything further up the food chain does well as well.’ (Ali) 

Several keepers demonstrated the invertebrate counts that they carry out 

regularly. They walked through wild seed crops sweeping with a large net to 

collect insects, estimating the amount of natural food available for birds to eat 

and providing an indication of the health of the environment. When visiting the 

estates, the wider benefits of the game crops and field margins were very 

visible, even to the inexpert eye. Summer flowering species provided an oasis 

for invertebrates, vibrating with bees and teeming with a variety of butterflies. 

Merlin, curlew Numenius arquata, lapwing Vanellus vanellus, skylark Alauda 

arvensis and brown hare Lepus europaeus were observed while carrying out 

interviews, as well as raptors such as buzzard Buteo buteo, red kite Milvus 

milvus, peregrine Falco peregrinus and goshawk. 

The “Catch-22” for keepers is that their environmental enrichment for game 

birds also creates a ‘honeypot’ for carnivores, which is undesirable, as 

carnivores move in to take ‘advantage of the food source that we create’ 

(Daryl). This then distorts The Balance. Many keepers spoke of the inevitability 

of this (‘you set the table, everyone’ll come’: Mark) and, while they may take 

action to curb predation, they did not ‘begrudge’ or ‘blame’ predators for taking 

advantage of the benefits of ‘increased management’. As Dean described:  

‘We're only getting nailed more because we have more. It’s the point I'm 

trying to make to the boss. … The more we have, the more we are going 

to get punished.’  

Predators in The Balance 

The increased forage and richer habitat in keepered areas may present an 

opportunity for predators, but this can be accompanied by increased mortality 

risk as keepers take steps to counter predation. Modern predator controls 

applied by gamekeepers comprise a mixture of lethal and non-lethal methods 



146 

(Appendix 6.4). Where lethal control of a species is prohibited, the lack of ability 

to control them is a source of frustration, but also leads to creative solutions.  

This raises an interesting question about source-sink20 dynamics for predators 

on and around game estates. The high reproductive rate and mobility of small 

ground predators like stoat and weasels have enabled them to persist in areas 

managed for game throughout periods of intensive controls (McDonald et al. 

2002), in line with Pulliam’s (1988) hypothesis that ‘active dispersal from source 

habitats can maintain large sink populations and that such dispersal may be 

evolutionary stable’. The revival of fox, stoat and weasel numbers each year 

(based on the regularity of numbers killed) indicates to keepers that these 

animals are ‘survivors’ and will always be there. As Paul said, ‘we’ve always got 

foxes, always will have’. The difficulty for slower-to-breed carnivores like the 

polecat21 is that gamekeepers may create an ecological trap22 (Robertson & 

Hutto 2006) where the risk of mortality outweighs any increase in productivity 

afforded by provision of high-quality habitat on the shoot. Over time this might 

lead to a reduction in numbers at the landscape scale. Harry, who runs a large 

lowland shoot, recounted how buzzards and red kites can starve when shooting 

has finished: 

‘We are absolutely overrun by buzzards and kites, there is hundreds and 

hundreds… if there is any [shot] game that hasn’t been found, which is 

very minimal, the buzzards and kites will clear that up. So we are a 

massive food source for them. Massive. Once the season finishes and 

we stop shooting and - I've spoken to people from the nature reserve and 

the RSPB23 who work just alongside us - … buzzards and kites starve to 

death because their food source has been taken away.’  

                                         

20 Source areas are where reproductive potential is high and ‘sink’ areas are where mortality 

rates outweigh reproductive potential (Pulliam 1988).  
21 It is legal to shoot polecats but not legal to catch them in traps without a licence under the 
Wildlife and Countryside Act (1981). However, polecats can be and are accidentally caught in 
traps set for stoats and weasels (Packer & Birks 1999). 
22 An ecological trap is when an animal ‘settles preferentially in a habitat where it then does 
poorly relative to other available habitats’ (Robertson & Hutto 2006). Lapwings are an example 

of this, as they nest in arable fields where nests are more likely to be destroyed by ploughing 
(Galbraith 1989). 
23 Royal Society for the Protection of Birds. 
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It is self-evident that keepers ‘don’t want’ predators because they reduce the 

shootable surplus of game (see also Sage et al. 2018), or in the words of Dean: 

‘Every time that you’ve seen a fox it’s alive. Every day it’s alive it’s eating 

something to stay alive and that’s going to be your partridges.’ 

All keepers had lost birds to foxes. Of all the ground predators, foxes, or 

‘Charlie’, were seen as the worst killers for all types of shoots, particularly in the 

spring and summer when there were cubs. This is because ‘instead of feeding 

their mouth, they have five mouths to feed’ (Luke). Foxes on wild game shoots 

can ‘wipe out a drive’ in a period of weeks (Alan). Dean recounted what would 

happen if they became aware of fox cubs on their beat:  

‘You'd have dinner at home with the kids, keep your boots on. In, out, 

“see you in a bit”. I'd drop everything for cubs. Because they’re just 

causing so much damage all the time. All the time they [adult foxes] are 

feeding young, they’re feeding hard. They’re killing everything as quick 

as they can to get back. More, more, more, more.’ 

Predation is not just one or two birds being taken at a time. Every keeper had 

experienced some kind of mass kill event where a predator had killed tens or 

hundreds of birds in one go without eating them; mostly these were carried out 

by fox or badger. Foxes were described as experiencing a ‘red mist’ or ‘kill[ing] 

for pleasure and ‘go[ing] mental’ in a pheasant pen. These ‘surplus killing’ 

events have long been described in carnivores in general and foxes, in 

particular24 (Kruuk 1972). It is perhaps not surprising, then, that some 

gamekeepers characterised foxes as ‘hellbent killer[s]’. Conversely, polecats 

were described as ‘lazy killers’ who ‘don’t do us much damage’ (Daryl). Daryl 

explained a polecat mass kill that he experienced on the rearing field:  

                                         

24 The carnivore biologist Hans Kruuk describes one such a scene that he personally observed 
in a seabird colony at night: ‘Foxes might merely walk through the colony and stumble on to a 

sitting bird, grab and kill it, or they might take a bird after a short stalk and run. After grabbing 
and shaking the victim, it was then dropped and abandoned, sometimes not even properly 
killed...’ (Kruuk 1972: 235). 
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‘I think as a killer they kill two or three what they want to eat and that’s 

about it. I think even when they killed 40 odd [birds] in a pen, I was a bit 

of a realist. 20 of those had smothered themselves in panic.’  

‘Foxes happily travel 3-4-5 miles in a night’ (Dougal) and give keepers ‘a fair run 

around’ (Geoff). Predators ‘especially the foxes’ are often represented by 

keepers as ‘sly’ and ‘clever’, not to be underestimated. This is evidenced 

through the fact that foxes may learn to avoid being hunted using lamps25, jump 

over or go around traps and snares and may also use keepers to track prey, for 

example, by following paths through trodden vegetation to nests that are being 

monitored. Geoff provided a vivid account of the persistence of a fox: 

‘Last year when my birds was in the pen, I come down that track … and 

poults were coming out of the bit of the wood on the left. Flying in, hitting the 

side of the pen and running out. I was like “something’s not right, there’s 

something in there”. I just sat there quietly and I had the rifle in the truck ... a 

fox come out of there across to the pen. … there was a lower bit under the 

electric fence. He dipped under that and was walking between the electric 

fence and the pen following the poults. I said “oi, what are you doing?” and 

he lifted up his head and I sent him back to his maker. So you’ve got to give 

him some respect for that. I got the electric fence tester out of the glove box 

and put it on there. It’s sitting at 8000 volts ... You can’t underestimate them.’  

As a result of their persistence, foxes are held ‘in awe’, given ‘respect’ as 

something for the keeper to ‘outwit’, creating a competition between human and 

animal in terms of who will best who. Some keepers match the persistence of 

foxes with their own efforts in order to do a good job: 

‘I was obsessed to be honest. Probably unhealthily obsessed. I’m not so 

much like that now. But you just want to be the best. Want to produce the 

best.’ (Dean) 

                                         

25 Hunting at night with lamps involves locating foxes (or other ground predators) at night with a 
bright lamp and then shooting them based on the location of the eyeshine. Has been replaced 
to a certain extent by night vision or thermal sensors. 
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The effect of predators on game estates is greater than just the number of birds 

they may kill in a season. As Leslie explains, ‘it’s not so much what they kill, it’s 

the disturbance.’ The very presence of a predator (including domestic dogs or 

humans) can ‘drive them away’. Nigel explained pheasants’ response to foxes: 

‘If you’ve got a wood and a fox walks that wood every day, slowly those 

pheasants won’t go in there because they know that’s danger so they’re 

not daft, they’ll stay in a different wood.’  

Disturbance was a primary concern expressed about the return of pine martens 

by Daryl, a keeper who used to work around them in Scotland: 

‘The biggest problem with pine martens was early ... late autumn early 

winter … They’ll move into a wood. Because they hunt in the trees at 

night the pheasants just move out. They won’t stay there. So you didn’t 

actually lose your pheasants but you’d end up with a drive that you 

couldn’t shoot. They’ve moved to another drive. Which like with us, we 

shoot 4 days a week. We have 16 drives. If you lose a drive all of a 

sudden, you’re in trouble.’  

This anecdote highlights a number of interesting points. Firstly, we see the 

‘transgression’ of the pine marten, ‘moving in’ to the pheasants’ ‘home’ at a 

certain time of year. Next we see the pheasants – usually described as ‘homely’ 

– ‘moving out’ or ‘resisting’ the keeper’s desire for them to stay in a wood or on 

a drive. The wholesale departure of birds from a drive is the worst outcome for 

keepers. We also see the keeper express commercial concern about the impact 

of predators (which we return to below). This keeper represents the birds as 

effectively ‘evading human attempts to place them in space’ (Philo & Wilbert 

2000: 14) as a functional response to the threat of being hunted, whether by 

predator or by humans, is played out in the landscape. Adjusting spatial and 

temporal use of a landscape in response to predation pressure, also known as 

a ‘landscape of fear’, has been observed in other wild animals (Laundré et al. 

2001). Interestingly, though, reared gamebirds in particular are presented by 

keepers as behaving in this way; this was reinforced by observation. We arrived 

at one pen and all the birds were hiding away – none in sight and not a noise to 

be heard. As we went into the pen, you could see the poults were all hiding, 
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jugging low down under the shelter of the ground cover provided. The keeper 

explained that this is usually what he will find when a bird of prey has recently 

flown over the pen. In a few cases keepers spoke of making use of the 

landscape of fear via birds of prey:  

‘The buzzards and kites I just use to my advantage. Like I have to control 

the rabbits and the squirrels for the crops and for everything. So what I’ll 

do is go and put ‘em in a freezer and go and lay ‘em down by that 

boundary. And there’ll be 40-50 buzzards and kites over them on a good 

day. They’ll take them off to their chicks. I never see my partridges down 

there. They’ll always be up here.’ (Luke) 

As Sebastian expressed in his concerns about pine martens, commercial 

aspects of predation are important to keepers. Many keepers talked about 

commercial concerns as a justification for killing predators:  

‘From a commercial side when you’re a full-time keeper every one 

counts… it’s a numbers game.’ (Jesse)  

Keepers cannot, therefore, ‘afford’ predators (Alan). Sometimes the pressure 

comes from the bosses putting pressure on keepers to get any foxes that may 

harm their returns. As Luke said,  

‘[From] September those birds go from being £4.50 each to £50 each 

and if you put it in that perspective to anyone if someone was taking £50 

out of your back pocket every time they visited you, you’d want to stop it. 

And that’s what I do. I treat my boss’s money like its mine. And that’s 

why I am where I am and why he trusts me to do what I ’ve got to do.’ 

This narrative echoes that of otter hunters in England, where otters were 

presented as ‘predators on commercial value’ (Matless et al. 2005). Matless et 

al. (2005) aligned this perspective to a hunting discourse, in which animals are 

given respect but killing is justified by the need to protect human interests. An 

extension of the commercial implications of predators is the potential impact on 

the keeper’s own livelihood. By eating prey species, predators have the 

potential to make the ‘job unviable and then if we cease to be then they’ll cease 

to be cos they’ll have nothing too.’ (Alan). This is exemplified by the Langholm 
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Moor Joint Raptor Study (1992-1999) which tested the effects of hen harriers on 

a grouse moor and in which grouse shooting ceased due to levels of hen harrier 

predation (Langholm Moor Demonstration Project n.d., see also Tapper 2005). 

Several keepers mentioned the Langholm project as an example of what might 

happen to them if they weren’t able to control increasing numbers of predators. 

This presents an interesting contrast between the moral consideration afforded 

to birds and carnivores by keepers. In the keeper’s view, it is the utility to 

humans that defines the hierarchy of value placed on the animals. Gamebirds 

are afforded greater status because of their commercial and / or recreational 

value. This makes the killing of carnivores justifiable in the pursuit of The 

Balance. 

This being said, the relationship between keepers and predators is not as 

simple as predators eat gamebirds and gamekeepers kill predators. Predators 

can redress the balance of opinion towards themselves by being useful to 

keepers. Once the shooting season starts, predators ‘clean up the ground’ of 

weaker or dead birds and ‘tidy up’ pricked26 birds on shoot days. In doing so 

predators do keepers ‘a world of good’ (Sebastian). This is received as helpful 

because keepers want to do the right thing by their birds and minimise any 

suffering. Predators also provide an aesthetic pleasure. Many keepers 

described their pleasure at watching stoats, weasels and foxes. Paul explained, 

‘I still appreciate what it is. A fox it is an amazing animal, an apex predator. But 

we have a job to do.’ In this way keepers separated what an animal does in 

terms of The Balance from its innate characteristics, which may still be 

appreciated.  

The overall sentiment is that as frustrating, and difficult, as it can be to endure 

losses, these are part of nature’s process and a ‘healthy balance’ (Dean) 

includes the presence of predators. As Leslie said, ‘we know they’re not all 

gonna make it, you know.’ Paul explained:  

                                         

26 Birds that are wounded but not killed outright when shot. 
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‘If I was given a license to go out and shoot and control all the vermin 

that I’m not allowed to shoot, I wouldn’t kill ‘em all. There’s that nice little 

balance you can get.’  

The Balance thus becomes a guiding principle for being proportionate in 

predator management, a “sweet spot” in terms of killing enough predators for a 

successful shooting season, without ‘wiping out’ everything in the area. In fact, if 

there were no predators at all, the role of the gamekeeper would be diminished 

(Cowan 2009), as predator controls are central to the keepers’ identity and 

something that many enjoy the process of doing. In this way, The Balance 

creates a dependency between predator and gamekeeper, in which each, to 

some extent, relies on the existence of the other (Cowan 2009). 

Gamekeepers in The Balance 

Alan contrasted the gamekeeper’s approach to managing nature to that of 

conservationists or ‘nature people’: 

‘We want wildlife, the countryside thriving. We both want the same thing. 

It’s just that their existence tends to rely on them saving things from 

being extinct rather than balancing the environment for everything.’  

Some keepers did not, though, see The Balance as solely their preserve: 

‘In a perfect world, we’d all work together. At the moment you’ve got 

keepers that do their bit on their ground. Nature people that do their bit 

on their ground. If it was all to come together... you know there's things 

that they do that we don't like. And there’s things, a lot of things, that we 

do that they don’t like... it’s not a perfect world. [If] people gave in a bit 

more to other peoples’ opinions … the balance would be better.’ (Harry) 

One of the obvious ‘things’ that conservationists ‘don’t like’ is killing of 

predators. Keepers spoke in very matter of fact terms about killing, even when 

talking about levels of killing in a reasoned way: 

‘I’m dead against the killing of everything all the time. I think when it can 

do you harm, get rid of it’ (Sebastian). 



153 

One keeper recounted a maxim for moorland management practices ‘if it flies, it 

dies. If it hops, it drops’ (Geoff). When asked about this phrase others were 

quick to defend the profession:  

‘I think possibly in the olden days, you know that’s the classic old boys [a] 

hundred years ago ... that’s when gamekeeping was ruthless and brutal. 

... And some people might still be ruthless and brutal.’ (Dean) 

There is probably a gap between how keepers define ‘ruthless and brutal’ and 

what lay people, who are not directly involved in killing animals, might perceive 

this to be. Killing fox cubs, for example, might be seen as ruthless to an 

outsider, but to a keeper it is an essential practice in keeping The Balance. 

Keepers go to extraordinary lengths to kill problem individuals, staying up night 

after night until they have caught them. Keepers do have to balance the need to 

control predation while staying within the law. There have been high profile 

cases of individual keepers failing to manage this, either due to a perceived or 

actual threat to their birds or livelihood. When asked, keepers were quick to 

state that they felt the profession was tainted by a minority creating a bad 

impression, rather like in the police force where ‘there’s the odd bad copper’ 

(Des). Des said, ‘in every walk of life there’s someone that doesn’t toe the line… 

why should every gamekeeper be branded with that?’ 

As alluded to by Dean, use of best practice provides a counterbalance to 

accusations of impropriety: 

‘You know we move with the modern times… We all use codes of 

practice. Best of this. Best of that. Because, long story short, it’s your 

arse that’s on the line if anything goes wrong ... So why not be above 

board?’ (Dean) 

He was not alone; many keepers talked about following the rules, using best 

practice guidelines and not being able to be seen to be outside of the law. Even 

so, keepers perceive that there is a gap between how they believe other people 

perceive the work they do, versus their reality: ‘all people see is us naughty 

gamekeepers poisoning stuff. That doesn’t happen.’ (Paul).  
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Returning protected species like polecats do create a grey area for keepers 

because they are not able to be taken in a trap without a licence but may still 

get caught in traps set for smaller species like stoats and weasels as ‘there’s 

not a lot you can do to set a trap for a stoat that won’t catch a polecat’ (Murray). 

As Murray, a keeper working in a polecat area for 40 years puts it, ‘we’ve 

always said you can’t put a sign ‘polecats that way!’ cos they’re not going to 

read it.’ Part of the problem with polecats is that keepers may not realise they 

are in the area until they have caught one ‘you don’t see ‘em and then you get 

one [polecat] in a trap and say “Christ, I didn’t know there was one there!”’ 

(George). 

Although keepers are used to killing predators and other pests27 and seeing 

dead birds, they were not inured to it. The premature death of birds caused by 

predators was a source of emotion. When asked how it feels to find dead birds 

in a release pen, Michael replied: 

‘It’s like coming home and finding your wife in bed with another man …It 

just deflates you. Absolutely deflates you.’  

The damage is therefore received personally: 

‘I know the damage they have caused. They’ve hurt me. To the point 

where you know. Keep you up at night. Can’t sleep. You’re worried. You 

can’t sleep cos you know it’s killing stuff and you can’t do nothing so 

when I do catch it, I am going to shoot you because you’ve caused me 

[hurt].’ (Dean) 

For others, the prospect of any birds being eaten was a constant concern: 

‘It’s worrying that when you’re there asleep there’s something out there 

trying to eat ‘em and I know that sounds really funny, but it worries me to 

death to be honest. I can never just relax.’ (Ali) 

It is perhaps not surprising that when birds are taken, keepers experience an 

emotional reaction given the amount of time and effort that goes into rearing 

                                         

27 Rabbits or deer, for example. 
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them. However, keepers recognised that other ‘people don’t understand’ the 

‘damage’ and why it is so painful and frustrating that carnivores should take 

some gamebirds, of which there are perceived to be an abundance and which 

are destined to be shot. This highlights a gap in perceptions between what 

keepers experience and know from first-hand knowledge and what they 

perceive others think about predators. The distress at premature demise of 

animals under human care is analogous to the apparent contradiction revealed 

by Tovey (2002) in research on farmers’ views during the mass slaughter of 

their livestock following a Foot and Mouth Disease outbreak. Tovey (2002) 

describes the profound emotional response of farmers to the mass killing of the 

animals, which the general public struggled to comprehend as the animals were 

always destined for slaughter and the farmers were being paid for them 

anyway. From the farmers’ perspective, keeping the animal ‘alive’, ‘well and 

healthy’ was ‘everything that he works for’ (Tovey 2002). To see it killed 

prematurely was described as very upsetting. Also, just as the farmers in 

Tovey’s (2002) study understood that others could not comprehend their angst 

when the animals are born destined for slaughter anyway, the keepers 

understood that others would not appreciate the damage to them caused by 

predators:  

‘Unfortunately, the general public do not see this damage. And don’t 

understand it. They just see a friendly old billy [badger] ambling along.’ 

(Luke) 

Geoff asked:  

‘Why don’t people get out their living room and come out here and 

actually see what they do? What damage they do. Don’t sit there … They 

want to get out here and experience it and see what it is.’ 

It follows that if others do not perceive the damage that predators cause, they 

will not understand the necessity of killing predators to maintain The Balance.  

While the killing of birds on shoot day was a source of emotion, the killing of 

predators is ‘one of them things that’s got to be done’ (Paul). That is not to say 

that some keepers did not express feelings of remorse at killing predators, but 
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this was secondary to the necessity of killing them as part of the job of keeping 

The Balance:  

‘There are times when you kill a predator. And you get that “yes I’ve got it 

[feeling], you know …they’re safe now, that lot”. And then afterwards you 

feel a bit of… whether it is remorse or just sort of. I don’t know. Diff icult to 

describe to be honest. But it’s a necessary job and you think that you’re 

kind of there to try and restore the balance a bit.’ (Ali) 

Given time and resource that keepers invest in protecting their birds, being ‘their 

guardian and their saviour’ (Ali) and maintaining The Balance, it may seem 

contradictory to others that keepers can then accept putting the birds through 

shoot day: 

‘They say “you have a fluffy little pheasant and then you rear it up and 

look after it and nurture it and then you shoot it.” Well, yes we do. But 

there is a lot involved in it. But if you try and explain that to somebody, 

you can look back at yourself and think if “I was a bystander you’d think 

how ever could you do that?” But there’s so much involved which is 

almost impossible to explain.’ (Jesse) 

The shooting of the birds is accepted by keepers because ‘that’s what they’re 

there for’ (Luke). How well the birds perform on shoot day is also ‘the mark of 

how well you’ve done’ (Alan). What is important is that the end is ‘done right… 

the respect should be there for what's happening for the bird’ (Paul). Here we 

see a distinction in the way that death is achieved for the birds that is important 

to the keepers. This is reminiscent of Marvin’s (2000) description of the role of 

performance in foxhunting where it ‘is the manner of realizing that death that is 

fundamental’. A clean shot over the open sky over a drive is a clinical way to 

die, whereas a premature death at the jaws of a predator is messy and 

undignified. Nevertheless, the death of the birds on shoot day, while it is the 

realisation of their intended purpose, is still a profound experience for keepers: 

a ‘funny feeling’; ‘difficult to explain’; ‘like the shepherd with his sheep, he loves 

his sheep, but when they go off for slaughter…’ (Ali). Several keepers admitted 

to ‘melancholic’, ‘emotional’ feelings and visiting the birds hung up in the cool 
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room at the end of the day to reflect on what they have achieved together with 

‘a fag and a beer’ (Paul). 

Overall there are similarities in the way that keepers experience the deaths of 

gamebirds and predators – they appreciate what both are and also accept that 

the deaths of both are necessary for the pursuit of sport shooting. The 

difference is that one (predator death) is the means to an end and the other 

(gamebird death) is an end in itself. It is the realisation of the end point that is 

most important and provides a justification for killing predators as a practice of 

keeping The Balance.  

Discussion 

We have seen The Balance presented by gamekeepers as a guiding principle 

for their countryside management, in which all species stand to benefit from 

habitat enrichment, but also where opportunistic predators need to be reduced 

in number in order that vulnerable prey species are able to thrive in the right 

place, until they meet the right ending. The keeper’s Balance is built around 

creating a shootable surplus of game and maintaining ancillary species that do 

not conflict with that objective. However, The Balance as a lived concept is also 

more than this—it describes a way of being that is pragmatic and is concerned 

with making necessary choices in wildlife management and addressing 

perceived inequalities between species that arise in a human-dominated 

landscape. 

The Balance that keepers described initially is a relatively simple concept that 

involves maintaining an equilibrium, or a steady state of harvestable prey 

species where the competing pressures of predation and disease are contained 

by habitat management, husbandry and predator controls (Fig. 6.3a). The 

keeper’s Balance is distinct from a balance-of-nature that would be realised 

without any intervention, or a balance-of-nature that would be realised purely 

with conservation objectives in mind, because it primarily seeks to create a 

sustainable harvest for human recreation and consumption (Fig. 6.3b). These 

nuances are important because the existence of multiple perceptions of balance 

could be a cause for misunderstanding between different groups of people 

invested in managing, preserving and utilising nature.  



158 

 

Figure 6.3. A visualisation of The Balance as described by gamekeepers. A 

swinging pendulum illustrates the counteracting forces on prey species 

populations. In A) the forces of predation, disturbance and disease are 

counteracted with habitat management, husbandry and predator controls and 

so The Balance is achieved as a sustainable abundance of game for 

harvesting. When predation, disturbance and disease effects outweigh habitat 

management, husbandry and predator controls, prey populations will be 

negatively impacted such that they decline. In B), an excess of predation, 

disturbance and disease push the pendulum towards a deficit in prey species. 

Interventions such as habitat management, husbandry and predator controls 

need to be increased in order to swing the pendulum back towards the 

equilibrium. 
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Figure 6.4. Diagram illustrating the main interactions and effects between keepers, predators and gamebirds (black circles) and the 

indirect effects on disease, other wildlife and other anthropogenic processes (grey circles) as they relate to keeping The Balance. Arrows 

indicate the direction of effect. Negative effects (described in grey boxes) on recipients of interactions are indicated by dashed lines. 

Positive effects (described in white boxes) on recipients of interactions are indicated by solid lines. 
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From the keepers’ narratives, it is clear that keeping The Balance captures a 

complex system of interacting anthropogenic and ecological processes (Fig. 6.4). 

The complexity involved echoes the conundrum encountered by ecologists when 

considering the balance-of-nature and seeking to prove its existence, namely, that 

the complexity and dynamism of social-ecological systems mean that maintaining 

any form of balance-of-nature is always going to be a challenging endeavour.  

There are, however, precedents in wildlife management for targeting sustainable 

harvests in complex systems, of which marine fisheries provide a good example. An 

important difference between fishers and gamekeepers, though, is that fishers are 

part of the harvest and largely external to the system of production whereas keepers 

are integral to game production and not usually involved directly in, but rather 

facilitate, the harvest. Creating a sustainable harvest is arguably different from 

realising a balance-of-nature, as although they both involve managing natural 

resources, they are in fact independent outcomes. In the keepers’ worldview, it is 

their dual role as stewards of game and countryside that allow the alignment of The 

Balance with both harvestable surpluses and a broader concept of environmental 

balance. The ambiguity of The Balance is constructive in this context because it 

allows keepers to capture and communicate all of the diverse aspects and 

interpretations of their approach to wildlife management under a single umbrella. In 

this respect, it is similar to Deary and Warren’s (2017) exploration of the discourses 

relating to ‘rewilding’ in Scotland, in which the researchers identify that participants 

conceptualise ‘many wilds’ of wildness and nature that can all be understood as part 

of ‘rewilding’ and that this multiplicity is central to the term’s broad appeal.  

Ideas of a balance-of-nature might be discussed by wildlife managers but ways of 

maintaining this will depend on perspectives on intervention. Some forms of wildlife 

management are purposeful: for example, active conservation of species and 

habitats, or the management of fisheries to ensure sustainable harvests from stock 

in the long-term. Other approaches emphasise non-intervention and animal 

autonomy (DeSilvey & Bartolini 2019). For example, in the United States, wilderness 

is often idealised as a pristine nature that should not be intervened with by humans 

(Cronon 1996). Equally, however, the conservation movement in North America is 

grounded in a long tradition of interventionist wildlife management that originated 
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with widespread and popular hunting activity (Organ et al. 2010) and continues with 

the use of a hunting quota system for the management of certain species. In Great 

Britain there is little, if any, comparable wilderness (or indeed any concept of 

wilderness as part of the British landscape) and wildlife management is not rooted in 

hunting tradition. The conservation approach is that some level of intervention is 

required in order to create a version of nature that can be sustained alongside 

meeting human needs, including food and recreation, but there are no quotas or 

regulations relating to the offtake of species that are not protected by law. The 

keepers’ Balance is one of ritualised management to maintain a locally desired state 

on their patch of the countryside. A particular cadre of people are integral to 

managing this Balance in perpetuity. The keepers are integral to the process 

because of their active role in predator and habitat management for the benefit of 

wildlife. This contrasts with conservation interventions which aim to produce self-

sustaining populations that require minimal ongoing management.  

There are similarities with the views expressed by gamekeepers and those engaged 

in killing introduced species, in a study by Crowley et al. (2018) in which participants 

expressed a ‘moral duty’ to address imbalances caused by humans. Crowley et al. 

(2018) consider that this narrative fits with the ethical assumptions underlying the 

process of biodiversity conservation, which prioritises the preservation of one or 

more species (which may be native, or rare) at the expense of (which may be non-

native) others (e.g. Biermann & Mansfield 2014, Srinivasan 2014, van Dooren 2015). 

Where keepers are fostering game species such as red grouse (native) or grey 

partridge (native and rare), the comparison between keepers and introduced species 

controllers is apt. However, the comparison is less convincing for keepers that rear 

and release pheasants and red-legged partridge, which are both non-native and 

abundant. In this scenario, unprotected native carnivores are killed to encourage 

higher survivorship of non-native birds whose value is tied into their utility and whose 

existence is short term as they are themselves are killed, only to be replaced the 

following year. This is offset, however, by the fact that predator controls are generally 

less intense on shoots founded on reared game, a subtlety that may not be 

appreciated by groups outside of the shooting community.  
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Although gamekeepers and conservationists in Britain share the same broad goals 

and engage in some similar practices, there is an apparent disconnect between the 

two communities, of which the keepers are acutely aware. Some mistrust may 

undoubtedly be attributed to decades-long conflicts between conservationists and 

shooting interests over raptor predation of gamebirds. Whilst there are undoubtedly 

areas of difference in practices and perspectives between gamekeepers and other 

wildlife management groups, there are also many areas of similarity. Keepers want a 

thriving countryside that includes a diversity of species (they’d just rather not see too 

many predators on their patch). They, knowingly or otherwise, observe and use 

ecological language and phenomena, providing some common foundations for 

communication with conservation ecologists. Trapping and hunting quarry requires 

an intimate knowledge and appreciation of the habits of their subjects, much like 

traditional naturalists. Keepers are required to adhere to environmental regulations 

regarding predator and habitat management and are incentivised to adopt 

environmental stewardship incentives, like any other land manager. Therefore, for 

the most part, the practices of The Balance are constrained by a framework set out 

in UK law. Although predator control activities are carried out by other conservation 

NGOs, for example the RSPB, these are not publicised and keepers carry the 

burden of being associated with generalised killing. Even then, differences in values 

are apparent, as conservation NGOs are killing, ostensibly reluctantly, only for 

conservation purposes whereas keepers are killing in support of recreational or 

economic interests. This may reduce the value of the keeper’s Balance in the eyes of 

those who question whether the costs, as well as the drivers, of maintaining The 

Balance undermine any benefits that might it might bring. Recognising that there 

may be different perceptions of what ‘balance’ in natural environments consists of, 

as well as different perspectives of both what is required and deemed acceptable to 

maintain these balances, is important for understanding the politics of the 

countryside and working to achieve conservation goals in conflicted arenas.  
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Chapter 7: Discussion 

In this thesis I have explored the recovery of the polecat in Great Britain between the 

1960s and the late 2010s, with the aim of reviewing the recovery itself, exploring 

some of the mechanisms underpinning that recovery and improving understanding of 

contemporary anthropogenic processes that may affect the species’ future 

prospects. More broadly, I have aimed to situate polecat recovery in the context of 

the population trends of other British carnivores and carnivore management in 

general.  

To this end, in Chapter 2, I carried out a review of all of Britain’s mammalian 

carnivores, which found that badger, fox, otter, pine marten and polecat were more 

numerous and/or widespread in 2015 than in the 1960s, although the fox is currently 

experiencing a period of decline. Stoat and weasel were data deficient, although the 

evidence from the GWCT’s National Gamebag Census suggests that stoat is 

increasing relative to weasel. Care should be taken when interpreting game bag data 

trends. Biases may occur through variations in trapping effort in both space and time, 

trapper experience and trapping methods (McDonald & Harris 1999, Ruette et al. 

2003). In this thesis, I have only used game bag data where it can either be validated 

by other survey data (e.g. foxes), or as a way of elucidating relative population 

trends rather than absolute abundance or population change (e.g. the relative 

fluctuations of stoats and weasels records). Wildcat is a cause for conservation 

concern due to the prevalence of extensive hybridisation with domestic cats. Of 

those species that have been recolonising following historical range contractions, 

otter has been recolonising the fastest, followed by polecat and then pine marten. 

Environmental pollution, hybridisation, predator controls and disease are among the 

anthropogenic processes limiting carnivore populations in Britain, whereas legal 

protections, conservation interventions, e.g. translocations and habitat management, 

are supporting increases in species’ populations and ranges.  

In Chapter 3, I explored resource use through the polecat’s expansion between the 

1960s and 2010s. Resource use by polecats differed depending on whether polecats 

were in the core of their range or at the frontline of expansion, and this difference 

was greatest in the 1960s when rabbits, an important resource for polecats, were 
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limited in availability. I also found that resource use was more variable over time for 

female than male polecats. When exploring polecat diet more explicitly in Chapter 4, 

I found that consumption of mammals and lagomorphs had increased (as a 

proportion of total diet) between the 1960s and 2010s, which is in line with the 

recovery in rabbit numbers following the myxomatosis epizootic that began in the 

1950s (Sumption & Flowerdew 1985, Aebischer et al. 2011). The increase in the 

numbers of rabbits may also explain some of the temporal differences in resource 

use by polecats between the 1960s and later decades that I reported in Chapter 3. 

The proportion of lagomorphs in polecat diet between the 1990s and 2010s did not 

change, despite declines in lagomorphs recorded during surveys over the same 

period of time (Harris et al. 2018). Although lagomorphs remained an important food 

source for polecats between the 1990s and 2010s, in Chapter 5, I found that levels 

of secondary exposure to second generation anticoagulant rodenticides (SGARs) 

had increased 1.7 fold between the 1990s and 2010s. Both the extent of secondary 

exposure (presence or absence of liver residues) and the severity of exposure 

(number of SGARs and total concentrations of SGARs detected) in polecats 

increased between the decades. The severity of exposure increased with polecat 

age, reflecting the greater likelihood of older animals to encounter contaminated prey 

over time and, as a result, bioaccumulate SGAR residues in the liver. The probability 

of exposure varied with values of δ15N, indicating that resource use influences 

whether or not a polecat is likely to be exposed to SGARs, but it does not affect the 

severity of that exposure.  

The statistical analyses in this thesis were limited by the sampling approach, which, 

due to the cryptic nature of the study species, necessarily relied heavily on road-

killed animals. It is possible that some bias was introduced relating to detectability, 

collectability, and persistence of carcasses (Guinard et al. 2012), as well as the 

limited presence of roads in some areas of the polecats distribution – such as central 

Wales. The sample sizes in Chapters 3, 4 and 5, while comparatively large for a 

study of polecats, restricted the power of the analyses undertaken. For example, it 

was not possible to test three-way interaction effects in Chapter 5 and it may be that 

the three-way interaction effect tested in Chapter 3 may have been present, but may 

not have been detectable due to sampling power. Not having enough power in the 

model to detect signals in the data may lead to type II statistical errors (false 
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negatives). Missing relevant variables from models would reduce the fit, or 

explanatory power, of resulting models. Adopting an information-theoretic approach 

to modelling will have improved the chances of including variables with the largest 

biological effects in models where I had sufficient power to detect them. 

Finally, in Chapter 6, I investigated The Balance, the grand narrative used by 

gamekeepers to describe their approach to wildlife management that also 

encapsulates their way of being. I found that enacting The Balance necessitates that 

gamekeepers carry out a highly interventionist approach to management of the 

countryside. I identified that The Balance may have positive (in terms of provision of 

habitat and food) and negative (in terms of predator controls) implications for 

carnivores. The polecat, while killed by gamekeepers as part of predator controls by 

accident or design (see also e.g. Packer & Birks 1999), is not considered as much of 

a threat to game as the fox. The extent of predator control practices differs between 

shoot types. The interventionist approach to management will predispose 

countryside managers like gamekeepers to want to control carnivores, or indeed 

avian predators, as they recover their populations. 

Implications for polecats 

My research findings provide an understanding of the drivers of polecat recovery and 

for carnivore management in Britain and elsewhere. My studies have highlighted 

that, in spite of polecats facing a diverse array of risks (Table 7.1, Chapter 2), some 

of which (such as rodenticide exposure) have only become apparent since the 1980s 

and have continued to increase in frequency and extent (Chapter 5), polecat 

recovery has continued unabated since the 1960s. Polecats are now present across 

much of south, central and eastern England as well as the whole of mainland Wales. 

The extent of recolonisation is such now that assessing the polecat’s distribution 

alone is unlikely to be a sufficient measure of population status. Future monitoring 

should include analysis of variation in polecat population densities from a cross-

section of habitats and locations in the polecat’s range if it is to provide a true 

measure of the species’ status and ongoing recovery. However, measuring polecat 

density is difficult and time-consuming due to the elusive nature of these animals. 

The trapping protocols tested by Birks and Kitchener (1999) provide a useful starting 

point for measuring polecat density using volunteers. Overall, however, my analysis 
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based on changes in distribution alone (Chapter 2) indicates that polecats have 

recolonised more quickly in Britain than either of Langley and Yalden’s (1977) other 

“rarer carnivores”, the pine marten, or the wildcat, which is now facing extinction by 

hybridisation. This suggests that the life history traits of polecats may provide greater 

population resilience than is the case for pine martens and wildcats and/or that the 

severity of the threats to survival and recruitment are lower than for these other 

species.  Given this, it seems likely that the original causes for the eighteenth and 

nineteenth century reductions in polecat numbers must have been very intense and 

widespread to have caused the severity of decline that occurred.  

Effective wildlife management relies on some form of assessment of the risks to 

species’ persistence (Fletcher 2005). Risk assessments aid identification of which 

risks to populations require management intervention, how much effort is required to 

mitigate said risks and in what order they should be addressed, ultimately leading to 

better management decisions (Fletcher 2005). The risks to polecats in Britain are 

now quite well defined and described, unlike in parts of the rest of the polecat’s 

range where the species is in decline (Croose et al. 2018). The main risks in Britain 

have been identified as: secondary exposure to SGARs, predator controls by 

gamekeepers, declines in rabbit populations, road-induced mortality and 

hybridisation. It is possible to undertake a qualitative summary assessment of these 

main contemporary risks, based on the findings of this thesis and information on the 

wider literature (Table 7.1).  
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Table 7.1. A qualitative assessment of the risks to further polecat recovery using the dimensions of i) potential consequences 

(impacts) associated with an issue assessed in terms of effect on population and time to recover; and ii) the likelihood (probability) 

of the consequences occurring. Impact on polecat populations was assessed as: Low = negligible to minor impact. Little impact on 

populations size or dynamics and, if detected, recovery time required would be within 1-2 years; Medium = moderate to severe 

impact. Long term population growth and dynamics not adversely impacted, although may cause localised extinctions. Recovery 

would be measured in 3-10 years if stopped; High = major to catastrophic. Likely to cause regional extinctions if it continues and 

recovery would take place over decades if it stopped. Probability of consequences occurring was assessed as: Low = remote to 

rare. Not heard of, but not impossible; Medium = possible. Evidence suggests it may take place, although may not be widespread; 

High = likely. It is expected to occur and will be widespread across the population. Both measures are adapted from Fletcher 

(2005). 

Risk  Impact Probability of occurrence Source(s) 

 Assessment Evidence Assessment Evidence  

Rodenticide 
exposure 

Low There is currently no evidence of 
population level effects of rodenticide 
exposure. The range of total 
rodenticide concentrations detected 
was wide. Instances of very high 
concentrations being detected were 
not frequent. It is possible that those 
with the highest concentrations died 
out of sight and were not recorded.  

High 79% of polecats are secondarily 
exposed to at least one rodenticide. 

Chapter 5, 
Shore et al. 
(2003). 

Predator 
controls by 
gamekeepers 

Medium In the uplands of northern England 
and Scotland where controls are most 
intensive and which polecats are now 
moving into, it is likely that intensive 

controls will mean that polecats are 
unlikely to be able to establish 
themselves in some localities. 

Medium Although gamekeepers are 
responsible for game over a large 
proportion of the countryside, 
coverage is not contiguous and 

control intensity is variable by 
season and type of quarry; wild 

Chapter 6, 
Packer & 
Birks 1999. 
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Risk  Impact Probability of occurrence Source(s) 

 Assessment Evidence Assessment Evidence  

game requires the most intensive 
controls.  

Reduced 
rabbit 
availability 

Medium Rabbits feature heavily in polecat diet. 
Rabbit recovery post myxomatosis 
between 1960 – 1990s aided stoat 
populations and it may have assisted 
polecat recovery in the same way. 
When rabbit populations were very 
restricted in the 1960s, there is some 
evidence that polecat resource use 
differed between the sexes. This is 
not the case in the 2010s after a 
decade of rabbit declines. This may 

mean that polecats are restricting their 
resource use to areas that are more 
abundant with rabbits, or that they are 
occurring at lower densities in 
response to reduced rabbit 
availability. 

Medium Rabbit records indicate that rabbits 
are declining but this appears to be 
a patchier decline than 
myxomatosis epizootic.  

Chapters 3, 
4, 
McDonald 
et al. 2000 
and Harris 
et al. 2018. 

Road density Low Although, there are large road barriers 
in the north of England and the urban 
conurbations of central Scotland may 
impede polecat recolonisation of 
these areas. 

High Most polecats collected in all 
monitoring surveys were road 
casualties. Patterns of carcass 
collection imply this risk changes 
seasonally and is greatest in spring 
and autumn when polecats are 
dispersing.  

Chapter 2, 
Croose 
2016. 

Hybridisation High Hybridisation could lead to the genetic 
extinction of the species. 

Low 31% of polecats are introgressed 
with ferrets, but the genetic 
evidence suggests that 

hybridisation occurred in previous 
generations of polecats and that 
current levels of hybridisation are a 
legacy of this occurring. 

Costa et al. 
2013. 
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Risk  Impact Probability of occurrence Source(s) 

 Assessment Evidence Assessment Evidence  

Intraguild 
effects 

Low Polecats may experience intraguild 
effects from foxes, badgers, pine 
martens, stoats, otters and American 
mink, but there is no evidence to 
confirm any population level effects on 
polecats in Britain. There is no 
evidence of intraguild resource 
partitioning by prey size between 
British mustelids, although there is 
some evidence that polecats and 
American mink may alter their activity 

schedules in areas where they are 
sympatric. 
 
Polecats have been sympatric with 
fox, badger, American mink, otters, 
stoats and weasels (and more 
recently pine martens again in Wales) 
and this has not appeared to affect 
their ability to recolonize, although it is 
possible that it might affect local 
population densities and / or speed of 
expansion.  

High As polecats continue to expand and 
other carnivores such as otters and 
pine martens continue to recolonise 
and reach carrying capacity in the 
same areas, their distributions 
increasingly overlap and intraguild 
interactions may occur. 

McDonald 
2002, 
Harrington 
2008 
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This qualitative risk assessment finds that secondary exposure to SGARs and road 

mortality are the risks most likely to occur, but that these risks are unlikely to have the 

greatest impact in limiting future population expansion. Predator controls, rabbit 

abundance and roads may affect expansion in some areas. While secondary exposure to 

rodenticides is the primary chemical control agent considered in this thesis, other chemical 

control agents have been prevalent in wildlife management in Britain. Use of poisons such 

as strychnine and, more recently, the pesticides carbofuran or alpha-chlorolose have been 

associated with game management in the UK (Reynolds & Tapper 1996, Whitfield et al. 

2003). It is reasonable to suppose that such practices may have been more widespread 

historically and that these, alongside trapping, may have contributed to the extirpation of 

some predator species. Fumigation (or “gassing”) of rabbit burrows to manage rabbit 

numbers is a common practice on game estates and may affect non-target species that 

make use of rabbit burrows (such polecats, stoats and weasels) through indiscriminate 

killing of burrow inhabitants (Packer & Birks 1999, McDonald & Harris 2000).  

This assessment is a point-in-time estimate of the known risks to polecats, which are 

unlikely to be static. Should SGAR exposure continue to rise (as has happened in the last 

25 years), then SGAR mortality may become more important to polecat expansion. In 

addition, if rabbit abundance continues to decline to a point where polecats need to 

diversify their diet, it is possible that SGAR exposure may increase further and the “low” 

impact status of SGAR exposure would need to be upgraded. Harris et al. (2018) provides 

long-term trends of rabbit records but finer scale information on rabbit distributions are not 

available. Given the prevalence of rabbits in polecat diet (Chapter 4) and the evidence that 

polecats have adapted their resource use when rabbits were very scarce (Chapter 3), the 

status of rabbit populations and the nature of polecat dependency on them are important. 

There is a need to carry out a finer scale analysis of polecat diet using stable isotopes to 

reconstruct diet in areas of varying rabbit abundance and thereby understand the extent of 

any dietary dependency on rabbits in greater detail. 

Given the characteristics of the areas that polecats are now recolonising, which includes 

the uplands and eastern counties of Britain, where predator controls are more intense 

(Chapter 6) and areas with significant road and urban barriers, it is possible that it will take 

polecats longer to establish themselves in northern England and Scotland. It is also 
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possible that there may be some areas where polecats do not become established where 

historically they were once common. In order to validate these conclusions, particularly 

with regards to predator controls, an analysis of the source-sink dynamics of carnivores 

around game estates would be invaluable in terms of understanding the dynamics around 

a large highly seasonal food source. The updated information about risks to polecats 

presented in this thesis could now be used as the foundations for a quantitative spatial 

model of the risks to polecats across the landscape and to project their maximum future 

distribution extent in Britain. Such a model could be extended to estimate range and / or 

abundance changes in other British carnivores, such as the pine marten or fox.  

Implications for carnivores and wildlife management in Britain 

The polecat is not alone in experiencing improvements in population status in Britain since 

the 1960s. In most cases, a relatively low level of intervention has accompanied population 

increases in the form of legal protections to control levels of killing and, in the case of the 

otter, restrictions/bans on the use of some environmental pollutants and translocations of 

animals (Chapter 2). Natural recovery of rabbit populations may have supported 

population growth (Chapter 4, McDonald et al. 2000).  

Overall, though, the broadly positive picture for carnivore populations in Britain implies that 

although the countryside might be fragmented (Thomas 1995), and environmental 

pollutants pervasive (Chapter 5, Pountney et al. 2015), there has been sufficient habitat 

and food to support increasing numbers of carnivores. Caution should be exercised, 

though, when using small carnivores as ecological indicators to make generalisations 

about overall ecosystem health (Landres 1992). It cannot be presumed that increasing 

numbers of carnivores is indicative of any more than an adequately functioning ecosystem 

for these species. Carnivores play an important regulatory role in ecosystems and an 

interesting next research step would be to explore the community dynamics in areas 

where all British carnivores are now present (because of the recovery of certain species) 

to understand any trophic cascades and intra-guild interactions that may occur. For 

example, Hebblewhite et al. (2005) found that the reintroduction of wolves to Banff 

National park led to changes in elk Cervus elaphus population density, female survival and 

calf recruitment. Similar evidence of trophic cascades has been observed following wolf 

reintroduction in Yellowstone National Park (Ripple et al. 2012). Furthermore, wolf 
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recovery on Isle Royale in the 1960s led to the collapse of coyote Canis latrans 

populations as coyotes competed with wolves for the same prey (Mech 1966, Smith et al. 

2003). Studies by Harrington et al. (2008, 2009b) found that otter and polecat recovery 

lead to behavioural changes in sympatric invasive American minks Neovison vison and it 

is possible that there may be some intra-guild cascading effects of returning polecats on 

stoat populations, given the similarities in their diet. 

The apparent ongoing change in Britain in the numbers of rabbits, a major food source for 

British carnivores (Chapter 4, Sumption & Flowerdew 1985, McDonald et al. 2000), and its 

effect on carnivore populations is also uncertain. Research in countries such as Spain 

where rabbit haemorrhagic disease has led to significant rabbit population declines found 

that generalist predators like foxes switched their diet to prey upon more rodents and birds 

(e.g. Villafuerte et al. 1996). In Britain, the current decline in rabbit populations could lead 

to an increased risk of secondary exposure to SGARs if carnivores compensate by eating 

more rodents (Chapter 5). This could increase the risk of both poor nutrition/starvation and 

poisoning in some carnivore populations.  There is a need to understand how carnivore 

populations and carnivore-prey community dynamics are affected by variation in rabbit 

abundance.   

The population status of polecats, otters and eventually pine martens is such that at some 

point their legal status may need to be reviewed. Proponents of a more interventionist style 

of wildlife management, such as gamekeepers, will be inclined towards seeing such a 

review earlier than other groups (Chapter 6). The likelihood of a review of predator 

protection legislation being pursued is likely to depend on the species in question. 

Gamekeepers mainly did not seem to think that polecats were a problem although they do 

sometimes kill them (Packer & Birks 1999), but they were all aware of the potential threat 

of pine martens in terms of disturbing gamebirds in woodlands. The effect of any reduction 

in legal protection is likely to be more severe for some species than others, depending on 

availability of suitable habitat, plasticity in resource use, time to breeding, average annual 

reproduction rates and the likelihood of other mortality factors occurring which may put 

pressure on populations. In Chapter 3 we highlight potential differences in resource use in 

different parts of a recovering species range, which indicate that the distinct ecological 
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requirements of males and females of dimorphic species may need to be considered 

during the process of range expansion.  

In summary, my research findings suggest that any policy decisions concerning reducing 

the level of species protection should take into account both the state of the recolonisation 

process and the extent to which animals pose a problem. At the moment it is possible to 

control polecats by shooting them. As a Schedule VI species under the Wildlife and 

Countryside Act (1981) they are not protected against all forms of killing. Unintentional 

killing is recorded in the Game and Wildlife Conservation Trust’s National Gamebag 

census, but it is likely that this underestimates levels of killing due to both the presence of 

hybrid individuals, which may mean that gamekeepers count animals as ferrets, and to the 

fact that it is illegal to trap them.  

General implications for carnivore management 

My study of polecats highlights that species recoveries may occur in dynamic social-

ecological systems. One of the challenges with polecat declines elsewhere in Europe is 

that the potential causes of the decline are not well understood (Croose et al. 2018). In the 

case of polecats in Britain, events in the first part of the twentieth century (e.g. the 

combined effects of the wars on predator management and the banning of the gin trap) 

were key factors in initiating polecat recovery. These changes were not directed at 

benefitting small ground predators at that time, although this has been the outcome. My 

research also shows the importance in recognising that the original causes of the decline 

may not be the same ones that are restricting population recovery at a later date. It is 

therefore important for wildlife managers not only to be aware of the causes for past 

declines but also to investigate novel risks that recovering species will encounter as they 

expand their population range. Gamekeeper practices continue to change with the 

development of the shooting industry and practices are not the same as they were 

historically (Chapter 6). Secondary exposure to rodenticides is a relatively new risk in the 

context of polecat recovery, but has also has emerged as a risk within the time that 

rodenticides have been used to manage rodents (Chapter 5). 
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In a comparison of the way that polecat recovery has been managed compared with other 

species, such as beavers Castor fiber across Europe and wolves Canis lupus in the USA, 

we can see that the approach has been quite low in intensity (Fig. 7.1).  

 

Figure 7.1. Comparisons of wildlife management approaches associated with the recovery 

of polecats in Britain, beavers in Europe and wolves in the USA. Sources: Bath 1989, 

Halley & Rosell 2002, Naughton-Treves et al. 2003, Guertin 2016, Sainsbury et al. 2019. 

Apart from some basic legal protection and some small-scale translocations, polecat 

recovery has largely taken place without specific interventions, and has gone largely 

unnoticed. Nonetheless, the outcome for polecats has been positive and could be seen to 

vindicate the view that, once human threats are removed, at risk species can recover by 

themselves with minimal direct intervention. It is difficult to state with conviction that the 

polecat’s recovery in Britain is a validation of that view as there is no counterfactual 

scenario to which the outcome can be compared (Ferraro & Pattanayak 2006). We also 

cannot say how many polecats have been killed illegally since their inclusion under the 
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protection of the Wildlife & Countryside Act (1981) and therefore it is also not possible to 

know whether fewer have been killed than would have been killed had the legislation not 

been in place.  

This minimal intervention approach for aiding population recovery may not be an 

appropriate strategy for polecats elsewhere in their range in Europe, as the causes of 

decline in European populations is not known. Furthermore, it would not work with all other 

carnivore species. In Great Britain, pine marten and wildcat experienced similar declines to 

the polecat in the eighteenth and nineteenth centuries, but neither have recovered to the 

extent of the polecat. This is despite both receiving more intervention in the forms of 

translocations and trap-neuter-release programmes to reduce the threat of hybridisation 

(Chapter 2). Minimal intervention would also be less successful for larger carnivores, such 

as wolves Canis lupus or brown bear Ursus arctos, which are more visible and may create 

greater opportunities for human-wildlife conflict over livestock (e.g. Breitenmoser 1998). 

However, the polecat case study does indicate that it can be appropriate to prioritise 

management efforts towards species that need more support, as long as there is sufficient 

understanding of the species in question. Chapter 3 highlights that even with a generalist 

species, assumptions about resource use during recolonisation need to be made carefully.  

Polecats mature and breed relatively quickly. They are flexible in their resource use 

(Chapters 3 & 4). However, even 100 years after their population reached its nadir in 

Britain and the reduction of the main threats to their persistence, they are still to fully 

recover their former range (Chapter 2). This indicates that even for a flexible, quick to 

breed species like the polecat, management planning needs to take place over extended 

time frames and that the benefits of any investment may not be realised within the lifespan 

of a conservation intervention, which are often typically short-lived (Ferraro & Pattanayak 

2006). Finally, while the need for monitoring and evaluation of wildlife management is not 

new, this case study underlines the utility of long-term monitoring of species of interest 

(including carcass collection and preservation), their prey and threats to their persistence.  
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Appendix 2.1. Changes in the ranges of wildcat Felis silvestris, European pine marten Martes martes and European polecat 

Mustela putorius. A) Distances (in km) from the central points of species ranges in 1975 to all positive hectads using 95th 

percentile gamma statistic (after Preuss et al. 2014) and B) results of linear models analysing the rates of expansion (in km). 

A] 
Decade 

Wildcat  
Felis silvestris 

European pine marten 
Martes martes 

European polecat 
Mustela putorius 

1975 144.9 122.0 119.7 
1985 153.7 127.0 123.9 
1995 117.9 149.6 221.3 
2005 164.4 n/a 246.3 
2015 n/a 188.1 302.8 

 

B]  Coefficient summary 
 

Model statistics 
 

Species Parameter Coefficient Standard 
Error 

t value p value Adjusted 
R2 

F statistic Degrees 
of 

freedom 

Wildcat  
Felis silvestris 

(intercept) 141.8 20.2 7.0     
Year (0-30) 0.2 0.1 0.2 0.852 0.47 0.04 1,2 

         
European pine 
marten  
Martes martes 

(intercept) 116.4 5.0 23.2     
Year (0-40) 1.7 0.2 7.9 0.015 0.95 62.7 1,2 

         
European 
polecat Mustela 
putorius 

(intercept) 105.1 17.3 6.1     
Year (0-40) 4.9 0.7 6.9 0.006 0.92 48.1 1,3 
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Appendix 2.2. Recent population estimates for native mammalian carnivores in Great Britain. Population estimates are the 

combined totals for England, Scotland, and Wales unless otherwise stated. Reliability is scored differently by Mathews et al.  

(2018), where <=1 indicates very poor reliability of estimate and 4= very good reliability of estimate, and Harris et al. (1995), 

where 1 is most reliable estimate and 5 the least reliable estimate. 

Species Source Population estimate (95% Confidence Interval) 

Wildcat  
Felis silvestris 

Mathews et al. 2018 200 (30 – 430). Scotland only. Mathews reliability = 2. 
Kitchener et al. 2005 400-1800, depending on wildcat definition. Scotland only. 
Harris et al. 1995 ~3500. Scotland only. Harris reliability = 3. 

Red fox  
Vulpes vulpes 

Mathews et al. 2018 357,000 (104,000 - 646,000). Mathews reliability = 2.5. 

Webbon et al. 2004 225,000 (179,000-271,000) rural foxes. 33,000 urban foxes (Harris et al. 1995). Total = 258,000. 

Harris et al. 1995 ~240,000. 195,000 in England, 23,000 in Scotland, 22,000 in Wales. Urban fox population: total 

33,000 of which 30,000 in England, 2,900 in Scotland, 100 in Wales. Harris reliability = 4. 

European otter  
Lutra lutra 

Mathews et al. 2018 11,000 (NA). Mathews reliability = 1. 
Harris et al. 1995 ~7,350. 350 in England, 6600 in Scotland (of which 3,600 on mainland and 3000 on islands), 400 

in Wales. Harris reliability = 3. 

European 
badger  
Meles meles 

Mathews et al. 2018 562,000 (391,000 - 1,014,000). Mathews reliability = 4. 

Judge et al. 2017 485,000 (391,000–581,000) in England and Wales. 
Harris et al. 1995 ~250,000. 190,000 in England, 25,000 in Scotland, 35,000 in Wales. Harris reliability = 1. 

Cresswell et al. 1990 250,000. 

European pine 
marten  
Martes martes 

Mathews et al. 2018 3,700 (1,600 - 8,900). Mathews reliability = 2. 
Balharry et al. 1996 2,600 in Scotland only. 
Harris et al. 1995 ~3,650. <100 in England, ~3,500 in Scotland, <50 in Wales. Harris reliability = 2. 

Stoat (ermine) 
Mustela erminea 

Mathews et al. 2018 438,000 (NA). Mathews reliability = 1. 
Harris et al. 1995 ~462,000. 245,000 in England, 180,000 in Scotland, 37,000 in Wales. Harris reliability = 4. 

Weasel 
(common 
weasel, least 
weasel)  
Mustela nivalis 

Mathews et al. 2018 450,000 (NA). Mathews reliability = 0. 
Harris et al. 1995 ~450,000. 308,000 in England, 106,000 in Scotland, 36,000 in Wales. Harris reliability = 4. 

European 
polecat  
Mustela putorius 

Mathews et al. 2018 83,300 (68,000 - 99,000). Mathews reliability = 4. 
Harris et al. 1995 ~15,000; 2500 in England, Scottish introductions unknown, 12,500 in Wales. Harris reliability = 3. 
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Appendix 2.3. National distribution surveys of native mammalian carnivores in Great Britain, 1960–2017. 

Species 1960-1979 1980-1989 1990-1999 2000-2009 2010-present 

Wildcat 
Felis silvestris 

1960-75 (Langley & 
Yalden 1977) 

1983-87 (Easterbee et 
al. 1991) 

Live trapping: 1992-1993 
(Daniels et al. 1998) 

2006-08 (Davis & 
Gray 2010)  

2010-13 (Kilshaw 
et al. 2016) 

Red fox 
Vulpes vulpes 

No specific surveys of national distribution have been published. See Battersby 2005 for a summary of surveys including 
red fox, Aebischer et al. 2011 for GWCT’s National Gamebag Census trends and Harris et al (2018) for BBS trends. 

European otter 
Lutra lutra 

England  

1977-79 (Lenton et al. 
1980) 
Scotland 
1977-79 (Green & 
Green 1980) 
Wales 

1977-78 (Crawford et 
al. 1979) 

England 

1984-86 
(Strachan et al. 1990) 
Scotland 
1984-85 (Green & 
Green 1987) 
Wales 

1984-85 (Andrews et 
al. 1986) 

England & Wales 

1991-94 (Strachan & 
Jefferies 1996) 
Scotland 
1991-94  
(Green & Green 1997) 
Wales 

1991 (Andrews et al. 
1993) 

England 

2000-02 (Crawford 
2003) 
Scotland 
2003-04 (Strachan 
2007) 
Wales 

2002 (Jones & 
Jones 2004) 

England 

2009-10 
(Crawford 2010) 
Scotland 
2011-12 (Findlay 
et al. 2015) 
Wales 

2009-2010 
(Strachan 2015) 

European badger 
Meles meles 

1960-70 (Neal 1972, 
1977, 1986, Clements 

et al. 1988)  

1985-88 (Cresswell et 
al. 1989, 1990) 

1994-1997 (Wilson et al. 
1997) 

Scotland 
2006-2009 (Rainey 

et al. 2009) 

England & Wales 
2011-13 (Judge et 

al. 2014, 2017) 

European pine 
marten 
Martes martes 

Great Britain 

1960-1975 (Langley & 
Yalden 1977) 
England & Wales 
1960-1988 (Strachan 
et al. 1996) 

Great Britain 

1980-82 (Velander 
1983) 
England & Wales 
1960-88 (Strachan et 
al. 1996) 

Scotland 

1994 (Balharry et al. 
1996) 
England & Wales 
1996-2007 (Birks & 
Messenger 2010) 
1993 (Bright & Harris 

1994),  
1994-95 (McDonald et al. 
1994) 

Scotland 

NA 
England & Wales 
1996-2007 (Birks & 
Messenger 2010) 

Scotland 

2012-13 (Croose 
et al. 2013, 2014) 
England & Wales  
VWT unpublished 
data 

Stoat (ermine) 
Mustela erminea 

No specific surveys were carried out. See Aebischer et al. 2011 for the National Gamebag Census trends. 
 

Weasel (common or 
least weasel) 
Mustela nivalis 

No specific surveys were carried out. See Aebischer et al. 2011 for the National Gamebag Census trends. 

European polecat 
Mustela putorius 

1960-75 (Langley & 
Yalden 1977) 

1986 (Blandford 1987)  
1981-85 (Tapper 
1992) 

1993-97 (Birks & 
Kitchener 1999)  

2004-06 (Birks 
2008)  

2013–16 (Croose 
2016) 
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Appendix 2.4. National and international legislation providing protection for native mammalian carnivores in Great Britain.  

Species GB legislation International Legislation Other 
 Wildlife & 

Countryside 
Act (1981) 

UK 
Biodiversity 
Action Plan 

Conservation 
of Species & 
Habitats 
Regulations 
(2010) 

Bern 
Convention 
(1982) 

EU 
Habitats 
Directive 
(1992) 

EC 
CITES 

 

Wildcat 
Felis silvestris 

Schedule 5 
(as per 1988) 

Priority 
species 

Schedule 2 Appendix 2 IV Annex 
A 

NA 

Red fox  
Vulpes vulpes 

NA NA NA NA NA NA Hunting Act (2004). 

European otter  
Lutra lutra 

Schedule 5 Priority 
species 

Schedule 2 Appendix 2 II, IV Annex 
A 

Hunting Act (2004); 
Natural Environment 
and Rural 
Communities Act 
(2006); Scottish 
Biodiversity List. 

European 
badger  
Meles meles 

NA NA NA Appendix 3 NA NA Protection of Badgers 
Act (1992);  
Agreement on 
International Humane 
Trapping Standards. 

European pine 
marten Martes 
martes 

Schedule 5 Priority 
species 

Schedule 4 Appendix 3 V NA Agreement on 
International Humane 
Trapping Standards; 
Natural Environment 
and Rural 
Communities Act 
(2006); Scottish 
Biodiversity List. 

Stoat (ermine) 
Mustela 
erminea 

NA NA NA Appendix 3 NA NA Agreement on 
International Humane 
Trapping Standards 
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Species GB legislation International Legislation Other 
 Wildlife & 

Countryside 
Act (1981) 

UK 
Biodiversity 
Action Plan 

Conservation 
of Species & 
Habitats 
Regulations 
(2010) 

Bern 
Convention 
(1982) 

EU 
Habitats 
Directive 
(1992) 

EC 
CITES 

 

Weasel 
(common or 
least) 
Mustela nivalis 

NA NA NA Appendix 3 NA NA NA 

European 
polecat 
Mustela 
putorius 

Schedule 6 Priority 
species 

Schedule 4 Appendix 3 V NA Natural Environment 
and Rural 
Communities Act 
(2006); Scottish 
Biodiversity List. 
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Appendix 2.5. Incidences of secondary exposure to contaminants in native British mammalian carnivores in Europe. 

Species Country Organochlorine 
pesticides 

PCBs PDBEs Second generation 
anticoagulant 
rodenticides 

Toxic metals 
(including 
lead and 
mercury) 

Wildcat Felis 
silvestris 

Great Britain Hamilton et al. 
1981 

  Taylor et al. 2011  

Red fox 
Vulpes vulpes 

Great Britain Blackmore 1963   Tosh et al. 2011 
(includes Northern 
Ireland) 

 

 Belgium Voorspoels et al. 
2006 

    

 Germany    Geduhn et al. 2015  

 Poland     Kalisiñska et 
al. 2009 

 Spain Mateo et al. 2012 Mateo et al. 
2012 

 Sánchez-Barbudo et 
al. 2012 

 

European otter  
Lutra lutra 

Great Britain Mason et al. 
1986, Chadwick 
2007 

Pountney et 
al. 2015 

Pountney 
et al. 2015 

  

 Finland     Lodenius et al. 
2014 

 Spain    Sánchez-Barbudo et 
al. 2012 

 

European 
badger  
Meles meles 

Great Britain Jefferies 1969     

Poland  Tomza-
Marciniak et 
al. 2014 

  Kalisiñska et 
al. 2009 

Spain Mateo et al. 2012 Mateo et al. 
2012 

   

Great Britain    Sharp et al. 2013  
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Species Country Organochlorine 
pesticides 

PCBs PDBEs Second generation 
anticoagulant 
rodenticides 

Toxic metals 
(including 
lead and 
mercury) 

European pine 
marten Martes 
martes 

Ireland Mason & 
O’Sullivan 1992 

Mason & 
O’Sullivan 
1992 

  Mason & 
O’Sullivan 
1992 

Poland     Kalisiñska et 
al. 2009 

 Sweden  Bremle et al. 
1997 

   

 Finland     Lodenius et al. 
2014 

Stoat (ermine) 
Mustela 
erminea 

Great Britain Jefferies & 
Pendlebury 1968 

  McDonald et al. 
1998 

 

 Denmark    Elmeros et al. 2011  

Weasel 
(common 
weasel, least 
weasel) 
Mustela nivalis 

Great Britain Jefferies & 
Pendlebury 1968 

  McDonald et al. 
1998 

 

 Denmark    Elmeros et al. 2011  

 Italy Alleva et al. 2006 Alleva et al. 
2006 

  Alleva et al. 
2006 

 Spain    Sánchez-Barbudo et 
al. 2012 

 

European 
polecat Mustela 
putorius 

Great Britain    Shore et al. 1999, 
2003; Sainsbury et 
al. 2018 

 

Denmark    Elmeros et al. 2018  

Italy Alleva et al. 2006 Alleva et al. 
2006 

  Alleva et al. 
2006 
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Species Country Organochlorine 
pesticides 

PCBs PDBEs Second generation 
anticoagulant 
rodenticides 

Toxic metals 
(including 
lead and 
mercury) 

Germany  Engelhart et 
al. 2001 
Skumatov 
2016 

Skumatov 
2016 

  

 Poland     Kalisiñska et 
al. 2009 

 Switzerland  Mason & 
Weber 1990 

  Mason & 
Weber 1990 

 Finland     Lodenius et al. 
2014 
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Appendix 3.1. Comparison of mean values of (A) δ15N and (B) δ13C from 

polecat whiskers between all data and a subset where polecats were present 

continuously between 1960 and 2016. The whole dataset, excluding the subset, 

is coloured grey, and the subset, where the samples are taken from an area 

(Grid square OSGB SO) where polecats were present for all decades, is 

coloured white. 

(A)   

(B)   
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Appendix 5.1. Histogram of distribution of total rodenticide concentrations 

detected in polecats collected 2013-2016. Frequencies are grouped into 0.1 

µg/g wet weight intervals. If a lethal level of secondary exposure is assumed to 

be 0.2 µg/g wet weight (Newton et al. 1999), 38% (n=20) of polecats with 

detectable levels of rodenticide in their liver residues would be above this 

threshold. 
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Appendix 6.1. Example of semi-structured interview guide. 

This guide was used for interviews with gamekeepers. Interviews took place at 

either the participants home, or in the field while visiting their rounds or (most 

commonly) a combination of the two locations. The order of questions was 

adapted so that participants could show the location of their activities and 

demonstrate them (where appropriate) as they described carrying them out. 

Background 

 How long have you been a gamekeeper? 

 How did you get into it? 

 Have you always worked here? 

 How big is your patch compared to others? 

 How many days shooting are there for a year? 

 What do you enjoy most about the job? 

What 

 What does being a gamekeeper involve? 

 How does this change through the year, starting in the spring? 

 What is a typical day like for you? 

 Do you have objectives/targets that you have to meet? 

 How do you know if you’re doing well? 

 Which part of the job takes up the most time/effort? 

How  

 How do you carry out predator controls? 

 How do you go about rodent and rabbit controls? 

 How do things you do shape the countryside? 

 How have things changed over the time you’ve been doing the job? 

Why 

 Do other keepers do things the way you do? If not, why not? 

 Is there a community around keeping, where you share what you know 

and what works/doesn’t? 
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 Why do you manage this kind of shoot rather than grouse or wild game? 

Would you manage wild game or grouse preferentially? 

 What principles guide your work as a gamekeeper?  

 What is the biggest risk to your birds?  

 What is more of a problem, disturbance or kills?  

 If you were to go about minimising disturbance what would you do?  

 How do you know what predator is getting at the birds? 

 What is more of a problem, vermin on the ground, or from the air?  

 To what extent do you target any control activity against specific birds or 

animals? 

Perceptions, values and norms 

 What is the most difficult thing about what you do? 

 What changes have you made that wouldn’t be there otherwise 

 Are there any external influences on you to do things the way you do? 

 What is a desirable way to behave as a gamekeeper? 

 If you were hiring someone, what qualities do you look for? 

 Some organisations describe keepers as conserving the countryside. 

What do you think about that? 

 What do other people who aren’t keepers think about what gamekeepers 

do? 

 Have you ever experienced any negativity personally towards what you 

do?  

 How would you go about addressing some of the conflict between 

keepering communities and those who have other interests? 

 How do you think the profession will be in 10-20 years? 

 What do more predators recovering mean to you? 

 How does the community internally handle things like raptors being 

poisoned? 
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Appendix 6.2. Example information for participants and consent form. 
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Appendix 6.3. Overview of activities carried out by gamekeepers to manage habitat in The Balance. 

Gamebird Examples of habitat management to 
maximise gamebird production in The 
Balance 

Primary objectives 

Red grouse Lagopus 
lagopus scotica (wild 
game) 

 Controlled heather burning 

 Sheep grazing (by tenant farmers) 

 Peat hag restoration 

 Provide medicated and unmedicated grit 

Create a ‘mosaic’ of habitat that maximises the: 

 Amount of forage available to birds (insects, heather and seeds) 

 Number of territories available to cockbirds, thereby producing as 
many breeding pairs as possible 

 To aid digestion and manage worm burdens 

Grey partridge Perdix 
perdix (wild game) 

 Planting cover crops around field margins 

 Building ‘beetlebanks’ to break up fields 

 Planting cover crops 

 Managing hedgerows 

 Woodland management 

 Dew pond restoration 

 Feed supplemented by hoppers 

Provide a rich and diverse natural habitat for birds that: 

 Provides a natural food source for adults and chicks (insects and 

seeds) 

 Regularly distributed hoppers ensure adult birds don’t have to 
leave the nest for long 

 Provide shelter from inclement weather 

 Provide cover from predation 

Red-legged partridge 
Alectoris rufa (reared 
game28) 

 Planting cover crops 

 Food provisioned by hoppers and / or 

spinners and / or by hand 

 Water provided in drinkers 

 Regular feeding encourages birds to specific locations at desired 
times of day. Also provides opportunity to check birds overall 

health and demeanour 

 Provide natural food source to supplement feed provided by 
keeper 

 Provide shelter from inclement weather 

 Provide cover from predation 

 Discourage the birds from leaving drives 

 Water drinkers can be used to provide birds with medication if 
required 

                                         

28 Most red-legged partridge and pheasants are reared from captive stock for driven shooting, but some shoots do maintain feral populations. 
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Gamebird Examples of habitat management to 
maximise gamebird production in The 
Balance 

Primary objectives 

Pheasant Phasianus 
colchicus (reared 
game) 

As for red-legged partridge, plus: 

 Woodland management, including cutting 
in rides, creating dappled light and shade, 
encouraging understory growth, 
‘pleaching’29 and coppicing 

 As for red-legged partridge 

  

                                         

29 Woodland management practice where lower branches are part cut and laid on the ground so that they continue to grow and provide ground cover. 
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Appendix 6.4. Predator management activities carried out by gamekeepers as part of keeping The Balance. 

Activity Description Reared game Wild game 

Lethal 
controls 

   

Trapping Aimed at trapping small ground 
predators such as stoats and 
weasels, our primary focus here. 
Keepers may also target rats and 
squirrels in cage traps which are 
dispatched later. 
 

Spring traps (Fenn Mark 4) are 
set in tunnels and on rails over 
ditches and streams. 

Trapping effort varies between shoots 
depending on keeper priorities. Some only 
trap around rearing fields, pens and holding 
crops, others carry out more widespread 
controls with traps situated along routes the 
keeper regularly travels. 
 

In general, most keepers stated that as by 
the time pheasants Phasianus colchicus / 
red-legged partridge Alectoris rufa are 

released they are big enough to deter 
smaller ground predators and so their time 
is better spent focusing on fox control, 
which is where the larger risk to their birds 
lies. 
 
Trapping may take place over a month 
period in the spring while keepers are 
preparing for poults to arrive.  

 

Grey partridge Perdix perdix: 

Predator controls start in January 
and carry on through to August. 
Systematic trapping of field edges 
and beetle banks, with traps 
usually set every 100-200 yards. 
Excluder sticks are used in traps 

to guide the quarry over the trap 
treadle and to discourage non-
targets from entering traps. 
 
Red grouse Lagopus lagopus 
scotica: timing of controls as for 

grey partridge, with a peak when 
the hens are sitting on eggs and 
chicks are hatching. 
Trap lines are set along routes 
that the keepers follow as part of 
their regular routine and make 

use of linear features such as 
stone walls.  
 

Snaring Method to hold foxes before they 
are shot. 
 
Snares are set in field tramlines 
and on animal trails. 
 

Typically set around pens and holding 
areas. Varies between keepers. 

Grey partridge: used extensively 
as a way of catching foxes when 
the keeper can’t be there. Effort 
put in depends on the number of 
foxes in an area. 
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Activity Description Reared game Wild game 
Red grouse: the number of foxes 

on estates interviewed were far 
fewer than in the lowlands, so 
snaring effort was lower. 

Shooting Carried out at night with night 
vision and thermal imaging 
sensors, or in a team with a lamp. 
 
Usually targeting foxes, although 
sometimes polecats may be shot 
this way. 

Peak activity in spring and summer when 
cubs are born and birds are released. 
Keepers will ‘sit out from dawn ‘til dusk to 
catch a fox’ (Frankie). 
 
Some keepers are out 3 days a week year 
round, others focus their activities to where 
risk is highest or when they have a problem.  
Once the shooting season starts, fox control 
effort reduces. 

As for reared game. 
 
In the uplands, keepers may use 
snow to track animals. 

Non-lethal controls   

Electric 
fencing 

Electrified wires of up to 8000 
volts. 
 
To discourage fox, badger and 

deer from entering pens. 

All keepers had electric running around 
pens and release areas without exception. 
 
Sometimes secondary fences were put up 

around fields adjacent to pens to provide a 
second line of defence for when birds were 
flushed to ground.  

N/A 

Diversionary 
feeding 

Encouraging predators to areas 
such as the estate boundaries or 
away from drives by distributing 
carcasses/remains of other pest 
species (rat, rabbit, deer) when 
birds are younger. 
 
May also include not eradicating 
all pest species, e.g. rabbits, so 

Talked about by partridge keepers only as a 
way to keep birds from wandering. 

N/A 
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Activity Description Reared game Wild game 
that predators have an alternative 

source of prey to game. 
 
Mostly useful for birds of prey. 

Other 
deterrents 

Playing radios, flashing lights, 
flapping plastic bags, leaving 
human scent markers, and 
displaying mannequins 

Used in pheasant pens in spring / summer 
to deter predators. 

N/A 
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